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ABSTRACT 17 

Owing to their diverse functional groups, antibiotics can easily form complexes with heavy metals; the 18 

complexation alters the migration and transformation behavior of both antibiotics and heavy metals. In this 19 

study, we investigated the co-adsorption mechanism of sulfamethazine (SMT) and cadmium (Cd
2+

) heavy 20 

metal ions and created an ideal water model containing two major contaminants: sulfamethazine and heavy 21 

metal cadmium ions. Combined with the experimental analysis of the interaction mechanism, the results 22 
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indicate the heterogeneous multilayer adsorption of SMT on the surface of activated carbon (AC). The 23 

bridging role of cadmium ions promotes the adsorption of SMT through the formation of SMT-Cd
2+

-AC 24 

ternary complexes on the surface of activated carbon. Characterization experiments provided further insight 25 

into the adsorption behavior of Cd
2+

 and SMT on activated carbon, revealing a strong correlation between 26 

the Cd
2+

-SMT complexation and the SMT adsorption capacity. These results indicate that the effects of the 27 

coexistence of antibiotics and heavy metal ions should be fully taken into account when investigating the 28 

environmental behavior of antibiotics and heavy metal ions. 29 

 30 

Key words: Heavy Metal, Antibiotics, Bridging, Complexation, Adsorption 31 

 32 

1. Introduction 33 

 34 

Fast industrialization and growing social activities result in the composition of wastewater becoming 35 

increasingly more complex[1]. The combined pollution by antibiotics and heavy metals, widely affecting 36 

actual water systems, is causing widespread concern[2, 3]. These two pollutants can cause serious harm to 37 

humans and ecosystems[4]. The use of antibacterial agents in the livestock and poultry breeding industry, 38 

the land use of livestock and poultry manure, and the centralized treatment of industrial wastewater have led 39 

to increasingly serious pollution in surface water or groundwater[5]. Sulfanilamide antibiotics and cadmium 40 

heavy metals are the most typical co-pollutants in livestock and poultry breeding industries[6, 7]. Cadmium 41 

mainly originates from excessive use of Cd-containing chemicals (insecticides and fungicides) as well as 42 

cadmium-rich feces[8]. Cadmium fertilizers are employed in domestic poultry breeding[9]. Synthetic 43 

antibiotics have been used in livestock feed to improve feed efficiency and promote growth[10]. However, 44 
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foreign antibiotics are usually difficult to be absorbed by animals, and are directly discharged into the 45 

receiving waters, where they may pose a serious threat to organisms and trigger antibiotic resistance[10]. 46 

Therefore, the efficient removal of antibiotics has attracted worldwide attention[11]. More importantly, 47 

antibiotics can form complexes with coexisting metal ions[11-13], which may significantly alter their 48 

chemical properties, migration/transformation process, and ecotoxic reactions[14]. For instance, it has been 49 

reported that chelation with antacids (magnesium or aluminum salts) will change the bioavailability of 50 

quinolones. Therefore, in environments co-polluted with heavy metal ions, complexation may have 51 

unexpected environmental consequences[15]. 52 

Adsorption methods are the key approaches to study the transfer and transformation of pollutants in 53 

the environment. Compared with coagulation, filtration, advanced oxidation, and other methods, the flexible 54 

design/operation and low energy consumption of adsorption processes make them the preferred approach for 55 

the practical production of clean water from wastewater, with high removal efficiency and less toxic 56 

by-products. In addition, this green technology produces no sludge and is compatible with other water 57 

treatment systems[16, 17]. Many groups are currently investigating the treatment of antibiotics and heavy 58 

metals using adsorption methods. It has been reported that graphene oxide and ordered mesoporous carbon 59 

materials with high adsorption capacity can effectively remove ciprofloxacin (CIP) pollutants in water[18, 60 

19]. Li et al.[20] prepared a biochar sample that was used to remove tetracycline and sulfadiazine. In 61 

addition, many detailed studies have focused on the removal of Cu
2+

, Pb
2+ [21], Hg

2+ [22], Cr(VI) [23], and 62 

Cd
2+ [24] from water using carbon-based materials. 63 

The combination of antibiotics and heavy metals has become a new component of polluted water. 64 

Present research on the adsorption of single heavy metals or antibiotics does not reflect the current state of 65 

environmental pollution. Relevant studies have shown that the presence of heavy metals can promote or 66 
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inhibit the adsorption process of different antibiotics, depending on the type and concentration of heavy 67 

metals[25]. Na[26] and co-workers focused on two antibiotics commonly used in aqueous environments 68 

(tetracycline hydrochloride and sulfadiazine) and two typical heavy metals (copper and zinc). Their results 69 

showed that when antibiotics coexist with heavy metals in water, they can form complexes through 70 

complexation. The cations of multivalent heavy metals can significantly enhance the adsorption of 71 

antibiotics through the bridging effect[27-29]. For example, Cu(II) can improve the adsorption capacity. 72 

The formation of CIP-Cu(II) complexes at pH values above 6.0 was simulated by surface complexation on 73 

goethite[27]. The presence of Ni(II) promoted the adsorption of CIP on activated carbon (AC)[29]. The 74 

mechanism by which metal ion complexation affects antibiotic adsorption is extremely complex. Although 75 

some reports on the co-adsorption behavior of composite antibiotics and metal pollutants are available, 76 

studies on the influence of metal ions on the adsorption of antibiotics are still scarce. In particular, the 77 

mechanism of co-adsorption has not been investigated in sufficient detail. However, our understanding of the 78 

mechanism controlling the influence of metal ions on the adsorption of antibiotics is still limited. At present, 79 

the main metal ions involved in these studies are K
+
, Na

+
, Ca

2+
, Mg

2+
, Cu

2+
, Ni

2+
, and Fe

3+
, whereas only few 80 

investigations have focused on toxic heavy metal ions such as Cr
6+

 and Cd
2+[30]. The microscopic 81 

characterization of the interaction between metal ions and antibiotics and of the mechanism by which metal 82 

ion complexation affects antibiotic adsorption is still insufficient. Activated carbon has advantages such as 83 

stable chemical properties, strong adsorption capacity, low cost, and wide availability. Therefore, the study 84 

of the interfacial adsorption behavior of multiple pollutants on activated carbon will support the design of 85 

cost-effective adsorbents[31, 32]. For this purpose, it is necessary to explore the co-adsorption and 86 

interaction mechanism of antibiotics and heavy metals on the surface of activated carbon. 87 

The aim of this study is to investigate the adsorption of antibiotics (sulfamethazine, SMT) and heavy 88 
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metals (cadmium) in single and binary contaminated solutions, and created an ideal water model containing 89 

two major contaminants: sulfamethazine and heavy metal cadmium ions. The influence of other ions in the 90 

natural environment was ignored temporarily. To more clearly observe the influence of cadmium ion on the 91 

adsorption capacity of SMT and the influence of complexation on the adsorption, and to observe the changes 92 

on the surface and inside of the adsorbent after adsorption in a short time, a relatively large concentration 93 

range of SMT and Cd
2+

 was adopted in this study. First, we studied the adsorption behaviors of 94 

sulfamethazine and cadmium ions on activated carbon in single and binary systems, based on the analysis of 95 

adsorption kinetics and isotherms. Then, X-ray photoelectron spectroscopy (XPS), Raman, nuclear magnetic 96 

resonance, and Fourier transform infrared (FTIR) spectroscopy techniques were used to characterize 97 

adsorption changes in the binary system and the correlation between the complexation and the adsorption 98 

amount. The analysis of the characterization and adsorption mechanism results allowed elucidating the 99 

influence of complexation on the adsorption process, providing a comprehensive description of the 100 

adsorption and interaction mechanism in the binary system. 101 

 102 

2. Materials and methods  103 

 104 

2.1 Materials  105 

 106 

SMT antibiotic, cadmium chloride, and activated carbon were purchased from Sigma (St. Louis, 107 

Missouri, USA), Tianjin Kemeo Chemical Reagent Co., Ltd., and Taishan Chemical Plant Co., Ltd., 108 

respectively. All reagents used in this study were of analytical grade and used without further purification. 109 

Deionized water was used in the experiments. 110 
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 111 

2.2 Single system adsorption experiments 112 

 113 

After determining the appropriate adsorption equilibrium time and amount of activated carbon, we 114 

studied the effects of these parameters on the adsorption. In the experiment, 20 mg activated carbon was 115 

used in a 150 mL test solution with a constant initial SMT concentration (25 mg·L
-1

) and sufficient contact 116 

time (24 h) at 303 K. A conical flask (250 mL, glass) was shaken with a water bath thermostatic oscillator at 117 

200 rpm. Samples were collected at different time intervals, and an UV-Vis spectrophotometer was used to 118 

scan the whole UV region and determine the adsorption equilibrium time of SMT. The dosage of activated 119 

carbon was set to 5, 10, 20, 30, and 40 mg in a 150 mL test solution with constant initial antibiotic 120 

concentration (25 mg·L
-1

) and adsorption equilibrium time (12 h), in order to determine the optimal dosage 121 

of adsorbent. In the experiment, 20 mg activated carbon was used in a 150 mL test solution with a constant 122 

initial Cd
2+

 concentration (25 mg·L
-1

) and sufficient contact time (24 h) at 303 K. A conical flask (250 mL, 123 

glass) was shaken with a water bath thermostatic oscillator at 200 rpm. Samples were collected at different 124 

time intervals, and inductively coupled plasma-atomic emission spectrometry(ICP-AES) was used to 125 

determine the adsorption equilibrium time of Cd
2+

. We investigated the adsorption behavior of SMT and 126 

Cd
2+

 at different temperatures and carried out adsorption isotherm measurements. The temperature was set to 127 

303, 313, and 323 K, and the water bath was shaken at 200 rpm under the above optimal conditions. We 128 

determined the correlation between the equilibrium concentration and the adsorption capacity of SMT and 129 

Cd
2+

 at different temperatures. 130 

 131 

2.3 Binary system adsorption experiments 132 
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 133 

To explore the influence of cadmium on the adsorption of SMT, different Cd
2+

 concentrations (0, 25, 134 

35, 45, 55, 65, 75, 100, 150, 350, 500, and 650 mg·L
-1

) were added to a 50 mg·L
-1 

SMT solution; then, 20 135 

mg activated carbon was added and the water bath was shaken at a constant temperature (303K). To further 136 

explore the adsorption behavior of SMT and cadmium ions in a binary system, we selected a concentration 137 

ratio of 1:1 between antibiotic and cadmium ions. The adsorption isotherm experiments were carried out at 138 

three different temperatures (303, 313, 323K). 139 

 140 

2.4 Characterization and analysis of AC-Cd
2+

-SMT ternary complex 141 

 142 

FTIR spectra were obtained on a vertex 70 spectrometer (Thermo Fisher, USA) to analyze the changes 143 

of surface functional groups before and after adsorption of activated carbon. The functional groups and 144 

binding energy of elements at the surface of AC were analyzed by X-ray photoelectron spectroscopy (XPS, 145 

Thermo Fisher ESCALAB 250Xi, United States), which was carried out on a Kratos Axis Ultra DLD 146 

spectrometer using monochromated Al Kα X-rays at a power of 150 W. All XPS test samples were 147 

freeze-dried in advance. Raman spectra were obtained by Renishaw (Hoffman Estates) equipped with 148 

argon-ion laser to analyze the change of graphitization degree of activated carbon before and after the 149 

adsorption. Nuclear magnetic resonance (NMR) spectroscopy (Bruker Avance 400) was used to determine 150 

the chemical shifts of surface elements of SMT before and after adding Cd
2+

. 151 

 152 

2.5 Determination of sulfamethazine and cadmium ions  153 

 154 



8 

 

The concentration of sulfamethazine was determined by a UV-Vis spectrophotometer; the absorbance 155 

was measured using deionized water as blank control, at a SMT maximum absorption wavelength of 261 nm. 156 

The concentration of cadmium ions was determined by inductively coupled plasma-atomic emission 157 

spectrometry (ICP-AES). 158 

 159 

2.6 Data analysis 160 

 161 

The adsorption capacity of sulfamethazine and cadmium ions [qe (mg·g
-1

)] was calculated by equation 162 

(1) [33]:             163 

 164 

qe = (C0 − Ce)·V/M         (1) 165 

 166 

where C0 and Ce (mg·L
-1

) are the initial and equilibrium concentrations of SMT or Cd
2+

 before and after 167 

adsorption, respectively, while V (mL) and M (mg) are the added volume of SMT or cadmium ion solutions 168 

and the mass of activated carbon, respectively.             169 

The linearized Langmuir model (Eq. (2)) and Freundlich model (Eq. (3)) were performed for the 170 

adsorption isotherms of SMT and Cd
2+

 to evaluate the distribution of SMT and Cd
2+

 in the solid phase and 171 

liquid phase after achieving adsorption equilibrium[34]: 172 

             173 

Ce/qe = Ce/qmax+1/( KL Â· qmax)        (2)             174 

 175 

lnqe = lnKF + 1/n·lnCe                (3)             176 
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 177 

where qmax (mg·g
−1

) is the maximum adsorption concentration of SMT and Cd
2+

 per unit mass of AC. 178 

KL(L·mg
−1

) and KF(L·mg
−1

) are respectively the adsorption constant of Langmuir and Freundlich models. 179 

1/n are the adsorption intensity constant of Freundlich. C0 (mg·L
-1

) is the initial concentration of SMT, and 180 

the complexation ratio of SMT to Cd
2+

 is 1:1[35]. The relationship between the concentration of SMT and its 181 

adsorption capacity is known; the concentration of the complex can be calculated based on the concentration 182 

of SMT and the complexation ratio[35], and the correlation between the complex concentration and the 183 

SMT adsorption capacity can thus be determined[36, 37]. 184 

 185 

3. Results and discussion  186 

 187 

3.1 Single adsorption of SMT and Cd(Ⅱ) on activated carbon 188 

 189 

As shown in Fig. 1a, the adsorption equilibrium time of SMT on activated carbon was approximately 190 

12 h. The adsorption of SMT on AC showed no significant differences at pH 3–7. At pH 9, the effect of SMT 191 

adsorption on AC was weaker than that observed under acidic and neutral conditions. As a typical 192 

amphoteric compound, SMT presents different proton states (SMT
+
, SMT

−
,
 
and SMT) at different pH 193 

values[38]. When the initial pH value of the solution was 3–7, the adsorption of SMT by AC was significant. 194 

This is because, at pH 3–5, SMT mainly exists as a protonated neutral molecule. At pH 5, the removal rate of 195 

SMT reached 93.9%, indicating a high neutral adsorption capacity. After that, with increasing pH, the SMT
−
 196 

anion becomes the main species in the solution, the electrostatic repulsion between SMT and AC increases, 197 

so that the adsorption capacity of SMT also decreases [39].  198 
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The determination of the adsorption equilibrium time of cadmium ions on activated carbon is shown in 199 

Fig. 1c. The Cd
2+

 adsorption equilibrium was reached at approximately 2 h. The results of this study are 200 

generally consistent with previous reports (Figs. 1a and 1c)[18, 19, 38]. Meanwhile, this study focuses on 201 

the effect of cadmium ions on the adsorption capacity of SMT, to accurately approach the typical pH value 202 

of an actual water body containing SMT contaminant(pH=7), the single adsorption experiment of cadmium 203 

ion and the subsequent experiments of this study were carried out under the condition of pH = 7[40, 41]. 204 

The effect of the AC dosage on the adsorption removal of SMT was further studied (Fig. 1b). With the 205 

optimum AC dosage, the adsorption of SMT is expected to reach the maximum. The effect of the AC dosage 206 

on the SMT adsorption was investigated by adding different amounts of AC to the solution. The results show 207 

that the removal rate of SMT increased from 46.2% to 99.1% as the AC dosage increased from 33.33 to 208 

266.67 mg·L
-1

, due to the increased number of adsorption sites on the adsorbent surface. When he amount of 209 

AC was further increased, the removal rate of SMT remained almost unchanged, due to the decrease in the 210 

adsorption capacity per unit mass of adsorbent. At higher adsorbent concentrations, the effective surface area 211 

decreases, and the aggregation or overlap between adsorption sites leads to a decrease in the available 212 

adsorbent surface area and an increase in diffusion path length. Some of the examined adsorbent systems fail 213 

to reach adsorption saturation, which is consistent with the results of previous studies[26]. Considering 214 

adsorption effects, adsorption capacity, and economic factors, the optimal adsorbent dose was estimated to 215 

be 133.33 mg·L
-1

. 216 
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Fig. 1. Effect of contact time (a) and adsorbent dosage (b) on adsorption of SMT; (c) effect of contact time on 219 

adsorption of Cd(Ⅱ). 220 

 221 

3.2 Co-adsorption of SMT and Cd(Ⅱ) on activated carbon 222 

 223 

Compared with the single-contaminant system, the binary contaminant solution composed of 224 

antibiotics and heavy metals showed a significantly different adsorption behavior. As shown in Fig. 2, at a 225 

solution pH of 7, when the cadmium ion concentration increased from 0 to 650 mg·L
-1

, the synergistic effect 226 

of Cd
2+

 promoted the SMT adsorption on AC. Previous reports speculated that heavy metals acting as 227 

electron acceptors have the ability to form Cd
2+

-SMT complexes by coordination and electrostatic adsorption, 228 

providing more adsorption sites for SMT in water, thus promoting the adsorption process[33, 42]. 229 
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Fig. 2. Effect of cadmium ion concentration on adsorption of SMT. 231 

 232 

Figs. 3a and 3b show the adsorption isotherms of SMT in the single and binary systems, respectively. 233 

The Freundlich model was more suitable for SMT adsorption (R
2
=0.959/0.982/0.954 for SMT with Cd

2+
, 234 

and 0.61/0.145/0.485 without Cd
2+

) than the Langmuir model (R
2
=0.942/0.94/0.949 for SMT with Cd

2+
, and 235 

0.932/0.896/0.903 without Cd
2+

), which can be described as heterogeneous multilayer adsorption (Table 1). 236 

Compared with the system without Cd
2+

, the presence of Cd
2+

 increased the adsorption capacity of SMT on 237 

activated carbon. In particular, the addition of Cd
2+

 significantly promoted the adsorption of SMT on 238 

activated carbon, which is consistent with the results of Fig. 2a. Relevant studies have shown that organic 239 

ligands bound with heavy metals can interact with functional groups on the surface of activated carbon to 240 

form stable complexes[43]. Higher numbers of electron-rich groups such as N and O in antibiotics lead to a 241 

stronger complexation ability with metal ions. Therefore, it can be further speculated that the organic ligands 242 

bound to cadmium ions may undergo complexation reactions with the functional groups on the surface of 243 

activated carbon, even though the numbers and types of different functional groups in sulfonamides are 244 

limited, and the N-containing functional groups are mainly involved in the coordination[44]. The study has 245 

shown that bridging by metal centers is one of the most important mechanisms for the adsorption of 246 
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antibiotics on adsorbents[26]; this may explain how Cd
2+

 can promote the adsorption of SMT on activated 247 

carbon, which will be further confirmed by the experiments described in the following. 248 

Table 1 Calculated Langmuir and Freundlich parameters of SMT adsorption isotherms 249 

Models Parameters SMT SMT(complex) 

  303K 313K 323K  303K 313K 323K 

Langmuir qmax(mg·g
−1

) 216.3 215.4 201.9  266.304 257.462 253.772 

 KL(L·mg
−1

) 3.191 9.062 2.383  1.131 1.479 1.375 

 R
2
 0.61 0.145 0.485  0.922 0.92 0.919 

Freundlich KF(L·mg
−1

) 8.329 9.069 9.235  8.732 7.219 6.251 

 n 0.665 0.716 0.793  0.699 0.809 0.803 

 R
2
 0.979 0.929 0.919  0.959 0.982 0.954 
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Fig. 3. Adsorption isotherms of SMT in single (a) and binary (b) systems, along with Freundlich model fits. 252 

 253 

Figs. 4a and 4b show the adsorption isotherms of Cd
2+

 in the single and binary system, respectively. 254 

The adsorption amount of Cd
2+

 decreased after SMT was added to the system. This can be explained by 255 

assuming that the adsorption of Cd
2+

 was inhibited by the complexation with SMT, which thus reduced the 256 
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adsorbed Cd
2+ 

amount. The addition of cadmium ions initially promoted the adsorption of SMT; however, 257 

when the Cd
2+

 concentration was further increased, no further increase in SMT adsorption was observed. 258 

This suggests a monolayer adsorption behavior of cadmium ions on activated carbon, which cannot further 259 

promote the adsorption of SMT at higher Cd
2+

 concentrations[25]. The Langmuir model was more suitable 260 

for Cd
2+

 adsorption (R
2
=0.959/0.999/0.966 for Cd

2+
 with SMT, and 0.985/0.989/0.991 without SMT) than 261 

the Freundlich model (R
2
=0.932/0.926/0.903 for Cd

2+
 with SMT, and 0.932/0.896/0.903 without 262 

SMT)(Table 2). When the atomic sites on the surface of activated carbon are unsaturated, Cd
2+

 will be 263 

adsorbed on the surface. After the adsorption of one layer of Cd
2+

 ions, the original unsaturated sites become 264 

saturated, and no further adsorption on the activated carbon is possible. Due to the strong interaction 265 

between the functional groups on the surface of activated carbon and Cd
2+

, the adsorption of the latter tends 266 

to be uniform, resulting in a single-layer covering. This is consistent with the Langmuir isotherm model of 267 

monolayer adsorption[45]. 268 

 269 

Table 2 Calculated Langmuir and Freundlich parameters of Cd
2+

 adsorption isotherms 270 

Models Parameters Cd
2+

    Cd
2+

(complex)   

  303K 313K 323K  303K 313K 323K 

Langmuir qmax(mg·g
−1

) 59.6 88.55 81.2  32.744 22.036 36.455 

 KL(L·mg
−1

) 0.216 0.318 0.497  0.315 0.357 0.418 

 R
2
 0.985 0.989 0.991  0.959 0.999 0.966 

Freundlich KF(L·mg
−1

) 2.528 2.324 2.084  2.098 2.097 2.098 

 n 0.464 0.421 0.452  0.451 0.453 0.469 

 R
2
 0.932 0.896 0.903  0.932 0.926 0.903 



15 

 

 271 

20 30 40 50 60 70

0

20

40

60

80

100

(a) Cd2+R2 (303 K) = 0.98532

R2 (313 K) = 0.9893

R2 (323 K) = 0.99126

 303 K

 313 K

 323 K

   Langmuir Fit

A
d

so
r
p

ti
o

n
 c

a
p

a
ci

ty
 (

m
g

·g
-1

)

Equilibrium concentration of  Cd2+ (mg·L-1)
20 30 40 50 60 70 80

0

5

10

15

20

25

30

35
(b) Cd2+ (complex)

 303 K

 313 K

 323 K

   Langmuir Fit

R2 (303 K) = 0.95933

R2 (313 K) = 0.99959

R2 (323 K) = 0.9663

A
d

so
r
p

ti
o
n

 c
a
p

a
c
it

y
 (

m
g
·g

-1
)

Equilibrium concentration of  Cd2+ (mg·L-1)  272 

Fig. 4. Adsorption isotherms of Cd(Ⅱ) in single (a) and binary (b) systems, along with Langmuir model fits. 273 

 274 

3.3 Effect of complexation on co-adsorption 275 

 276 

3.3.1 FTIR analysis of adsorption mechanism 277 

FTIR spectroscopy was used to determine changes in the surface functional groups before and after 278 

adsorption. And the FTIR spectra of Cd
2+

, SMT and SMT+Cd
2+

 adsorbed on activated carbon were 279 

compared (Fig. 5). In the a–d spectra(Fig.5), the peak at 3445 cm
-1

 is the characteristic peak of -OH (from 280 

phenol or alcohol) and the tensile vibration of water adsorbed on AC [46, 47]. The peak at 1412cm
-1

 is the 281 

stretching vibration band of C-O-C, C=C, or C-H on the surface of activated carbon [47, 48], the 282 

characteristic peak at 1613 cm
-1

 may be attributed to the C=O tensile vibration on the AC surface [46, 47]. 283 

The peak at 1638 cm
-1

 indicated that the band has the characteristic of aromatic ring stretching mode. After 284 

SMT was adsorbed on AC (c, d spectrum, Fig.5), there are one or more aromatic rings in the AC structure, 285 

corresponding to the pyrimidine ring structure and aromatic ring in SMT [46]. And there is an obvious 286 

characteristic peak at 3234 cm
-1

, which may correspond to the stretching vibration of -OH [48]. In the b, d 287 

spectra (Fig. 5), the peak at about 1105 cm
−1

 was significantly enhanced, which is a strong characteristic 288 
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peak for the adsorption of heavy metal Cd
2+

 [49]. Under neutral conditions, SMT mainly exists in the form 289 

of SMT
0
 and SMT

- 
[50]. When Cd

2+
 was added, the H part on the Sulfonamide group is ionized to form a 290 

negatively charged SMT
-
, which can be complexed with Cd

2+
 by replacing H

+
 [51, 52]. Therefore, in the 291 

spectrum d (Fig. 5), the significant fluctuations at 3234cm
-1

-3445cm
-1

 indicated that it is the vibration and 292 

fracture of -NH in SMT, which complexes with Cd
2+

 by substituting H at the N atom[53]. After Cd
2+

 was 293 

adsorbed on AC, new characteristic peaks appeared at 2937cm
−1

 and 2866cm
−1

, and this change was still 294 

observed in AC-Cd
2+

-SMT samples, indicating the formation of AC-Cd
2+

-SMT ternary complex [49]. At the 295 

same time, the outermost shell of the Cd
2+

 nucleus had an empty orbital that can accommodate lone pair 296 

electrons, while oxygen, sulfur, nitrogen, and other atoms are typical lone pair electron donors [54]. It can be 297 

speculated that the N atoms in the pyrimidine ring participate in the complexation process. The analysis of 298 

the structure of the SMT molecule suggested that multiple interactions can be involved in the complexation 299 

process at the same time. 300 
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Fig. 5. FTIR spectra of (a) AC before adsorption, (b) Cd(Ⅱ)-adsorbed AC, (c) SMT-adsorbed AC, and (d) 302 
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SMT/Cd(Ⅱ)-adsorbed AC. 303 

 304 

3.3.2 XPS analysis of adsorption mechanism 305 

Table 3 306 

Elemental composition of AC, SMT-adsorbed AC, Cd(Ⅱ)-adsorbed AC, and SMT/Cd(Ⅱ)-adsorbed AC 307 

Name Elemental analysis (atom based) (%) 

 C O N S Cd 

AC 91.89 7.41 0.7 
a
 

a 

AC-SMT 

AC-Cd(Ⅱ) 

85.89 

92.09 

8.79 

6.93 

4.29 

0.85 

1.03 

a 

a
 

0.13 

AC-Cd(Ⅱ)-SMT 84.38 7.7 5.81 1.97 0.15 

a 
not detected. 308 

 309 

As shown in Fig. 6a, the XPS profile of the single AC sample shows typical C1s and O1s peaks at 310 

284.8 and 532.6 eV. After adsorption of Cd(II), a Cd3d peak at 416.54 eV appears in the XPS profile, and 311 

Table 1 shows a percentage of Cd(II) compared with the AC sample, indicating that Cd metal ions were 312 

adsorbed on the adsorbent surface. The adsorption of Cd
2+

 mainly relied on the electrostatic attraction 313 

between AC surface and Cd
2+

 due to deprotonation[33], which proves that there was some kind of binding 314 

interaction between them. SMT co-adsorption led to the simultaneous appearance of N1s and S2p peaks, as 315 

shown in Fig. 6a. Compared with the AC sample, the N content in the AC-SMT system was significantly 316 

higher, confirming that SMT was adsorbed on the surface. The N content further increased in the ternary 317 

system, which indicates that the presence of Cd
2+

 promotes the adsorption of SMT. Cadmium ions are first 318 
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adsorbed by cation-π interactions and then diffuse to other adsorption sites. Although the cation-π interaction 319 

does not promote the adsorption of SMT, cadmium species adsorbed at other sites may form SMT-Cd
2+

-AC 320 

complexes with negatively charged SMT, and Cd
2+

 ions at a certain concentration can enhance the 321 

adsorption of SMT[55]. 322 

The N1s peak decomposes into two related peaks: N-C=N(399.3eV) and -NH(400.6eV)(Figs.5b and 323 

5c) [56]. According to the peak area calculation of Fig.5b and Fig.5c, it can be concluded that the -NH part 324 

of the system is reduced (the peak area is reduced from 1307.15 to 1198.3) with the addition of Cd
2+

. 325 

Moreover, the binding energy of -NH shifted from 400.6eV to 400.71eV, while that of N-C=N shifted from 326 

399.3eV to 399.24eV. It is revealed that -NH in SMT is the main functional group involved in complexation, 327 

and N on the pyrimidine ring may also participate in complexation [49]. 328 

As shown in Fig. 6d, the binding energies of Cd(II) adsorbed in the binary system were shifted to 329 

lower values, showing that the changes in chemical bonding after adsorption on AC in the binary system 330 

resulted in a red shift of the XPS signals relative to those of the single heavy metal system. This means that 331 

the metal ions are in their reduced state in the presence of SMT[33]; the electrons involved in the reduction 332 

process are generated from the breaking of the N-H bond of SMT, which indicates that the metal cations 333 

interact with the N atoms (acting as electron donors) to form a complex after the N-H bond cleavage (Figs. 334 

5b and 5c). This is consistent with the previous FTIR spectroscopy results. The atomic percentages obtained 335 

from the peak areas show that the metal ions enhanced the adsorption of SMT (from 4.29% to 5.81%; Table 336 

3), which is consistent with the adsorption isotherm experiments obtained for the SMT-Cd
2+

 system (Fig.3b). 337 

Therefore, at a certain concentration of Cd
2+

, the AC-Cd
2+

-SMT ternary complex is formed through metal 338 

cation bridging. The cadmium ion acts as a bridge, indirectly connecting SMT with the adsorbent[57]. In the 339 

absence of cadmium ions, the surface functional groups of SMT molecules and adsorbents are negatively 340 
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charged. The corresponding electrostatic repulsion impairs the adsorption performance of activated carbon. 341 

The presence of cadmium ions effectively reduces the electrostatic repulsion between SMT and activated 342 

carbon. The small hydration radius of cadmium ions results in a strong ability to form coordination 343 

complexes with SMT under neutral conditions. Hence, the bridging effect of Cd cations is relatively strong, 344 

which provides more adsorption sites for SMT in water; this can promote the adsorption of SMT, thus 345 

improving the efficiency of its removal process[58]. 346 
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Fig. 6. (a) Full-scan XPS profiles of AC before adsorption (1), SMT-adsorbed AC (2), Cd(Ⅱ)-adsorbed AC (3), and 349 

SMT/Cd(Ⅱ)-adsorbed AC (4). XPS N1s deconvolution peak resolution of (b) SMT-adsorbed AC; (c) 350 

SMT/Cd(II)-adsorbed AC; (d) Cd3d binding energy change between single and binary systems. 351 

 352 

3.3.3 Raman and NMR analysis of adsorption mechanism 353 
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The Raman spectra of the four solids (Fig. 7) show two peaks. The first, near 1595 cm
-1

 (G peak, sp
2
 354 

C), is the characteristic scattering peak of graphite, whereas the second peak at 1350 cm
-1 

(D peak, sp
3
 C) is 355 

due to lattice defects, disorder, and low-symmetry sites in the carbon structure of graphite[59]. The Raman 356 

intensities are related to the structural order of the carbon sheets. The ID/IG ratio (where ID and IG are the 357 

intensities of the D and G peaks, respectively)
 
is sensitive to the graphitization degree, which is the 358 

parameter used to measure the defect density of activated carbon[60]. Therefore, the graphitization degree of 359 

a carbon material can be evaluated using the R = ID/IG parameter. A smaller R value corresponds to a higher 360 

degree of graphitization[61]. The ID and IG values are obtained by calculating the peak areas of peak D and 361 

peak G, and the relative intensity ratio of ID/IG is obtained[62].The R values of the four Raman spectra 362 

were 2.06 (AC), 2.20 (AC-Cd
2+

), 1.98 (AC-SMT), and 1.936 (AC-SMT/Cd
2+

). The D band at 1350 cm
-1

 is a 363 

defect-induced feature, which reflects the imperfect crystal structure of carbon. Compared with AC, the 364 

ID/IG value of the AC-Cd
2+

 system increased from 2.06 to 2.2, which indicates that more structural defects 365 

were formed on Cd
2+

-doped AC[63], resulting in a more disordered AC structure. However, the ID/IG 366 

values of SMT and SMT/Cd
2+

 decreased from 2.06 to 1.98 and 1.936, respectively, indicating a reduced 367 

defect density and higher graphitization degree of carbon. This type of activated carbon substrate will 368 

provide more binding sites for the adsorption process; in other words, the high degree of graphitization can 369 

promote the adsorption process[64], thus enhancing the adsorption of SMT, up to a certain extent[48]. In 370 

agreement with the above FTIR analysis, with the enhanced SMT adsorption, the formation of the Cd
2+

-SMT 371 

complex on the activated carbon surface promoted the adsorption of SMT. 372 

As the hydrogen atoms of amino groups on the benzene ring are highly active, they are likely to be 373 

replaced by deuterium in a deuterated solution[36, 65, 66]; hence, it is difficult to observe the corresponding 374 

peak in the NMR spectra in Fig. 8. The first peak, which is located at high fields (2–3 ppm) and exhibits a 375 
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large integral, corresponds to the four hydrogen atoms in the benzene ring. The second signal is a single peak 376 

at 5 ppm, corresponding to the hydrogen of the -NH- group connected to the pyrimidine ring; the third peak, 377 

with a chemical shift of 6–8 ppm, corresponds to three hydrogen atoms on the pyrimidine ring. The presence 378 

of cadmium ions results in an obvious decrease in the intensity of the four-hydrogen peak on the benzene 379 

ring, and the corresponding signal partially disappears; moreover, the signal of the hydrogen atom in the 380 

-NH- group connected to the pyrimidine ring also disappears. This behavior could be attributed to the 381 

breaking of the N-H bond and the complexation of Cd(Ⅱ). In addition, the third peak at 6–8 ppm, 382 

corresponding to the hydrogen atoms in the pyrimidine ring, almost disappears. It can be concluded that, 383 

after adding Cd
2+

, part of the hydrogen atoms on the pyrimidine ring will be ionized, and their corresponding 384 

signal will thus disappear. 385 
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Fig. 7. Raman spectra of (a) AC before adsorption, (b) SMT-adsorbed AC, (c) Cd(Ⅱ)-adsorbed AC, and (d) 387 

SMT/Cd(Ⅱ)-adsorbed AC. 388 

 389 
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 390 

Fig. 8. 1H NMR spectra of (a) SMT and (b) SMT-Cd(Ⅱ). 391 

 392 

3.3.4 Correlation between SMT-Cd(Ⅱ) complexation and adsorption capacity 393 

To further understand the influence of the complexation of Cd
2+ 

and SMT on the adsorption properties 394 

of activated carbon, the adsorption capacity was plotted vs. the calculated concentration of the complex, to 395 

determine the possible relationship between the complexation of Cd
2+

 and SMT and their mutual adsorption. 396 

The correlation between the concentration of SMT and its adsorption capacity had been studied in a previous 397 

paper, which confirmed that SMT forms a complex with Cd
2+

 in a 1:1 ratio (SMT and Cd
2+

 react in a 1:1 398 

ratio)[67-69]. Therefore, the concentration of the complex can be calculated from the SMT concentration 399 

and the complexation ratio. The relationship between the concentration of the complex and the adsorption 400 

capacity of SMT was plotted in Fig. 9, a linear regression analysis was performed, which highlights a good 401 

correlation between the concentration of Cd
2+

–SMT and the SMT adsorption amount (R
2
 = 0.84164)[37]. 402 

These results show that the complexation of Cd
2+

 and SMT has a significant effect on the adsorption of SMT 403 
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under neutral conditions. 404 
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Fig. 9. Correlation between complexation ratio and adsorption capacity. 406 

 407 

3.3.5 Co-adsorption mechanism of SMT and Cd(Ⅱ) 408 

As shown in Fig. 10, SMT is adsorbed via a heterogeneous multilayer process, involving water and 409 

p-p stacking interactions between porous activated carbon and SMT[70]. It is well known that p-p stacking 410 

interactions can explain the adsorption mechanism of aromatic substances on a layered activated carbon 411 

surface. Therefore, the molecular structure of SMT enables p-p stacking interactions between the benzene 412 

ring (p-electron acceptor) and the p-rich activated carbon adsorbent[50]. As an amphoteric molecule, SMT 413 

contains different charged or electron-rich groups. Therefore, electrostatic interactions may be established 414 

between the various functional groups of SMT and the corresponding surface structure of porous activated 415 

carbon[71]. 416 

After cadmium ions are added to the system, they can form complexes with the SMT molecules and 417 

the functional groups on the AC surface. Upon formation of a ternary SMT-Cd
2+

-AC complex, Cd
2+

 418 

promotes the adsorption of SMT on activated carbon, acting as a bridge (as shown by XPS) indirectly 419 

connecting SMT with the adsorbent[58]. The bridging effect of cadmium ions improves and promotes the 420 
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adsorption of SMT. As the adsorption of cadmium ions on activated carbon occurs in monolayer mode, when 421 

their concentration is increased above the monolayer (reaching the adsorption equilibrium), the Cd ions 422 

cannot further promote the adsorption of SMT, whose improvement is thus limited[25]. 423 

 424 

 425 

Fig. 10. Illustration of co-adsorption mechanism. 426 

 427 

4. Conclusion 428 

 429 

In this study, batch adsorption experiments were carried out in a single-pollutant (SMT/Cd
2+

) system 430 

under different adsorbent dosage, contact time, and temperature conditions. The experimental results show 431 

that the adsorption equilibrium of SMT is reached in approximately 12 h, and the pH value of the solution 432 

affects the adsorption capacity of activated carbon. The adsorption by AC in alkaline conditions (pH = 9) is 433 
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weaker than that in acid conditions. The adsorption capacity of SMT decreases with increasing adsorbent 434 

dosage, while the removal rate increases. 435 

In the SMT-Cd
2+ 

co-adsorption system, as the cadmium ion concentration is increased, the synergistic 436 

effect of Cd
2+

 on the transport of SMT on activated carbon promotes its adsorption. The SMT adsorption 437 

data conform to the Freundlich isotherm model, indicating the multilayer heterogeneous adsorption behavior 438 

of SMT on AC. On the other hand, the adsorption of cadmium on AC can be described by the Langmuir 439 

isotherm model, which suggests monolayer adsorption; therefore, no further promotion of SMT adsorption 440 

can be achieved when the concentration of cadmium ions is increased above the monolayer coverage. 441 

The characterization analysis showed the formation of a ternary AC-Cd
2+

-SMT complex at a certain 442 

concentration of Cd
2+

. Cadmium act as a bridge indirectly connecting SMT with activated carbon, providing 443 

further adsorption sites for SMT molecules in water. At the same time, the presence of cadmium ions 444 

effectively reduces the electrostatic repulsion between SMT and activated carbon, thus promoting the 445 

adsorption of SMT. Moreover, under neutral conditions, the complexation of Cd
2+

 with SMT shows a strong 446 

correlation with the SMT adsorption amount (R
2
 = 0.84164). Overall, the present results show that the 447 

formation of a Cd
2+

-SMT complex has a significant effect on the adsorption of SMT. The current study also 448 

emphasizes that, for a better understanding of the ecological risks associated with a pollutant, any 449 

assessment of its environmental behavior should take into account the presence of other pollutants. 450 
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