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This paper presents a a reviewed approach to implement hierarchical, dense and dynamic reconstruction method based on VDB
(variational dynamics B+ Trees) data structure for robot tasks.
Scene reconstruction is done by the integration of depth-images using the Truncated Signed Distance Field (TSDF).
Nowadays, dense reconstruction domain is ruled by three major space representations, complete volumes, hashing voxels and
hierarchical volumes.
Here, we propose design the reconstruction method based on dynamic trees can provide similar reconstruction result than
current stat-of-art methods, but with a direct multi-level representation at expenses of just a slightly higher computational cost,
being still real-time.
Additionally, this representation provide two major advantages against the other, hierarchical and unbounded space
representation.
The proposed method is optimally implemented to be used on a GPU architecture, exploiting the parallelism skills of this hardware.
A series of experiments will be presented to prove the performance, qualitatively, of this approach in a robot arm platform.

   

  Contribution to the field

Visual sensing is an indispensable part in most of the robotic manipulation tasks in the literature. This is mainly due to the fact
that most of the robotic manipulation strategies are based on the assumption that the surface of the object is continuously
tracked. But nowadays, many solutions just use image-base approaches where instead of using surface tracker they are
contour-base strategies. But here, we propose to use 3D visual information, thus, we point to use 3D objects surface as sensing
feedback in the control schemes, that is, we propose to include 3D reconstruction method as part of robotic manipulation
strategies. Concretely, this article proposes the use of a data structure typically used in data theory and computer graphics to
achieve reconstruction with different levels of detail. In the same way, this strategy generates in an isolated way the topology of
the objects from their texture (colors, curvatures, etc.).
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ABSTRACT2

3

This paper presents a novel approach to implement hierarchical, dense and dynamic4
reconstruction of 3D objects based on the VDB (Variational Dynamic B+ Trees) data structure5
for robotic applications. The scene reconstruction is done by the integration of depth-images6
using the Truncated Signed Distance Field (TSDF). The proposed reconstruction method is7
based on dynamic trees in order to provide similar reconstruction results than current state-8
of-the-art methods (i.e. complete volumes, hashing voxels and hierarchical volumes) in terms9
of execution time, but with a direct multi-level representation that remains real-time. In fact,10
this representation provides two major advantages: it is a hierarchical and unbounded space11
representation. The proposed method is optimally implemented to be used on a GPU architecture,12
exploiting the parallelism skills of this hardware. A series of experiments will be presented to13
prove the performance of this approach in a robot arm platform.14

Keywords: robot manipulation, 3d visual perception, dense reconstruction, robot vision, high performance computing15

1 INTRODUCTION
Industrial robotic research has been extremely prolific in the last decades, with special interest in16
applications such as welding, painting and pick-and-place of objects. However, the performance of most of17
them relays on the precise visual perception of the workplace so that the robot can react on real-time to18
changes on it. An interesting tool for implementing this perception capability is 3D dense reconstruction.19
Although 3D dense reconstruction is an well-established field in computer vision and graphics, most of the20
new proposed methods are not adapted to the constrains imposed by complex industrial robotic tasks. For21
instance, when robots need to manipulate deformable objects, current reconstruction methods fail since22
they are based on the assumption of the presence of rigid objects in static scenarios (Zeng et al. (2013),23
Whelan et al. (2016) and Puri et al. (2017)). Another well-known problem is the drifting in textureless24
scenarios during the camera pose estimation, what implies erroneous reconstructions. Thus, most of the25
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Figure 1. Robot platform used to evaluate our approach. Top: Franka Panda robot equipped with a
sensor D435 during the reconstruction of a backpack. Bottom-left: voxelized reconstruction. Bottom-right:
topology of the reconstruction.

proposed industrial methods decide to use high-precision and expensive visual sensing setups (Son et al.26
(2015), Rohrbach et al. (2016) and Zhang et al. (2017)), reducing its applicability in all types of industries.27
Therefore, we propose to use a new generation consumer depth camera (such as the Intel RealSense D435)28
installed on the robot, so that they can output live half-HD depth maps at high frequency rates with a low29
price for implementing a precise reconstruction of the objects to be manipulated (Fig. 1).30

Real-time dense reconstruction presents important challenges when non-delay performance and fine-31
quality results are required. In particular, the incremental integration of overlapping depth maps into dense32
volumetric grids is not affordable for sequential methods. Thus, this problem has been addressed by many33
works employing different types of data structures accelerated by General Purpose Graphic Processor Units34
(GPGPU). The most successful methods in the context of hierarchical volumetic grid surface representation35
are based on Octree data structures, such as the work proposed by Hornung et al. (2013) for robotic collision36
avoidance tasks. Nevertheless, the main problem with this space representation is its low branching-rate37
that makes trees considerable deep at low-quality reconstructions. Other approaches more popular in38
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computer graphics are based on N-trees (Chen et al. (2013)) or B-trees (Johnson and Sasha (2002)). A less39
known data structure in computer graphics, but quite popular in data science are the B+ trees. These trees40
split the topology representation from the stored data (Museth (2013)). The works presented by Hoetzlein41
(2016) and Wu et al. (2018) are not mere implementations of the VDB (Variational Dynamic B+ trees) data42
structure for graphics hardware but they include a major change: data consistence is kept by using an apron43
voxels wrap with the neighbor voxels in contrast to use a neighbor index list. In fact, the use of bitmask is44
not necessary any more for discovering child nodes.45

Implicit volumetric approaches in active sensing have demonstrated fine-quality results, starting with46
the method by Curless and Levoy (1996), which presents, for the first time, the use of a truncated signed47
distance field (TSDF). TSDF can also be used at real-time rates (Izadi et al. (2011) and Newcombe et al.48
(2011)) but a well-known problem of these methods is the lack of memory management. This led to use49
this approach just in reduced spaces with modest resolution. To overcome this problem, moving volume50
variants have been developed (Roth and Marsette (2012)). However, the problem is shifted to streaming51
out-of-core the data while the sensor moves. A more attractive approach is presented by Nießner et al.52
(2013), which uses a Hash table to compact the volume grid. However, careful consideration reveals several53
performance issues according to Museth (2013). Finally, Chen et al. (2013) presents hierarchical data54
structures that subdivide space more effectively, but they cannot be parallelized efficiently due to their55
additional computational complexity.56

A real-time dense and dynamic 3D reconstruction method implementation, typically used in data science57
and computer graphics, is proposed to be used in robotics tasks in order to provide fine-quality results58
in a hierarchical topology. This new approach has the benefits of dense volumetric grid methods and59
the multi-level topology representation of hierarchical data structures, but it does not require a memory60
constrained voxel grid. This method is based on VDB trees that compress space and allow a real-time61
integration of new depth images. Additionally, this data structure isolates the implicit surface topology62
from the data which is stored densely in cells (called bricks). Although this kind of high performance63
hierarchical technique has been proposed for a variety of image rendering, simulations, collision detection64
tasks (Yang et al. (2017)) and semantic segmentation (Dai et al. (2018) and Hou et al. (2019)); a new65
extension based on the continuous update of the underlying data is proposed for surface reconstruction in66
robotics manipulation tasks (Fig. 1). All parts of the proposed pipeline (sensor pose acquisition, depth map67
integration and surface rendering) are performed on GPU hardware and they are validated by interactive68
robotic reconstructions of several scenes.69

2 TERMINOLOGY OF VDB TREES
The proposed method is based on the VDB tree structure to represent a reconstructed scenario in a70
volumetric grid. VDB exploits spatial coherency of time-varying data to separately encode data values and71
grid topology (Fig. 2). There is no topology restrictions on the sparsity of the volumetric grid and it has a72
fast random access pattern O(1). In fact, VDB models a virtually infinite 3D index space that allows for73
cache-coherent and fast data access into sparse volumes of high resolution. The VDB data structure is74
fundamentally hierarchical, facilitating adaptive grid sampling.75

VDB dynamically arranges nodes in a hierarchical data structure, normally a tree (being the grid topology,76
Fig 2 left), where bricks are leaf nodes at the same fixed depth of an acyclic and connected graph with77
large but variable branching factors. This makes the tree being height-balanced but shallow and wide. This78
reduces the tree depth and the number of operations to traverse it from the root node to brick level. B+79
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tree is the type used by VDB, which has a variable number of children per node and it can be seen like a80
traditional B-tree where each leaf contain data keys (index).81

The proposed implementation of VDB in Museth (2013) uses a direct access bit mask to guarantee a fast82
and compact direct access to a binary representation of the local topology of a particular node. In contrast,83
we use the approach presented by Wu et al. (2018), where a pre-reserved and unsorted memory scheme bit84
masking is not necessary. This unmasked node access provides a better computational performance since85
the resorting of the node list is avoided.86

As mentioned before, data values (or voxels) are stored separately from the topology (Fig. 2, center and87
right). The proposed storage scheme presented by Hoetzlein (2016) is used in order to stack the voxels in a88
3D heap (atlas), packing them inside bricks. The atlas is allocated in a GPU 3D texture to efficiently access89
to the data. The atlas is resized in z-axis if there is no more empty space in the current atlas. Each brick in90
the atlas keeps an apron of the nearest neighbor voxels wrapping them. Therefore, vicinity consistence in91
the data layout is kept.92

Although theoretically this scheme of reconstruction is unbounded in the 3D index space x ≡ (x, y, z),93
this is naturally limited to bit-precision and memory constrains. The data encoded in each node consist94
of (Fig. 2): an index x to address the node in a discrete pose inside the volumetric grid V; an index y to95
map the node with its correspondent brick B in atlas space A; two flags α and β which provide information96
about its activation and visibility; and a list pointing to its children nodes N in next level. The data value97
contained inside each voxel

{
d, w

}
∈ B represents the truncated signed distance field TSDF and the weight.98

These values are computed by the integration of consecutive depth images D. Since the proposed method is99
formulated for robotic manipulation, every new D is transformed into the robot base frame by bMc.100

3 PROPOSED METHOD
As previously stated, the developed method (Fig. 3) is devoted to resolve the reconstruction of dense and101
dynamic scenarios for robot manipulation tasks. Therefore, a constant and accurate camera pose information102
retrieval is assumed by the robot direct kinematic solver. This fact makes the method independent of camera103
pose estimation strategies like in Zeng et al. (2013), Puri et al. (2017), Newcombe et al. (2011), Nießner104
et al. (2013) and Nguyen et al. (2012). The main reason not to use camera pose estimation is to avoid105

Figure 2. Representation of Variational Dynamics B+ trees adapted to GPU architecture. Left image
represents a tree which defines the implicit topology of VDB (for simplification in 2D space), with the
following configuration: 22, 22, 22. Therefore, each node of the internal l1 and root l2 levels has a child list
N of size 16. Nodes in the leaf level l0 have an index pointing to the atlas space y in addition to volumetric
index x. Atlas is represented in the center of the image as heap. Right image shows one slice of the atlas
space. Apron voxels are used to keep vicinity consistence. Only pool0 is shown in this figure.
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Figure 3. Overview of the proposed 3D dense reconstruction pipeline.

drifting problems in textureless scenes due to bad error minimization in the Iterative Closest Point (ICP)106
algorithm (Besl and McKay (1992) and Zhang (1994)).107

Therefore, the current global camera pose is obtained by transforming the local camera pose eMc with108
respect to the current robot end-effector pose: bMe = bMe × eMc. The local pose eMc is estimated using109
virtual visual servoing (VVS), as in Marchand and Chaumette (2002).110

Algorithm 1: Topology Manipulation
Result: Topology and nodes set: T ∧ N

1 initialization T ← {0} ;
2 initialization N ← {0} ;
3 initialization N̂ ← {0} ;
4 while sensor is ON do
5 Dt ← read depth image;
6 Nt ← extract normals;
7 foreach k ← 1, |Dt| do
8 p← DDA(eMc, Dt(k));
9 for l← 1, L do

10 idxl ← gen index(p, l);
11 if @ idxl then
12 N̂ (l, k)← idxl;
13 end
14 end
15 end
16 radix sort(N̂ );
17 N ← reject duplicates(N̂ );
18 for l← L, 2 do
19 T (l, l − 1)← parenty(N (l),N (l − 1));
20 end
21 push T ∧ N ;
22 end

Update of Topology and Atlas Spaces111

The volumetric grid topology is updated before the integration of each new depth image. Thereby, new112
nodes are added to those space quanta which fall inside the footprint of a depth sample z ∈ D of the113
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truncated region. The z are processed in parallel, activating new nodes in the topology and allocating bricks,114
in atlas space, within the truncation region around the observed surface. Similarly to Nießner et al. (2013),115
the truncation region is adapted based on the variance of the depth measurements in order to compensate116
large uncertainties.117

To update the topology, an indexes list of new nodes is created by ray-tracing scanning of V at all tree118
levels. Note (algorithm 1) that the the topology T and nodes setN is an empty structure at the initialization.119
This scan is also used to update the visibility of those nodes which are already active (α = 1) in the120
topology. Secondly, those nodes belonging to the indexes list created by the ray-tracing are allocated.121
Thirdly, every new node is linked with its parent in top-down direction.122

A common chosen method to implement the ray-tracer is the Digital Differential Analyzer algorithm123
(DDA, by Amanatides and Woo (1987)) because it interpolates values over an interval between start and124
end points. This work defines this interval (i.e the ray bounding region) according to the root node range,125
in contrast to Nießner et al. (2013) where rays were bounded to the truncation region. This strategy is used126
to update all visibility information in the current frustum region (Fig. 4). The gradient value∇x used to127
traverse each ray at level l is equal to the resolution at level l − 1. This is exemplified in the algorithm 1,128
from line 8 to line 15. This foreach instruction is executed in a parallel fashion to compute the nodes which129
holds the depth values Dt(k) measured by the sensor eMc at time t. Note, that the this nodes are computed130
for each level l used to represent the tree.131

Depth Image Integration132

Depth images are integrated inside of the current volumetric grid: within the bricks whose node position133
fall inside the camera view frustum and are not occluded (Fig. 4). Camera view frustum is defined by the134
near and far clipping distances. This option keeps a constant computational cost of TSDF integration. Thus,135
the method performance depends just on the size of the view range and not the density of the reconstruction.136
In contrast to other works like Nießner et al. (2013), a brick selection strategy is not required since α and137
β variables are directly consulted. Thus, all atlas bricks whose node position is inside camera range and138
visible (β = 1) are evaluated to implicitly update the volumetric grid.139

Algorithm 2: Truncated signed distance field integration

Result: TSDF: d ∧ w
1 initialization d← {0} ;
2 initialization w ← {0} ;
3 while sensor is ON do
4 Dt ← read depth image;
5 Nt ← extract normals;
6 foreach k ← 1, |Dt| do
7 x← get closest point in T (eMc, Dt(k));
8 d← project z(eMc, x);
9 w ← nt ⊕ nt+1;

10 apply equations (1) ∧ (2);
11 end
12 end

Integrating a new depth image involves the update of the bricks by re-computating the associated TSDFs140
and weights (Curless and Levoy (1996)). The calculation of the TSDF is presented in Fig. 5 for the141
special case of 1D. The sensor is positioned at the origin looking down the z-axis direction and takes two142
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measurements (z1 and z2) in two different time stamps. The signed distance field (d1 (x) and d2 (x)) may143
extend indefinitely in either direction, but the weight functions (w1 (x) and w2 (x)) bound them behind the144
range points. Concretely, the weight function w shown in (line 9) of algorithm 2, represents the similarity145
function based on angular differences between current normal and the integrated one. Thus ⊕ is defined as146
the dot product of nt ·nt+1. This implies, that integration of new depth measurements are weight according147
with the embedded shape. The weighted combination of the two profiles (Eq. 2) is illustrated in Fig. 5 in148
purple. The integral combination rules are as follows:149

Figure 4. A 2D representation of how nodes are labeled according to the DDA algorithm. In this
representation, a hierarchy with 22 nodes for levels l1 and l2 is defined. Leaf nodes are not explored.
Camera frustum is defined by near and far clips. Nodes at l0 with gray color are outside of the view frustum,
purple nodes are active but not visible and the blue ones are visible and active nodes. Neither gray nor
purple nodes will be integrated.
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dt+1 (x) =
wt (x) dt (x) + wt+1 (x) dt+1 (x)

wt (x) + wt+1 (x)
, (1)

wt+1 (x) = wt (x) + wt+1 (x) , (2)

where, dt (x) and wt (x) are the signed distance and weight functions from the t-th range image. dt (x)150
and dt (x) are the cumulative signed distance and weight functions after integrating the t-th range image.151

Figure 5. Computation of the TSDF (Truncated Signed Distance Field) in one-dimensional space. This
figure shows two different measures z1 and z2 of the same surface spot at different times, along z-axis
in the camera frame. Solid lines show distance fields d1 and d2 and dash lines represent weights w1 and
w2. Purple lines represent integral distance d and weight w. The surface position z is obtained from this
integral distance.

Note the importance of updating all bricks that fall into the current frustum, irrespective of whether they152
reside in the current truncation region. This is done to prevent the integration of bricks which have been153
added due to surface changes or outliers in the depth map and are no longer observed.154

Node Rejection and Surface Generation155

This step removes voxel blocks allocated due to noisy outliers and moved surfaces. Node rejection156
operates on the updated atlas layout to mark a node as rejected and topology layout to remove the nodes.157
For each brick, a summarization step is performed to obtain both the minimum absolute d value and158
the maximum w. If the maximum w of a brick is zero or the minimum d is bigger than a threshold, the159
associated brick is flagged for deletion. In a second pass, in parallel, all flagged leaves are deleted from160
the topology. When all deletion operations are successfully done, all nodes in the rest of tree levels l 6= 0161
are unlinked following a down-top pattern. Once both layouts (topology and atlas) have been updated, all162
nodes are set as non-visible.163

Most previous works on dense volumetric reconstruction (such as Nguyen et al. (2012)) extract the164
implicit iso-surface before rendering the underlying surface. In contrast, the proposed method generates165
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Normal est. Integration Surface generation Topology update

Shoe 4.3 15.8 19.5 48.1
Tape 4.1 14.9 18.1 46.0

Alum piece 4.9 13.5 15.4 49.8
Backpack 5.2 18.4 21.6 54.3

Non-Static Obj. 5.7 19.1 23.7 62.8

Table 1. Algorithm’s profile during experimentation. The table shows the average (per frame) time in
milliseconds taken by the most relevant stages during the reconstruction.

the render image of the reconstructed surface directly from the volumetric grid, like in Chen et al. (2013).166
In order to compute the normal surface, needed for shading, the gradient of the TSDF at the zero-crossing167
is estimated by using first order finite differences and trilinear interpolation. The vast majority of samples168
lie in the same leaf grid due to the use of a shallow tree with relatively large branching factors.169

4 RESULTS
All the experiments are executed in a laptop PC equipped with an Intel Core i7-6820HQ CPU at 2.70GHz,170
32GB of RAM and an embedded Quadro M2000M GPU. The robot platform is composed of a Robot171
Franka Panda equipped with a RGBD camera Intel RealSense D435. Four sequences are captured with this172
set up in order to evaluate the proposed method: a shoe, an adhesive tape, a small aluminum piece and a173
backpack (Fig. 6). All the experiments are performed on top of a table situated in z = 0 with respect to174
robot base. Shoe experiment is the middle size one, 0.3× 0.12× 0.8m, of brown leather. Tap experiment175
is the thin hoop of size 0.1 × 0.1 × 0.08m. Small aluminum piece experiment is used to show how this176
method can deal with noisy information (measurements corrupted because the material of the object), the177
size of the object is 0.07× 0.07× 0.06m. Backpack experiment is composed by two objects an apple and a178
backpack of 0.47× 0.33× 0.18m. The fourth experiment is extended by adding a non static object (e.g. a179
human hand) in the scene. The topology configuration for all experiments is the same and it includes for180
each axis direction: 23 nodes at root level; 23 nodes at internal level; and 24 nodes at leaves level. The voxel181
resolution is set to 1mm3. The camera pose in all sequences follow the same trajectory (Fig. 7), performed182
by the robot.183

Fig. 6 presents the reconstruction evolution of all four scenes used in the evaluation. Note that for the184
surface visualization, the rendering voxels strategy is shown because this representation fits better in185
reconstructions aimed to measure tasks. Otherwise, the visualization would be misleading. To enrich the186
voxel representation, internal voxels are also visualized. Since the scene is static with regard to the robot187
base, the reconstruction is done just in those measures with positive z values.188

It is remarkable that the final results in all four scenes have finished without drifting problems. Concretely,189
in experiment one (shoe), the model evolves from a rough-quality to a fine-quality. The second experiment190
(tape) is similar than the first one but with an additional difficulty: it is a tiny object, with just a 60mm2191
diameter and a 3mm height. The third experiment (small aluminium piece) is again a tiny object but it is192
made by aluminum, a reflective material. Last experiment is split in two rows because it presents a more193
complex scenario. The sequence has two main parts: firstly, the backpack is reconstructed (fourth row) in a194
first robot trajectory execution (i.e. pass), but later a non-static object (e.g. a human hand) appears in the195
scenario (fifth row). Even with this occlusion, the previous reconstruction is not affected and it continues to196
be done successfully in the next robot pass. The shadowing method is used to illustrate the occlusion. When197
the camera is situated for the next pass, the hand goes away from the scene. While the camera does not pass198
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Figure 6. Snapshots of reconstructions experiments for 4 different objects: a shoe (1st row), a tape (2nd
row), a small aluminium piece (3rd row) and a backpack (4th and 5th rows).

over the region where the hand was, the hand voxels stay. When the camera records once again that scene199
region, the hand voxels vanish without affecting the backpack reconstruction. More precisely, after the200
hand is removed from the scene for the first time, the leaf nodes used to code it inside the volumetric grid201
stay a while. The observed voxels vanish before the nodes because TSDF values inside the voxels become202
positive, breaking zero-crossing condition. Afterwards, all TSDF reach maximum distance, marking bricks203
to be rejected.204

Unlike other reconstruction methods, this work presents a study of the feasibility of a reconstruction205
method based on the VDB data structure in robotic tasks (especially manipulation). Because the constrains206
in this kind of task are mainly knowing the topology of the objects and real time response, in the following207
we carry out the following study of computational times. The table 1 presents the time taken by four of208
the most relevant parts of this method: Normal estimation; depth integration; surface generation; and209
topology update. Time are the average taken for processing a frame. It is interesting to observe that210
the normal estimation, integration and surface generation is quite constant. This is mainly because this211
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steps are processed in parallel, while normal estimation is computed in image space, the integration and212
surface generation is computed in atlas space. As drawback this method keeps updating the topology in a213
non-parallel fashion, fortunately this time tends to decrease linearly as the surface is captured, once the214
surface is captured the time consumption is negligible, no matter if the motion of the object. This indicates215
that most of the time is expended when the topology needs to branch.216

Figure 7. Trajectory of the camera used during the experiments. We sample pose in order to take 1 each
10 poses.

5 CONCLUSIONS
A novel dense and dynamic 3D reconstruction method has been implemented based on a hierarchical217
database structure (GPU oriented) for integrating depth images by truncated signed distance field theory.218
A qualitative validation of the reconstruction of 4 different scenes with different properties (materials,219
size, occlusions...) is performed to show the performance of this method. Current results show that this220
method provide stable reconstruction in most of the situations. But, the method present a fast recovering of221
reconstructions in fail situation. Future directions in our research explore the use of this method to simulate222
material dynamic in situ, taken advance of the GPU optimized VDB data structure. This will allow keeping223
tracking non-rigid surfaces while the are being manipulated. Moreover, we will work in the design of active224
perception using as source data the volumetric grid, instead of use directly depth images or point clouds.225
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Nießner, M., Zollhöfer, M., Izadi, S., and Stamminger, M. (2013). Real-time 3D reconstruction at scale266
using voxel hashing. ACM Trans. Graph. 32, 1–11. doi:10.1145/2508363.2508374267

Puri, P., Jia, D., and Kaess, M. (2017). GravityFusion: Real-time dense mapping without pose graph268
using deformation and orientation. IEEE Int. Conf. Intell. Robot. Syst. 2017-Septe, 6506–6513.269
doi:10.1109/IROS.2017.8206559270

Rohrbach, A., Rohrbach, M., Hu, R., Darrell, T., and Schiele, B. (2016). Computer Vision – ECCV 2016.271
1511.03745V1 9905, 1–10. doi:10.1007/978-3-319-46448-0272

This is a provisional file, not the final typeset article 12

In review



Mateo et al. HDD 3D Reconstruction for Robotic Manipulation Tasks

Roth, H. and Marsette, V. (2012). Moving Volume KinectFusion. Proc. Br. Mach. Vis. Conf. , 112.1—-273
112.11doi:http://dx.doi.org/10.5244/C.26.112274

Son, H., Kim, C., and Kim, C. (2015). 3D reconstruction of as-built industrial instrumentation models275
from laser-scan data and a 3D CAD database based on prior knowledge. Autom. Constr. 49, 193–200.276
doi:10.1016/j.autcon.2014.08.007277

Whelan, T., Salas-Moreno, R. F., Glocker, B., Davison, A. J., and Leutenegger, S. (2016). ElasticFusion:278
Real-time dense SLAM and light source estimation. In Int. J. Rob. Res. 14, 1697–1716. doi:10.1177/279
0278364916669237280

Wu, K., Truong, N., Yuksel, C., and Hoetzlein, R. (2018). Fast fluid simulations with sparse volumes on281
the GPU. Comput. Graph. Forum 37, 157–167. doi:10.1111/cgf.13350282

Yang, Z., Gao, F., and Shen, S. (2017). Real-time monocular dense mapping on aerial robots using283
visual-inertial fusion. Proc. - IEEE Int. Conf. Robot. Autom. , 4552–4559doi:10.1109/ICRA.2017.284
7989529285

Zeng, M., Zhao, F., Zheng, J., and Liu, X. (2013). Octree-based fusion for realtime 3D reconstruction.286
Graph. Models 75, 126–136. doi:10.1016/j.gmod.2012.09.002287

Zhang, T., Liu, J., Liu, S., Tang, C., and Jin, P. (2017). A 3D reconstruction method for pipeline inspection288
based on multi-vision. Meas. J. Int. Meas. Confed. 98, 35–48. doi:10.1016/j.measurement.2016.11.004289

Zhang, Z. (1994). Iterative point matching for registration of free-form curves and surfaces. Int. J. Comput.290
Vis. 13, 119–152. doi:10.1007/BF01427149291

Frontiers 13

In review



Figure 1.JPEG

In review



Figure 2.JPEG

In review



Figure 3.JPEG

In review



Figure 4.JPEG

In review



Figure 5.JPEG

In review



Figure 6.JPEG

In review



Figure 7.JPEG

In review


	Introduction
	Terminology of VDB trees
	PROPOSED METHOD
	Results
	Conclusions

