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 31 

Highlights 32 

- Density of liquid Fe-S alloys has been measured under high pressure as a function of 33 

temperature by in situ X-ray diffraction in multi-anvil press. 34 

- Thermal expansion of liquid Fe-S alloys has been determined up to 7 GPa and 2200 35 

K. 36 

- Top-down crystallization is the most likely scenario for Fe-FeS cores of planetesimals 37 

and small planets.  38 

 39 

 40 

Abstract 41 

Local structure and density of liquid Fe-S alloys at high pressure have been 42 
determined in situ by combined angle and energy dispersive X-ray diffraction experiments 43 
in a multi-anvil apparatus, covering a large temperature and compositional range. Precise 44 
density measurements collected for increasing temperature allowed us to directly 45 
derive the thermal expansion coefficients for liquid Fe-S alloys as a function of 46 
composition. In turn, thermal expansion has been used to refine thermodynamic models 47 
and to address the crystallization regime of telluric planetary cores by comparing the 48 
adiabatic temperature gradient and the slope of the liquidus in the Fe-FeS system.  49 

For Fe-S cores of asteroids and small planetesimals, top-down solidification is the 50 
dominant scenario as the compositional domain for which the slope of the liquidus is 51 
greater than the adiabatic gradient is limited to a narrow portion on the Fe-rich side. 52 
However, bottom-up growth of the inner core is expected for S-poor cases, with this 53 
compositional domain expanding to more S-rich compositions with increasing pressure 54 
(size of the planetary body). In particular, bottom-up crystallization cannot be excluded for 55 
the Moon and Ganymede. 56 

 57 
 58 

 59 
  60 
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1. Introduction  61 

Many recent studies highlight a rich diversity in the core structure of terrestrial bodies, 62 
largely depending on the core crystallization regime (e.g. Breuer et al., 2015; Dumberry and 63 
Rivoldini, 2015; Hauck et al., 2006; Rivoldini et al., 2011; Rückriemen et al., 2018, 2015; 64 
Williams, 2009). This, in turn, directly depends on pressure conditions and light element 65 
content, which relates to accreting material, planetary differentiation process and planet’s size. 66 
From an observational point of view, indications on the core structure and dynamics can be 67 
derived from geodetic data (static and dynamic gravity field, and rotation) and, when present, 68 
from the magnetic field. The presence of an internally generated magnetic field is relatively 69 
common in the terrestrial bodies of our solar system. Aside from Earth, active global 70 
magnetic fields of internal origin have been detected on Mercury and Ganymede (Kivelson et 71 
al., 1997; Ness, 1979). A strong, though now extinct, magnetic field was also present on Mars, 72 
as suggested by crustal magnetic field maps (e.g. Acuña et al., 1999, 2001; Connerney et al., 73 
2001) and on the Moon, as evidenced from the remnant magnetism of the lunar crust (e.g. 74 
Weiss and Tikoo, 2014). Furthermore, magnetized meteorites indicate that planetesimals and 75 
numerous planetary bodies may have had their own self-generated, long-lived fields (e.g. 76 
Weiss et al., 2008; Shah et al., 2017; Bryson et al., 2019a). A dynamo operating in the fluid 77 
metallic core is the most likely mechanism for generating a planetary magnetic field, and 78 
compositional convection driven by core solidification is one of the main power sources for a 79 
long standing dynamo (Stevenson, 2003). The strength and lifetime of a magnetic field is thus 80 
directly tied to the crystallization process of the core, which can proceed very differently in 81 
various planets, depending on composition and size (e.g. Breuer et al., 2015; Rückriemen et 82 
al., 2018).  83 

As a first order guidance, neglecting complexities arising because of nucleation barriers 84 
(e.g. Davies et al., 2019; Huguet et al., 2018), we here assume that solid inner core starts to 85 
form when the temperature drops below the melting curve of the core-forming material (the 86 
liquidus). In a convecting medium the temperature profile is almost isentropic and the core 87 
temperature is generally assumed to follow an adiabat. The relative slopes (dT/dP) of the 88 
adiabat and of the liquidus thus determine the style of core solidification (e.g. Breuer et al., 89 
2015; Williams, 2009). If the adiabat is shallower than the liquidus, crystallization occurs at 90 
depth, as for the Earth, and the inner core grows bottom-up. On the contrary, if the adiabat is 91 
steeper than the liquidus, top-down solidification is expected, in which shallow crystallization 92 
occurs and solid material sinks or floats, depending upon density contrast with the liquid, 93 
leading to possible compositional stratification (e.g. Dumberry and Rivoldini, 2015; Hauck et 94 
al., 2006; Rückriemen et al., 2018, 2015). Although both scenarios don’t rule out the 95 
development of a dynamo, how and when a magnetic field can be generated in the course of 96 
top-down crystallization remains debated (e.g. Breuer et al., 2015).  97 

Sulfur (S) is classically considered to be the major light element alloyed to iron (Fe) in 98 
the core of small planetary bodies (e.g. Antonangeli et al., 2015; Breuer et al., 2007; Morard 99 
et al., 2018; Terasaki et al., 2019; Rückriemen et al., 2015; Weber et al., 2011). The actual S 100 
content depends on primordial composition of the planetary forming material and the 101 
partitioning of sulfur between silicate and metallic phases, which in turn depends on 102 
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temperature and pressure conditions, as well as on the oxidation state, during core formation. 103 
For instance, while both Mercury and Mars are thought to have significant S in their bulk 104 
composition, the greater distance from the Sun and the more oxidizing formation conditions 105 
support more significant enrichment of S in the core of Mars than in that of Mercury 106 
(Dumberry and Rivoldini, 2015; Hauck et al., 2006; Rivoldini et al., 2011). Ultimately 107 
differences in the P, T, fO2 conditions of core formation result in a large variation in the S 108 
abundance in the liquid cores of planets and moons. For instance, S content in the Moon’s 109 
core is classically limited to less than 8 wt.% (e.g. Antonangeli et al., 2015; Laneuville et al., 110 
2014; Rai and Van Westrenen, 2014; Steenstra et al., 2017), while in the case of the Jovian 111 
moons Ganymede and Callisto, the core might have a S concentration greater than the 112 
eutectic concentration (e.g. Scott et al., 2002). As a direct consequence of this composition 113 
diversity, different crystallization scenarios can arise. Indeed S content significantly affects 114 
the difference in the adiabat vs. liquidus relations and density contrast between the 115 
crystallizing solid and the liquid phases (e.g. Breuer et al., 2015; Williams, 2009). 116 

Thermal expansion is a central parameter controlling the slope of the adiabat (Stacey, 117 
2005; Williams, 2009), which can be written as  118 
 119 

dT/dP = α(P)T / ρ(P)CP              (1) 120 
 121 

where α(P) is the pressure-dependent thermal expansion, T the temperature at which the 122 
adiabatic gradient is calculated, ρ(P) the pressure-dependent density, and CP the heat 123 
capacity at constant pressure. 124 

According to its definition, thermal expansion can be experimentally derived from the 125 
variation of the density with the temperature (at constant pressure) 126 

 127 
α(P,T) = -1/ ρ(P,T) (dρ(P)/dT)           (2) 128 
 129 

Due to the experimental difficulties in density measurement, neither thermal expansion 130 
measurements over a wide compositional range (0-50 at% S) nor under high pressure have 131 
been performed. Thermal expansion of liquids in the Fe-FeS system has been studied 132 
exclusively at ambient pressure and only for end-member liquids, Fe and FeS (e.g. Assael et 133 
al., 2006; Kaiura and Toguri, 1979; Nagamori, 1969). Results on FeS (Kaiura and Toguri, 134 
1979) are limited to few points covering a very limited T range (~1500-1650 K). Even in the 135 
case of liquid Fe, in spite of the large number of studies, proposed values for thermal 136 
expansion show large discrepancies (e.g.; 11.0×10-5 K-1, Hixson et al., 1990; 8.2×10-5 K-1, 137 
Nasch and Steinemann, 1995; 13.2×10-5 K-1, Assael et al., 2006). Density determinations of 138 
liquid Fe-S alloys under high pressure includes ex-situ sink-float (Balog et al., 2003; Nishida 139 
et al., 2008), X-ray absorption (Chen et al., 2014; Nishida et al., 2011; Sanloup et al., 2000; 140 
Terasaki et al., 2019) and X-ray diffraction (Morard et al., 2018) methods. However, none of 141 
these methods provided sufficient temperature-dependent density data to allow precise 142 
determination of thermal expansion, due to combined difficulties in density measurements 143 
and temperature control at high pressure.  144 

As highlighted by Williams (2009), extrapolation of thermal expansion of liquid Fe and 145 
FeS to pressures, temperatures and compositions directly relevant for planetary cores comes 146 
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with significant uncertainties that limit the reliability of the assessment of the relative slopes 147 
of the adiabats and liquidus curves (which also is not so well known). The determination of 148 
thermal expansion of liquid Fe-S alloys under the high-pressure conditions existing in 149 
planetary cores is thus of fundamental importance for refining thermodynamic models of 150 
planetary cores (Morard et al., 2018; Rivoldini et al., 2011; Terasaki et al., 2019) and to 151 
constrain adiabatic heat flux in cores of telluric bodies (Silber et al., 2018). 152 

In this study, we provide direct determinations of the thermal expansion of liquid Fe-S 153 
alloys in the 4 to 9 GPa range, pressures directly relevant for the core of the Moon and 154 
Ganymede, using a combined angular and energy dispersive X-ray diffraction (CAESAR) 155 
technique (Wang et al., 2004). X-ray diffuse scattering from a liquid sample was analyzed to 156 
extract local structure information and also used to determine liquid density at high pressure 157 
(Eggert et al., 2002; Morard et al., 2014). To date, this method has been applied in 158 
Paris-Edinburgh (PE) cell and diamond anvil cell (DAC) for structural and density studies of 159 
liquids under high pressure (e.g. Morard et al., 2018, 2017, 2014; Sanloup et al., 2013; 160 
Yamada et al., 2011, 2007). Here we present the nontrivial extension of these measurements 161 
to the multi-anvil press. Noticeably, extension of this methodology to the multi-anvil press 162 
enables investigations over larger pressure range than achievable in PE experiments and, 163 
more importantly, the ability to vary the temperature of a confined liquid with the precision 164 
needed for the determination of thermal expansion, refinements not possible in the 165 
above-mentioned early PE and DAC studies. Measured thermal expansions are used together 166 
with thermodynamic modeling to assess the pressure and compositional dependence of the 167 
adiabatic gradients in the liquid Fe-FeS system in the 0 to 10 GPa range and, by comparison 168 
with the slope of the liquidus, to discuss the crystallization regime in the cores of small 169 
planetary bodies, encompassing conditions of the Moon and Ganymede. 170 
 171 

2. Methods 172 

2.1 In-situ CAESAR measurement under high pressure in a multi-anvil press 173 

High-pressure experiments were carried out in situ in the DIA-type multi-anvil apparatus 174 
installed on the beamline PSICHE of SOLEIL, France. Starting materials with final 175 
compositions of 5, 10, 15, 20, 25 and 36.4 wt.% S, corresponding to 8.4, 16.3, 23.6, 30.4, 176 
36.8 and 50 at.%, respectively, were obtained by a dry homogenization of mixtures of Fe and 177 
FeS powders in a mortar (without lubricants such as ethanol or acetone). The prepared 178 
mixtures were stored in a portable vacuum box to minimize the moisture absorption from air, 179 
and kept there until loading right before the experiment. For the high P-T experiments 180 
samples were placed in sapphire capsule capped with BN. The pressure assembly consisted of 181 
26 mm WC cubes with 4 mm truncation and and pressure was measured in situ using the 182 
known equation of state of the MgO marker (Tange et al., 2009). Schematic view of the cell 183 
assembly is shown in Fig. S1. Trimmed octahedral pressure medium made from B+15 wt.% 184 
MgO (B85) was employed to minimize the absorption and diffraction of the sample 185 
environment (Xie et al., 2020). B85 gaskets were also used along the X-ray path instead of 186 
pyrophyllite gaskets. To remove the water absorbed during fabrication prior to the 187 
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experiment, MgO and ZrO2 parts were baked at 1273 K for 1 hour; BN, graphite and B85 188 
were kept at 393 K in a vacuum oven for more than 12 hours. Such a tailored cell assembly 189 
was proven to be fundamental to the collection of high-quality CEASAR data. High 190 
temperature was generated with graphite heaters and monitored with a W97Re3-W75Re25 191 
thermocouple whose junction was set at the position symmetrical to the sample capsule with 192 
respect to the center of furnace. Status of cell assembly during the experiments was 193 
monitored by X-ray radiography. 194 

Energy dispersive X-ray diffraction (EDD) measurements were carried out using a 195 
polychromatic X-ray (20-100 keV) focused to 25 µm vertically (FWHM) and collimated to 196 
50 µm horizontally, much smaller than the sample dimension (0.8 mm diameter, 0.5 mm 197 
thick, Fig. S1). A Canberra SSD Ge detector associated with a XIA multi-channel analyzer 198 
with 2048 energy bins was used to acquire EDD covering energies up to 102.4 keV. The 199 
energies were calibrated using characteristic fluorescence X-ray lines of Mo, Sn, Ba, Sm and 200 
Au. The 2θ angle was calibrated from 5 to 25° using a 7 µm thick Au foil with a precision of 201 
±0.003 °. 202 

For all runs, the specimen was first brought to the target pressure and then heated to high 203 
temperature while collecting energy dispersive diffraction patterns at a fixed angle (8°). The 204 
melting of sample was identified from the disappearance of sharp diffraction peaks during 205 
temperature increase, and confirmed by the absence of any sharp peak during CAESAR 206 
acquisition. Once complete melting was achieved, CAESAR spectra were collected in order 207 
to obtain the structural and density information of the liquid. CAESAR collections were then 208 
repeated for increasing temperature, with 100-200 K steps. For each CAESAR scan, EDD 209 
were collected every 0.2° over a 2θ angle ranging from 2.5 to 24.1°, allowing acquisition of 210 
high quality raw data over a wide Q-range, up to 15 A°-1 (Q = 4 π E sinθ /12.398, where E is 211 
the energy of the X-rays in keV). All measured EDD are combined to form a 212 
two-dimensional array of intensities, Int(E, 2θ), with each Int value corresponding to a given 213 
E and 2θ index. Fig. 1a shows representative raw data collected on Fe-S in this study. 214 
CAESAR scan with good counting statistics were acquired with collection times of 5 sec for 215 
EDD between 2.5 and 10°, 10 sec for EDD between 10 and 20° and 20 sec for EDD between 216 
20 and 24.1° (about 25 minutes in total). The horizontal gaps of the collimating slits were 217 
opened gradually during the angular scan from low angle to high angle to control the 218 
effective sample volume from which the diffracted X-rays was detected for discriminating 219 
sample signal from background scattering caused by surrounding materials. The raw 220 
CAESAR data were normalized by collection time and effective sample volume for further 221 
treatment. To improve counting statics, raw data were binned utilizing energy data following 222 
the method described in Wang et al. (2004) (Fig. 1b). 223 

In view of the vertical focusing of the beam, 2D radiographies for alignment and sample 224 
observation purposes were recorded by scanning the press in front of the beam (scanning 225 
radiography) (Fig. 1c, d). 226 
 227 

2.2 Analysis of the recovered samples 228 

After experiments, the recovered cells were mounted in epoxy resin and polished along 229 
the plane parallel to the cylindrical axis of sample. The samples were polished sequentially 230 
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using diamond abrasive disks with 120, 30 µm and diamond paste with 1 µm grain size to 231 
obtain well-polished surface. Microstructure of recovered samples was analyzed by a field 232 
emission scanning electron microscope (SEM-FEG) (Zeiss Ultra55) at IMPMC, Sorbonne 233 
Université, France. The Fe and S contents and the concentrations of potential contaminants 234 
(B, N, C, Al, O, W, Re) were determined using electron probe microanalyses (EPMA) at 235 
Centre Camparis, Sorbonne Université, France using a Cameca SX-FIVE wavelength 236 
dispersive spectrometer (WDS) operating at 15 kV and 300 nA. Our recovered samples show 237 
fine dendritic textures of Fe and Fe-S; we therefore used a defocused beam of ~30 µm to 238 
average the compositions of the quenched liquid. Bulk chemical compositions were obtained 239 
by averaging 5-10 measurements. Table 1 reports the obtained average values and 240 
corresponding standard deviations. 241 

 242 

2.3 Analysis of diffuse scattering signal 243 

The scattering intensity curve, I(Q), is constructed by merging the normalized EDD and 244 
removing the background (taking advantage of data collected at multiple 2θ angles over 245 
overlapping Q range (Fig. 2a)). The structure factor, S(Q), and the pair distribution function, 246 
g(r), are calculated for the fixed Q range of 1-10 Å-1 for all cases. The structure factor, S(Q), 247 
is first obtained after subtraction of incoherent scattering (Iinc(Q)). The distribution function, 248 
F(r), and pair distribution function, g(r), are obtained by the Fourier transformation of 249 
structure factor. Following the method detailed in (Morard et al., 2014, 2013), determination 250 
of density is based on the assumption that, due to the increasingly strong repulsive 251 
component in the interatomic potential, no atoms are located closer than minimal distance, 252 
rmin. Thus F(r) = -4πrρ for r<rmin. Density is, hence, extracted following the minimization of 253 
the oscillation in the short distance of the radial distribution function g(r) (through a merit χ2) 254 
(Eggert et al., 2002). Fig. 2b illustrates atomic densities calculated for different values of the 255 
minimal distance rmin at different temperatures. The value of χ2 exhibits a well-defined 256 
minimum in most cases (r0 in Fig. 2b), which gives the atomic density ρ0 for which the 257 
relation F(r) = -4πrρ is best-satisfied (Fig. 2c). The position of rmin usually corresponds to the 258 
base of the first coordination sphere in g(r). Noteworthy for the purpose of the present study, 259 
while absolute values of density depend upon rmin, density variation with temperature (dρ/dT) 260 
is effectively independent of rmin (Fig. 2b). 261 

Various aspects of the data treatment enter into the assessment of the error bar on the 262 
absolute density value, including the selected Q range, the choice of the minimum distance of 263 
the first coordination sphere (r0), along with physical phenomena neglected here such as the 264 
self-absorption from the sample (Morard et al., 2018, 2014). In the present data set, the 265 
estimated error is ±3 atoms/nm3 for the atomic density, corresponding to ±220-270 kg/m3 for 266 
the mass density of the Fe-S liquids (depending on composition). 267 

 268 

2.4 Analysis at constant pressure 269 

For analysis at constant pressure, experimental densities have been rescaled to 7 GPa 270 
following a Murnaghan formalism: 271 
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𝑃 − 𝑃!"# =
!!"#
!!

!
!!"#

!!

− 1                                              (3) 272 

where P is 7 GPa and 𝜌 is the recalculated density at 7 GPa, 𝑃!"# and 𝜌!"# are our direct 273 
obtained experimental data at actual temperatures (Table 1), 𝐾!"# is the isothermal bulk 274 
modulus at 𝑃!"# and 1900 K, and Kʹ is its pressure derivative. When not otherwise specified, 275 
we used the parameterization discussed in (Morard et al., 2018). Both 𝐾!"# and Kʹ are 276 
functions of atomic S content (XS) in the liquid. The isothermal bulk modulus at ambient 277 
pressure and 1900 K of Fe-S alloys was obtained following (Chen et al., 2014) according to 278 

the relation 𝐾! = 𝐾!"
!!!! ∗ 𝐾!

!! , assuming an exponential dependence of the bulk 279 

modulus of liquid Fe-S alloys with S content, and with KFe=76 GPa and KS=1.6 GPa. The 280 
pressure derivative of the bulk modulus (Kʹ) was obtained as Kʹ = KʹFe + XS· 3, with KʹFe = 281 
6.5 (Morard et al., 2018). In this analysis the temperature dependence of bulk modulus was 282 
neglected (temperature range of interest < 500 K).  283 

 284 

2.5 Thermodynamic models 285 

To model the thermodynamic properties of liquid Fe-S (for brevity l-Fe-S) alloys we use 286 
the non-ideal solution model introduced in Morard et al. (2018) and Terasaki et al. (2019). 287 
The excess mixing volume is assumed to be pressure dependent and parameterized by an 288 
asymmetric Margules formulation. The two end-member phases of the binary solution model 289 
are l-Fe and l-FeS. The volume of the non-ideal solution is: 290 
 291 

𝑉 𝜒!"#,𝑃,𝑇 = 1− 𝜒!"# 𝑉!" 𝑃,𝑇 + 𝜒!"# 𝑉!"# 𝑃,𝑇 + 𝜒!"# 1− 𝜒!"#  𝑉!" 𝜒!"#,𝑃  292 
 (4) 293 

  294 
where 𝜒!"# is the mol fraction of FeS, 𝑉!" and 𝑉!"# are the molar volumes of pure l-Fe 295 
and l-FeS, and 𝑉!" is the pressure and composition dependent excess mixing volume given 296 
by: 297 

  298 
𝑉!" 𝜒!"#,𝑃 = 𝜒!"# 𝑊!" + 1− 𝜒!"#  𝑊!"#  𝑣 𝑃 ,                          (5) 299 

 300 
where 𝑣 𝑃  is the pressure dependent contribution to the Margules parameters. Differently 301 
from Morard et al. (2018) and Terasaki et al. (2019) 𝑣 𝑃  is not parameterized by empirical 302 
expressions, but with a pseudospinodal equation of state (EOS) (Baonza et al., 1995):  303 
 304 

𝑣 𝑃 = 𝑒𝑥𝑝 !
!!

1− 1+ 2 !!
!!
𝑃                                          (6) 305 

 306 
The parameters 𝑊!", 𝑊!"#, 𝐾!, and 𝐾! and the equation of state parameters of l-FeS are 307 
estimated from the data of this study as well as from density measurements of Morard et al. 308 
(2018) and acoustic velocities of Nasch et al. (1994) and Nishida et al. (2016).  309 

Several recently published EOS of l-Fe (e.g. Komabayashi, 2014; Dorogokupets et al., 310 
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2017; Wagle and Steinle-Neumann, 2019) are in relatively good agreement with respect to 311 
the prediction of density and acoustic velocities along isentropes at high pressure and 312 
temperature (Fig. S2a). Nonetheless, quantities derived from the associated thermodynamic 313 
potentials, such as the thermal expansivity and heat capacity that determine the adiabatic 314 
gradient in a convecting liquid core of a planet, show relatively large deviations (Fig. S2b, c). 315 
Therefore, the EOS of l-Fe affects not only the estimation of the temperature in the core but, 316 
together with dependent thermodynamic quantities, also determines the locations at which the 317 
core temperature drops below the liquidus. For this reason we assess here how the EOS of 318 
l-Fe of Komabayashi (2014), Dorogokupets et al. (2017) and Wagle and Steinle-Neumann 319 
(2019) affect the thermodynamic properties predicted by our l-Fe-S model. In the following 320 
we will refer to Model K, Model D and Model W to denote the thermodynamic models 321 
constructed on the basis of our datasets in the Fe-S system at high pressure and high 322 
temperature, which respectively make use of Komabayashi (2014), Dorogokupets et al. (2017) 323 
and Wagle and Steinle-Neumann (2019) for the EOS of l-Fe. 324 

For the EOS of l-FeS we use a Vinet equation and the Anderson-Grüneisen formulation 325 
to describe the pressure dependence of the thermal expansivity (𝛼) (e.g. Komabayashi, 2014). 326 
As we could not estimate 𝛼  and the value of the Grüneiesen parameter at reference 327 
conditions (P!"# = 0.1MPa and  T!"# = 1650K) from our experimental data, we assume 328 
𝛼 = 11.8 ×10!! 1/K from Kaiura and Toguri (1979) and the isobaric heat capacity 329 
𝐶! = 62.5 J/K/mol (Chase, 1998). The Grüneisen parameter at reference conditions can then 330 
be computed from the estimated EOS parameters with the thermodynamic relation  331 
 332 

𝛾 = !!!"
!!!!!! ! !!

 ,                                                    (7) 333 

 334 
 where 𝐾! is the isothermal bulk modulus and 𝑉 is the molar volume. The EOS parameters 335 

and Margules coefficients estimated from the experimental data for the three different models, 336 
using different EOS of l-Fe, are given in Table S1. 337 

The liquidus at sulfur concentration lower than that of the eutectic is parameterized 338 
following Buono and Walker (2011) (Eq. 7-9). This procedure neglects the small amount of 339 
S that can be dissolved in solid Fe and requires only the knowledge of the Gibbs energy of 340 
l-Fe and stable solid Fe phases together with the Margules parameters required to describe the 341 
non-ideal behavior of the Fe-S system. To obtain a thermodynamically consistent description 342 
we compute the liquidus according to the l-Fe EOS’ of Komabayashi 2014 and Dorogokupets 343 
et al. 2017 together with the EOS’ of the relevant solid phase provided by those authors 344 
(Model K and Model D).  345 

Using those EOS’ the Margules parameters are then estimated from experimental 346 
melting data. Here we make use of the experimental data at 1bar (e.g. Waldner and Pelton, 347 
2005), 3 GPa (Brett and Bell, 1969), 6 GPa (Buono and Walker, 2011) and 10 GPa (Chen et 348 
al., 2008). With the knowledge of the Margules parameters and with the EOS’ of l-Fe and 349 
solid Fe, the liquidus can then be computed at the required pressures. The estimated values of 350 
the Margules parameters are given in Table S2. 351 

 352 
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3. Results 353 

The experimental data obtained here are summarized in Table 1 and described more in 354 
detail in the following subsections. 355 

 356 

3.1 Recovered sample and chemical compositions 357 

A representative cross-section of the recovered cell is shown in Fig. 3a. All of the 358 
samples (except FeS end member) exhibited homogeneous dendritic textures (Fig. 3c-g), 359 
characteristic of completely molten samples. The compositions of the recovered samples 360 
determined by EPMA marginally deviate from the starting compositions of the initial powder 361 
mixtures, showing a systematic increase by 0.7-1.8 at.% in the S content (Table 1). Potential 362 
causes include Fe exsolution from the liquid as an oxide, or simply a deviation from the 363 
expected 1:1 molar ratio in the FeS starting material. Possible chemical contamination by B, 364 
N, C, Al, O, W and Re was carefully checked. No Al contamination from sapphire capsule 365 
was ever observed for any of the samples. Some of the runs on samples with high melting 366 
temperature (low S content) showed B and/or N contamination from the BN cap (Fig. S1). 367 
For runs for which we experienced a thermocouple failure, often in relation to sample leaking 368 
as observed by in-situ radiography, W and Re were often detected in the analysis of the 369 
recovered experiments. In this paper we only present analysis of data from samples that show 370 
no contamination.  371 

 372 

3.2 Structure of liquid Fe-S alloys 373 

Fig. 4 shows examples of the structure factors, S(Q), and derived pair distribution 374 
functions, g(r), of liquid Fe-S alloys at high pressure and high temperature. The shape of g(r) 375 
is characterized by two peaks located at approximately 2.35-2.55 Å and 4.7 Å corresponding 376 
to the distance of the first and second coordination spheres (CS), respectively. The sharpness 377 
of these features decrease with increasing S content, and a third local maximum around 6.5 Å 378 
is visible only for alloys with 31.7 at.% or less (the g(r) become less structured with 379 
increasing S content). The first peak position of g(r), r1, was observed to monotonically 380 
decrease with increasing S content (Table 1, Fig. S3), which agrees quite well with previous 381 
report on liquid Fe-S (Shibazaki and Kono, 2018). The progressive reduction of r1 with S 382 
content can be rationalized by considering that the partial pair distribution functions 383 
systematically show Fe-S bonds (~ 2.2 Å) shorter than Fe-Fe bonds (~ 2.5 Å) (Morard et al., 384 
2018). As mentioned, with increasing S content, the first and second peaks of S(Q) become 385 
broader, and oscillation of the g(r) becomes less pronounced (Fig. 4a, b). The second 386 
oscillation in the g(r) seems to vanish at 51.2 at.% S.  387 

For a fixed S concentration, the S(Q) and g(r) do not show major changes with 388 
temperature (Fig. 4c, d). On a qualitative ground, this indicates that the temperature does not 389 
significantly modify the structure of liquid Fe-S alloys over the investigated range, other than 390 
for the increasing bond length.  391 

 392 
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3.3 Density and thermal expansion of liquid Fe-S alloy 393 

All densities determined in this study are reported in Table 1. In selected cases we 394 
repeated the measurements in more than one heating cycle (e.g. MA40), showing a 395 
remarkable consistency. Also, using the nominal starting composition, the densities derived 396 
from data obtained in an experiment with leakage of the molten sample (MA58), yielded 397 
values compatible with those from more reliable data (MA66) obtained in the absence of 398 
leakage. The systematic consistency of our results proves the validity of our data collection 399 
strategy and data treatment (e.g. range of Q, value of rmin). As such, pressure and temperature 400 
derivatives of density, as its variation with S content, are highly reliable (see also discussion 401 
in section 2.3).  402 

Previous density data for liquid Fe-S alloys under high pressure includes results obtained 403 
by ex-situ sink-float (Balog et al., 2003; Nishida et al., 2008), in situ X-ray absorption (Chen 404 
et al., 2014; Nishida et al., 2011; Sanloup et al., 2000; Terasaki et al., 2019) and X-ray 405 
diffraction (Morard et al., 2018) methods. The reported values display large discrepancies, 406 
however, even when the same method was used. Overall, the derived thermodynamic model 407 
from this study is compatible with densities determined here, although the agreement is less 408 
good for alloys with moderate S content (18 at.% or below) (Fig. S4). Of the parameters 409 
entering into the density modeling, the weight of thermal expansion is small, in particular 410 
when compared to that of compressibility. The most direct way to assess thermal expansion is 411 
thus considering the density evolution with increasing temperatures as from equation (2). 412 
Density determination for liquid Fe-S alloys with different S content at 7 GPa over an 413 
extended temperature range in this study is summarized and compared with thermodynamic 414 
Model W (Fig. 5).  415 

For each composition, density decreases approximately linearly with increasing 416 
temperature (see section 2.4, equation 2). Aside from the already mentioned difference in the 417 
absolute density values noticeable for the alloys with low-S content, the thermodynamic 418 
model, is in good agreement with the experimentally observations for all the liquid alloys. 419 
Within the scatter of the data, the temperature derivative of the density doesn’t show a clear 420 
compositional dependence (Fig. S5). As such, we cannot discriminate between results from 421 
thermodynamic Model K, Model D and Model W (see section 2.5), which equally well 422 
account for the measurements. Similarly, the experimentally derived thermal expansion 423 
shows values scattered in the range 6-13×10-5 K-1 (Fig. 6), in overall agreement with the 424 
results of the three thermodynamic models, but higher than previous models (Morard et al., 425 
2018; Terasaki et al., 2019), in particular for S-rich samples. 426 

To a large extent, the variability in our thermodynamic models reflects the spread in the 427 
values of thermal expansion of liquid Fe at ambient pressure (e.g. Williams, 2019). The 428 
density of model W has the strongest dependence on temperature for liquid Fe at ambient 429 
pressure (Fig. S6), with a thermal expansivity (14.1×10-5 K-1 at 1900 K) in agreement with 430 
Assael et al., (2006), while the thermal expansivity of Model K and Model D are smaller  431 
(respectively 9.0 and 9.3×10-5 K-1 at 1900 K) and in good agreement with the values of 432 
Hixon (1990).  433 

 434 
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4. Discussion 435 

4.1 Slope of adiabat and core solidification  436 

As already mentioned, the dynamic of crystallization in liquid planetary cores can be 437 
evaluated by comparing the adiabatic temperature gradient (slope of the isentrope) and the 438 
slope of the liquidus, which, in turn, depend upon pressure and chemical composition of the 439 
studied cores.   440 

The adiabatic gradient in a liquid core is calculated according to the relation (1) for the 441 
three thermodynamic models, with densities benchmarked against measurements. Specific to 442 
liquid FeS, we use 𝐶!=62.5 J/K/mol from NIST at 1bar (Chase, 1998). Assuming a different 443 
value of 40 J/K/mol (Kaiura and Toguri, 1979) does not significanlty change the resulting 444 
densities, slightly worsening the agreement with respect to experimental results, and making 445 
the isentropes moderately steeper. 446 

The slopes of the adiabats obtained at selected pressures as a function of sulfur content 447 
are illustrated in Fig. 7 and compared with the slope of the liquidi (see section 2.5). It should 448 
be noted that the S concentrations considered here are always below the eutectic, where 449 
denser almost pure solid Fe is the phase crystallizing from the Fe-S liquid.  450 

Observation of our different models highlights the dispersion depending on the chosen 451 
equation of state for liquid Fe. Nonetheless, on a qualitative ground, we note that the 452 
compositional domain for which the slope of the liquidus is larger than the adiabatic gradient 453 
is limited to a narrow portion on the Fe-rich side for all the pressure considered here (0-10 454 
GPa).  455 

On one hand, due to decreasing thermal expansion and increasing density, the slope of 456 
the adiabat decreases with increasing pressure. At the conditions of Moon’s (5.2 GPa) and 457 
Ganymede’s (10 GPa) center, the adiabat only moderately depends on S content, as a 458 
consequence of the density reduction that overcomes the effect on CP (Fig. S2). On the other 459 
hand, the slope of the liquidus shows a significant decrease with increasing S content. The net 460 
effect is that, for Fe-S cores of small to middle size bodies (0 to 10 GPa) top-down 461 
solidification is the most likely scenario for wide range of S contents. Only for S-poor cases 462 
bottom-up inner grow is possible, like in the case of the Earth.  463 

However, uncertainties on the relevant thermodynamic quantities resulting from the 464 
liquid equation of state of Fe and thermoelastic properties of l-Fe-S alloys do not allow 465 
derivation of quantitative conclusions on the crystallization regime of planetary cores as a 466 
function of composition. For instance, assuming Model W, crystallization will always occurs 467 
top-down because the adiabatic gradient is always steeper than the liquidus over the pressure 468 
range considered here (Fig. 7c). Conversely, assuming the Model K or Model D, adiabatic 469 
gradients and the slope of the liquidus cross each other at S concentrations that increase with 470 
increasing pressure (Fig. 7a-b). 471 

Paleomagnetic studies of chondritic and small-body achondritic meteorites have revealed 472 
a large diversity of magnetic field records (e.g. Weiss et al., 2020). Convection in the cores of 473 
differentiated, or at least partially differentiated asteroids, planetesimals, or meteoritic parent 474 
bodies in general, may have generated dynamo magnetic fields responsible for the 475 
magnetization of the overlying silicate rocks (Gattacceca et al., 2016; Weiss et al., 2008). 476 
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While heating from short-living radioactive isotopes is generally considered to be responsible 477 
for the early dynamo, core solidification is expected to produce compositionally-driven 478 
dynamo activity,at a later stage with the timing dependent on the S concentration of the core 479 
and the radius of the body (Neufeld et al., 2019). At low pressures within an asteroid, 480 
isentropes are steeper than liquidus, irrespective of the S content for both models (b) and (c), 481 
while the adiabatic gradient is below the slope of the liquidus for alloys up to 4 at.% S 482 
according to model (a) (Fig. 7). Top-down crystallization thus remains the most likely 483 
scenario, but bottom-up cannot be firmly excluded for very low S content. Generation of a 484 
magnetic field during top-down core crystallization could therefore be relatively common in 485 
differentiated planetesimals in the early age of the solar system.  486 

Lunar core formation models based on metal/silicate partitioning of siderophile elements 487 
support a Moon core containing up to 10 at.% S (Rai and Van Westrenen, 2014; Stenstra et 488 
al., 2017). Assuming a fully molten core in the binary Fe-S system, geodetic constraints argue 489 
for a larger amount of S, between 16 and 40 at.%, depending on the core radius (Morard et al., 490 
2018). The presence of a solid inner core, made of pure Fe, brings estimates down below 10 491 
at.% (Antonangeli et al., 2015). At about 5 GPa, the pressure at the center of the Moon, the 492 
adiabatic gradient and slope of the liquidus might cross at about 3 or about 9 at.% S, 493 
depending on the EOS of l-Fe (Fig. 7). Accordingly, if the Moon does not have a solid inner 494 
core today, it will have most likely crystallized top down. On the contrary, if the existence of 495 
a solid inner core, as suggested by some seismological studies (Weber et al., 2011), is 496 
confirmed, its crystallization regime remains uncertain. That an initial bottom-up scenario, 497 
may have evolved into a top-down regime due to the progressive enrichment in S of the 498 
liquid portion of the core upon crystallization of pure Fe, as hypothesized to explain the early, 499 
now extinct Moon magnetic field (e.g. Laneuville et al., 2014), remains an appealing 500 
possibility. 501 

Compositional convection is considered a fundamental element to explain Ganymede’s 502 
present-day dynamo (e.g. Rückriemen et al., 2018). In turn, compositional convection is 503 
strongly linked to core differentiation and solidification. Recently, significant efforts have 504 
been dedicated to model dynamics and magnetic field generation under the notion that 505 
crystallization occurs at the top of Ganymede’s core (Breuer et al., 2015; Rückriemen et al., 506 
2018, 2015). Our results suggest this is not necessarily the case, and that crystallization might 507 
proceed bottom-up for S content below about 10 at%. Indeed, the solution space for 508 
bottom-up crystallization might increase up to 7-11 at.% S, again depending on assumed 509 
liquid Fe equation of state, at 10 GPa, central pressure of Ganymede’s core (Fig. 7). As both 510 
bottom-up and top-down crystallization can power a core dynamo and generate a magnetic 511 
field, although via different mechanisms, independent constraints on S abundance in 512 
Ganymede’s core are needed to assess its thermo-chemical history.  513 

 514 

5. Conclusions 515 

We performed a structural investigation of liquid Fe-S alloys at high pressure over a 516 
large temperature range and compositional domain. Derived densities have been used to 517 
refine thermodynamic models of the thermo-elastic properties of the liquid Fe-FeS system 518 
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and, in particular, to put constraints on modeled thermal expansion at conditions directly 519 
relevant for the core of small planetary bodies.  520 

Comparison of the adiabatic gradient with the slope of the liquidus, is used to discuss the 521 
crystallization regime of the core of planetary bodies in the range 0-10 GPa as a function of 522 
sulfur concentration, with specific emphasis to the case of asteroids and small planetesimals, 523 
the Moon, and Ganymede. Our results show that the compositional domain for which the 524 
slope of the liquidus is larger than the adiabatic gradient is limited to a narrow portion on the 525 
Fe-rich side for all the pressures considered here, implying that top-down crystallization is 526 
likely a widespread phenomenon. However, bottom-up crystallization is still possible for 527 
S-poor cases, and the compositional domain for which an inner core would grow bottom-up 528 
increases with increasing pressure. On the basis of our experimental results and 529 
thermodynamic modeling, a bottom-up scenario cannot be excluded to occur at the pressures 530 
of the core of the Moon and, all the more so, of Ganymede. Improved constraints on the 531 
liquid Fe EoS are needed to better discriminate possible scenarios. 532 

 533 
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Table 1 Chemical composition of quenched samples, pressure-temperature conditions, and 750 
measured densities and position of the first sharp peak r1. The density scaled to a constant 751 
pressure of 7 GPa is also shown. 752 

Run 
S content 

(at.%) 
Pressure 

(GPa) 
Temperature 

(K) 
Density 

(kg/m3) 
Density corrected 
to 7 GPa (kg/m3) 

r1 (Å) 

MA84 51.2±0.4 6.5 1700 4486 4521 2.374 

  
6.8 1800 4427 4440 2.375 

  
6.8 1900 4332 4345 2.376 

  
6.5 2000 4286 4319 2.379 

  
5.7 2100 4222 4312 2.378 

MA40 38.3±0.5 6.5 1280 5619 5659 2.440 

  
6.4 1400 5526 5578 2.442 

  
6.4 1500 5511 5562 2.442 

  
6.7 1320 5619 5642 2.446 

  
6.6 1310 5619 5654 2.446 

  
6.9 1500 5573 5577 2.440 

  
6.0 1600 5464 5545 2.446 

  
6.1 1790 5348 5420 2.439 

MA44 31.7±0.9 7.1 1415 5944 5938 2.450 

  
6.9 1500 5880 5889 2.447 

  
6.8 1610 5800 5817 2.451 

  
7.0 1710 5720 5721 2.454 

  
6.9 1800 5656 5666 2.454 

MA47 25.1±0.3 7.5 1600 6211 6171 2.485 

  
7.5 1705 6160 6119 2.485 

  
7.8 1790 6137 6077 2.489 

  
7.9 1900 6084 6018 2.486 

  
8.4 2050 6059 5956 2.484 

  
8.3 2020 6043 5951 2.486 

MA82 18.1±0.4 5.6 1500 6308 6416 2.502 

  
5.3 1600 6291 6423 2.512 

  
5.4 1700 6188 6310 2.515 

  
5.2 1800 6171 6309 2.520 

MA66 9.1±0.5 6.8 1850 6746 6759 2.541 

  
7.1 1950 6711 6704 2.553 

  
7.4 2050 6647 6621 2.555 

  
7.7 2155 6569 6524 2.554 

  
8.1 2250 6520 6451 2.554 

MA58 8.4* 5.5 1825 6717 6880 2.537 

  
5.4 1960 6599 6766 2.541 

  
4.7 2075 6487 6703 2.554 

 753 
§ The uncertainty of ±3 atoms/nm3 estimated for the used protocol in data analysis (Morard 754 
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et al., 2013), reflects into an error of 220, 230, 240, 250, 260 and 270 kg/m3 for 51.2, 38.3, 755 
31.7, 25.1, 18.1 and 9.1 at.% S content, respectively  756 
* Starting composition; analysis of the recovered sample was not possible due to the leak of 757 
the sample at further high temperature. 758 
 759 
  760 
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FIGURES 761 
 762 
 763 

 764 

 765 
 766 
 767 

Fig. 1 (a, b)  Two-dimensional CAESAR plot of diffraction intensities collected on liquid 768 
FeS (run MA84). Raw 2D data (EDD spectra as a function of angle) (a) and data after 769 
normalization for acquisition time and binning (b). The discontinuities visible in (a) for 770 
2θ=12°and 20° are due to the change of acquisition time. (c, d) Images of cell assemblies 771 
obtained by X-ray radiography before compression (a) and at 6.3 GPa (c) after reaching to the 772 
target load.  773 
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 777 
 778 
 779 

Fig. 2 Examples of raw CAESAR data treatment process. (a) Normalized scattering intensity 780 
plotted as a function of Q. Color-coded horizontal bars and overlapping I(Q) patterns 781 
illustrate the Q range covered and I(Q) derived from the EDX spectra at corresponding 2θ. (b) 782 
Atomic densities calculated for different values of the minimal distance rmin. Error bars 783 
indicate the value of merit χ2 for each rmin (see Morard et al. (2013) for more details). Arrow 784 
points out the local minimum of χ2, providing atomic density and r0 for this data set. We 785 
stress that the temperature dependence of density is effectively independent of rmin. (c) 786 
Comparison of the distribution function F(r) with the function −4πrρ0 (dashed lines) 787 
calculated using density obtained by χ2 minimization (d) (2100 K).  788 
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 792 
 793 
 794 

Fig. 3 Backscattered electron image of recovered samples. (a) An overall view of the 795 
recovered cell after run MA47. (b-g) Microstructure of the recovered samples of the indicated 796 
runs. In (c-g) brighter areas correspond to Fe-rich portions of the sample, while darker areas 797 
correspond to S-rich portions. 798 
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 801 
 802 
 803 

Fig. 4 Examples of structure factor, S(Q), and pair distribution function, g(r), of liquids Fe-S 804 
alloys at high pressure and high temperature. (a) S(Q) and (b) g(r) as a function of S content. 805 
For clarity, S(Q) and g(r) are shown with a vertical offset of 0.3 and 0.5 in (a) and (b), 806 
respectively. Oscillations at ~ 4.4 and 5.0 Å visible in (b) for S concentration larger than 807 
31.7at.% are not real features and arise from spurious signal due to the limited Q range in the 808 
corresponding structure factors. (c) S(Q) and (d) G(r) of Fe-9.1at.%S as a function of 809 
temperature (MA66).  810 
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 814 
 815 
 816 

Fig. 5 Temperature dependence of the density of liquid Fe-S alloys at constant pressure (7 817 
GPa). Linear fit of our data (solid line) and temperature derivative according to the 818 
thermodynamic Model W (dashed lines). Legend: atomic S concentration. Hatched areas 819 
indicate uncertainties on absolute density values (±3 atoms/nm3, see section 2.3). Reported 820 
liquid compositions are those determined by chemical analysis of quenched and recovered 821 
samples but for the experiment on Fe-S0.084 for which we considered the composition of the 822 
starting material.  823 
 824 
  825 



27 
 
 

 826 

 827 
 828 
 829 

Fig. 6 Thermal expansivity as function of sulfur content at 7 GPa and 2000 K. Dots are 830 
estimations from experiments while colored lines are outcomes of thermodynamic models - 831 
Model K (blue), Model D (orange), and Model W) (green). Please refer to section 2.5 for 832 
details on the thermodynamic models and Table S1 and S2 for the used parameters. Black 833 
lines are results from literature thermodynamic models (dotted - Terasaki et al., 2019; dashed 834 
- Morard et al., 2018). 835 
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 839 
 840 
 841 

Fig. 7 Adiabatic gradient (solid lines) and slope of the liquidus (dashed lines) as a function of 842 
the S content at 0.01 GPa, 5.2 GPa, and 10 GPa, corresponding to core pressure of 843 
planetesimals, Moon and Ganymede, respectively, for the Model K (a), Model D (b), and 844 
Model W (2019) (c). Note that for the Model W the EOS’ of solid Fe from Komabayashi 845 
(2014) has been used to compute the slope of the liquidi. For other differences in the models, 846 
please refer to section 2.5 and to Table S1 and S2 for the used parameters. 847 
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 882 
 883 
 884 

Fig. S1 Schematic illustration of the experimental design. (a) A top view of the 885 
diffraction geometry through the gasket and cell assembly. (b) A cross-section of cell 886 
assembly used in this study. Temperature was monitored with a W97Re3-W75Re25 887 
thermocouple (TC) whose junction was indicated by black dots. 888 
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 892 

 893 
 894 
 895 

Fig.S2. Density (a), thermal expansivity (b), and iso-baric heat capacity (c) as a function of 896 
molar sulfur fraction X at 5.2 GPa and 10 GPa and 2000K for the thermodynamic Model K, 897 
Model D and Model W. Model K, Model D and Model W differ in the reference EOS for 898 
liquid iron (Model K uses l-Fe EOS of Komabayashi (2014), Model D uses l-Fe EOS of 899 
Dorogokupets et al. (2017), Model W uses l-Fe EOS of Wagle and Steinle-Neumann (2019)). 900 
Parameters of the thermodynamic models are in Table S1 and S2. 901 
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 905 
 906 
 907 

Fig.S3. First peak position (r1) as a function of the S content. Previous results from 908 
Shibazaki et al. (2018) at 3-5 GPa, Morard et al. (2018) at 2-5 GPa, Kono et al. (2015) at 1-6 909 
GPa, and Morard et al. (2007) at 3-17 GPa, were also shown for comparison. For clarity only 910 
one value is plotted for each of the considered composition (r1 for a given S content only 911 
moderately depends on pressure and temperature over the P-T range covered by individual 912 
studies). 913 
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 916 

 917 
 918 

 919 
Fig. S4. Measured densities (this study) and acoustic velocities (Nasch et al. 1994 and 920 

Nishida et al. 2016) (colored symbols) at varying temperature and predicted values according 921 
to the thermodynamic Model W (black symbols) under the same condition. Different symbols 922 
corresponds to different S content. For details on the thermodynamic model, please refer to 923 
section 2.5 and to Table S1 and S2 for parameters. 924 
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 927 

 928 
 929 
 930 

Fig. S5. Temperature derivatives at the constant pressure (7 GPa) of density as a function 931 
of S content. Dots are the slopes of the linear fit to the experimental data (see Fig. 6) with 932 
uncertainties at 2σ. Colored lines are outcomes of thermodynamic Model K (blue), Model D 933 
(orange) and Model W (green). Model K, Model D and Model W differ in the reference EOS 934 
for liquid iron (Model K uses l-Fe EOS of Komabayashi (2014), Model D uses l-Fe EOS of 935 
Dorogokupets et al. (2017), Model W uses l-Fe EOS of Wagle and Steinle-Neumann (2019)). 936 
Parameters of the thermodynamic models are in Table S1 and S2. 937 
  938 
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 939 
 940 
 941 

Fig. S6. Density as a function of temperature for liquid iron at ambient pressure. Colored 942 
lines are outcomes of our thermodynamic models (see section 2.5 and Table S1 and S3 for 943 
details). Dashed black line is a fit to data from Assael et al.. (2006), and preferred fit 944 
according to Williams (2009). 945 
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 947 
Table S1. EOS parameters for l-FeS and Margules parameters estimated from the 948 

experimental data of this study and from density measurements of Morad et al. (2018) and 949 
acoustic velocities from Nishida et al. (2016) using the EOS of l-Fe of Komabayashi (2014), 950 
Model K, Dorogokupets et al. (2017), Model D and Wagle and Steinle-Neumann (2019), 951 
Model W. P!"# = 0.1MPa,  T!"# = 1650 K and for the l-FeS end-member κ = 1.4 , 952 

α = 11.8 × 10!!1/K, and C! = 62.5 J/K/mol.  953 

 954 

Thermodynamic 
model 

l-Fe EOS 𝑉  
[cm3/
mol] 

𝐾! 
[GPa] 

𝐾!′ 𝛾 𝛿! 𝑊!" 𝑊!"# 𝐵! 
[GPa] 

𝐵′ 

Model K 
Komabayashi 

2014 
24.25 13.22 6.36 0.68 0.62 -9.627 -3.435 3.45 2.14 

Model D 
Dorogokupets 

2017 
24.26 13.12 6.38 0.68 0.52 -9.481 -3.528 3.44 2.10 

Model W 
Wagle 2019 24.26 13.07 6.44 0.68 0.61 -9.627 -3.393 3.44 2.23 

 955 
 956 
 957 
 958 
 959 

Table S2. Margules parameters required to compute the Fe-S liquidus (see Eq. 9-11 960 
Buono et al. 2011) for the EOS’ of l-Fe of Komabayashi (2014) and Dorogokupets et al. 961 
(2017). For the Model W the EOS’ of solid Fe from Komabayashi (2014) has been used to 962 
compute the slope of the liquidi. 963 
 964 

Thermodynamic 
model 

l-Fe EOS 𝑊!,!"   
[kJ/mol] 

𝑊!,!"   
[kJ/mol/K] 

𝑊!,!" 
[kJ/mol/

GPa] 

𝑊!,!"# 
[kJ/mol] 

𝑊!,!"#  
[kJ/mol/K] 

𝑊!,!"#  
[kJ/mol/G

Pa] 

Model K 
Komabayashi 

2014 
53.70 0.029 -3.82 25.34 0.0 -2.95 

Model D 
Dorogokupets 

2017 
69.28 0.043 -2.78 27.3 0.0 -3.48 
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