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Abstract
Tramadol is a painkiller with some abuse potentials. The current study aimed to investigate rat cerebral structures that 

were activated by acute intraperitoneal administration of tramadol (10 mg/kg). The expression of pERK1/2 was used as a 
molecular tool for tramadol-induced neuronal activation in the brain. Tramadol induced a differential pERK1/2 labeling 
expression in the brain. A robust pERK1/2 expression was present in limbic, motor, and pain processing structures when 
compared to others. pERK1/2 labeling was observed in somatosensory, motor, insular cingulate cortex, hippocampus, 
amygdala, thalamus, habenula, and striatum. Descending pain-processing structures such as periventricular hypothalamus 
nucleus, periaqueductal grey, dorsal raphe, and rostral ventromedial medulla presented also a high pERK1/2 expression. In 
medullary and spinal dorsal horns, pERK1/2 was highly expressed principally in superficial laminae (outer lamina II and 
lamina I) which processes pain. These results are following the reinforcing, motor, and pain effects of tramadol.

Keywords: Pain; Addiction; Tramadol, pERK1/2; Neuronal 
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Introduction
Tramadol an opioid agonist commonly used alone or as 

co-medication for chronic pain. It constitutes one of the most 
chosen analgesic opioids in many pharmacopeias [1]. It provides 
analgesia through a dual mechanism of action: one through the 
activation of opioid receptors and a second through its inhibition 
of central monoaminergic reuptake, which increases brain levels 
of monoaminergic neurotransmitters [2,3]. In this way, Tramadol 
has also an antidepressant action [4]. Tramadol acts on different 
receptors and ion channels (GABAA, glycine, NMDA, adrenergic, 
nicotinic acetylcholine, sodium channels) [3-8].

Different clinical and preclinical studies revealed an abuse 
effect of tramadol [9-28].

The Extracellular Signal-Regulated Kinase (ERK) is a 
component of the Mitogen-Activated Protein Kinase (MAPK) 
cascade. They are involved in relaying extracellular signals into 
intracellular responses. They play different functions in the brain 
especially in synaptic plasticity, learning, and memory, addiction, 
and pain [29-31]. The phosphorylation of ERK1/2, which 
constitutes their activation, plays an important role in pain [31]. 

This phosphorylation is induced in different peripheral and central 
brain structures as a response of noxious stimuli or in inflammatory 
and neuropathic pain situations. Alternatively, exposure to a variety 
of substances (alcohol, amphet amine, and cocaine, nicotine), with 
abuse potential induced the phosphorylation of ERK1/2 in the 
different brain structures [32-36]. The phosphorylation of ERK1/2 
may promote the drug’s rewarding effects.

In light of the above, the current study aimed to investigate 
the expression of the phosphorylate pERK1/2 in the brain upon 
acute peritoneal administration of tramadol in the rat. Specific 
interest was given to addiction and pain processing structures. This 
is the first study evaluating pERK1/2 expression in brain regions 
of tramadol-treated rats. The immunohistochemical method was 
used to achieve this goal.

Materials and Methods

Animals

Twelve adult Sprague Dawley rats (Charles Rivers, 
L’Arbresle, France) were used. Rats were maintained in a 
controlled environment (lights on 07:00-19:00 h, 22°C) with ad 
libitum access to food and water. The experiments followed the 
ethical guidelines of the animal ethics committee of the University 
of Auvergne (APAFIS#19965-20190325052285).
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Tramadol dissolved in saline (10 mg/kg) was intraperitoneally 
administrated to the rats (n=6). A control group (n=6) was injected 
with saline. Four minutes after tramadol or saline injections. Rats 
were deeply anesthetized with 1% ketamine and Xylazine. All rats 
(control and tramadol injected) were perfused through the heart 
with saline followed by 4% paraformaldehyde in Phosphate-
Buffered Saline (PBS). Brains were then removed and placed 
in 30% sucrose and 0.05% sodium azide solution overnight at 
4°C. Coronal sections (30 µm) were obtained using a freezing 
microtome and collected in 0.05 M Tris-Buffered Saline (TBS). 
Free-floating sections were placed in 1% normal goat serum for 
1 h before overnight incubation in primary polyclonal antibody 
solution (anti-pERK1/2 antibody, 1:500, rabbit, Ozyme, France). 
After several rinses, sections were incubated with a secondary 
antibody (1:400 for goat anti-rabbit Cy3; Vector Lab, France) 
for 3 h at room temperature. All antibodies were diluted in TBS 
containing 0.25% bovine serum albumin and 0.3% TritonX-100. 
The sections were finally rinsed in TBS, mounted onto gelatin-
coated slides, dehydrated in alcohol, cleared in xylene, and 
cover-slipped with distyrene-plasticizer-xylene. The specificity 
of the immunostaining was assessed by pERK1/2 protein pre-
adsorbed antibody (0.25 µg/μl, Proteintech, United Kingdom; 
24 hours before use), which resulted in the absence or a reduced 
signal. Some control experiments were done by substitution of 
the primary antibody with rabbit or mouse serum resulting in the 
absence of staining. For double staining, sections were incubated 
simultaneously with primary antibodies anti-pERK1/2 and anti-
PKCg antibody (1:5000 mouse anti-PKCg, Sigma-Aldrich, 
France) and corresponding Cy2 rabbit anti-mouse secondary 

antibody (Victor lab, France) as described previously [37,38]. 
Photomicrographs of immuno-stained sections were captured and 
image intensity analysis was completed using ImageJ software 
(ImageJ v1.41, National Institute of Health, USA).

Results

The current study focused on structures having robust 
staining and that are implicated in addiction and pain. Thus, 
differential expression of pERK1/2 was observed in the brain with 
some structures having robust labeling while others presenting a 
less prominent one. 

A differential pERK1/2 staining was observed within the 
cerebral cortex (Figure 1A) with some cortices having robust 
staining while others presenting a less intense one. Intense labeling 
is highlighted by an increase in the labeling signal and its presence 
in the dendritic processes (Figure 1B). Less intense labeling 
corresponded to a lower intensity of the labeling that was mostly 
restricted to cell stomata (Figure 1C). Intense pERK1/2 labeling 
was observed in cortices that included primary and secondary 
motor cortex, somatosensory cortex, insular cortex, primary and 
secondary visual cortex, anterior cingulate cortex, primary and 
secondary auditory cortex, parietal association cortex, temporal 
association cortex, perirhinal cortex, and entorhinal cortex.

In the hippocampus, intense pERK1/2 labeling was observed 
in all subdivisions (CA1, CA2, CA3, CA4, and DG dentate gyrus). 
Intense pERK1/2 was observed in granule cells of the DG (Figure 
1D) and in virtually all pyramidal cells of CA1, CA2, and CA3 
(Figure 1F) in addition to another neuronal cell type.

Figure 1: A Micrograph showing the expression of pERK1/2 labeling in the cortex and the hippocampus. Intense pERK1/2 is observed in the cortex 
(A). At high magnification, very intense labeling is present within neuronal cell bodies and processes. Some of pERK1/2 positive cells are pyramidal 
cells (B). The labeling is located within the cell body and dendritic processes. In other cerebral cortices, a weak pERK1/2 labeling is present in cell 
somata only (C). In the hippocampus, intense pERK1/2 labeling is observed in all hippocampal subdivisions. Intense pERK1/2 is located in virtually 
all pyramidal cells of CA1, CA2, and CA3 (Figure 1D) and in granule cells of the dentate gyrus (DG) (Figure 1F). Cing: cingulate cortex, M1/M2 
primary, and secondary motor cortex, S1/2: primary and secondary somatosensory cortex, Ins: insular cortex. The bar represents 200 µm in A and D, 
120 µm in B and E, and 100 µm in C and F.
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Within the amygdala (Figure 2A) intense pERK1/2 labeling was observed in the central nucleus. A robust pERK1/2 labeling 
is present in the lateral bed nucleus of the stria terminalis. Within the striatum pERK1/2 labeling was present in virtually all neurons 
(Figure 2B). In the nucleus accumbens, an intense pERK1/2 labeling was observed in some neurons of the shell subdivision while the 
core subdivision had a very low or no pERK1/2 labeling (Figure 2C). Intense pERK1/2 staining was present in the thalamus (Figure 2D), 
the habenula (Figure 2E), the ventral tegmental area (Figure 2F), the substantia nigra pars compacta (Figure 2G), and the periventricular 
nucleus of the hypothalamus (Figure 2H). Negative or very few cell staining was present in the control brain section (Figure 2I).

Figure 2: A micrograph showing the expression of pERK1/2 in different brain structures. Within the amygdala (A) intense pERK1/2 labeling is 
observed in the central nucleus. Robust pERK1/2 staining is also observed in the lateral bed nucleus of the stria terminalis. Most cells of the striatum 
expressed pERK1/2 labeling s (B). In the nucleus accumbens intense pERK1/2 labeling is present only in some neurons of the shell subdivision while 
the core subdivision is almost devoted to labeling (C). Intense pERK1/2 staining is located in neurons in the thalamus (D), the habenula (E), the 
ventral tegmental area (2F), the substantia nigra compacta (G), and the periventricular nucleus of the hypothalamus (H). Control section is presented 
in (I) where a very few pERK1/2 stained cells are present. Nac: nucleus accumbens, SNc: substantia nigra parsa compacta, PVN: periventricular 
hypothalamic nucleus, VTA: ventral tegmental area. The bar represents 150µm in A, 120µm in B-G and I, and 200µm in H.

Within descending pain processing structures intense pERK1/2 labeling is present in neurons of all periaqueductal grey subdivisions 
(Figure 3A). In the dorsal raphe (Figure 3B) intense staining was observed in large neuronal cell bodies while a less intense one was 
present in other cell subtypes. A less intense pERK1/2 labeling was located in neurons within the rostral ventromedial medulla (Figure 
3C) and in neurons in the locus coerulus (Figure 3D).
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Figure 3: A micrograph showing the expression of pERK1/2 
labeling in different descending pain processing structures. 
Intense pERK1/2 labeling is located in neurons of periaqueductal 
grey subdivisions (A). In the dorsal raphe (B), intense staining is 
present in large neuronal cell bodies while a less intense one is 
located in other cell subtypes. A less intense pERK1/2 labeling is 
located in neurons in the rostral ventromedial medulla (C) and the 
locus coerulus (D). PAG: periaqueductal grey, RVM: rostroventral 
medulla. The bar represents 120 µm in A, B, and D, 150 µm in C.

In the medullary dorsal horn pERK1/2 labeling was 
present within superficial laminae I and II (Figure 4A). At high 
magnification pERK1/2 positive neurons located within superficial 
lamina I-IIo and in some neurons within deeper lamina III (Figure 
4B). pERK1/2 expression was also explored with the PKCg a 
specific marker of excitatory interneurons localized especially 
within internal lamina IIi and III [38-40]. PKCg presence delimited 
lamina IIo and separate it from outer lamina II. pERK1/2 was 
present in lamina I and IIo, while PKCg was located in lamina 
IIo and III mostly (Figure 4C). At high magnification (Figure 4D), 
there was no match between pERK1/2 and PKCg positive cells.

Figure 4: A micrograph showing the expression of pERK1/2 in medullary 
(A-D) and spinal (E-H) dorsal horns. In the medullary dorsal horn pERK1/2 
labeling is present within superficial laminae I and II (A). pERK1/2 
positive neurons are located within superficial lamina I-IIo and in some 
neurons within deeper lamina III (B). Double labeling using pERK1/2 and 
PKCg reveals a different pattern of labeling. pERK1/2 is present in lamina 
I and IIo, while PKCg was located in lamina IIi and III mostly (C). At 
high magnification (D), there was no match between pERK1/2 and PKCg 
positive cells. In the spinal dorsal horns pERK1/2 labeling is present 
within superficial laminae I and II (E). At high magnification pERK1/2 
positive cells were observed in cells located within superficial laminae IIo 
and I (F) and some cells within lamina III. Double labeling using pERK1/2 
and PKCg revealed the presence of pERK1/2 in lamina I and IIo, while 
PKCg was located in lamina IIi and III (G). At high magnification, there 
was no match between pERK1/2 and PKCg positive cells (H). IIi: internal 
lamina II, IIo: outer lamina II. The bar represents 250 µm in A,C, E, G, 60 
µm in D and H, 90µm in B and F.



Citation: Omara-Reda H, Ouachikh O, Durif F, Hafidi A (2020) Acute Tramadol Administration Induces the Expression of pERK1/2 in Different Limbic and Pain Pro-
cessing Structures. Chron Pain Manag 4: 130. DOI: 10.29011/2576-957X.100030

5 Volume 4; Issue 02
Chron Pain Manag, an open access journal
ISSN: 2576-957X

In the spinal dorsal horns pERK1/2 labeling was present within superficial laminae I and II (Figure 4E). At high magnification 
pERK1/2 positive cells were observed in a few cells within superficial laminae (Figure 4F) and some cells within lamina III. Double 
labeling using pERK1/2 and PKCg revealed the presence of pERK1/2 in lamina I and IIo, while PKCg was located in lamina IIo and III 
(Figure 4G). At high magnification, there was no match between pERK1/2 and PKCg positive cells (Figure 4H). The pERK1/2 intensity 
of labeling in different brain structures is highlighted in Figure 5.

Figure 5: The table represents pERK1/2 labeling intensity in different brain structures. +++ robust staining that can extend to dendritic 
processes; ++ intense staining; + weak staining.

Discussion
The main results of the current study are that acute administration of tramadol induces intense pERK1/2 expression in different 

brain structures. Most of them are involved in addiction and pain regulation. Tramadol activated pERK1/2 expression in structures 
such as cortex, amygdala, hippocampus, striatum, ventral tegmental area, nucleus accumbens, which are implicated in the regulation of 
addiction. Besides, tramadol activated hypothalamic periventricular nucleus, periaqueductal gray, dorsal raphe, rostroventral medulla, 
locus coerulus, medullary, and spinal dorsal horns that are structured important in the regulation of pain. Therefore, the current results 
are following the dual reinforcing and pain effects of tramadol.



Citation: Omara-Reda H, Ouachikh O, Durif F, Hafidi A (2020) Acute Tramadol Administration Induces the Expression of pERK1/2 in Different Limbic and Pain Pro-
cessing Structures. Chron Pain Manag 4: 130. DOI: 10.29011/2576-957X.100030

6 Volume 4; Issue 02
Chron Pain Manag, an open access journal
ISSN: 2576-957X

Acute tramadol administration induced a robust pERK1/2 
expression in different cerebral structures involved in addiction 
(nucleus accumbens, lateral bed nucleus of the stria terminalis, 
central amygdala, and deep prefrontal cortex, hippocampus, 
habenula, thalamus, VTA, SNc,) [41]. The expression of pERK1/2 
in the current study is in accord with previous results showing that 
all drug of abuse administration induced the phosphorylation of 
ERK1/2 in nucleus accumbens, lateral bed nucleus of the stria 
terminalis, central amygdala and deep layers of the prefrontal 
cortex [32]. Conversely, the inhibition of ERK1/2 phosphorylation 
prevented conditioned place preference induced by cocaine, 
THC or MDMA [42-44]. This demonstrates an essential role of 
pERK1/2 in behavioral conditioning. Mice knockout in ERK1 are 
more sensitive to the rewarding properties of morphine, and this 
hypersensitivity correlated with a stimulus-dependent increase 
in pERK2 [45]. Last, tramadol-induced pERK1/2 was observed 
in structures that expressed high levels of MOR opioid receptor 
[46-50]. These regions included cerebral cortex, hippocampus, 
amygdala, thalamus, striatum, periaqueductal gray, locus coeruleus, 
raphe magnus, medullary and spinal dorsal horns. Activation of 
ERK1/2 participates to opioid addiction [45,51,52]. Although in 
the current study acute tramadol administration was used, pERK1/2 
expression had a similar brain distribution as chronic morphine 
exposure with an intense signal in the locus coeruleus, caudate/
putamen [45], nucleus accumbens [53] and ventral tegmental area 
[51]. Tramadol effect could also be due to the activation of non-
opioid receptors (GABAA, glycine, NMDA, adrenergic, nicotinic 
acetylcholine) or monoaminergic reuptake [4-8].

Pain sensation is regulated by two main ascending (lateral 
and medial) and descending pathways [54]. The lateral is 
responsible for the sensory aspects of pain and the medial for the 
emotional aspects of pain. Tramadol induced pERK1/2 expression 
in many pain-processing structures linked to both pain processing 
ascending and descending pathways. A robust pERK1/2 labeling 
was observed in somatosensory cortices, insular cortex, anterior 
cingulate cortex, hippocampus, lateral bed nucleus of the stria 
terminalis, amygdala, hypothalamus PVN, PAG, locus coerulus, 
and RVM. While a less intense pERK1/2 staining was observed in 
other pain processing structures. ERK signaling is very important 
in the pain process [31]. ERK activation is exclusively induced by 
noxious stimuli but not by innocuous stimuli [55]. Furthermore, 
pERK1/2 constitutes a biomarker for activated cells involved in 
pain signaling and nocifensive reflex [37,40,56]. In the case of 
tramadol, pERK1/2 activated cells might constitute cell subtypes 
that are involved in the inhibition of pain mechanism.

Interestingly, tramadol administration induced the 
expression of pERK1/2 in structures that have a high expression 
of MOR-1 (somatosensory cortex, hippocampus, amygdala, lateral 
bed nucleus of the stria terminalis, thalamus, hypothalamus PVN, 
the periaqueductal gray, the locus coeruleus, and raphe magnus, 

medullary and spinal dorsal horns), all of which are implicated in 
pain [54]. Morphine is known to modulate pain processing in both 
medial and lateral pain pathways.

At the level of medullary and spinal dorsal horns, tramadol 
induced a robust pERK1/2 expression especially in superficial 
lamina II especially outer region IIo. This lamina is known to 
regulate the pain process since it receives both ascending and 
descending pain projections [57]. Besides, lamina II contains also 
a high expression of MOR receptors [46-50]. pERK1/2 did not 
colocalize in PKCg excitatory cells that play an important role 
in allodynia [37,38]. The activation of ERK1/2 in medullary and 
dorsal horns constitutes a pain biomarker [37,56] and participates 
in the generation and maintenance of pain. The phosphorylation of 
ERK1/2 constitutes a marker for neurons activated by nociceptive 
stimuli. The inhibition of ERK1/2 activation blocked or alleviated 
pain [58-60]. Therefore, tramadol induced pERK1/2 expression in 
cell subtype within lamina IIo that are involved in pain inhibition.

Conclusion
Tramadol induced the expression of pERK1/2 in cerebral 

structures that participate to both pain process and addiction which 
is following its painkiller and reinforcing effect.
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