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Abstract: This paper studies the effects of output, urbanization, energy intensity, and 

renewable energy on aggregated and sector-specific CO2 emissions for a rich sample of 

developing states. We employ the recently developed GMM panel VAR technique, which 

allows us to tackle the potential endogeneity issue and capture both the current and future 

impact of indicators on CO2 via the impulse-response analysis. On the one hand, robust to 

several alternative specifications, the findings indicate that output, urbanization, and energy 

intensity increase the aggregated CO2 emissions, while renewable energy exhibits an 

opposite effect. Moreover, regarding the CO2 responsiveness to output and urbanization 

shocks, the pattern may suggest that these countries are likely to attain the threshold that 

would trigger a decline in CO2 emissions. We also reveal heterogeneities related to both 

countries’ economic development and Kyoto Protocol ratification/ascension status. On the 

other hand, the sectoral analysis unveils that the transportation, buildings, and non-

combustion sector tend to contribute more to increasing the future CO2 levels. Overall, our 

study may provide useful insights concerning environmental sustainability prospects in 

developing states. 
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I. Introduction 

As a global and stock pollutant with the highest share in greenhouse gasses, carbon dioxide 

(CO2) emissions are considered the main driving force of environmental degradation. 

According to Olivier et al. (2017) report, developing countries such as Indonesia and India 

have recorded the highest absolute increase in CO2 emissions in 2016 (6.4% and 4.7% 

respectively), followed closely by Malaysia, Philipines, and Ukraine.  

Indeed, having the fastest-growing economies, most developing countries experience 

complex structural changes that reflect in the mix of various socio-economic processes such 

as industrialization and urbanization. For example, according to the United Nations World 

Urbanization Prospects (2014)1, the urban population in 2014 accounted for 54% of the total 

world population, and it is expected to rise at about 66% by 2050. Additionally, considering 

the worldwide ongoing urbanization process, Asia and Africa seem to exhibit the fastest rate 

of urbanization. Overall, these changes strongly connected with the industrialization process 

also imply an intensification and a shift of economic activities towards urban conglomerates, 

demanding the use of more energy resources, which in turn may reflect in higher pollution.  

Consequently, some of the key factors that can help mitigate pollution include the gradual 

replacement of classic fossil fuels with more carbon-neutral alternatives, the increase of 

renewable sources in the energy mix, and the improvements in energy efficiency. In this 

regard, the renewable energy and energy efficiency projects implemented between 2005 and 

2016 in developing economies, and supported at the international level, are expected to 

reduce greenhouse gas (GHG) emissions by 0.6 gigatons of CO2 per year by 2020 (United 

Nations Environment Programme, 2017)2. Likewise, based on the same report, approximately 

75 developing or emerging economies have implemented policies or programs that 

incorporate renewable energy and energy efficiency technologies.  

Looking at developing countries' positions vis-à-vis the global environmental 

challenges and the main related tools designed to address them, they differ in certain features 

from developed countries. On the one hand, developing states being Non-Annex I parties of 

the Kyoto Protocol do not have binding commitments to reduce or limit their emissions, 

compared to their industrialized counterparts. Nonetheless, they may voluntarily comply, and 

the advanced economies that choose to support them in fighting global warming may also 

benefit in terms of the fulfillment of their commitments. For example, the Kyoto Protocol's 

 

1 https://population.un.org/wup/publications/files/wup2014-highlights.pdf    
2https://wedocs.unep.org/bitstream/handle/20.500.11822/22149/1_Gigaton_Third%20Report_EN.pdf?sequence

=1&isAllowed=y  

https://population.un.org/wup/publications/files/wup2014-highlights.pdf
https://wedocs.unep.org/bitstream/handle/20.500.11822/22149/1_Gigaton_Third%20Report_EN.pdf?sequence=1&isAllowed=y
https://wedocs.unep.org/bitstream/handle/20.500.11822/22149/1_Gigaton_Third%20Report_EN.pdf?sequence=1&isAllowed=y
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well-known Clean Development Mechanism (CDM) is designed to jointly involve 

developing and developed economies in fighting climate change through the implementation 

of various green projects.3 On the other hand, following the Paris Agreement's adoption under 

the umbrella of the United Nations Framework Convention on Climate Change (UNFCCC), 

both developing and developed economies are required to put the efforts and fight together 

against the imminent threats of climate change. As such, the Paris Agreement may represent 

one of the most powerful instruments adopted so far concerning developing countries and 

their active role in combating and mitigating the harmful effects of global warming. 

Taking stock of the above mentioned, the goal of this paper is to assess the 

responsiveness of CO2 emissions following external disturbances to output and urbanization, 

assuming a transmission channel that incorporates two of the key elements used in mitigating 

environmental degradation, namely the renewable energy and energy efficiency. In doing so, 

we employ the recently-developed Generalized Method of Moments (GMM) panel Vector 

Auto-Regression (VAR) approach of Abrigo & Love (2016), which allows us to explore the 

essential dynamics and tackle the potential endogeneity between indicators. The technique is 

applied for a comprehensive group of developing countries, within a modified Stochastic 

Impacts by Regression on Population, Affluence, and Technology (STIRPAT) framework, 

which along with the Environmental Kuznets Curve (EKC) hypothesis4 helps us to provide 

the necessary economic foundation for the assumed innovations’ transmission mechanism 

required to identify the key structural shocks. Furthermore, opposite to a sizeable empirical 

strand of literature that independently examines the nexus between CO2 and growth 

(urbanization) via the classical (urbanization-related) EKC hypothesis, we jointly test these 

two well-known hypotheses. Indeed, building on the general belief that a vast majority of 

developing economies have not yet reached the maximum level of growth (urbanization) that 

would ensure a decrease in pollution, this approach via the computation of impulse response 

functions (IRFs) allows us to assess whether this will be feasible or not in the future. As well, 

motivated by the ongoing structural changes that developing countries experience, we focus 

on aggregated and sector-specific CO2, as they may provide us with complementary insights. 

 

3 As a result of the CDM green projects (i.e., projects aimed at reducing emissions) implemented in developing 

countries, the Annex I parties can buy Certified Emission Reduction (CER) units, which in turn help them to 

meet some of their commitments of emission reduction (Carbon Trust, 2009). 
4 The classical EKC hypothesis states that the relationship between environmental degradation and economic 

growth follows a bell-shaped pattern (Grossman & Krueger, 1991). 
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Our findings can be summarized as follows. First, although output and urbanization 

shocks trigger a rise in the current and future levels of CO2, the effect may reverse, and in the 

long-run, a bell-shaped pattern seems to be at work in terms of the CO2 responsiveness. 

Moreover, the green actions that developing countries have taken in the last decades, in 

particular those related to renewable energy sources, seems to reduce the cumulated CO2 

emissions both on the short- and long-term horizon. However, considering that the positive 

disturbances to energy intensity are associated with an increase in CO2, more attention 

should be paid to energy efficiency, by attracting and implementing more related projects. 

Also, while the results confirm the persistence in CO2, a permanent shock to its dynamics 

causes only a small increase in the future emissions levels.  

Second, we examine the robustness of these findings by changing the order of 

variables into the transmission channel, altering the sample in several ways concerning both 

N and T dimensions, and controlling for an extensive set of exogenous factors. According to 

IRFs, the shocks to output, urbanization, energy intensity, and CO2 have the same cumulated 

increasing effect on CO2, opposite to positive disturbances to renewables that trigger a 

cumulated decrease in CO2. Likewise, the CO2 response to GDP and urbanization shocks 

tends to exhibit a bell-shaped pattern in the long-run, indicating that the related EKC 

hypothesis may be validated. 

Third, we find that the results are sensitive to both countries’ level of development 

and the Kyoto Protocol ratification/ascension status. On the one hand, overall, the IRFs show 

that low income economies might experience a more moderate increase in pollution in the 

long-run than lower-middle income states. Besides, in low income states, the results seem to 

be compatible with the EKC hypothesis, especially for urbanization. On the other hand, the 

countries that ratified or acceded to the Kyoto Protocol before it entered into force may also 

be those which have been more actively engaged in combating pollution, given that both 

output and urbanization are more likely to display a threshold effect on CO2 (i.e. validate the 

EKC hypothesis in the long-run). Indeed, this may also suggest that these states faced the 

effects of increasing pollution earlier and, thus, decided to become more actively involved in 

combating climate change sooner than their counterparts. 

Finally, despite the positive response of aggregate CO2 to output and urbanization 

shocks, when the sectoral components of CO2 are taken into account, the findings appear to 

be much more diverse. In particular, we find opposite results for the other industrial 

combustion and power industry sector, namely external disturbance to both GDP and 

urbanization lead to a cumulated decrease in associated CO2. Thus, overall, the disaggregated 
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CO2 analysis indicate that transportation followed by construction and non-combustion 

sector are more prone to contribute to increasing CO2 pollution in developing economies. 

The remainder of the paper is organized as follows. Section 2 reviews the related empirical 

literature. Section 3 provides the STIRPAT framework, discusses the research methodology, 

and describes the data used in the analysis. Section 4 presents the baseline empirical findings. 

Section 5 examines the robustness of these findings. Section 6 explores their sensitivity. 

Section 7 analyzes the sector-specific CO2 dynamics following exogenous shocks to other 

system variables, and the last section presents the concluding remarks. 

 

II. Literature review 

In the light of the vast body of empirical literature on the environmental degradation 

determinants, this section aims to review some of the most recent empirical studies that tackle 

the impact of output, urbanization, (non-) renewable energy, among other explanatory 

factors, on environmental degradation. More precisely, we mainly focus on works that 

explore this nexus for developing5 economies in the context of STIRPAT and/or EKC 

hypothesis (both the classical and urbanization related ones). As well, given that the output 

appears in almost all studies as one of the main determinants of environmental degradation, 

we split the literature into two main parts, namely the (i) output-urbanization-environmental 

degradation nexus, and (ii) output-(non-)renewables-environmental degradation nexus.6 

First, regarding the impact of economic growth and urbanization on environmental 

pollution, we further split the studies into two sub-categories. Thus, the first strand of 

literature tackles the papers that extend the baseline STIRPAT equation and/or EKC 

hypothesis to capture the effects of the urbanization process. In this fashion, researchers such 

as Lin et al. (2009), Li et al. (2011), Wang et al. (2013), Wang & Lin (2017), among others, 

using time-series data on China reveal that, overall, both urbanization and economic growth 

exacerbate the environmental degradation. The authors employ techniques such as ridge 

regression, partial least-squares regression, or VAR model. Likewise, the findings of Talbi 

(2017) for Tunisia and Pata (2018) for Turkey show that urbanization increases CO2 

pollution, while economic growth exhibits a nonlinear effect on CO2, validating the EKC 

hypothesis.  

 

5 The term “developing” is used with double connotation, meaning that it refers to both developing and 

emerging countries. 
6 We note that the studies that comprise, along with the output, both urbanization and (non-) renewable energy 

as explanatory factors of environmental degradation, are included in the category that we consider most suitable. 
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Furthermore, making use of STIRPAT framework, several works (see e.g. 

Poumanyvong & Kaneko, 2010; Liddle, 2013; Iwata & Okada, 2014; Sadorsky, 2014a; Wang 

et al., 2015; among others) examine the effects of growth and urbanization on environmental 

degradation, using either samples of developing countries or mixed samples comprising both 

developing and developed economies. However, in most cases, the findings unveil that both 

variables have a positive effect on environmental degradation. Also, it is worth noted that 

concerning economic growth, Liddle (2013) and Wang et al. (2016) find evidence in favor of 

the EKC hypothesis. Also, scholars such as Li et al. (2016), Awad & Warsame (2017), Joshi 

& Beck (2018), among others, study the relationship between pollution and growth in the 

context of the EKC hypothesis, while controlling for the effects of the urbanization process. 

The authors apply either parametric or semi-parametric panel data techniques, and, most 

frequently, environmental degradation is proxied by CO2 emissions. Overall, the findings 

seem to be mixed with respect to the EKC hypothesis's validity, whereas urbanization tends 

to increase the pollution levels. 

The second strand of literature focuses on testing the urbanization-related EKC 

hypothesis, whether or not this is done within the STIRPAT context. In this manner, the 

findings provided by Martínez-Zarzoso & Maruotti (2011) support the urbanization-pollution 

EKC for 88 developing states spanning over the period 1975-2003. Opposite, Zhu et al. 

(2012) and, more recently, Wang et al. (2016) find little evidence in favor of urbanization-

CO2 and urbanization-SO2 EKC hypothesis, respectively. Besides, employing the panel 

VAR analysis, Lin & Zhu (2017) study the dynamic relationship between industrial structure, 

urbanization, energy intensity, and carbon intensity for 30 provinces of China spanning over 

the period 2000-2015. Concerning the carbon intensity response following external shocks to 

the other variables, the IRFs reveal that both urbanization and industrial structure decrease 

the carbon intensity, while energy intensity disturbances increase (decrease) on impact (after 

three years) the carbon intensity. According to twenty years horizon FEVDs’ results, only 

urbanization exhibits a bell-shaped pattern on carbon intensity. Also, the findings provided by 

Chen et al. (2019) and Xie & Liu (2019) show that urbanization exhibits nonlinear effects on 

CO2 for 188 Chinese prefecture-level cities and 30 Chinese provinces, respectively. 

Second, the present study is also related to the body of literature that investigates the 

effects of economic growth, non-renewable energy (especially energy intensity), and/or 

renewable energy on environmental degradation. In this regard, Shahbaz et al. (2015) 

investigate for 13 Sub Saharan African states the link between energy intensity and CO2, 

while additionally test the EKC hypothesis. On the one hand, the long-run panel findings 
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unveil that the energy intensity has a positive impact on CO2, while a bell-shaped pattern 

characterizes the CO2-GDP nexus. On the other hand, the country-specific long-run results 

reveal that energy intensity significantly increases CO2 in countries such as Botswana, 

Congo Republic, Gabon, Ghana, South Africa, Togo, and Zambia. Besides, an inverted U-

shaped (U-shaped) relationship between CO2 and GDP is found in South Africa, the Congo 

Republic, Ethiopia, and Togo (Senegal, Nigeria, and Cameroon). Antonakakis et al. (2017) 

employ the panel VAR approach to investigate the dynamic interrelationship between output, 

energy consumption (and its subcomponents, namely electricity, oil, renewable, gas, and 

coal) CO2. In doing so, the authors concentrate on a large panel of 106 states spanning over 

the period 1971-2011. Overall, for low income group, the findings (based on cumulative 

generalized IRFs) reveal that CO2 respond significantly and positively only to output and oil 

consumption shocks. On the contrary, for lower-middle income countries, the CO2 seems to 

react significantly and positively to output, aggregated energy consumption, electricity 

consumption, and oil consumption. Likewise, Naminse & Zhuang (2018) examine for China 

the link between economic growth, energy intensity (in terms of coal, oil, gas, and 

electricity), and CO2, over the period 1952-2012. The results based on the IRFs analysis 

show that coal, electricity, and oil consumption have a positive impact on the future levels of 

CO2. In contrast, gas consumption seems to decrease future levels of CO2. The regression 

analysis also indicates an inverted U-shaped relationship between growth and CO2, in line 

with EKC. Also, Charfeddine & Kahia (2020) investigate the impact of renewable energy and 

financial development on both CO2 emissions and growth for 24 Middle East and North 

Africa (MENA) states. The computed IRFs unveil a cumulative negative effect of renewables 

on CO2, suggesting that renewable energy sources may reduce CO2 pollution.  

Moreover, some authors assess the impact of (non-) renewable energy consumption 

and output on CO2 pollution using the EKC framework for European Union (EU) states. As 

such, the results of Bölük & Mert (2014) for a sample of 16 EU countries indicate that the 

consumption of renewables has a positive impact on CO2 emissions, while the EKC 

hypothesis is not validated. Conversely, based on a sample of 27 developing and developed 

EU states, the findings of López-Menéndez et al. (2014) show, on the one hand, that 

renewables have a negative effect on greenhouse gas emissions. On the other hand, the results 

suggest that the EKC hypothesis may be at work for those economies which exhibit high 

intensity with respect to renewable energy sources. Likewise, for a sample of EU economies, 

Dogan & Seker (2016) show that renewable (non-renewable) energy decreases (increases) the 
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CO2 emission, and the EKC hypothesis is supported. As an empirical methodology, the 

authors employ panel data techniques robust in the presence of cross-sectional dependence.7  

Bearing in mind the present study’s objective, we previously review some studies that 

directly or indirectly tackle the effects of output, urbanization, and (non-) renewable energy, 

among others, on environmental degradation. However, given that we aim at addressing the 

potential endogenous behavior between variables and, thus, consistent with the recursive 

order that we impose among them (see subsection 4.2 for details), the study could also be 

linked with the strand of research that examines the relationship between (i) output and 

urbanization (see e.g. Brückner, 2012; Bakirtas & Akpolat, 2018; among others), (ii) output 

and (non-) renewable energy (see e.g. Sadorsky, 2009; Salim & Rafiq, 2012; Liu, 2013; 

Apergis & Payne, 2015; Doğan & Değer, 2018), (ii) urbanization and (non-) renewable 

energy (see e.g. Shahbaz & Lean, 2012; Sadorsky, 2014b; Wang, 2014; Kurniawan & 

Managi, 2018; among others), and as well the papers that focus on efficiency of (non-) 

renewable energy (see e.g. Aldea et al., 2012; Jebali et al., 2017; Gökgöz et al., 2018; among 

others). 

 

III. STIRPAT framework, research strategy, and data 

3.1.  STIRPAT framework 

STIRPAT is an analytical framework introduced in the literature by Dietz & Rosa (1994, 

1997) as the stochastic counterpart of IPAT identity proposed by Ehrlich & Holdren (1971). 

According to the I=PAT accounting equation, the environmental impacts denoted by (I) are 

determined in a multiplicative way by demographic-economic forces such as population (P), 

affluence (A), and technology (T). Nonetheless, over the years, to meet the needs of different 

research questions the baseline IPAT/STIRPAT model has encountered many alternative 

specifications (see e.g. Kaya, 1990; Schulze, 2002; Waggoner & Ausubel, 2002; Xu et al., 

2005; Martínez-Zarzoso et al., 2007; Lin et al., 2009; Shafiei & Salim, 2013; among others).  

First, the classical IPAT equation written for panel data with observed countries over 

the period  takes the following for 

 

 

7These findings are also partially supported by the more recent study of Inglesi-Lotz & Dogan (2018) for a 

sample that comprises the top 10 electricity generators states from Sub-Saharan Africa. Specifically, the results 

show that renewable (non-renewable) decreases (increases) the CO2, but the validity of the EKC hypothesis 

over the period 1980-2011 is not supported. 
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Second, the stochastic counterpart of the above accounting identity is obtained by 

applying natural logarithm on equation (1). Also, along with this transformation, we 

approximate the environmental impacts  with a well-known global pollutant, namely the 

CO2 emissions. Likewise, we proxy  with the share of the urban population in total 

population (URB),  with the gross domestic product (GDP), while  it is captured through 

both energy intensity (EINT) and the share of renewable energy in total energy consumption 

(RENG). Subsequently, our modify STIRPAT model can be specified as follows   

 

In the above equation, all the variables are expressed in natural logarithm form, while  and 

captures the potential country-specific fixed effects and the error term, respectively. 

Moreover, given that the affluence term is usually expressed via GDP, its square (cubic) term 

into the equation allows for testing the well-known EKC hypothesis in its traditional 

(extended form). Indeed, the same holds for any explanatory factor, namely adding higher-

order polynomial terms, allows for testing a potential nonlinear effect of the respective 

variable on environmental degradation (e.g. the urbanization-EKC hypothesis). 

 

3.2. Methodology 

To explore the CO2 responsiveness to other system variables shocks, we draw upon the novel 

panel VAR methodology. In this regard, we follow the work of Love & Zicchino (2006) and 

Abrigo & Love (2016) and estimate a homogeneous panel VAR model using the GMM 

approach. Indeed, this technique gives us the possibility to treat all the variables 

endogenously and also to account for the unobserved individual heterogeneity.  

The reduced-form specification of a homogeneous panel VAR with individual fixed effects 

can be written as follows 

 

Where  represents the vector of our four stationary endogenous variables, namely the GDP, 

URB, EINT, RENG, and CO2, and  stands for associated matrix polynomial in the lag 

operator (i.e. the autoregressive structure).  is the vector of constants, while  and  

denotes the vector of unobservables country-specific characteristics and idiosyncratic errors, 

respectively. The unobservables may capture the cultural, institutional, and historical 

individual country characteristics that are time-invariant. Likewise, we assume that the vector 

of idiosyncratic errors  possesses the following features: ,  and 

, . Put differently, the innovations have zero first moment values, constant 
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variances, and do not exhibit individual serial and cross-sectional correlation (see Abrigo & 

Love, 2016). 

Furthermore, in line with Holtz-Eakin et al. (1988), the panel VAR model described 

above assumes that the parameters are common across all panel members (Abrigo & Love, 

2016). Indeed, this seems to be quite a strong restriction that may not hold when working 

with a large number of countries, which are prone to exhibits certain particularities. Thus, the 

country-specific fixed effects are introduced into the model to overcome the parameters' 

homogeneity assumption. In this regard, the model may be estimated via the fixed effects or 

ordinary least squares approach, but the coefficients are likely to suffer from Nickell's bias 

(Nickell, 1981)—when estimating dynamic panels, the fixed-effects are correlated with the 

regressors, given the lags of endogenous variables (Abrigo & Love, 2016). To alleviate this 

issue, we use the Helmert procedure described in Arrelano & Bover (1995), and remove the 

mean of all future available country-time observations, by applying forward mean-

differencing (orthogonal deviations). Also, in this manner, we refrain from eliminating the 

orthogonality between transformed variables and lagged regressors. Consequently, the 

coefficients are consistently estimated by GMM, using instruments the lags of independent 

variables (Abrigo & Love, 2016). 

 

3.3. Data 

The study concentrates on 68 countries classified by World Bank (2017) as economies with 

low and lower-middle income. The list of countries included in the analysis, grouped by 

geographic region, is displayed in Table 1 in the Supplementary Material. Moreover, the data 

are annual and cover the period from 1992 to 2015, while the sample is constructed according 

to data availability and in such a way to omit to deal with missing observations for the main 

variables. Also, by focusing on this period, we avoid the instabilities triggered by the fall of 

the Communist Bloc and the end of the Cold War, which may equally distort our analysis. 

On the one hand, our primary data source is the World Bank, given that four out of 

five variables included in the empirical analysis come from World Bank Indicators (WDI, 

2018). These variables are the GDP (constant 2011 international $, purchasing power parity), 

EINT (energy intensity of GDP), URB (urban population as % of the total population), and 

RENG (renewable energy consumption as % of total final energy consumption).  

On the other hand, the data for CO2 emissions (kton per year) are collected from 

Janssens-Maenhout et al. (2017), Emissions Database for Global Atmospheric Research 

(EDGAR). For the baseline model, we use the aggregate CO2 emissions, computed as the 
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sum of emissions from transport, other industrial combustion, buildings, non-combustion, and 

power industry sector. Nonetheless, in the heterogeneity section, we estimate the model for 

each sector separately, using disaggregated CO2 emissions. Furthermore, to capture the 

overall dynamics’ magnitude between variables (especially between CO2 and GDP), we 

refrain from working with their per capita versions. Indeed, this allows us to further 

investigate, in the robustness section, if potential changes in the population alter the baseline 

findings. Also, for modeling purposes, all the variables are express in natural logarithm. 

Table 2 and Table 3 in the Supplementary Material illustrates the variables definition and 

their descriptive statistics before applying any transformation. 

 

IV. Empirical results 

4.1. Some preliminary data evaluations 

Prior to modeling the dynamic relationship between variables, we check some univariate 

properties of our data, such as the cross-sectional dependence, the critical assumption of 

stationarity required by a stable VAR model, and the potential cointegration of variables. 

First, we check the presence of cross-sectional dependence by employing the Breusch-Pagan 

(1980) LM, Pesaran (2004) scaled LM, Pesaran (2004) CD, and Baltagi et al. (2012) Bias-

Corrected (BC) scaled LM test. The findings depicted in Table 1 show that all variables are 

characterized by cross-sectional dependence. 

Table 1 

Cross-sectional dependence tests 

Test/Variable CO2 GDP EINT RENG URB 

Breusch-Pagan LM 34483.67*** 44405.60*** 19907.45*** 18059.67*** 43539.82*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) 

Pesaran scaled LM 477.134*** 624.129*** 261.184*** 233.808*** 611.303*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) 

Pesaran CD 141.464*** 202.439*** 55.523*** 59.380*** 110.153*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) 

BC scaled LM 475.655*** 622.651*** 259.705*** 232.330*** 609.824*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) 

Notes: The Breusch-Pagan (1980) LM, Pesaran (2004) scaled LM, Pesaran (2004) CD, and Baltagi et al. (2012) 

Bias-Corrected (BC) scaled LM test. H0 is ''no cross-section dependence (correlation)''. P-values in brackets. 

***, **, *, denotes significance at the 1%, 5% and 10% level, respectively. 

 

Second, taking into account the presence of cross-sectional dependence and the large 

dimension of N (i.e., N=68 and T=24), we employ the Harris-Tzavalis (1999) panel unit root 

test. In particular, this test allows us to alleviate the effects of cross-sectional dependence by 

subtracting the cross-sectional means from the variables, while imposing small-sample 

adjustment to T. Besides, bearing in mind that unit root/stationarity tests are usually sensitive 

to the number of lags included in the equation, we also consider the Pesaran’s (2003) CADF 
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test by augmenting the equation with one and two lags, respectively. Also, for both tests, we 

include in the equation a constant and a trend for the variables in levels, whereas only the 

constant for their first difference. Table 2 and Table 3 show the associated results. Overall, 

we can observe that all variables are stationary on their first difference and integrated of order 

one in levels, with the notable exception of URB and CO2 for Pesaran’s (2003) test 

augmented by one lag.  

Table 2 

Stationarity analysis I 

Test/ 

Variable 

Harris-Tzavalis test 

Level (cons & trend) Δ (cons) 

 rho p-value rho p-value 

GDP 0.748 (0.983) 0.235*** (0.000) 

URB 0.853 (1.000) 0.839** (0.033) 

EINT 0.685   (0.258) -0.007*** (0.000) 

RENG 0.675 (0.145) -0.056*** (0.000) 

CO2 0.686   (0.271) 0.004*** (0.000) 

         Notes: We remove cross-sectional means and apply small sample 

        adjustment to T. H0 is ''panels contain unit roots''. P-values in brackets. 

       ***, **, *, denotes significance at the 1%, 5% and 10% level, respectively. 

 

Table 3 

Stationarity analysis II 

Test/ 

Variable 

Pesaran’s CADF test 

Level (cons & trend) Δ (cons) Level (cons & trend) Δ (cons) 

 Augmented by one lag (average) Augmented by two lags (average) 

 t-bar p-value t-bar p-value t-bar p-value t-bar p-value 

GDP -2.263 (0.663) -2.819***   (0.000) -1.969 (0.999) -2.139*** (0.000) 

URB -2.620*** (0.003) -1.674 (0.740) -2.325 (0.446) -1.965** (0.034) 

EINT -2.185 (0.865) -2.962*** (0.000) -1.866 (1.000) -2.114*** (0.001) 

RENG -1.884 (1.000) -3.017*** (0.000) -1.740 (1.000) -2.036*** (0.008) 

CO2 -2.597*** (0.005) -3.234*** (0.000) -2.166 (0.899) -2.630*** (0.000) 

Notes: H0 is ''all series are non-stationary''. P-values in brackets. ***, **, * denote statistical significance at the 

1%, 5%, and 10% level, respectively. 

 

Third, given that the stationarity analysis suggests mixed results, especially for URB 

and CO2 variable, and to be sure that variables do not exhibit a long-term relationship, we 

check for a potential cointegration between variables. Indeed, if the variables are cointegrated 

in levels, only taking their first difference to satisfy the stationarity condition of the VAR 

model would eventually bias the estimates. To this end, we employ the error-based panel 

cointegration tests of Westerlund (2007), which allow us to control for the presence of cross-

sectional dependence via the bootstrap procedure. The findings depicted in Table 4 show that 

the null hypothesis of no cointegration is strongly accepted across all four tests when using 

both 100 and 800 replications for the bootstrap procedure. Consequently, estimating the panel 

VAR by differencing the data seems to be the most appropriate decision in our case, since the 

model will be consistent, and the inference will hold. Besides, taking the first difference of 
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the log-transformed data facilitate the modeling between variables by allowing us to work 

with their growth rates. 

Table 4 

Panel cointegration tests 

Westerlund (2007) 

Statistic Z-value Robust p-value Z-value Robust p-value 

bootstrap with 100 replications bootstrap with 800 replications 

Gt     0.669 0.271 0.669 0.271 

Ga    13.271 1.000   13.271 1.000   

Pt 10.714 0.591 10.714 0.591 

Pa 9.670 0.684   9.670 0.684   

      Notes: H0 is ''no cointegration''. The equation includes the constant term, one lag, and one lead. The width  

      of the Bartlett kernel window is set to three. ***, **, *, denotes significance at the 1%, 5% and 10% level,     

      respectively.  

 

4.2. Identification and estimation of the structural panel VAR model 

4.2.1. Identification 

A crucial aspect of the VAR approach involves the assumptions imposed to estimate the 

associated system of simultaneous equations consistently. Indeed, converting the classical 

VAR into a structural VAR (SVAR) approach by setting specific restrictions, allow us to 

achieve the necessary causal inference, and have a meaningful economic interpretation of the 

parameters. In other words, the identification in SVAR of all structural parameters requires 

that some theory-based economic restrictions are imposed. In doing so, we draw upon a 

recursive panel SVAR model, meaning that we do not impose any restriction on the matrix 

that captures the impact effects8, i.e. we use exclusion restrictions. Effectively, this can be 

done by imposing a particular causal order between variables, which plays a vital role in the 

computation of both the Cholesky decomposition of the innovations' variance-covariance 

matrix and the IRFs (Abrigo & Love, 2016). Correspondingly, we further detail the rationale 

behind the causal ordering we impose on the systems’ variables.  

First, according to the EKC hypothesis and STIRPAT framework, we argue that the 

GDP exhibits the highest levels of exogeneity, while CO2 the highest level of endogeneity. 

More specifically, we consider that CO2, namely the variable ordered last into our 

transmission channel, responds more quickly following exogenous shocks to economic 

activity. Thus, the exogenous structural disturbances to output have both a 

contemporaneously and lagged impact on the CO2. Opposite, the GDP being ordered first 

into the system may have only a delayed response to any exogenous shocks to CO2 (i.e. is 

restricted to respond within the period).  

 

8 The matrix of impact effects or impact multipliers matrix, stands for the matrix that contains the immediate 

responses of the variables following a structural shock. 
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Second, the three remaining variables, namely the urbanization, energy intensity, and 

renewable energy, enter the transmission channel at the right- (left) side of the GDP (CO2). 

The reasoning for this choice is straightforward. On the one hand, as previously mentioned, 

the related literature ranks these factors among the most important determinants of CO2 

emission. On the other hand, regarding the sample’s particularities (discussed more is 

detailed in the Introduction section), they may easily explain the ongoing urbanization 

process, along with the efforts made by developing economies to combat climate change. In 

this manner, for example, the active involvement in the CDM of the Kyoto Protocol may 

mirror some of the countries’ efforts aiming to reduce environmental degradation. However, 

what remains ambiguous so far, is the causal ordering of these factors in the transmission 

channel, given that it may influence our results. Indeed, we may have less information than 

the underlying economic foundation of CO2-GDP nexus, but the economic intuition could 

equally help us in this regard. 

Subsequently, we assume that any exogenous shocks to output may impact the 

urbanization degree, which may further influence the energy intensity, renewable energy 

share, and the CO2. The same logic is preserved for the other variables, namely the external 

disturbances to energy intensity may affect renewables, which in turn may reflect on the CO2 

emissions levels. Thus, the CO2 emissions are ultimately allowed to react within the period to 

any exogenous shocks to the other system's variables. In contrast, all the variables respond 

within the period following exogenous shocks to output. 

Taken collectively, our previous economic rationale may be linked with the fast 

growth of developing economies, which may impact the scale of the urbanization process. As 

a result, we expect that the intensification of economic processes to increase the energy use, 

but at the same time, at least from a sustainability perspective, to foster the advance in energy 

efficiency and renewables. Notably, we postulate that efforts to promote energy efficiency 

and the renewable energy share are a by-product of the pressures caused by urbanization and, 

in any case, economic activity. Indeed, these efforts may also suggest the countries' 

willingness to get involved in pollution mitigation activities.  

Nonetheless, the Granger (1969) causality Wald test can also help us verify the 

underlying economic reasoning. In this regard, we note that the associated results depicted in 

Table 5 in the Supplementary Material overwhelmingly endorse the assumed transmission 

channel between variables. Specifically, the findings show that each factor separately 

Granger-causes the CO2 (except the renewable energy), while all four variables jointly 

Granger-cause the CO2. Besides, GDP, along with all the excluded variables taken together, 
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Granger-cause the equation variable. Also, as a counterfactual, the causality towards the GDP 

runs only from the renewable energy share, but its statistical significance is considerably low. 

 

4.2.2. Estimation 

A key primary step in estimating the panel SVAR involves setting the optimal lag length of 

the model. Therefore, we choose the appropriate order of our panel SVAR, according to 

moment and model selection criteria (MMSC) proposed by Andrews & Lu (2001) based on 

Hansen’s (1982) J statistic. Table 6 in the Supplementary Material presents the associated 

results. Overall, the MMSC statistics indicate that the first-order panel SVAR is the most 

suitable, compared with the other two alternatives, namely the second- and third-order 

specifications.9  

Accordingly, we estimate the first-order panel SVAR model through the GMM 

estimator. The results displayed in Table 8 in the Supplementary Material show the 

following.10 On the one hand, the output has a significant positive one-lag impact on itself, 

urbanization, and CO2, while a negative one on the energy intensity and renewable energy. 

On the other hand, urbanization, renewable energy, and CO2 respond positively and 

significantly to a one-lag impact of urbanization. Moreover, the energy intensity seems to 

have a significant increasing delayed effect only on CO2 emissions. Also, given that 

renewable energy displays a significant negative one-lag impact on GDP, there is a negative 

feedback effect at work between the indicators. 

The first-order panel SVAR-GMM findings give us an original resolution on the 

dynamic behavior between variables. Indeed, it also represents the leading basis for the 

crucial IRFs and forecast-error variance decompositions (FEVDs), which may be retrieved 

following its multivariate estimation. As such, being mainly interested in the CO2 response 

following shocks to other system variables, let us now discuss the associated orthogonalized 

 

9 Along with MMSC (i.e. Bayesian, Akaike, and Hannan-Quinn information criterion) also the overall 

coefficient of determination (CD) which shows the share of the variation explained by the model and Hansen’s 

(1982) J statistic of over-identifying restrictions are reported (see Abrigo & Love, 2016). However, we rely 

predominantly on MMSC in choosing the optimal lag length, given that the Hansen’s (1982) J statistic has no 

correction for the degrees of freedom and, thus, may provide biased results. Also, we mention that the chosen 

model accepts Hansen’s overidentification restriction at a 1% level of significance. 
10 Post estimation, we examine the stability condition of the panel SVAR-GMM model. As such, we note that all 

eigenvalues lie inside the unit root circle, proving that the model is correctly specified and exhibits a high 

accuracy (see Table 7 and Figure 1 in the Supplementary Material). 
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cumulative IRFs11 and FEVDs, both generated based on 1000 Monte Carlo simulations, and 

depicted in Figure 1 and Table 5, respectively.  

First, the IRFs indicate that one standard deviation exogenous positive shock to GDP 

triggers a persistent increase in CO2 emissions, both immediately and cumulated over the 

twenty years horizon. More specifically, the CO2 increases with about two percentage points 

(pp) on impact, following a positive shock to output. Although it shows a smooth evolution 

over time, the upward trend seems to be slightly bent to the right. Likewise, its magnitude 

almost triples in the long-run, reaching and even exceeding five pp. From an economic 

perspective, these findings suggest that developing countries under examination are situated 

on the EKC's growing side. However, depending on their economic context, the results may 

suggest that they are likely to reach the crucial GDP turning point in the long-run sooner or 

later. Overall, these findings are expected, considering that the developing countries exhibit 

among the highest GDP growth rates, which are often incompatible with lower levels of 

environmental pollution. For example, a positive exogenous technology shock may induce 

the well-known phenomena of "catch-up growth" and, thus, trigger the intensification of 

industrial processes, which would eventually reflect at first in higher pollution. Indeed, as the 

nations' economic welfare grows, they can more easily acquire advanced green technologies, 

which, along with the increase in household income, may equally promote environmental 

sustainability. Thus, over time these may help in flattening the pollution curve. In this 

fashion, judging from the perspective of a future potential validity of EKC, our findings may 

complement the work of Liddle (2013), Shahbaz et al. (2015), Dogan & Seker (2016), Li et 

al. (2016), Wang et al. (2016), Talbi (2017), Naminse & Zhuang (2018), Pata (2018), among 

others. 

Second, one standard deviation permanent positive shock to urbanization triggers an 

increase in CO2, which may attain almost five pp after twenty years from impact. Also, we 

note that the cumulated effect becomes statistically significant only after two years. This may 

imply that the adverse effects of the urbanization process are not reflected immediately on the 

environment, but rather with a delay. Additionally, the overall pattern of the CO2 response 

seems to mirror to a certain extent the CO2 response to GDP shocks, suggesting that states 

will be able to reach the urbanization threshold that would lead to a decrease in CO2 in the 

future. In this regard, the results are similar to studies that unveil a bell-shaped pattern 
 

11 We also recovered the simple orthogonalized IRFs, given that they are useful in evaluating the overall 

stability of our model. In this regard, Figure 2 in the Supplementary Material shows that the CO2 responses 

move towards zero over time, supporting both the variables’ stationarity condition and the overall stability of the 

model. 
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between urbanization and environmental degradation (see e.g. Martínez-Zarzoso & Maruotti, 

2011; Lin & Zhu, 2017; Chen et al., 2019). 

Third, a positive one standard deviation shock to energy intensity raises the CO2 by 

about three pp on impact. As well, the cumulate CO2 response exhibits a sharp increase over 

roughly the first one year and a half, then stabilizes and very slowly increases until it reaches 

nearly four pp following a permanent shock to energy intensity. This result is in line with the 

study of Sadorsky (2014a), Shahbaz et al. (2015), and Naminse & Zhuang (2018), but 

opposes the one of Martínez-Zarzoso & Maruotti (2011). 

Fourth, in terms of the overall pattern displayed, the response of CO2 following a positive 

exogenous shock to renewables seems quite similar to the cumulate effect produced by an 

exogenous shock to energy intensity. However, one standard deviation positive shock to 

RENG induces an opposite effect, namely a decrease of about two pp in CO2 at the moment 

of the impact. Moreover, the cumulate magnitude of the negative response diminishes 

significantly after the initial impact, and then stabilize and gravitate around the same value 

for the rest of the period. We note that the permanent shock, projected twenty years ahead, 

still causes a drop in CO2, even if the magnitude is slightly lower (i.e. around one and a half 

pp). These findings corroborate the ones of López-Menéndez et al. (2014), Dogan & Seker 

(2016), and Charfeddine & Kahia (2020) while contrasting those of Bölük & Mert (2014). 

Finally, the CO2 increases at about nine pp in the aftermath of a permanent exogenous 

positive shock to itself. However, the increasing of the cumulative response in the long-run is 

almost imperceptible, pointing out a low magnitude of CO2 persistence (see the top-left plot 

in Figure 1). Overall, this finding supports the one of Martínez-Zarzoso & Maruotti (2011), 

Sadorsky (2014a), and Acheampong (2018), among others, who find persistence effects in 

CO2 emissions. 

Concerning FEVDs, on the one hand, as expected, the largest share of the variables' 

variation is explained by their dynamics (see the principal diagonal of Table 3). Furthermore, 

energy intensity seems to explain, twenty years ahead, about 9.99% of the variation in CO2, 

followed by renewable energy (4.06%), output (3.99%), and urbanization (2.01%). Indeed, 

the findings seem to uphold the energy as the primary contributor of CO2 in our group of 

developing economies. Also, the results indicate that the renewables have a more significant 

long-term contribution to CO2, compared to output and urbanization. Overall, this is a quite 

exciting and promising result, which may suggest, yet again, that these states have made 

substantial efforts to switch towards more environmentally friendly energy sources, and, 

among others, that the CDM related projects have had the desired outcomes. Likewise, this 
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result is also supported by the large share of renewable energy variation, following a shock to 

energy intensity.  

On the other hand, we remark that the external shocks to output explain, twenty years 

ahead, a large share of variation in the other macro factors. These findings are also not 

unexpected, considering that the exogenous disturbances propagate first through output an 

then to its related macro components. Besides, it seems that any exogenous shocks to the 

remaining column variables, do not exhibit a large magnitude in explaining the fluctuations in 

the row variables. 

Figure 1 

Cumulative orthogonalized IRFs 

 
  Observations: 1428 • Groups: 68 

  Notes: Considering two generic variables A and B, “A: B” denotes the response of B following    

shocks to A. The continuous line denotes the impulse response functions. The dashed lines   

stand for the associated 95% confidence interval computed based on 1000 Monte Carlo  

simulations. 
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Table 5 

Twenty years horizon forecast-error variance decompositions 

Response variables Impluse variables 

GDP URB EINT RENG CO2 

GDP 99.36    0.21     0.19        0.19   0.02     

URB 12.31  87.54      0.02      0.01  0.09     

EINT 21.59   0.14  78.14    0.04   0.07     

RENG 0.89     0.37      8.17   90.47  0.08     

CO2 3.99   2.01    9.99   4.06   79.92   

  Notes: The numbers (in percentages) show the variation in the row variable that is explained by  

the column variables. 

 

V. Robustness 

We assess the robustness of our baseline SVAR specification in several ways. Also, we focus 

on reporting the associated findings with respect to the crucial IRFs, retrieved after running 

the panel SVAR-GMM model. 

 

5.1. Alternative ordering 

Considering that we use a recursive ordering strategy to achieve identification in our SVAR, 

we check the stability of the underlying economic rationale by implementing alternative 

transmission schemes. On the one hand, we check the soundness of our economic intuition 

behind the ordering of the factors positioned at the right-side (left-side) of GDP (CO2) within 

the transmission scheme, namely URB, EINT, and RENG. In this manner, we switch their 

initial position by running a five-time rotation between them, until we consider all available 

options. On the other hand, we order each of these three factors at the top of the transmission 

channel, namely before the output. Therefore, we can observe if changing the variable which 

exhibits the highest level of exogeneity alters the baseline findings. It should be mentioned 

that these new restrictions imposed among the system variables are even more consistent with 

the literature that positions urbanization, energy intensity, and renewables as the main 

determinants of CO2. 

As shown by Figure 3 in the Supplementary Material, using distinct ordering 

scenarios does not qualitatively alter the baseline findings. Indeed, as expected, small 

changes in the magnitude of the responses are present. In this fashion, we note that a more 

visible difference is at work for CO2 response following external shocks to EINT, especially 

in the model where EINT is ordered first into the transmission channel. In particular, the 

cumulative response of CO2 due to a positive shock to EINT seems to follow a downward 

trend after reaching the peak, that is, approximately after one year and a half after the impact. 

One possible explanation could be related to the fact that manifesting the highest level of 
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exogeneity, the effect of energy intensity on CO2, does not also include the effect of 

disturbances to GDP and urbanization. As such, the energy intensity may appear much lower, 

thus, having a lower impact on CO2. 

 

5.2. Altering the sample 

To check whether our baseline findings are robust under certain economic or political distress 

conditions, we account for some well-known related events which can be seen in relation to 

both T and N dimensions of our sample. First, to control for the potential (delayed) effects of 

the global financial crisis, we restrict the period of analysis to (1992-2010) 1992-2008. 

Furthermore, the exclusion of the period following 2008 coincides with the starting point of 

the Kyoto Protocol's first commitment phase (i.e. 2008-2012). Thus, if there were specific 

changes in the environmental behavior of developed countries as a result of potential 

pressures to achieve their binding targets, we would expect them to reflect on developing 

countries as well. Second, we drop the period immediately following the end of the Cold 

War, namely 1992-1996, since the economies affected by this quite prominent geopolitical 

distress could have encountered difficulties in terms of economic recovery. Indeed, if our 

assumption hold, the fluctuations in their primary macro aggregates may alter the baseline 

findings. Third, having in mind the Arab Spring, which involves several developing states, 

we also check whether its effects reflected on our results. In doing so, we drop from the 

sample all the economies affected to some extend by this major political unrest episode. 

Finally, it is generally recognized that the petroleum industry has major implications on the 

environment. In this fashion we exclude all states ranked by the Central Intelligence Agency 

(CIA)12 among the top thirty economies regarding the crude oil exports. Overall, the 

associated cumulative IFRs, depicted in Figure 4 in the Supplementary Material, shows that 

independent of the restriction imposed on the sample, the baseline results are preserved both 

in terms of pattern and statistical significance. 

 

5.3. Exogenous control factors 

We exogenously introduce, along with the main SVAR endogenous variables, several 

additional explanatory factors into the model to control for a potential bias caused by omitted 

variables. These variables are related to changes in the size of the economy13 (population), 

 

12 For more details, see https://www.cia.gov/library/publications/the-world-factbook/fields/262rank.html     
13 With respect to possible changes in countries’ population, we estimate two alternative models using (i) GDP 

and CO2 in per capita terms, and (ii) GDP, EINT, and CO2 in per capita terms (i.e. their growth rates in per 

https://www.cia.gov/library/publications/the-world-factbook/fields/262rank.html
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sectoral output composition (agriculture, industry, and services as % of GDP), trade (trade as 

% of GDP), environmental prospects (forest rents as % of GDP), external financing 

(remittances in % GDP), and private sector financial conditions (domestic credit to the 

private sector as % GDP) (see Table 2 and Table 3 in the Supplementary Material for 

variables definition and descriptive statistics, respectively). Also, to maintain the stability 

conditions of the SVAR model and consistency between variables, we transformed them into 

growth rates, by taking the first difference of their log-transformed values. Overall, the 

cumulative IRFs illustrated by Figure 5 in the Supplementary Material indicate that the 

findings are comparable with those of the baseline model, especially judging based on the 

significance and long-term trajectory of CO2 response due to different innovations shocks. 

 

IV. Heterogeneity 

This section explores the sensitivity of CO2 responses following external shocks to other 

factors, depending on the income level group and the ratification or ascension date of states to 

the Kyoto Protocol. 

 

6.1. The level of economic development 

The economic development stages that a country crosses imply that different effects such as 

scale, structural, or technological, are at work during different periods and may cause 

substantial fluctuations in environmental conditions (see e.g. Grossman & Krueger, 1991). 

Thus, to explore the possible difference of CO2 responses with respect to countries’ income 

level, we construct two sub-samples of low and lower-middle income economies, based on 

the World Bank classification (2017) (see Table 4 in the Supplementary Material for 

summary statistics). Panel (a) and panel (b) in Figure 6 in the Supplementary Material depicts 

the cumulative IRFs for both income sub-samples. First, as expected, following external 

shocks, the GDP exhibits a positive effect on CO2 but with higher magnitude in lower-

middle income economies. Moreover, the cumulated CO2 response over the first two years 

displays a sharp increase in lower-middle income states, compared to the low income ones. 

Likewise, the increasing long-run trajectory seems to be more accentuated in wealthier 

countries. 

 

capita terms, computed as the difference of log-transformed values). As shown by the panel (e)-(f) in Figure 4 in 

the Supplementary Material, the cumulative IRFs are almost identical to those revealed by the baseline model. 
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Second, CO2 emissions significantly and positively react due to innovations shocks to 

urbanization only in low income countries, and with a delay of around four years. Besides, 

the CO2 response path tends to display a bell-shaped pattern in the long-term, supporting the 

urbanization-EKC hypothesis. Conversely, the lack of significance in the lower-middle 

income countries may suggest that the urbanization process is at a more advanced stage, 

leading to a more abundant flow of sophisticated ecological practices that help in combating 

pollution.  

Third, following a positive shock to energy intensity (renewables), the CO2 emissions 

respond in a positive (negative) way in both income groups. As well, the cumulated effect 

shows a sharp increase after the impact in both sub-samples (except CO2 response following 

renewables shocks in low income states, where the increase seems to be smoother and lower 

in magnitude). However, starting approximately with the second year, the IRFs indicate that 

the cumulated effect stabilizes and preserves its positive linear trajectory up to twenty years 

in low income states. In contrast, it follows a monotonically increasing pattern in lower-

middle income ones. On the whole, this may confirm that in countries where the 

industrialization process is more pronounced, it also becomes more challenging to maintain 

low levels of pollution.  

Finally, an exogenous positive shock to CO2 leads to an increase in its levels, and the 

magnitude of impact seems to be comparable in both groups. Nonetheless, in low income 

countries, the cumulated response starts to decline after the impact, and then quickly readjust 

(after about two years) to a linear path that remains stable in the long-run. Opposite, in lower-

middle income economies, the cumulated response keeps an increasing trajectory over the 

twenty years horizon. 

 

6.2. The Kyoto Protocol status 

We split the main sample taking into account the date of the ratification/accession of 

individual states to the Kyoto Protocol based on the United Nations Treaty Collection14. 

Thus, the first sub-sample (Kyoto Protocol group A) comprises the nations which ratified or 

acceded before the year in which it entered into force (i.e. 2005), while in the second group 

(Kyoto Protocol group B) we include the remaining countries for which the 

ratification/accession date is 2005 onwards (see Table 4 in the Supplementary Material for 

 

14https://treaties.un.org/Pages/ViewDetails.aspx?src=TREATY&mtdsg_no=XXVII-7-

a&chapter=27&clang=_en.  

https://treaties.un.org/Pages/ViewDetails.aspx?src=TREATY&mtdsg_no=XXVII-7-a&chapter=27&clang=_en
https://treaties.un.org/Pages/ViewDetails.aspx?src=TREATY&mtdsg_no=XXVII-7-a&chapter=27&clang=_en
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summary statistics). The cumulative IRFs are illustrated by panels (c) and (d) in Figure 6 in 

the Supplementary Material.   

On the one hand, the findings indicate that for the states which ratified or acceded to 

the Kyoto Protocol before 2005, the evolution of cumulated CO2 response following output 

and urbanization shocks seems to switch its increasing trend in the long-run. In particular, 

this suggests that this group of countries may attain the peak in CO2 more rapidly and for 

lower levels of GDP and URB, compared to the economies which ratified /acceded to the 

Protocol after it entered into force. As such, the traditional and urbanization-EKC hypothesis 

seems to be more realistic for the Kyoto Protocol group A. Moreover, for the Kyoto Protocol 

group A states, the urbanization exhibits a delayed cumulated effect on CO2. In contrast, for 

the members of group B, the effect loses its significance in the long-term.  

On the other hand, an exogenous increase in energy intensity (renewables) triggers a 

cumulated positive (negative) effect on CO2 in both groups of economies. However, at the 

moment of the impact, the magnitude of CO2 response is higher due to energy intensity 

(renewable energy) disturbances for the states which ratified/acceded to the Kyoto Protocol 

before (after) it entered into force. Also, in the next two years after the impact, the cumulated 

magnitude of CO2 response following both energy intensity and renewables shocks increases 

sharply, but then stabilizes and raises very slowly for the group A economies. For the group 

B states, the cumulated response of CO2 (i) raises abruptly after the impact due to EINT 

disturbances, but then stabilizes to a new high and follows a linear path until the end of the 

period, (ii) remains roughly at the same level recorded at the time of the impact following 

renewable energy shocks. Besides, a positive one standard deviation shock to CO2 has a 

positive effect on its levels for both groups. However, the cumulated effect increases 

(decreases) slowly over the years across the states of the Kyoto Protocol group A (B). 

Overall, the findings may suggest that the states which ratified or acceded to the Protocol 

before 2005 are the ones that have undergone significant changes in their economic 

development (e.g.  have experienced a more intense process of industrialization and 

urbanization, among others). Thus, they were committing much faster in actions to counteract 

the potential adverse effects on the environment. 
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VII. Sectoral CO2 emissions 

To have a more in-depth look at the potential changes in pollution dynamics in the 

relationship with our macro indicators, we substitute aggregated CO2 with its sector-specific 

counterparts  (see Table 2 and Table 3 in the Supplementary Material for variables definition 

and summary statistics, respectively).15 In doing so, we estimate the GMM-SVAR model 

considering the CO2 related to each of the following sectors: transport, buildings, other 

industrial combustion, non-combustion, and power industry. Figure 2 displays the CO2 

sector-specific cumulative orthogonalized IRFs.   

First, considering the presumed differences in the magnitude, an external shock to 

output and urbanization has a cumulative significant positive effect on CO2 from transport, 

buildings, and non-combustion sector—with the notable exception of CO2 from buildings 

which do not significantly respond to urbanization disturbances. Besides, the significant 

positive cumulated paths over the twenty-year horizon suggest that the related EKC 

hypothesis may be at work in the very long-run, both for output and urbanization. Also, in 

line with the baseline findings, the CO2 emissions respond with a delay of about two years 

following urbanization shocks. On this last point, given that the construction industry has a 

substantial contribution to the urbanization process, the lack of significance of the buildings-

related CO2 response following external shocks to urbanization may indicate that a 

substantial number of green projects are implemented in this sector, thus, helping to reduce 

the associated pollution. 

Second, an exogenous increase in output and urbanization reduce the CO2 from other 

industrial combustion and power industry sector both on impact and cumulated over twenty 

years. However, industrial combustion- and power industry-related CO2 emissions do not 

respond immediately to output shocks, but rather with roughly ten and eighteen years of 

delay. Moreover, regarding the disturbances to urbanization, they seem to cause a U-shaped 

pattern in cumulative CO2 emissions’ evolution, opposite to the bell-shaped pattern 

postulated by the traditional EKC hypothesis.  

Third, the CO2 related to each of the five sectors react positively (negatively) to one 

standard deviation energy intensity (renewables) shocks, both on impact and cumulated over 

the twenty years, thus, backing up the baseline findings. However, the effect of renewables 

 

15 We test the cross-sectional dependence and stationary properties of CO2 sector variables using the same tests 

as for the baseline model. The findings confirm the presence of cross-sectional dependence, while the unit root 

test shows that variables are stationary in levels (see Supplementary Material Table 9-11). However, in 

empirical analysis, we use the first difference of the variables in order to work with growth rates and have all the 

variables in the system at the same level.  
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on CO2 from non-combustion and power industry is not statistically significant. Indeed, these 

two similar results may go hand in hand, given that access to energy in developing countries 

is a significant issue, mainly alleviated, among others, by the transition to off-grid renewable 

energy systems [International Renewable Energy Agency (IRENA), 2015). More precisely, 

the off-grid renewables technologies (e.g. solar, micro-hydro, wind, biomass, among others), 

whose leading market is concentrated in developing economies, represent the more 

environmentally-friendly and cost-effective alternative to classical non-renewable energy 

sources, such as the fossil fuels used for electricity generation via combustion processes [see 

e.g. IRENA, 2015; Renewable Energy Policy Network for the 21st Century (REN21), 2015]. 

Additionally, the results also corroborate with the negative effect of output and urbanization 

on power industry-related CO2. 

Fourth, an external increase in the sector-specific CO2 emissions triggers a 

statistically significant increase in its levels. At the same time, the magnitude at the moment 

of impact ranges from about 14.5 pp (CO2 from transport) to 30 pp (CO2 from other 

industrial combustion). Furthermore, the cumulated effect starts to decay immediately after 

the impact (except CO2 associated with other industrial combustion), and then quickly 

stabilizes and follows an almost linear path until the end of the analyzed period. In particular, 

the results may highlight, yet again, the inertial behavior of CO2 pollution levels. 

Overall, the findings illustrate, on the one hand, the complexity of the relationship 

between sector-specific CO2 and the several related key economic aggregates, highlighting 

which sector is more likely to be associated in the future with higher pollution levels. On the 

other hand, the results strengthen the vital role of non-combustion energy sources and energy 

efficiency projects (e.g. the rapidly growing off-grid renewable systems, the use of 

sustainable technologies in the construction industry, among many others) in promoting green 

growth and urbanization, and ultimately in reducing the environmental degradation. 
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Figure 2 

Cumulative orthogonalized IRFs: sectoral CO2 emissions 
(a) CO2 from transport (b) CO2 from buildings 

  

  Observations: 1428 • Groups: 68  Observations: 1428 • Groups: 67 

 

(c) CO2 from other industrial combustion (d) CO2 from non-combustion 

  

   Observations: 1405  • Groups: 67  Observations: 1428 • Groups: 68 
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Figure 2 

(continued) 
(e) CO2 from power industry  

 

 

    Observations: 1422  • Groups: 68   

Notes: The continuous line denotes the impulse response functions. The dashed lines stand for the associated 

95% confidence interval computed based on 1000 Monte Carlo simulations. 

 

VIII. Conclusion and policy implications 

This paper explored the impact of external changes in output, urbanization, energy intensity, 

and renewable energy on aggregated and sector-specific CO2, within a modified STIRPAT 

analytical framework. To this end, motivated by the potential endogenous behavior between 

variables, we employed the novel panel GMM-VAR technique for a rich sample of 68 

developing states over 1992-2015.  

The results showed, on the one hand, that an exogenous increase in output, 

urbanization, energy intensity and CO2 led to a significant increase in CO2, both on impact 

and cumulated over the twenty years horizon. Besides, the CO2 response following 

disturbances to output and urbanization, suggest that a threshold effect, compatible with the 

classical and urbanization EKC hypothesis, might be at work in the long-run for our group of 

countries. Conversely, we found that a positive shock to renewables cumulatively and 

significantly decreases the current and future levels of CO2. In sum, these findings may 

imply that in the context of rapid industrialization and urbanization, renewable energy is one 

of the most powerful tools in mitigating environmental degradation. Nonetheless, more 

considerable attention must also be paid to energy efficiency, especially as increasing it can 

further enhance the beneficial effects of renewable energy on the environment. These results 

are supported by several robustness tests, including an alternative Cholesky ordering of 

variables, when altering the sample, and controlling for a series of exogenous factors. On the 

other hand, the findings are found to be are sensitive concerning both countries’ level of 



 28 

development and their Kyoto Protocol ratification/ascension status. Besides, the 

disaggregated CO2 analysis unveiled essential differences regarding the contribution of 

various sectors to the overall CO2 pollution. In particular, the results may suggest that the 

CO2 emissions related to transportation, construction, and non-combustion sector are more 

likely to increase in the future, compared to other industrial combustion and power industry 

sector. 

The findings could be transposed in some valuable policy recommendations. First, 

developing countries should pay more attention to the implications that the process of 

urbanization, as well as the growth-promoting policies, have on CO2 pollution. Moreover, the 

urban planning and development policy requires an appropriate design to accommodate better 

any potential negative impacts on the quality of the environment. Second, although countries 

make outstanding efforts to invest as much as possible in renewable energy sources and 

minimize energy dependency, these investments should be continuously adapted to cope with 

the dynamics of their particular economic environment. Likewise, adequate monitoring 

during project implementation may increase their efficiency and signal beforehand any 

potential nonconformities. Third, to counterbalance and mitigate the overall pollution, 

additional efforts should be directed towards the sectors where CO2 emissions are more 

likely to increase. Finally, the ongoing international cooperation and assistance from 

developed nations may represent a central pillar in ensuring environmental sustainability in 

developing economies. Future work could consider a more detailed breakdown of energy 

sources in assessing their impact on CO2 (see e.g. Antonakakis et al., 2017; Naminse & 

Zhuang, 2018). However, this is strictly conditioned by data availability, especially for this 

group of developing economies. As well, an analysis of the impact of various types of crises 

on CO2, by making use of complementary techniques such as the local projection method 

(see e.g. Jalles, 2019), could provide additional insights regarding the future behavior of CO2 

emissions. 
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Supplementary Material 

 
Table 1 

List of countries 

Geographic region 

East Asia and Pacific (10) Europe and Central Asia (6) Latin America and Caribbean (5) 

Indonesia 

Kiribati 

Lao PDR 

Mongolia 

Myanmar 

Papua New Guinea 

Philippines 

Solomon Islands 

Vanuatu 

Vietnam 

Armenia 

Georgia 

Kyrgyz Republic 

Tajikistan 

Ukraine 

Uzbekistan 

Bolivia 

El Salvador 

Guatemala 

Honduras 

Nicaragua 

Middle East and North Africa (5) South Asia (6) Sub-Saharan Africa (36) 

Egypt, Arab Rep. 

Jordan 

Morocco 

Tunisia 

Yemen, Rep. 

Bangladesh 

Bhutan 

India 

Nepal⸙ 

Pakistan 

Sri Lanka 

Angola 

Benin⸙ 

Burkina Faso⸙ 

Burundi⸙ 

Cabo Verde 

Cameroon 

Central African Republic⸙ 

Chad⸙ 

Comoros⸙  

Congo, Dem. Rep.⸙ 

Congo, Rep.  

Côte d'Ivoire 

Ethiopia⸙ 

Gambia⸙ 

Ghana 

Guinea⸙  

Guinea-Bissau⸙ 

Kenya 

Lesotho 

Liberia⸙ 

Madagascar⸙ 

Malawi⸙ 

Mali⸙  

Mauritania 

Mozambique⸙ 

Nigeria  

Rwanda⸙ 

Senegal⸙  

Sierra Leone⸙ 

Sudan 

Swaziland 

Tanzania⸙ 

Togo⸙ 

Uganda⸙  
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Zambia 

Zimbabwe⸙  

Notes: ⸙ denotes that the respective country belongs to the low income group. 
 

Table 2 

Variables definition 

Variable Defintion Source 

CO2 CO2 emissions totals of fossil fuel use and industrial 

processes (ktonnes) 

The European Commission, Joint Research Centre 

(EC-JRC)/Netherlands Environmental Assessment 

Agency (PBL). Emissions Database for Global 

Atmospheric Research (EDGAR), release 

EDGARv4.3.2_FT2016 (1970 - 2016). Janssens-

Maenhout, G., Crippa, M., Guizzardi, D., Muntean, 

M., Schaaf, E., Olivier, J.G.J., Peters, J.A.H.W., 

Schure, K.M., Fossil CO2 and GHG emissions of 

all world countries, EUR 28766 EN,Publications 

Office of the European Union, Luxembourg, 2017, 

ISBN 978-92-79-73207-2, doi:10.2760/709792, 

JRC107877 

(http://edgar.jrc.ec.europa.eu/overview.php?v=boo

klet2017&dst=CO2emi)  

CO2_T CO2 emission from transport 

CO2_B CO2 emission from buildings 

CO2_OIC CO2 emission from other industrial combustion 

CO2_NC CO2 emission from non-combustion 

CO2_PI CO2 emission from power industry 

GDP GDP based on purchasing power parity (PPP) (constant 

2011 international $) 

The World Bank, World Bank Indicators 

(https://databank.worldbank.org/data/home.aspx)   

 URB Urban population (% of total population) 

RENG Renewable energy consumption (% of total final energy 

consumption) 

EINT Energy intensity level of primary energy computed as total 

primary energy supply over GDP measured in constant 

2011 US dollars at PPP (MJ/$2011 PPP GDP) 

POP Total midyear population 

AGRI Agriculture, value added (% of GDP) 

IND Industry, value added (% of GDP) 

SERV Services, value added (% of GDP) 

TRADE Trade (% of GDP) 

FRENTS Forest rents (% of GDP) 

CREDIT Domestic credit to private sector (% of GDP) 

GDPc GDP per capita based on purchasing power parity (PPP) 

(constant 2011 international $) 

REM Migrant remittance inflows (nominal US$ million) The World Bank staff calculation based on data 

from IMF Balance of Payments Statistics database 

and data releases from central banks, national 

statistical agencies, and World Bank country desks 

(https://www.worldbank.org/en/topic/labormarkets

/brief/migration-and-remittances)  

CO2c CO2 per capita emissions totals of fossil fuel use and 

industrial processes (ktonnes) 

Authors’ computation based on The European 

Commission, Joint Research Centre (EC-

JRC)/Netherlands Environmental Assessment 

Agency (PBL) (CO2 emissions: 

http://edgar.jrc.ec.europa.eu/overview.php?v=book

let2017&dst=CO2emi) and World Bank Indicators 

data (population: 

https://databank.worldbank.org/data/home.aspx)  

http://edgar.jrc.ec.europa.eu/overview.php?v=booklet2017&dst=CO2emi
http://edgar.jrc.ec.europa.eu/overview.php?v=booklet2017&dst=CO2emi
https://databank.worldbank.org/data/home.aspx
https://www.worldbank.org/en/topic/labormarkets/brief/migration-and-remittances
https://www.worldbank.org/en/topic/labormarkets/brief/migration-and-remittances
http://edgar.jrc.ec.europa.eu/overview.php?v=booklet2017&dst=CO2emi
http://edgar.jrc.ec.europa.eu/overview.php?v=booklet2017&dst=CO2emi
https://databank.worldbank.org/data/home.aspx
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EINTc Energy intensity level of primary energy per capita 

computed as total primary energy supply over GDP 

measured in constant 2011 US dollars at PPP (MJ/$2011 

PPP GDP) 

Authors’ computation based on the World Bank 

Indicators data (energy intensity level of primary 

energy and population: 

https://databank.worldbank.org/data/home.aspx)  

 

Table 3 

Descriptive statistics (full-sample) 

Variable/Statistic Mean Std. dev Median Min Max Observations 

baseline analysis 

GDP 1.54e+11   5.49e+11   2.52e+10   1.43e+08   7.54e+12       1632 

URB 36.97067   15.85659    35.3225      6.288     83.679       1632 

EINT 8.732009   6.978321   6.149098    1.91032   57.98816       1632 

RENG 59.00502    29.2848   63.37218    0.600592   98.34261       1632 

CO2 45506.02   185879.9   4161.842    20.6217    2419637 1632 

robustness analysis 

GDPc 2815.427   2185.772   2085.198   180.4062   12152.17       1632 

CO2c 0.0008181   0.0012382   0.0003974   0.0000311    0.012404       1632 

POP 4.17e+07   1.38e+08   1.03e+07      74769 1.31e+09       1632 

AGRI 23.93044   12.40996   22.88478   2.706677   79.04237       1559 

IND 24.93198   10.76102   24.15961   2.073173   77.41367       1540 

SERVI 45.03406   9.706143   45.77348   12.43525   77.02007       1485 

TRADE 72.59632   32.94223   67.26805   0.1674176   311.3553       1565 

FRENTS 4.593966   6.052195   2.429323          0.0000 40.42677       1616 

REM 2072.407   6065.007   204.5626   0.0095628   70388.64       1340 

CREDIT 21.92812   18.57499   15.66249   0.4103563   114.7235       1521 

CO2 sector-specific analysis 

CO2_T 7117.286   20936.74   1244.581   15.26836   257301.2       1632 

CO2_B 5187.247   17222.53   561.6689    0.407881   180733.1       1632 

CO2_NC 5724.411   18873.11   476.8578    0.046156   206595.6       1632 

CO2_OIC 10202.23   42005.12    636.099          0.0000 529105.3       1608 

CO2_PI 17424.87   91486.77   608.0745          0.0000 1245902 1632 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://databank.worldbank.org/data/home.aspx
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Table 4 

Descriptive statistics (sub-samples) 

Variable/Statistic Mean Std. dev Median Min Max Observations 

low income economies 

GDP 1.97e+10   2.16e+10   1.36e+10   5.13e+08   1.53e+11        576 

URB 29.17297   11.52414    30.2355      6.288     59.632        576 

EINT 11.83926   8.449231   9.401523    1.91032   57.98816        576 

RENG 81.83385   14.57414   86.66449   40.46676   98.34261        576 

CO2 2391.314   2914.064    1306.94   45.36593   18988.19        576 

lower-middle income economies 

GDP 2.27e+11   6.71e+11   4.27e+10   1.43e+08   7.54e+12       1056 

URB 41.22395    16.2794    40.0925     12.977     83.679       1056 

EINT 7.037145    5.31305   5.425794   1.992982   38.33533       1056 

RENG 46.55294   27.75466   51.01571    .600592   95.85808       1056 

CO2 69023.13     227689 8254.396    20.6217    2419637   1056 

Kyoto Protocol status group A 

GDP 1.90e+11   6.53e+11   2.88e+10   1.43e+08   7.54e+12       1104 

URB 38.34527   17.04287     36.327      6.288     83.679       1104 

EINT 8.284522   6.528194   5.964056    1.91032   57.98816       1104 

RENG 53.47162   30.03119   57.21445    .600592   97.29142       1104 

CO2 59523.13   222856.2    5533.39      20.6217    2419637 1104 

Kyoto Protocol status group B 

GDP 7.91e+10   1.77e+11   2.00e+10   6.37e+08   9.47e+11        528 

URB 34.09649   12.56938    33.7425      9.585     65.526        528 

EINT 9.667664   7.759983   6.990818   2.056564   50.13474        528 

RENG 70.57486   23.83922   78.07493   5.554171   98.34261        528 

CO2 16197.52   41380.69    2583.84   43.01915     227542 528 
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Table 5 

Panel SVAR-Granger causality Wald test 

[Equation] \ Excluded variable chi2 df prob > chi2 

[GDP]  

URB 1.083 1 (0.298)   

EINT 1.531 1 (0.216)  

RENG 2.812*   1 (0.094)   

CO2 0.469 1 (0.493) 

ALL 5.921 4 (0.205) 

[URB]  

GDP 10.608*** 1 (0.001)   

EINT 0.167 1 (0.683) 

RENG 2.247 1 (0.134)   

CO2 1.989 1 (0.158)   

ALL 16.152***   4 (0.003) 

[EINT]    

GDP 22.044*** 1 (0.000) 

URB 0.149 1 (0.699) 

RENG 0.563 1 (0.453) 

CO2 0.805 1 (0.370) 

ALL 23.092*** 4 (0.000) 

[RENG]  

GDP 11.287*** 1 (0.001)   

URB 5.934** 1 (0.015)   

EINT 2.131 1 (0.144) 

CO2 1.273 1 (0.259)   

ALL 23.727*** 4 (0.000)   

[CO2]  

GDP 4.828**     1 (0.028)   

URB 15.787***     1 (0.000)   

EINT 6.179**     1 (0.013) 

RENG 1.313     1 (0.252) 

ALL 22.787***     4 (0.000) 

    Notes: H0 is ''Excluded variable does not Granger-cause equation variable'', while according 

  to H1 ''Excluded variable Granger-causes equation variable. ***, **, *, denotes significance at  

    the 1%, 5% and 10% level, respectively. 
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Table 6 

Panel SVAR selection order criteria 

Lag CD J J p-value MBIC MAIC MQIC 

1 0.988    70.449    0.019  -270.824  -25.550  -117.853 

2 0.988    48.099   0.033   -179.417   -15.900   -77.435 

3 0.988    17.601  0.345 -96.156   -14.398    -45.166 

Observations 1224      

Panels 68      

Notes: Model and moment selection criteria are computed using the first four lags of variables. 

 

Table 7 

Model stability condition 

Eigenvalue  

Real Imaginary Modulus 

0.940 0 0.940 

0.372 0 0.372 

-0.081 0 0.081 

-0.045 0 0.045 

0.022 0 0.022 

                          Notes: All the eigenvalues lie inside the unit circle. The GMM panel 

                          SVAR model satisfies stability condition. 

 

Figure 1 

Inverted roots of AR characteristics polynomial (GMM-SVAR) 

 

 

 

 

 

 

 
 

 

 



 40 

Table 8 

First-order panel SVAR-GMM estimates 

 Response to 

Response of GDPt-1 URBt-1 EINTt-1 RENGt-1 CO2t-1 

GDP 0.3746***    -0.2343    0.0190    -0.0292*   0.0083    

 (0.0436) (0.2251) (0.0154)   (0.0174)   (0.0122) 

URB 0.0066***    0.9398***    0.0002    0.0010    0.0011    

 (0.0020)   (0.0241) (0.0007)   (0.0007)   (0.0007)     

EINT -0.2868***    0.1219    -0.0517    0.0271    0.0246    

 (0.0610) (0.3158) (0.0427) (0.0362) (0.0274) 

RENG -0.1375***   0.4409**    -0.0481    -0.0618    -0.0263    

 (0.0409) (0.1810)   (0.0329) (0.0497) (0.0233) 

CO2 0.1628**    1.9181***   0.1078**   0.0536    0.0072    

 (0.0741) (0.4827) (0.0433) (0.0468) (0.0367) 

Observations  1428     

Countries 68     

Notes: The five-variable one lag panel SVAR is estimated by GMM, using first four lags of the variables as 

instruments. The country-specific fixed effects are removed during estimation via the Helmert transformation. 

Reported numbers display the coefficients of regressing the row variables on first lag of the column variables. 

Standard errors robust to heteroskedasticity and serial correlation in brackets. ***, **, *, denotes significance at 

the 1%, 5% and 10% level, respectively. 
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Figure 2 

Orthogonalized IRFs 

 

Observations: 1428 • Groups: 68 

Notes: The continuous line denotes the impulse response functions. The dashed lines stand for the associated 

95% confidence interval computed based on 1000 Monte Carlo simulations. 
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Figure 3 

Cumulative orthogonalized IRFs: robustenss (alternative ordering) 

(a)  (b)  

  

Observations: 1428 • Groups: 68  Observations: 1428 • Groups: 68 

(c)  (d)  

  

Observations: 1428 • Groups: 68  Observations: 1428 • Groups: 68 
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Figure 3 

(Continued) 

(a)  (b)  

  

Observations: 1428 • Groups: 68  Observations: 1428 • Groups: 68 

(c)  (d)  

  

Observations: 1428 • Groups: 68  Observations: 1428 • Groups: 68 

Notes: The continuous line denotes the impulse response functions. The dashed lines stand for the associated 

95% confidence interval computed based on 1000 Monte Carlo simulations. 
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Figure 4 

Cumulative orthogonalized IRFs: altering the sample & variables in per capita terms 

(a) period: 1992-2008 (b) period: 1992-2010 

 
 

Observations: 1020 • Groups: 68  Observations: 1156 • Groups: 68 

(c) period: 1996-2015 (d) without: Egypt, Jordan, Mauritania, Morocco, Sudan, Tunisia, 

Yemen 

  

Observations: 1292 • Groups: 68 Observations: 1281 • Groups: 61 
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Figure 4 

(Continued) 

(e) without: Angola, Congo Rep., Egypt, Indonesia, Nigeria, 

Vietnam 

(f) GDP and CO2 in per capita terms 

  

Observations: 1302 • Groups: 62 Observations: 1428 • Groups: 68 

(g) GDP, EINT, and CO2 in per capita terms  

 

 

Observations: 1428 • Groups: 68  

Notes: The continuous line denotes the impulse response functions. The dashed lines stand for the associated 

95% confidence interval computed based on 1000 Monte Carlo simulations. 
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Figure 5 

Cumulative orthogonalized IRFs: exogenous additional controls 
(a) population (b) agriculture 

  

Observations: 1428 • Groups: 68 Observations: 1361 • Groups: 68 

(c) industry (d) services 

  

Observations: 1344 • Groups: 68 Observations: 1269 • Groups: 68 
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Figure 5 

(Continued) 
(a) trade (b) forest rents 

  

Observations: 1365 • Groups: 68 Observations: 1414 • Groups: 68 

(c) remittances (d) domestic credit to private sector 

  

Observations: 1155 • Groups: 68 Observations: 1326 • Groups: 68 

Notes: The continuous line denotes the impulse response functions. The dashed lines stand for the associated 

95% confidence interval computed based on 1000 Monte Carlo simulations. 
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Figure 6 

Cumulative orthogonalized IRFs: level of income and the Kyoto Protocol status 
(a) low income economies (b) lower-middle income economies 

  

Observations: 504 • Groups: 24 Observations: 924 • Groups: 44 

(c) Kyoto Protocol group A (ratification or asscension date 2005) (d) Kyoto Protocol group B (ratification or asscension date 2005) 

  

Observations: 966  • Groups: 46 Observations: 462 • Groups: 22 

Notes: The continuous line denotes the impulse response functions. The dashed lines stand for the associated 

95% confidence interval computed based on 1000 Monte Carlo simulations. 
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Table 9 

Cross-sectional dependence tests 

Test/Variable CO2_T CO2_B CO2_NC CO2_OIC CO2_PI 

BC scaled LM 508.921*** 172.403*** 259.421*** 188.111*** 456.459*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) 

Pesaran CD 168.292*** 22.035*** 77.171*** 46.489*** 93.698*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) 

Pesaran scaled LM 510.399*** 173.882*** 260.899*** 189.568*** 457.938*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) 

Breusch-Pagan LM 36729.01*** 14014.72 *** 19888.26*** 14816.93*** 33187.98*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) 

Notes: The Breusch-Pagan (1980) LM, Pesaran (2004) scaled LM, Pesaran (2004) CD, and  

Baltagi et al. (2012) Bias-Corrected (BC) scaled LM test. H0 is ''no cross-section dependence (correlation)''. P-

values in brackets. ***, **, *, denotes significance at the 1%, 5% and 10% level, respectively. 

 
Table 10 

Stationarity analysis I 

Test/ 

Variable 

Harris-Tzavalis test 

Level (cons & trend) Δ (cons) 

 rho p_value rho p_value 

CO2_T 0.629   (0.001)*** -0.028 (0.000)*** 

CO2_B 0.667 (0.075)* -0.150 (0.000)** 

CO2_NC 0.643 (0.006)*** -0.083 (0.000)*** 

CO2_OIC 0.512 (0.000)*** -0.225   (0.000)*** 

CO2_PI 0.618 (0.000)*** -0.010    (0.000)*** 

                        Notes: We remove cross-sectional means and apply small-sample adjustment                             

                        to T. H0 is ''Panels contain unit roots''. Tajikistan and Togo (for CO2_OIC), and  

                        Congo Rep. And Ghana (for CO2_PI) are excluded from the sample due to  

                        missing values. P-values in brackets. ***, **, * denote statistical significance at the 

                       1%, 5%, and 10% level, respectively. 

 
 

Table 11 

Stationarity analysis I 

Test/ 

Variable 

Pesaran’s CADF test 

Level (cons & trend) Δ (cons) Level (cons & trend) Δ (cons) 

 Augmented by one lag (average) Augmented by two lags (average) 

 t-bar p-value t-bar p-value t-bar p-value t-bar p-value 

CO2_T -2.533** (0.024) -3.359*** (0.000) -2.697*** (0.000) -2.803***    (0.000) 

CO2_B -2.105 (0.966) -3.287*** (0.000) -1.964 (0.999) -2.486*** (0.000) 

CO2_NC -2.255 (0.686) -3.433*** (0.000) -2.123   (0.951) -2.475*** (0.000) 

CO2_OIC -8.874***   (0.000) -20.063***   (0.000) 2.369   (0.991) -6.841*** (0.000) 

CO2_PI -4.375*** (0.000) -14.658***   (0.000) -1.947**   (0.026) -10.466*** (0.000) 

Notes: Pesaran (2003) H0 is ''all series are non-stationary''. For the unbalanced panels, namely for CO2_OIC 

and CO2_PI, we report the standarized t-bar statistic. P-values in brackets. ***, **, * denote statistical 

significance at the 1%, 5%, and 10% level, respectively. 
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Additional References for the Supplementary Material 

Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Olivier,  

J.G.J., Peters, J.A.H.W. and Schure, K.M., 2017. Fossil CO2 and GHG emissions of 

all world countries. EUR 28766 EN, Publications Office of the European Union, 

Luxembourg, ISBN 978-92-79-73207-2, doi:10.2760/709792, JRC107877. 

 

 

 

 

 


