
HAL Id: hal-03174952
https://uca.hal.science/hal-03174952

Submitted on 19 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

How to Generate Perfect Mazes?
Victor Bellot, Maxime Cautrès, Jean-Marie Favreau, Milan

Gonzalez-Thauvin, Pascal Lafourcade, Kergann Le Cornec, Bastien Mosnier,
Samuel Rivière-Wekstein

To cite this version:
Victor Bellot, Maxime Cautrès, Jean-Marie Favreau, Milan Gonzalez-Thauvin, Pascal Lafourcade,
et al.. How to Generate Perfect Mazes?. Information Sciences, 2021, �10.1016/j.ins.2021.03.022�.
�hal-03174952�

https://uca.hal.science/hal-03174952
https://hal.archives-ouvertes.fr

How to Generate Perfect Mazes?

V. Bellot, M. Cautrès, J-M. Favreau, M. Gonzalez-Thauvin, P. Lafourcade,
K. Le Cornec, B. Mosnier, S. Rivière-Wekstein

LIMOS, University Clermont Auvergne, France

Abstract

A perfect maze is a maze where any two cells can be joined by a unique path.

In the literature, there exist eleven maze generation algorithms as compiled by

Buck in 2015 in his book �Mazes for Programmers�. Each algorithm creates

mazes di�erently. Our aim is to analyze how perfect mazes are generated. For

this, we use the simple measures introduced by Buck, as well as the physical

based measures introduced by McClendon in 2001. We introduce a new measure

that helps us establish a ranking for perfect mazes. We also propose two new

maze generation algorithms, called Prim & Kill and Twist & Merge. According

to our measure, these two algorithms generate mazes di�erently than the existing

algorithms do.

1. Introduction

Mazes were �rst introduced during the Antiquity as aesthetic or voluntarily

complex structures. They have been studied from a mathematical point of

view � e.g., by the graph theory. A maze is a multi-dimensional area divided by

impassable walls that create corridors, dead-ends or crossroads. We study square

mazes in which each cell is a square1, as illustrated in Figure 5. We consider

∗Corresponding author
1Our work can be generalized to di�erent shapes but this simpli�es the presentation of our

results.

Preprint submitted to Elsevier November 17, 2020

only perfect mazes, i.e., mazes that satisfy the two following constraints:

• all cells are part of a unique connected space,

• no cyclic path is allowed in its construction.

These two constraints are equivalent to the following constraint: for every

couple of cells there is one and only one path that connects them. Through

centuries, mazes became more and more popular and are nowadays considered

as fun puzzles. Solving a perfect maze consists in �nding the unique path

between two given points. Solving perfect mazes is fun by de�nition, since each

choice of the user is crucial to quickly �nd the solution in a maze without loop.

Choosing a path other than the unique solution will result in following the wrong

path and thus wasting time.

There exist eleven well described randomized algorithms [19, 5] to automat-

ically generate perfect mazes. However, these algorithms do not set the entry

and the exit. In order not to discriminate any algorithm, we decided to choose

these two points as the points that construct the longest path in the maze. Since

these pairs of points are not necessarily unique, we randomly take one candidate

among all possible choices.

In [2], the author measured the di�culty of a maze by the number of steps

to solve it. In [3], the authors de�ned a �tness function to design the evolution

of maze-like levels for use in games. In [10], Kaplan introduced the notion of

recon�gurable mazes, where some pieces of a maze can be switched in order to

form a new maze. This notion and its applications to games design were more

studied in [8]. In [12], the authors proposed the user to generate mazes for games

where they satisfy some properties based on the game mechanics speci�cities.

2

In this approach it is possible to control the topology of the solution path of a

maze.

Surprisingly, we found only few works [5, 16, 7, 13] that propose metrics on

mazes.

In [5], Buck explained the eleven maze algorithms presented in [19] and

used them to teach programming. He also proposed the following metrics (in

Appendix 2 of [5]): number of dead-ends, length of the longest path (the number

of cells it contains), number of cells with horizontal or vertical passages (east-

to-west, and north-to-south), number of �elbow� cells (passage entering from

one side, then turning either right or left), number of three-way intersections

and number of four-way intersections. He also wrote �the statistics presented

in this appendix are very super�cial. There is a lot more that could be done�.

Our goal in this article will therefore be to propose a metric to compare mazes

generators.

In [16], McClendon proposed two measures to qualify a maze: a complexity

and a di�culty measure. We show in section 3.3 that the complexity is almost

equivalent to the length of the solution, which is not a satisfactory measure if one

considers the pleasure of solving mazes: a perfect maze with no intersection has

a huge solution length, but is boring and not fun to solve because the solution

is its unique path. The player has no choice but to follow it. We give such

examples in Figure 1a, 1b, 1c, 1d and 1e.

One of our aims is to design a measure that can determine if a maze generator

algorithm produces boring mazes or fun mazes. Moreover, we have identi�ed

mazes where McClendon's di�culty is not relevant to evaluate the fun of perfect

maze generation algorithms. In Figure 2, the maze on the right is clearly more

3

(a) Stairs (b) Big stairs (c) Parking (d) Parking 2 (e) Intestin

Figure 1: Examples of 40× 40 manually generated mazes. The two marked cells are drawn in
red, the solution path in light red. Non signi�cant walls are drawn in gray.

Figure 2: On the left side an ad-hoc maze of solution length 228, complexity: 3.9 di�culty:
222.6 and on the right side a maze obtained with the Hunt & Kill algorithm of solution length
324, complexity: 4.6 and di�culty: 48.5.

fun to solve than the one on the left. However, the di�culty of the right maze

is 39.7 while the di�culty of the left maze is 222.6.

In [7], Gabrov²ek proposed six of the maze algorithms presented into [19],

and uses four solving algorithms de�ned as agents walking across the mazes:

random walk, depth �rst search (with or without heuristics), and breadth �rst

search. The average number of steps is then used to evaluate the di�culty of

the mazes generated by each algorithm, for each agent. These measures are

based on the length of the solution, as we will see later that our measure is

complementary to such approaches.

In [13], the authors compared three techniques for maze generation Depth-

�rst search, Prim's, and Recursive De�nition.

4

Contributions: Here are our main contributions:

• Our �rst contribution is a measure that captures the fun experience when

solving a maze. Our measure counts the number of non-signi�cant walls

in a maze, to estimate which walls of the maze are not considered by a

human scan. Combining this measure with McClendon's di�culty makes

a realistic evaluation of the fun.

• Our second contribution is the design of two original maze generation al-

gorithms, called Prim & Kill (PK) and Twist & Merge (TM). The �rst

algorithm (PK) is the merge of two existing algorithms: Prim and Hunt

& Kill . The second algorithm (TM) uses random walks, favorizes turns

rather than corridors, and merges all generated paths in order to build a

perfect maze. These algorithms o�er di�erent approach than the eleven

existing generators. Using our fun measure, we show that TM is the fun-

niest algorithm and PK is tied for second with the Hunt & Kill algorithm.

Related works: The �Think Labyrinth! � [19] website by Pullen is one of the

richest online sources of information about mazes where each algorithm is pre-

sented. In [5], Buck used eleven perfect mazes algorithms to teach programming.

In his thesis [6], Foltin considered maze generation and human interaction.

He studied only 4 maze generation algorithms (Hunt & Kill , Prim's, Kruskal 's

and the Recursive Backtracking algorithms) and do not provided a way to clas-

sify the algorithms.

Kim and Craw�s's article [11] is one of the most relevant resources concerning

maze evaluation. The authors constructed a large database made of about 22

million mazes generated by Prim's and the Recursive Backtracking algorithms.

5

They proposed similar metrics as Buck [5] and a generic evaluation function to

identify the maze that satis�es metrics selected by the user, e.g., the maximum

number of dead-ends. They only study two maze generation algorithms and

they let the user determines which metric is the most adapted. Our aim is to

establish a ranking to evaluate the fun of solving a maze.

In [16], McClendon de�ned two measures to evaluate mazes, considering any

kind of geometry for the mazes, even hand-drawn ones. These measures are

computable regardless of the path traced to solve the maze, and the author

indicated that the measurements associated with the maze itself must be calcu-

lated by keeping the minimum on all possible paths. In Section 6, we translate

this approach to our maze framework, and we use one of these two measures to

design our fun measure.

Other studies about maze have been made, but they clearly have di�erent

goals. In [17] Okamoto and Uehara explained how to construct a picturesque

maze - i.e., a maze whose solution path draws a picture. They also considered

perfect mazes and their algorithm is based on an adaptation of the Spanning

Tree generation algorithm.

Turan and Aydin showed a dynamic terrain-spaced maze generation algo-

rithm [20]. They generated mazes that have big empty areas and cycles. They

are used for maps in video games, but they do not generate perfect mazes.

A perfect maze based steganographic method is presented by Lee, Lee and

Chen [15]. They explain that information can be enciphered in a perfect maze

using the direction of bifurcations in the solution path. The algorithm used to

generate perfect mazes is an adaptation of Prim's algorithm, one of the eleven

algorithms that we consider.

6

Applications: Our main contributions is to design two new maze gener-

ators. They increase the collection of existing algorithms. We believe that it

is important to have a diversity in the maze generator algorithms. Moreover,

there are two main applications for having several maze generator algorithms.

• First, pen and pencil games editors constitue a possible target in order

to create a �Mazes magazine�. The idea is to produce each month several

mazes with di�erent di�culty levels for kids. For this promising project,

our algorithms are good candidates to design original puzzles for kids or

adults. We beleive that such magazine can have an audience as the recent

succes story of coloring magazines for adults that are relaxing and aim at

deacreasing the level of stress.

• The second main application domain is clearly the video games. Many

applications already exist on smart phones to solve mazes. However all

applications, that we have found and tested, have two main limitations:

1. Some applications are using a limited number of mazes that are hard

coded in the application. This clearly only o�ers a limited number

of levels for the gamers.

2. Many other applications always use the same maze generator, such as

Prim or Recursive Backtracking . According to the di�culty level and

the experience of the gamer, a greater variety of algorithms can o�er

a better player experience and increase the fun of such applications.

Our algorithms clearly increase the diversity of fun maze generators

for such applications.

7

Outline: In Section 2, we give some de�nitions concerning perfect mazes. In

Section 3, we explain the measures introduced by Buck and McClendon. We

also introduce our measure that consider the number of non-signi�cant walls.

In Section 4, we present the eleven existing maze generation algorithms. In

Section 5, we present our two maze generation algorithms: Prim & Kill and

Twist & Merge. In Section 6, we compare all the 13 algorithms according to

our measure. Finally, we conclude in Section 7.

2. Notations and De�nitions about Perfect Mazes

For simplicity's sake, we only consider square perfect mazes where all border

walls are indestructible. Hence, a mazeM is de�ned on a subset of N×N called

a board, typically a rectangular region composed of cells. A cell c[i, j] ∈ M

represents the cell at the row i and at the column j of the board. When the

context is clear, we just denote a cell by c.

We de�neN as a subset ofM×M corresponding to the 4-neighbor adjacency

as follows: (c[i, j], c′[i′, j′]) ∈ N ⇔ (i = i′ ∧ |j − j′| = 1) ∨ (j = j′ ∧ |i − i′| =

1). A maze is de�ned by a function w : N → {0, 1} that describes the wall

positions. In the following, a wall is said active (resp. inactive) between c and

c′ if w(c, c′) = 1 (resp. w(c, c′) = 0). To de�ne a maze with this function, we

need the following properties:

• ∀(c, c′) ∈ N , w(c, c′) = w(c′, c) (symmetry)

• ∀(c, c′) 6∈ N , w(c, c′) = 0 (no wall outside the maze)

The graph de�ned by the cells of a perfect maze M and the set of pairs such

that w(c, c′) = 0 is a tree: an acyclic undirected graph with a single connected

component. Hence we have ∀c ∈ M, 0 ≤
∑
ci∈N(c) w(c, ci) ≤ 3, where N(c) is

8

(a) A crossroad. (b) A junction. (c) A straight cell. (d) A turn. (e) A dead-end.

(f) Two intersection vertices. (g) An extremity wall.

Figure 3: Examples of the cell classi�cation modulo symmetries or rotations and of the wall
classi�cation.

the set of adjacent cells to c ∈M. We can categorize a cell of a maze according

its number of walls:

• A crossroad cell is a cell surrounded by zero wall (Figure 3(a)).

• A junction cell is a cell surrounded by only one wall (Figure 3(b)).

• A decision cell corresponds to a crossroad or a junction (Figure 3(a)

and 3(b)).

• A dead-end is a cell with three surrounding walls (Figure 3(e)).

• A straight cell is a cell surrounded by two opposite walls (Figure 3(c)).

• A turn is a cell with two consecutive surrounding walls (Figure 3(d)).

• An interection wall is a wall that is connected to other walls (Figure 3(f)).

• An extremity wall is a wall that is not connected to another one on one

side (Figure 3(g)).

Furthermore, we de�ne other elements that exist in a maze:

• A path is a sequence c0, ..., ci ∈ M of distinct adjacent cells such that

∀j ∈ J0, i − 1K : w(cj , cj+1) = 0. We call length of a path the number of

cells of the path.

9

• A longest path in a maze is a path that has the maximal length2.

• A corridor is a path in which each cell is surrounded by two walls (turn

or straight cell). Both cells at the extremities of the corridor must be

decision cells.

• A dead-end path is a variation of a corridor. The only di�erence is that at

least one extremity is a dead-end instead of a decision cell.

In Section 4, we present the eleven maze generation algorithms described in

detail in [19]. All these algorithms are perfect randomized maze generation

algorithms. In our implementations, all the random choices have been computed

using an equi-probable pseudo-random generator. In Section 4 gives the detailed

descriptions of each of these algorithms and simple examples. In the rest of the

article, we use the following notations for the name of the algorithms Aldous

Broder : AB, Binary Tree: BT, Eller : E, Growing Tree: GT, Hunt & Kill : HK,

Kruskal : K, Prim: P, Prim & Kill : PK, Recursive Backtracking : RB, Recursive

Division: RD, Sidewinder : S, Twist & Merge: TM, Wilson: W. Each of them

produce on a board M a perfect maze in a randomized processing, using two

elementary operations: destroy a wall (c, c′) ∈ N (set w(c, c′) = 0) and activate

a wall (c, c′) ∈ N (set w(c, c′) = 1).

Most of these algorithms start their process with a maze where all the walls

are active. Only one algorithm (Recursive Division) starts with the empty

con�guration, where w(c, c′) = 0,∀(c, c′) ∈ N . In any cases, the initial maze

is surrounded by walls that will not be destroyed: ∀c 6∈ M,∀c′ ∈ M, (c, c′) ∈

N ⇒ w(c, c′) = 1.

2Note here that we cannot ensure its uniqueness.

10

3. Ranking

Before presenting our measure of fun, we recall the de�nitions given by Buck

and McClendon.

3.1. Simple Buck's Measures

The easiest way to compare mazes is to use simple statistics. In [5], Buck

proposes six intrinsic attributes of mazes: number of turns, number of straight

cells, number of junctions, number of crossroads, number of dead-ends, and

length of the solution path. This quick but useful overview helps to understand

what is at stake in maze generation.

3.2. McClendon's Complexity and Di�culty Measures

In his work [16], McClendon proposes a measure based on the trajectory

equivalent to the one followed by the eyes of a player trying to solve the maze.

Long and straight corridors are easier and faster to analyze than twisted paths.

This velocity of vision is fully taken into account by McClendon's measures.

The de�nitions given by McClendon3 can be adapted to rectangular mazes

as following.

As McClendon says �Let the maze M have a solution T . If T has small

complexity, but also has many branches of large complexity then the complexity

would be large, but the maze would be easy to solve�. As we show latter the

complexity is related to the lenght of the of maze. Moreover he continues saying

that �If instead of adding the terms in (3)4 above, we were to multiply them

we would arrive at a measure that seems to better describe the di�culty of a

3A pedagogical exemple is proposed by McClendon on his website http://www.math.uco.

edu/mcclendon/complexityrecmazes.pdf
4(3) is the formula that de�ne the complexity.

11

maze than the complexity measure�. In our paper, we choose to use the same

de�nition to measure the di�culty of solving a maze, even if it is not strongly

motivated by a scienti�c argument.

The solution path is �rst extracted, and considered as a dead-end path. Each

branch in hallways is then split (which is either a corridor or a dead-end path).

In each of these parts (including the solution path) turns are identi�ed, and

arcs are de�ned as straight lines between two consecutive turns or between an

extremity and its adjacent turn. The graph of a maze is the union of these arcs.

This process guarantees uniqueness of the graph for rectangular mazes. This

McClendon's measure represents the vision trajectory. This generic de�nition is

a simpli�ed version of McClendon's one for all kind of mazes. Like McClendon,

we assimilate a maze and its graph.

(a) A maze and its graph (dotted).

w0

w1

w2

w3

w4

w5

w6w7 w8

w9 w10w11

w12

(b) Solution path (plain) and branches (dotted).
The red circles are hallway delimiters and the

black points are arc delimiters.

Figure 4: McClendon's notations and de�nitions.

The �rst part of the measure consists in extracting from a maze M the

solution path T (plain line on Figure 4(b)) and batching connected components

called branches (dots lines on Figure 4(b)) in the set B = (Bi)i∈J0,bK where b is

the number of branches in the maze.

We can also de�ne W = {wj}j∈J0,k−1K as the k turns and extremities of

this graph, represented by black dots in Figure 4(b)). One can notice that a

12

turn can belongs to several branches or corridors, such as w2, w3, w4 and w9

(Figure 4(b)). Each branch can be split into hallways, corresponding to a set of

connected corridors whose ends are deadends, or turns that belongs to two or

more corridors. Let Wh be the ordered list of turns contained in the hallway h.

We also de�ne Wh as the number of turns in a hallway h. The exact and

original de�nition of a turn does not really matter since we are studying rectan-

gular mazes, in which a turn is self-explanatory. Following the same approach,

the length D(h) of a hallway h is de�ned as the sum of the length of the con-

tained arcs:
∑Wh

k=2 dh,k, where dh,k is the length of the k-st arc of the hallway

h.

Let θh,k be the angle of the k-st turn in the hallway h. We can then translate

into our context McCLendon's complexity γ(M) and di�culty δ(M) of a maze

M as following:

• The complexity of a hallway h is de�ned as γ(h) = D(h)
∑Wh−1
k=2

θh,k

dc,k·π .

As all our graphs are orthogonal, the angles θh,k are exactly equal to π
2 so

we can simplify McClendon's formula for the complexity of a corridor as

follows: γ(h) = D(h)
∑Wh−1
k=2

1
2dc,k

. The complexity of a branch is de�ned

as the sum of the complexity of each contained hallway.

• The complexity and the di�culty of a maze are de�ned by: γ(M) =

log
(∑b

i=0 γ(Bi)
)
and δ(M) = log

(
γ(B0)

∏b
i=1(γ(Bi) + 1)

)
.

Hence the complexity is equal to the di�culty for all mazes without branches

(cf. Stairs algorithm in Figure 1a) or with only straight branches (cf. Parking

algorithm in Figure 1c).

13

3.3. McClendon's Complexity is almost Solution Length and is not Fun

The time to draw the solution path can be assimilated to the length of the

solution path. In order to compare this measure to the complexity of McClen-

don, we generated 20 mazes with each algorithm identi�ed in the literature (see

Section 4) and studied the measures calculated on each of them. We have thus

noticed that the length of the solution path and the complexity introduced by

McClendon are strongly correlated, as illustrated in Figure 6b.

Finally, this measure cannot be considered as relevant to evaluate the fun,

since very long solution mazes have only short dead-end paths, which greatly

reduces hesitation when solving the mazes. The player then follows an almost

obvious path, which is not fun, e.g. with mazes generated by Recursive Back-

tracking (see Section 4.6).

To overcome these limitations, we introduce in the next section an alternative

measure to evaluate the fun of a maze.

3.4. Our Measure: Number of Non-signi�cant Walls

We studied a large number of criteria to design a ranking of fun, including

counting the number of decision cells, the number of turns, etc. None of them

was conclusive. We �nally looked at the time needed to scan the no-solution

branches, which corresponds to the fun of a maze. We evaluate this time by

counting the number of non-signi�cant walls (NSW), i.e., the walls one can ig-

nore while scanning the board. The more non-signi�cant walls a maze contains,

the faster the maze is scanned.

In order to de�ne non-signi�cant walls, we de�ne a vertex as the middle point

v between four adjacent cells. Let N(v) be the adjacent cells of a given vertex

v. The arity of a vertex is de�ned as the number of adjacent walls: a(v) =

14

Table 1: Mean number of non-signi�cant walls (NSW), Di�culty (D) and ratio (NSW/D) for
each algorithm, computed from 1.000 randomly generated 40× 40 mazes per algorithm.

Algos GT RD E P K AB W BT S HK PK TM RB
NSW 1521.0 1090.0 719.0 868.6 844.5 823.5 822.2 817.4 808.2 723.1 742.9 725.6 635.3

D 3.13 12.72 49.29 25.13 33.87 34.88 35.18 25.57 27.86 43.90 47.82 57.18 31.74
NSW/D 485.0 89.0 14.91 35.22 25.41 24.07 23.87 32.42 29.41 16.78 15.90 12.92 20.33

∑
(c,c′)∈N ;c,c′∈N(v) w(c, c

′). A vertex is said to be an intersection if a(v) ≥ 3

(Figure 3(f)). A wall w(c, c′) is said to be an extremity wall if ∃v : c, c′ ∈ N(v)

and a(v) = 1 (Figure 3(g)).

A wall w(c, c′) is said to be non-signi�cant if it is removed during the non-

signi�cant wall deletion. The non-signi�cant wall deletion starts by marking

all the intersection vertices. An iterative process is then applied, by deleting

at each step all the extremity walls, except if their extremity vertex has been

marked as an initial intersection vertex.

In Table 1, we give the mean number of non-signi�cant walls and di�culty

for 1.000 generated 40× 40 mazes with di�erent algorithms.

4. Existing Generation Algorithms

In this section, we present using our notations and in a uniform way eleven

randomized maze generation algorithms identi�ed in the literature5. For each

algorithm, we give its description and a rendering (Figure 5).

4.1. Binary Tree's Algorithm

It is by far the simplest perfect maze generation algorithm. It exists in four

versions, according to the chosen orientation. We describe the bottom-right

version.

For each cell in the grid, the algorithm destroys either the bottom or the

right wall, using an equiprobable random selection. If the wall selected cannot

5More details can be found in [5] in order to see how it is possible to implement them.

15

(a) Binary Tree (b) Sidewinder (c) Eller (d) Recursive Di-
vision

(e) Prim

(f) Recursive
Backtracking

(g) Hunt & Kill (h) Growing Tree (i) Kruskal (j) Wilson

(k) Aldous Broder (l) Prim & Kill (m) Twist &
Merge

Figure 5: Examples of 40 × 40 mazes generated by each of the algorithms. We give the
rendering of one generated maze. The two marked cells are drawn in red, the solution path
in light red. Non signi�cant walls are drawn in gray.

16

be destroyed (borders of the maze), it destroys the other wall. If both walls

cannot be destroyed (borders of the maze), the algorithm does nothing to the

cell.

The maze generated by this algorithm has a particular shape: there is a

general orientation of the corridors, diagonally in function of the selected version.

For instance, with the bottom-right version, the top line and the left column of

the grid are two long corridors, due to the �other wall� condition.

Figure 5(a) shows a rendering maze, its solution, and the contained non-

signi�cant walls.

4.2. Sidewinder's Algorithm

At the initialization, all the walls on the grid are active except those in the

vertical direction, on the top line.

For each line, beginning at the second one, the algorithm processes from the

left cell to the right cell following those instructions:

• Mark the current cell.

• If the right wall is not a border, randomly decide if it is destroyed or not,

using an equiprobable random choice.

• If the wall is destroyed, step one cell right, otherwise destroy the top wall

of a random cell among marked ones, and then unmark all cells and step

one cell right.

With such an algorithm, it is impossible to have a maze with top-oriented

dead-ends. The maze generated has also a general vertical orientation.

Figure 5(b) shows a rendering maze, its solution, and the contained non-

signi�cant walls.

17

4.3. Eller's Algorithm

Like the Sidewinder or the Binary Tree algorithms, mazes are processed line

by line. In this algorithm, a �ag f(c) ∈ N is associated to each cell c, as a

connected component descriptor: if (c, c′) two cells are �agged with the same

label, it exists a path between these two cells. At the initialization, all the walls

are active, thus each cell has its own �ag. After each wall deletion, �ags are

updated according to the connected components in the maze, by updating all

the �ags of one side.

The algorithm starts with the �rst line. On the current line, a random

selection of walls w(c, c′) are destroyed where f(c) 6= f(c′).

The next step consists in destroying a random selection of bottom walls of

the current line (at least one for each group of cells with the same �ag). The

following line becomes the current one.

These instructions are repeated until the last line is reached. For the last

line, if two adjacent cells (c, c′) have a di�erent �ag value, the wall between

them is destroyed.

Figure 5(c) shows a rendering maze, its solution, and the contained non-

signi�cant walls.

4.4. Recursive Division's Algorithm

It is a recursive algorithm and the only wall-adder algorithm. At the initial-

ization, all the walls are inactive.

The grid is cut in two parts with a straight wall (either horizontally or

vertically) from one border to the opposite. We destroy a random wall on this

line in order to make a passage between the two areas.

18

This operation is recursively repeated on both areas delimited by the wall,

until we reach an area with a height or length of one cell.

Figure 5(d) shows a rendering maze, its solution, and the contained non-

signi�cant walls.

4.5. Prim's Algorithm

At the initialization, all the walls are active, and one cell is randomly selected

and marked.

The algorithm randomly selects an unmarked cell among the neighbors of

the marked cells. The wall between these two cells is destroyed and we mark

the current unmarked cell. The operation is repeated until all the cells of the

grid are marked.

Figure 5(e) shows a rendering maze, its solution, and the contained non-

signi�cant walls.

4.6. Recursive Backtracking's Algorithm

It is a recursive algorithm. At the initialization, all the walls are active. One

cell of the maze is randomly selected and marked, considered as the current cell.

While the current cell is not surrounded by marked cells, we randomly select

and mark an unmarked neighbor. The wall between the current cell and its

neighbor is destroyed and the neighbor becomes the new current cell.

If there is no unmarked cell among the neighbors of the current cell, the

algorithm goes back one cell and the instructions are repeated. The algorithm

stops when all the cells are marked.

19

Figure 5(f) shows a rendering maze, its solution, and the contained non-

signi�cant walls.

4.7. Hunt & Kill's Algorithm

At the initialization, all the walls of the grid are active. One cell of the maze

is randomly selected and marked.

Starting in kill mode from this cell, a random walk is performed using the

4-neighborhood connectivity, only selecting unmarked cell. At each step, we

destroy the walls in this path and mark the corresponding cells. The walk is

stopped when the current cell is surrounded by marked neighbors.

The algorithm then switches to hunt mode: the maze is scanned line per line,

from left to right and from top to bottom, until an unmarked cell neighboring

a marked cell is found. The wall between these two cells is destroyed, and the

unmarked cell is marked. It becomes the starting point of the next random walk

of the kill mode.

The algorithm repeats these instructions until all the cells are marked.

Figure 5(g) shows a rendering maze, its solution, and the contained non-

signi�cant walls.

4.8. Growing Tree's Algorithm

At the initialization, all the walls on the grid are active. An empty list is

created, and a cell is randomly selected, marked and added to the list. A cell

among those which are in the list is selected. If it has unmarked neighbors,

one of them is randomly selected and the corresponding wall is destroyed. The

algorithm marks and adds the selected neighbor to the end of the list. If it has

no unmarked neighbors, the cell is removed from the list. The instructions are

20

repeated until the list is empty. The way cells are selected at the beginning of

each iteration determines the behavior of the algorithm.

• Selecting the last cell of the list corresponds to the behavior of the Recur-

sive Backtracking algorithm.

• Selecting the �rst cell of the list divides the maze in four parts. Each part

is �lled with parallel corridors in one given direction, long enough to reach

the border of the maze.

• Selecting the cell in the middle of the list is like selecting the �rst cell, but

a small winding area appears around the starting cell.

• Selecting the cell randomly corresponds to the behavior of Prim's algo-

rithm.

It is also possible to mix up the di�erent behaviors. In our implementation,

we selected the cell in the middle of the list.

Figure 5(h) shows a rendering maze, its solution, and the contained non-

signi�cant walls.

4.9. Kruskal's Algorithm

In this algorithm, a �ag f(c) ∈ N is associated to each cell c, as a connected

component descriptor: if two cells (c, c′) are �agged with the same label, it exists

a path between these two cells. At the initialization, all the walls are active,

thus each cell has its own �ag. We create a list initialized with all the walls of

the maze. It is used as the list of remaining walls. After each wall deletion,

the �ags are updated according to the connected components in the maze, by

updating the �ags of one side.

We randomly chose an existing wall inside the remaining walls and remove

it from the list. If the two cells (c, c′) have the same �ag (i.e., are already

21

connected by a path), the wall is maintained in the board, otherwise the wall

is destroyed. The operation is repeated until the list of the remaining walls is

empty.

A classical way to implement Kruskal 's algorithm [14] is to use a disjoint set

data structure, which is why some implementations refer to this algorithm as

the disjoint set algorithm.

The di�erence between Kruskal 's and Eller 's algorithm is the way walls

are chosen: Eller 's algorithm browses the maze line by line while Kruskal 's

algorithm maintains a list of open walls and randomly select the next one.

Figure 5(i) shows a rendering maze, its solution, and the contained non-

signi�cant walls.

4.10. Wilson's Algorithm [22]

It is a random-walk based algorithm. At the initialization, all the walls of

the grid are active, and we randomly mark a cell.

A cell among the unmarked cells is randomly selected. A random walk is

performed from this cell and is stopped when it reaches a marked cell. All the

cells of this walk are stored in a stack. During the walk, if an already stored

cell is reached, all the cells between the current cell and the reached cell from

the stack (current cell included) are removed and the reached cell becomes the

new current cell.

After each random walk, all the cells in the stack are marked, and all the

walls in between are destroyed. The stack is then cleaned, and a new random

walk is performed. This process stops when all the cells of the grid are marked.

Figure 5(j) shows a rendering maze, its solution, and the contained non-

signi�cant walls.

22

4.11. Aldous Broder's Algorithm [1, 4]

It is a random-walk based algorithm. At the initialization, all the walls of

the grid are active, and a random cell is marked, and set as the current cell.

A neighbor of the current cell is selected. If it is unmarked, the wall between

it and the current cell is destroyed, and the neighbor is marked. Otherwise the

algorithm does nothing. This neighbor becomes the new current cell.

We repeat these instructions until all the cells of the grid are marked.

Figure 5(k) shows a rendering maze, its solution, and the contained non-

signi�cant walls.

5. Our Two Maze Generation Algorithms

In this section, we present two original algorithms to go beyond the fun of

mazes generated by existing algorithms (see section 6 for their comparison).

5.1. Prim & Kill Algorithm (PK)

We analyzed Hunt & Kill Algorithm (see Section 4.7) and �nd out that using

a prede�ned set of marked cells, the Hunt mode is deterministic: it always picks

cells in the same order. To counter this e�ect, we replaced the Hunt mode with

one step of Prim (see Section 4.5) to bring more randomness to the process.

The main idea of Prim & Kill is to perform a random walk on a grid where all

the walls are active, until we reach a point where no more wall can be destroyed.

A similar random walk is then performed starting from a randomly selected wall

of the visited region. We repeat this process until all cells of the grid are visited.

At the begining of this algorithm, we initialize two sets in order to know

which cells have been visited. The �rst one contains all cells of the grid and is

called Unmarked. The second one is empty and is called Marked. At the end

of our algorithms, Marked set contains all cells and Unmarked is empty.

23

We �rst de�ne a RandomWalk function that starts from a given cell (current)

and performs a random walk. This fonction also changes all visited cells during

the random walk from the set Unmarked to the set Marked.

Procedure Random Walk(Unmarked, Marked, current)

1 while Neighbours(current) ∩ Unmarked 6= ∅ do
2 next = Pick randomly in Neighbours(current) ∩Unmarked ;
3 Destroy wall between next and current ;
4 Add element current to Marked ;
5 Remove current from Unmarked ;
6 previous = current ;
7 current = next ;

8 return Unmarked, Marked

We now are able to give the algorithm for our Hunt & Kill algorithm. More

precisely, at the beginning, all the cells are unmarked, except one selected ran-

domly. The algorithm starts with a random walk from this cell (the Kill mode

of Hunt & Kill). It marks all the visited cells and removes every wall in this

random walk. The walk stops when all neighbors of the current cell are marked.

A wall is then selected randomly among all the walls between a marked cell and

an unmarked cell. After destroying this wall, a new random walk is performed.

This process ends when all the cells are marked.

In Figure 5(l), we present an example of a maze generated with PK.

We notice that the random walks used in Prim & Kill generates a signi�cant

number of turns and a large number of non-signi�cant walls (table 1).

5.2. Twist & Merge Algorithm (TM)

We introduce another algorithm based on a random walk with supplementary

constraints. The main motivation of this algorithm is to generate mazes that

24

Algorithm 1: Hunt & Kill algorithm

Result: A 40× 40 perfect maze.
1 Create a 40× 40 maze full of walls;
2 Unmarked = All cells;
3 Marked = ∅;
/* HUNT MODE */

4 current = Pick randomly in Unmarked;
5 Unmarked, Marked = Random Walk(Unmarked, Marked, current)

while Unmarked 6= ∅ do
6 current = Pick randomly in {x ∈Marked | Neighbours(x) ∩

Unmarked 6= ∅};
7 Unmarked, Marked = Random Walk(Unmarked, Marked,

current);

disadvantage the creation of corridors, since long corridors are paths of minor

interest. We want to increase the fun using this approach.

The idea of Twist & Merge is to perform multiple biaised random walks to

create paths where straight walks are forbidden. The produced regions are then

merged into a single connected component. This approach favorizes the turns

and increases the number of non-signi�cant walks.

At the begining of this algorithm, we initialize a set called Unmarked that

contains all unvisited cells of the grid. This set is �ll with all the cells of the

maze. We also de�ne an array called Label to store the label of the connected

component in which each cell will be contained. At the beginning of the al-

gorithm, this structured is initialized with a default label corresponding to the

unmarked status.

We �rst de�ne a Biaised Random Walk function that starts from a given cell

(current) and performs a random walk. This fonction also remove all visited

cells from the Unmarked set, and set its label in the dedicated array Label. The

neighbor selection is achieved using aligned(., .), where aligned(x, y) is de�ned

as all x neighbors if x = y, and as the opposite neighbor of x from y if x 6= y.

25

Procedure Biaised Random Walk(Unmarked, Label, current, i)

1 previous = current;
2 while Neighbours(current) ∩ Unmarked 6= ∅ do
3 next = Pick randomly in { Neighbours(current) \ aligned(current,

previous) } ∩ Unmarked ;
4 Destroy wall between next and current ;
5 Label[current] = i;
6 Remove current from Unmarked ;
7 previous = current ;
8 current = next ;

9 return Unmarked, Label

We now are able to give the algorithm for our Twist & Merge algorithm. At

the initialization, all the walls of the grid are active. The algorithm �rst starts

in Twist mode. One cell of the maze is randomly selected and marked. Starting

from this cell, a random walk is performed forbidding a straight walk of three

cells. More formally if ci and ci+1 are successive cells in the path, thus ci+2

cannot be ci+1 + (ci+1− ci), where addition and substraction are opérations on

coordinates of the cells. At each step, we destroy the walls in this path and mark

corresponding cells. The walk is stopped when the current cell is surrounded

by marked neighbors. This process is repeated until all cells are marked in the

maze. Finally, the Merge mode is applied. It is a merging procedure of the

connected components, similar to the one of Kruskal 's algorithm, in order to

have a perfect maze.

26

Algorithm 2: Twist & Merge algorithm

Result: A 40× 40 perfect maze.

1 Create a 40× 40 maze full of walls;

2 Unmarked = All cells;

3 forall x ∈ Unmarked do

4 Label[x] = 0 ;

5 end

/* TWIST MODE */

6 i = 1;

7 while Unmarked 6= ∅ do

8 current = Pick randomly in Unmarked;

9 Unmarked, Label = Biaised Random Walk(Unmarked, Label,

current, i);

10 i = i+ 1;

11 end

/* MERGE MODE */

12 while size(Marked) 6= 1 do

13 a, b = Pick randomly in {x, y | y ∈ Neighbours(x) ;

Label[x] 6= Label[y] };

14 Destroy wall between a and b ;

15 forall x ∈ cells do

16 if Label[x] = Label[a] then

17 Label[x] = Label[b] ;

18 end

19 end

20 end

27

In Figure 5(m), we present an example of a maze generated with TM. We

notice that it generates mazes that have many small turns and few corridors.

6. Ranking and Comparisons

Our aim is to construct a measure that can rank perfect mazes according

their fun. After discussion with maze players, we choose to consider that a

fun maze is a maze that is not trivial or boring to solve, but where a player

have several �crucial � choices to perform in order to �nd the unique path to the

solution. To consolidate this de�nition, we identi�ed that mazes with the long

paths are not the funniest ones, as illustrated by Figure 3.

McClendon's di�culty (D) is based on the trajectory equivalent to the one

followed by the eyes of a player trying to solve the maze (section 3.2), thus seems

to be a good ingredient to evaluate the fun. In the other hand, the number of

non-signi�cant walls (NSW) seems to be also an interested measure, since the

more it will have non-signi�cant walls, the more it will be easy and not fun to

solve.

Figure 6a and Table 1 shows that these two measures are not correlated, each

of them cannot be considered by itself as a good evaluation of the fun. One can

identify that Recursive Backtracking and Prim algorithms are almost equivalent

from the di�culty point of view, but signi�cantly distinct from the NSW point

of view. On the other hand, Hunt & Kill and Twist & Merge algorithms are

almost equivalent from the NSW point of view, but signi�cantly distinct from

the Di�culty point of view. We note that this last observation con�rms the

objective we had set ourselves in de�ning this algorithm.

To continue this analysis, we can note that Growing Tree algorithm

produces mazes with a very small di�culty, and a large number of non-signi�cant

28

walls. We con�rm that it is the algorithm that produces the least fun mazes

to solve. The Recursive Division algorithm is also one of the algorithms

producing the least fun mazes, following the same reasoning.

At another side of the diagram, the Recursive Backtracking algorithm

has the least number of non-signi�cant walls, together with the longest solution

path which is not fun to solve.

After all this observation, we can conclude that the funniest algorithm should

have the highest di�culty and the lowest number of signi�cative walls. Hence,

we propose to mesure fun F as the ratio between the number of non-signi�cant

walls ν and the di�culty (table 1):

F (M) =
ν(M)

δ(M)
. (1)

Our two algorithms original algorithms Twist & Merge and Prim & Kill

are clearly improving the di�culty of generated mazes comparing to previous

existing algorithms, with a very low number of non-signi�cant walls, thus seems

to be good candidates to generate fun algorithms.

To consolidate the relevance of our proposal, we used Buck measures to

evaluate all the algorithms. Figure 7 illustrates that Twist & Merge generates

mazes with the highest number of turns and the lowest number of straight cells,

which was its goal.

7. Conclusion and Future Work

We proposed an original approach to classify mazes according to their fun,

and we designed two original maze generators: Prim & Kill (PK) and Twist &

29

Merge (TM). We have shown that TM algorithm is the funniest among all the

other algorithms.

One future work will be to analyze each pair of algorithms, identifying the

probability to generate similar mazes.

In [9], Járai shows that the spaces of possible mazes generated by Wilson

and Aldous Broder are equivalent, since they can be reduced to a spanning

tree approach. A possible continuity of this work could be to use equivalent

approaches to show the similarity of the generated maze spaces, thus build a

statistical similarity classi�cation of the algorithms.

Another future work will be to use our algorithms to generate other kind of

mazes. One idea is naturally to see how they can be adapted to generate non

perfect maze, that can be interesting for humans. To achieve this objective, we

would therefore have to adapt our evaluation measures.

Other constraints could be added, for instance the shape of the solution as

in [17] or the general shape of the maze like in [12, 21, 18] where cells are not

squares. In this case, we should also have to adapt our evaluations measures.

References

[1] Aldous, D.J., 1990. The random walk construction of uniform spanning

trees and uniform labelled trees. SIAM Journal on Discrete Mathematics

3, pp. 450�465.

[2] Ashlock, D., 2010. Automatic generation of game elements via evolution, in:

Proceedings of the 2010 IEEE Conference on Computational Intelligence

and Games, pp. 289�296.

30

[3] Ashlock, D., Lee, C., McGuinness, C., 2011. Search-based procedural gener-

ation of maze-like levels. IEEE Transactions on Computational Intelligence

and AI in Games 3, pp. 260�273.

[4] Broder, A., 1989. Generating random spanning trees, in: 30th Annual

Symposium on Foundations of Computer Science, pp. 442�447.

[5] Buck, J., 2015. Mazes for Programmers: Code Your Own Twisty Little

Passages. Pragmatic Bookshelf.

[6] Foltin, M., 2011. Automated Maze Generation and Human Interaction.

Ph.D. thesis. Masaryk University Faculty of Informatics.

[7] Gabrov²ek, P., 2019. Analysis of maze generating algorithms. IPSI Trans-

actions on Internet Research 15, pp. 23�30.

[8] Hoshino, S., Takahashi, R., Mieno, K., Tamatsu, Y., Azechi, H., Ide, K.,

Takahashi, S., 2020. The recon�gurable maze provides �exible, scalable,

reproducible, and repeatable tests. iScience 23, 100787.

[9] Járai, A.A., 2009. The uniform spanning tree and related models. Avail-

able online at http://www.maths.bath.ac.uk/~aj276/teaching/USF/

USFnotes.pdf.

[10] Kaplan, C.S., 2014. The design of a recon�gurable maze, in: Green�eld,

G., Hart, G., Sarhangi, R. (Eds.), Proceedings of Bridges 2014: Mathemat-

ics, Music, Art, Architecture, Culture, Tessellations Publishing, Phoenix,

Arizona. pp. 167�174.

[11] Kim, P.H., Craw�s, R., 2015. The quest for the perfect perfect-maze, in:

Mehdi, Q.H., Elmaghraby, A., Marshall, I., Lauf, A.P., Jaromczyk, J.W.,

31

Ragade, R.K., Zapirain, B.G., Chang, D., Chariker, J., El-Said, M.M.,

Yampolskiy, R.V. (Eds.), Computer Games: AI, Animation, Mobile, Mul-

timedia, Educational and Serious Games, CGAMES 2015, Louisville, KY,

USA, July 27-29, 2015, IEEE Computer Society. pp. 65�72.

[12] Kim, P.H., Grove, J., Wurster, S., Craw�s, R., 2019. Design-centric maze

generation, in: Proceedings of the 14th International Conference on the

Foundations of Digital Games, Association for Computing Machinery, New

York, NY, USA. pp. 1�9.

[13] Kozlova, A., Brown, J.A., Reading, E., 2015. Examination of representa-

tional expression in maze generation algorithms, in: 2015 IEEE Conference

on Computational Intelligence and Games (CIG), pp. 532�533.

[14] Kruskal, J.B., 1956. On the shortest spanning subtree of a graph and the

traveling salesman problem. Proceedings of the American Mathematical

society 7, 48�50.

[15] Lee, H., Lee, C., Chen, L., 2010. A perfect maze based steganographic

method. Journal of Systems and Software 83, pp. 2528�2535.

[16] McClendon, M.S., 2001. The complexity and di�culty of a maze, in:

Bridges: Mathematical Connections in Art, Music, and Science, Bridges

Conference. pp. 213�222.

[17] Okamoto, Y., Uehara, R., 2009. How to make a picturesque maze, in:

Proceedings of the 21st Annual Canadian Conference on Computational

Geometry, Vancouver, British Columbia, Canada, August 17-19, 2009, pp.

137�140.

32

[18] Pedersen, H., Singh, K., 2006. Organic labyrinths and mazes, in: Pro-

ceedings of the 4th International Symposium on Non-Photorealistic Ani-

mation and Rendering, Association for Computing Machinery, New York,

NY, USA. p. 79�86.

[19] Pullen, W.D., 1996. Think labyrinth! http://www.astrolog.org/

labyrnth.htm.

[20] Turan, M., Aydin, K., 2010. A dynamic terrain-spaced maze generation

algorithm. Global Journal of Computer Science and Technology 10, pp.

9�14.

[21] Wan, L., Liu, X., Wong, T., Leung, C., 2010. Evolving mazes from images.

IEEE Transactions on Visualization and Computer Graphics 16, pp. 287�

297.

[22] Wilson, D.B., 1996. Generating random spanning trees more quickly than

the cover time, in: Proceedings of the Twenty-Eighth Annual ACM Sym-

posium on Theory of Computing, Association for Computing Machinery,

New York, NY, USA. p. pp. 296�303.

33

600 800 1000 1200 1400
Number of Non Significant Walls

0

10

20

30

40

50

60

70

Di
ffi

cu
lty

Kruskal
Wilson
Prim
RecBac
Aldous
BinaryT
GrowingT
Hunt&Kill
Sidewinder
Eller
RecDiv
Twist&Merge
Prim&Kill

(a) 2D plotting of the algorithms using the number of non-signi�cant walls and the di�culty intro-
duced by McClendon [16].

200 400 600 800 1000
Solution Length

3.0

3.5

4.0

4.5

5.0

5.5

Co
m

pl
ex

ity

Kruskal
Wilson
Prim
RecBac
Aldous
BinaryT
GrowingT
Hunt&Kill
Sidewinder
Eller
RecDiv
Twist&Merge
Prim&Kill

(b) 2D plotting of the algorithms using the length of the solution path and the complexity introduce
by McClendon [16].

Figure 6: 2D plottings of the algorithms using two mesures. 20 randomly generated 40 × 40
mazes are used for each algorithm. We chose only 20 mazes per algorithm which is represen-
tative on a readable plot.

34

(a) Number of turns. (b) Number of straight cells. (c) Number of junctions.

(d) Number of crossroads. (e) Number of dead-ends. (f) Length of the solution path.

Figure 7: Buck measures on 1000 generated 40 × 40 mazes per algorithm. The dotted line
locates the mean while the plain one locates the standard deviation.

35

