V Bellot

M Cautrès

J-M Favreau

M Gonzalez-Thauvin

P Lafourcade

K Le Cornec

B Mosnier

S Rivière-Wekstein

How to Generate Perfect Mazes?

A perfect maze is a maze where any two cells can be joined by a unique path.

In the literature, there exist eleven maze generation algorithms as compiled by Buck in 2015 in his book Mazes for Programmers. Each algorithm creates mazes dierently. Our aim is to analyze how perfect mazes are generated. For this, we use the simple measures introduced by Buck, as well as the physical based measures introduced by McClendon in 2001. We introduce a new measure that helps us establish a ranking for perfect mazes. We also propose two new maze generation algorithms, called Prim & Kill and Twist & Merge. According to our measure, these two algorithms generate mazes dierently than the existing algorithms do.

Introduction

Mazes were rst introduced during the Antiquity as aesthetic or voluntarily complex structures. They have been studied from a mathematical point of view e.g., by the graph theory. A maze is a multi-dimensional area divided by impassable walls that create corridors, dead-ends or crossroads. We study square mazes in which each cell is a square 1 , as illustrated in Figure 5. We consider only perfect mazes, i.e., mazes that satisfy the two following constraints:

• all cells are part of a unique connected space,

• no cyclic path is allowed in its construction.

These two constraints are equivalent to the following constraint: for every couple of cells there is one and only one path that connects them. Through centuries, mazes became more and more popular and are nowadays considered as fun puzzles. Solving a perfect maze consists in nding the unique path between two given points. Solving perfect mazes is fun by denition, since each choice of the user is crucial to quickly nd the solution in a maze without loop.

Choosing a path other than the unique solution will result in following the wrong path and thus wasting time.

There exist eleven well described randomized algorithms [START_REF] Pullen | Think labyrinth![END_REF][START_REF] Buck | Mazes for Programmers: Code Your Own Twisty Little Passages[END_REF] to automatically generate perfect mazes. However, these algorithms do not set the entry and the exit. In order not to discriminate any algorithm, we decided to choose these two points as the points that construct the longest path in the maze. Since these pairs of points are not necessarily unique, we randomly take one candidate among all possible choices.

In [START_REF] Ashlock | Automatic generation of game elements via evolution[END_REF], the author measured the diculty of a maze by the number of steps to solve it. In [START_REF] Ashlock | Search-based procedural generation of maze-like levels[END_REF], the authors dened a tness function to design the evolution of maze-like levels for use in games. In [START_REF] Kaplan | The design of a recongurable maze[END_REF], Kaplan introduced the notion of recongurable mazes, where some pieces of a maze can be switched in order to form a new maze. This notion and its applications to games design were more studied in [START_REF] Hoshino | The recongurable maze provides exible, scalable, reproducible, and repeatable tests[END_REF]. In [START_REF] Kim | Design-centric maze generation[END_REF], the authors proposed the user to generate mazes for games where they satisfy some properties based on the game mechanics specicities.

In this approach it is possible to control the topology of the solution path of a maze. Surprisingly, we found only few works [START_REF] Buck | Mazes for Programmers: Code Your Own Twisty Little Passages[END_REF][START_REF] Mcclendon | The complexity and diculty of a maze[END_REF][START_REF] Gabrov²ek | Analysis of maze generating algorithms[END_REF][START_REF] Kozlova | Examination of representational expression in maze generation algorithms[END_REF] that propose metrics on mazes.

In [START_REF] Buck | Mazes for Programmers: Code Your Own Twisty Little Passages[END_REF], Buck explained the eleven maze algorithms presented in [START_REF] Pullen | Think labyrinth![END_REF] and used them to teach programming. He also proposed the following metrics (in Appendix 2 of [START_REF] Buck | Mazes for Programmers: Code Your Own Twisty Little Passages[END_REF]): number of dead-ends, length of the longest path (the number of cells it contains), number of cells with horizontal or vertical passages (eastto-west, and north-to-south), number of elbow cells (passage entering from one side, then turning either right or left), number of three-way intersections and number of four-way intersections. He also wrote the statistics presented in this appendix are very supercial. There is a lot more that could be done.

Our goal in this article will therefore be to propose a metric to compare mazes generators.

In [START_REF] Mcclendon | The complexity and diculty of a maze[END_REF], McClendon proposed two measures to qualify a maze: a complexity and a diculty measure. We show in section 3.3 that the complexity is almost equivalent to the length of the solution, which is not a satisfactory measure if one considers the pleasure of solving mazes: a perfect maze with no intersection has a huge solution length, but is boring and not fun to solve because the solution is its unique path. The player has no choice but to follow it. We give such examples in Figure 1a, 1b, 1c, 1d and 1e.

One of our aims is to design a measure that can determine if a maze generator algorithm produces boring mazes or fun mazes. Moreover, we have identied mazes where McClendon's diculty is not relevant to evaluate the fun of perfect maze generation algorithms. In Figure 2, the maze on the right is clearly more fun to solve than the one on the left. However, the diculty of the right maze is 39.7 while the diculty of the left maze is 222.6.

In [START_REF] Gabrov²ek | Analysis of maze generating algorithms[END_REF], Gabrov²ek proposed six of the maze algorithms presented into [START_REF] Pullen | Think labyrinth![END_REF],

and uses four solving algorithms dened as agents walking across the mazes: random walk, depth rst search (with or without heuristics), and breadth rst search. The average number of steps is then used to evaluate the diculty of the mazes generated by each algorithm, for each agent. These measures are based on the length of the solution, as we will see later that our measure is complementary to such approaches.

In [START_REF] Kozlova | Examination of representational expression in maze generation algorithms[END_REF], the authors compared three techniques for maze generation Depthrst search, Prim's, and Recursive Denition.

Contributions: Here are our main contributions:

• Our rst contribution is a measure that captures the fun experience when solving a maze. Our measure counts the number of non-signicant walls Related works: The Think Labyrinth! [START_REF] Pullen | Think labyrinth![END_REF] website by Pullen is one of the richest online sources of information about mazes where each algorithm is presented. In [START_REF] Buck | Mazes for Programmers: Code Your Own Twisty Little Passages[END_REF], Buck used eleven perfect mazes algorithms to teach programming.

In his thesis [START_REF] Foltin | Automated Maze Generation and Human Interaction[END_REF], Foltin considered maze generation and human interaction.

He studied only 4 maze generation algorithms (Hunt & Kill, Prim's, Kruskal's and the Recursive Backtracking algorithms) and do not provided a way to classify the algorithms.

Kim and Craws's article [START_REF] Kim | The quest for the perfect perfect-maze[END_REF] is one of the most relevant resources concerning maze evaluation. The authors constructed a large database made of about 22 million mazes generated by Prim's and the Recursive Backtracking algorithms.

They proposed similar metrics as Buck [START_REF] Buck | Mazes for Programmers: Code Your Own Twisty Little Passages[END_REF] and a generic evaluation function to identify the maze that satises metrics selected by the user, e.g., the maximum number of dead-ends. They only study two maze generation algorithms and they let the user determines which metric is the most adapted. Our aim is to establish a ranking to evaluate the fun of solving a maze.

In [START_REF] Mcclendon | The complexity and diculty of a maze[END_REF], McClendon dened two measures to evaluate mazes, considering any kind of geometry for the mazes, even hand-drawn ones. These measures are computable regardless of the path traced to solve the maze, and the author indicated that the measurements associated with the maze itself must be calculated by keeping the minimum on all possible paths. In Section 6, we translate this approach to our maze framework, and we use one of these two measures to design our fun measure.

Other studies about maze have been made, but they clearly have dierent goals. In [START_REF] Okamoto | How to make a picturesque maze[END_REF] Okamoto and Uehara explained how to construct a picturesque maze -i.e., a maze whose solution path draws a picture. They also considered perfect mazes and their algorithm is based on an adaptation of the Spanning Tree generation algorithm.

Turan and Aydin showed a dynamic terrain-spaced maze generation algorithm [START_REF] Turan | A dynamic terrain-spaced maze generation algorithm[END_REF]. They generated mazes that have big empty areas and cycles. They are used for maps in video games, but they do not generate perfect mazes.

A perfect maze based steganographic method is presented by Lee, Lee and Chen [START_REF] Lee | A perfect maze based steganographic method[END_REF]. They explain that information can be enciphered in a perfect maze using the direction of bifurcations in the solution path. The algorithm used to generate perfect mazes is an adaptation of Prim's algorithm, one of the eleven algorithms that we consider.

Applications: Our main contributions is to design two new maze generators. They increase the collection of existing algorithms. We believe that it is important to have a diversity in the maze generator algorithms. Moreover, there are two main applications for having several maze generator algorithms.

• First, pen and pencil games editors constitue a possible target in order to create a Mazes magazine. The idea is to produce each month several mazes with dierent diculty levels for kids. For this promising project, our algorithms are good candidates to design original puzzles for kids or adults. We beleive that such magazine can have an audience as the recent succes story of coloring magazines for adults that are relaxing and aim at deacreasing the level of stress.

• The second main application domain is clearly the video games. Many applications already exist on smart phones to solve mazes. However all applications, that we have found and tested, have two main limitations:

1. Some applications are using a limited number of mazes that are hard coded in the application. This clearly only oers a limited number of levels for the gamers.

Many other applications always use the same maze generator, such as

Prim or Recursive Backtracking. According to the diculty level and the experience of the gamer, a greater variety of algorithms can oer a better player experience and increase the fun of such applications.

Our algorithms clearly increase the diversity of fun maze generators for such applications.

Outline: In Section 2, we give some denitions concerning perfect mazes. In Section 3, we explain the measures introduced by Buck and McClendon. We also introduce our measure that consider the number of non-signicant walls.

In Section 4, we present the eleven existing maze generation algorithms. In Section 5, we present our two maze generation algorithms: Prim & Kill and

Twist & Merge. In Section 6, we compare all the 13 algorithms according to our measure. Finally, we conclude in Section 7.

Notations and Denitions about Perfect Mazes

For simplicity's sake, we only consider square perfect mazes where all border walls are indestructible. Hence, a maze M is dened on a subset of N × N called a board, typically a rectangular region composed of cells. A cell c[i, j] ∈ M

represents the cell at the row i and at the column j of the board. When the context is clear, we just denote a cell by c.

We dene N as a subset of M×M corresponding to the 4-neighbor adjacency

as follows: (c[i, j], c [i , j]) ∈ N ⇔ (i = i ∧ |j -j | = 1) ∨ (j = j ∧ |i -i | = 1)
. A maze is dened by a function w : N → {0, 1} that describes the wall positions. In the following, a wall is said active (resp. inactive) between c and c if w(c, c) = 1 (resp. w(c, c) = 0). To dene a maze with this function, we need the following properties: the set of adjacent cells to c ∈ M. We can categorize a cell of a maze according its number of walls:

• ∀(c, c) ∈ N , w(c, c) = w(c , c) (symmetry) • ∀(c, c) ∈ N , w(c, c) = 0 (
• A crossroad cell is a cell surrounded by zero wall (Figure 3(a)).

• A junction cell is a cell surrounded by only one wall (Figure 3(b)).

• A decision cell corresponds to a crossroad or a junction (Figure 3(a) and 3(b)).

• A dead-end is a cell with three surrounding walls (Figure 3(e)).

• A straight cell is a cell surrounded by two opposite walls (Figure 3(c)).

• A turn is a cell with two consecutive surrounding walls (Figure 3(d)).

• An interection wall is a wall that is connected to other walls (Figure 3(f)).

• An extremity wall is a wall that is not connected to another one on one side (Figure 3(g)).

Furthermore, we dene other elements that exist in a maze:

• A path is a sequence c 0 , ..., c i ∈ M of distinct adjacent cells such that ∀j ∈ 0, i -1 : w(c j , c j+1) = 0. We call length of a path the number of cells of the path.

• A longest path in a maze is a path that has the maximal length 2 .

• A corridor is a path in which each cell is surrounded by two walls (turn or straight cell). Both cells at the extremities of the corridor must be decision cells.

• A dead-end path is a variation of a corridor. The only dierence is that at least one extremity is a dead-end instead of a decision cell.

In Section 4, we present the eleven maze generation algorithms described in detail in [START_REF] Pullen | Think labyrinth![END_REF]. All these algorithms are perfect randomized maze generation algorithms. In our implementations, all the random choices have been computed

using an equi-probable pseudo-random generator. In Section 4 gives the detailed Most of these algorithms start their process with a maze where all the walls are active. Only one algorithm (Recursive Division) starts with the empty conguration, where w(c, c) = 0, ∀(c, c) ∈ N . In any cases, the initial maze is surrounded by walls that will not be destroyed:

∀c ∈ M, ∀c ∈ M, (c, c) ∈ N ⇒ w(c, c) = 1.
2 Note here that we cannot ensure its uniqueness.

Ranking

Before presenting our measure of fun, we recall the denitions given by Buck and McClendon.

Simple Buck's Measures

The easiest way to compare mazes is to use simple statistics. In [START_REF] Buck | Mazes for Programmers: Code Your Own Twisty Little Passages[END_REF], Buck

proposes six intrinsic attributes of mazes: number of turns, number of straight cells, number of junctions, number of crossroads, number of dead-ends, and length of the solution path. This quick but useful overview helps to understand what is at stake in maze generation.

McClendon's Complexity and Diculty Measures

In his work [START_REF] Mcclendon | The complexity and diculty of a maze[END_REF], McClendon proposes a measure based on the trajectory equivalent to the one followed by the eyes of a player trying to solve the maze.

Long and straight corridors are easier and faster to analyze than twisted paths.

This velocity of vision is fully taken into account by McClendon's measures.

The denitions given by McClendon 3 can be adapted to rectangular mazes as following.

As McClendon says Let the maze M have a solution T . If T has small complexity, but also has many branches of large complexity then the complexity would be large, but the maze would be easy to solve. As we show latter the complexity is related to the lenght of the of maze. Moreover he continues saying that If instead of adding the terms in (3) 4 above, we were to multiply them we would arrive at a measure that seems to better describe the diculty of a maze than the complexity measure. In our paper, we choose to use the same denition to measure the diculty of solving a maze, even if it is not strongly motivated by a scientic argument.

The solution path is rst extracted, and considered as a dead-end path. Each branch in hallways is then split (which is either a corridor or a dead-end path).

In each of these parts (including the solution path) turns are identied, and arcs are dened as straight lines between two consecutive turns or between an extremity and its adjacent turn. The graph of a maze is the union of these arcs.

This process guarantees uniqueness of the graph for rectangular mazes. This (a) A maze and its graph (dotted). We can also dene W = {w j } j∈ 0,k-1 as the k turns and extremities of this graph, represented by black dots in Figure 4(b)). One can notice that a turn can belongs to several branches or corridors, such as w 2 , w 3 , w 4 and w 9

(Figure 4(b)). Each branch can be split into hallways, corresponding to a set of connected corridors whose ends are deadends, or turns that belongs to two or more corridors. Let W h be the ordered list of turns contained in the hallway h.

We also dene W h as the number of turns in a hallway h. The exact and original denition of a turn does not really matter since we are studying rectangular mazes, in which a turn is self-explanatory. Following the same approach, the length D(h) of a hallway h is dened as the sum of the length of the contained arcs:

W h k=2 d h,k
, where d h,k is the length of the k-st arc of the hallway h.

Let θ h,k be the angle of the k-st turn in the hallway h. We can then translate into our context McCLendon's complexity γ(M) and diculty δ(M) of a maze M as following:

• The complexity of a hallway h is dened as γ(h) = D(h)

W h -1 k=2 θ h,k d c,k •π .
As all our graphs are orthogonal, the angles θ h,k are exactly equal to π 2 so we can simplify McClendon's formula for the complexity of a corridor as

follows: γ(h) = D(h) W h -1 k=2
1 2d c,k
. The complexity of a branch is dened as the sum of the complexity of each contained hallway.

• The complexity and the diculty of a maze are dened by: γ

(M) = log b i=0 γ(B i) and δ(M) = log γ(B 0) b i=1 (γ(B i) + 1) .
Hence the complexity is equal to the diculty for all mazes without branches (cf. Stairs algorithm in Figure 1a) or with only straight branches (cf. Parking algorithm in Figure 1c).

McClendon's Complexity is almost Solution Length and is not Fun

The time to draw the solution path can be assimilated to the length of the solution path. In order to compare this measure to the complexity of McClendon, we generated 20 mazes with each algorithm identied in the literature (see Section 4) and studied the measures calculated on each of them. We have thus noticed that the length of the solution path and the complexity introduced by

McClendon are strongly correlated, as illustrated in Figure 6b.

Finally, this measure cannot be considered as relevant to evaluate the fun, since very long solution mazes have only short dead-end paths, which greatly reduces hesitation when solving the mazes. The player then follows an almost obvious path, which is not fun, e.g. with mazes generated by Recursive Backtracking (see Section 4.6).

To overcome these limitations, we introduce in the next section an alternative measure to evaluate the fun of a maze.

Our Measure: Number of Non-signicant Walls

We studied a large number of criteria to design a ranking of fun, including counting the number of decision cells, the number of turns, etc. None of them was conclusive. We nally looked at the time needed to scan the no-solution branches, which corresponds to the fun of a maze. We evaluate this time by counting the number of non-signicant walls (NSW), i.e., the walls one can ignore while scanning the board. The more non-signicant walls a maze contains, the faster the maze is scanned.

In order to dene non-signicant walls, we dene a vertex as the middle point v between four adjacent cells. Let N (v) be the adjacent cells of a given vertex v. The arity of a vertex is dened as the number of adjacent walls: a(v) = 20.33 (c,c)∈N ;c,c ∈N (v) w(c, c). A vertex is said to be an intersection if a(v) ≥ 3

(Figure 3(f)). A wall w(c, c) is said to be an extremity wall if ∃v : c, c ∈ N (v)
and a(v) = 1 (Figure 3

(g)).

A wall w(c, c) is said to be non-signicant if it is removed during the nonsignicant wall deletion. The non-signicant wall deletion starts by marking all the intersection vertices. An iterative process is then applied, by deleting at each step all the extremity walls, except if their extremity vertex has been marked as an initial intersection vertex.

In Table 1, we give the mean number of non-signicant walls and diculty for 1.000 generated 40 × 40 mazes with dierent algorithms.

Existing Generation Algorithms

In this section, we present using our notations and in a uniform way eleven randomized maze generation algorithms identied in the literature 5 . For each algorithm, we give its description and a rendering (Figure 5).

Binary Tree's Algorithm

It is by far the simplest perfect maze generation algorithm. It exists in four versions, according to the chosen orientation. We describe the bottom-right version.

For each cell in the grid, the algorithm destroys either the bottom or the right wall, using an equiprobable random selection. If the wall selected cannot 5 More details can be found in [START_REF] Buck | Mazes for Programmers: Code Your Own Twisty Little Passages[END_REF] in order to see how it is possible to implement them. be destroyed (borders of the maze), it destroys the other wall. If both walls cannot be destroyed (borders of the maze), the algorithm does nothing to the cell.

The maze generated by this algorithm has a particular shape: there is a general orientation of the corridors, diagonally in function of the selected version.

For instance, with the bottom-right version, the top line and the left column of the grid are two long corridors, due to the other wall condition.

Figure 5(a) shows a rendering maze, its solution, and the contained nonsignicant walls.

Sidewinder's Algorithm

At the initialization, all the walls on the grid are active except those in the vertical direction, on the top line.

For each line, beginning at the second one, the algorithm processes from the left cell to the right cell following those instructions:

• Mark the current cell.

• If the right wall is not a border, randomly decide if it is destroyed or not, using an equiprobable random choice.

• If the wall is destroyed, step one cell right, otherwise destroy the top wall of a random cell among marked ones, and then unmark all cells and step one cell right.

With such an algorithm, it is impossible to have a maze with top-oriented dead-ends. The maze generated has also a general vertical orientation.

Recursive Division's Algorithm

It is a recursive algorithm and the only wall-adder algorithm. At the initialization, all the walls are inactive.

The grid is cut in two parts with a straight wall (either horizontally or vertically) from one border to the opposite. We destroy a random wall on this line in order to make a passage between the two areas.

This operation is recursively repeated on both areas delimited by the wall, until we reach an area with a height or length of one cell.

Prim's Algorithm

At the initialization, all the walls are active, and one cell is randomly selected and marked.

The algorithm randomly selects an unmarked cell among the neighbors of the marked cells. The wall between these two cells is destroyed and we mark the current unmarked cell. The operation is repeated until all the cells of the grid are marked.

Figure 5(e) shows a rendering maze, its solution, and the contained nonsignicant walls.

Recursive Backtracking's Algorithm

It is a recursive algorithm. At the initialization, all the walls are active. One cell of the maze is randomly selected and marked, considered as the current cell.

While the current cell is not surrounded by marked cells, we randomly select and mark an unmarked neighbor. The wall between the current cell and its neighbor is destroyed and the neighbor becomes the new current cell.

If there is no unmarked cell among the neighbors of the current cell, the algorithm goes back one cell and the instructions are repeated. The algorithm stops when all the cells are marked.

Figure 5(f) shows a rendering maze, its solution, and the contained nonsignicant walls.

Hunt & Kill's Algorithm

At the initialization, all the walls of the grid are active. One cell of the maze is randomly selected and marked.

Starting in kill mode from this cell, a random walk is performed using the 4-neighborhood connectivity, only selecting unmarked cell. At each step, we destroy the walls in this path and mark the corresponding cells. The walk is stopped when the current cell is surrounded by marked neighbors.

The algorithm then switches to hunt mode: the maze is scanned line per line, from left to right and from top to bottom, until an unmarked cell neighboring a marked cell is found. The wall between these two cells is destroyed, and the unmarked cell is marked. It becomes the starting point of the next random walk of the kill mode.

The algorithm repeats these instructions until all the cells are marked.

Figure 5(g) shows a rendering maze, its solution, and the contained nonsignicant walls.

Growing Tree's Algorithm

At the initialization, all the walls on the grid are active. An empty list is created, and a cell is randomly selected, marked and added to the list. A cell among those which are in the list is selected. If it has unmarked neighbors, one of them is randomly selected and the corresponding wall is destroyed. The algorithm marks and adds the selected neighbor to the end of the list. If it has no unmarked neighbors, the cell is removed from the list. The instructions are repeated until the list is empty. The way cells are selected at the beginning of each iteration determines the behavior of the algorithm.

• Selecting the last cell of the list corresponds to the behavior of the Recursive Backtracking algorithm.

• Selecting the rst cell of the list divides the maze in four parts. Each part is lled with parallel corridors in one given direction, long enough to reach the border of the maze.

• Selecting the cell in the middle of the list is like selecting the rst cell, but a small winding area appears around the starting cell.

• Selecting the cell randomly corresponds to the behavior of Prim's algorithm.

It is also possible to mix up the dierent behaviors. In our implementation, we selected the cell in the middle of the list.

Figure 5(h) shows a rendering maze, its solution, and the contained nonsignicant walls.

Kruskal's Algorithm

In this algorithm, a ag f (c) ∈ N is associated to each cell c, as a connected component descriptor: if two cells (c, c) are agged with the same label, it exists a path between these two cells. At the initialization, all the walls are active, thus each cell has its own ag. We create a list initialized with all the walls of the maze. It is used as the list of remaining walls. After each wall deletion, the ags are updated according to the connected components in the maze, by updating the ags of one side.

We randomly chose an existing wall inside the remaining walls and remove it from the list. If the two cells (c, c) have the same ag (i.e., are already connected by a path), the wall is maintained in the board, otherwise the wall is destroyed. The operation is repeated until the list of the remaining walls is empty.

A classical way to implement Kruskal's algorithm [START_REF] Kruskal | On the shortest spanning subtree of a graph and the traveling salesman problem[END_REF] is to use a disjoint set data structure, which is why some implementations refer to this algorithm as the disjoint set algorithm.

The dierence between Kruskal's and Eller's algorithm is the way walls are chosen: Eller's algorithm browses the maze line by line while Kruskal's algorithm maintains a list of open walls and randomly select the next one.

Figure 5(i) shows a rendering maze, its solution, and the contained nonsignicant walls.

4.10. Wilson's Algorithm [START_REF] Wilson | Generating random spanning trees more quickly than the cover time[END_REF] It is a random-walk based algorithm. At the initialization, all the walls of the grid are active, and we randomly mark a cell.

A cell among the unmarked cells is randomly selected. A random walk is performed from this cell and is stopped when it reaches a marked cell. All the cells of this walk are stored in a stack. During the walk, if an already stored cell is reached, all the cells between the current cell and the reached cell from the stack (current cell included) are removed and the reached cell becomes the new current cell.

After each random walk, all the cells in the stack are marked, and all the walls in between are destroyed. The stack is then cleaned, and a new random walk is performed. This process stops when all the cells of the grid are marked. 4.11. Aldous Broder's Algorithm [START_REF] Aldous | The random walk construction of uniform spanning trees and uniform labelled trees[END_REF][START_REF] Broder | Generating random spanning trees[END_REF] It is a random-walk based algorithm. At the initialization, all the walls of the grid are active, and a random cell is marked, and set as the current cell.

A neighbor of the current cell is selected. If it is unmarked, the wall between it and the current cell is destroyed, and the neighbor is marked. Otherwise the algorithm does nothing. This neighbor becomes the new current cell.

We repeat these instructions until all the cells of the grid are marked.

Figure 5(k) shows a rendering maze, its solution, and the contained nonsignicant walls.

Our Two Maze Generation Algorithms

In this section, we present two original algorithms to go beyond the fun of mazes generated by existing algorithms (see section 6 for their comparison).

Prim & Kill Algorithm (PK)

We analyzed Hunt & Kill Algorithm (see Section 4.7) and nd out that using a predened set of marked cells, the Hunt mode is deterministic: it always picks cells in the same order. To counter this eect, we replaced the Hunt mode with one step of Prim (see Section 4.5) to bring more randomness to the process.

The main idea of Prim & Kill is to perform a random walk on a grid where all the walls are active, until we reach a point where no more wall can be destroyed.

A similar random walk is then performed starting from a randomly selected wall of the visited region. We repeat this process until all cells of the grid are visited.

At the begining of this algorithm, we initialize two sets in order to know which cells have been visited. The rst one contains all cells of the grid and is called U nmarked. The second one is empty and is called M arked. At the end of our algorithms, M arked set contains all cells and U nmarked is empty.

We rst dene a Random Walk function that starts from a given cell (current) and performs a random walk. This fonction also changes all visited cells during the random walk from the set U nmarked to the set M arked. A wall is then selected randomly among all the walls between a marked cell and an unmarked cell. After destroying this wall, a new random walk is performed.

This process ends when all the cells are marked.

In Figure 5(l), we present an example of a maze generated with PK.

We notice that the random walks used in Prim & Kill generates a signicant number of turns and a large number of non-signicant walls (table 1).

Twist & Merge Algorithm (TM)

We introduce another algorithm based on a random walk with supplementary constraints. The main motivation of this algorithm is to generate mazes that disadvantage the creation of corridors, since long corridors are paths of minor interest. We want to increase the fun using this approach.

The idea of Twist & Merge is to perform multiple biaised random walks to create paths where straight walks are forbidden. The produced regions are then merged into a single connected component. This approach favorizes the turns and increases the number of non-signicant walks.

At the begining of this algorithm, we initialize a set called U nmarked that contains all unvisited cells of the grid. This set is ll with all the cells of the maze. We also dene an array called Label to store the label of the connected component in which each cell will be contained. At the beginning of the algorithm, this structured is initialized with a default label corresponding to the unmarked status.

We rst dene a Biaised Random Walk function that starts from a given cell (current) and performs a random walk. This fonction also remove all visited cells from the U nmarked set, and set its label in the dedicated array Label. The neighbor selection is achieved using aligned(., .), where aligned(x, y) is dened as all x neighbors if x = y, and as the opposite neighbor of x from y if x = y.

In Figure 5(m), we present an example of a maze generated with TM. We notice that it generates mazes that have many small turns and few corridors.

Ranking and Comparisons

Our aim is to construct a measure that can rank perfect mazes according their fun. After discussion with maze players, we choose to consider that a fun maze is a maze that is not trivial or boring to solve, but where a player have several crucial choices to perform in order to nd the unique path to the solution. To consolidate this denition, we identied that mazes with the long paths are not the funniest ones, as illustrated by Figure 3.

McClendon's diculty (D) is based on the trajectory equivalent to the one followed by the eyes of a player trying to solve the maze (section 3.2), thus seems to be a good ingredient to evaluate the fun. In the other hand, the number of non-signicant walls (NSW) seems to be also an interested measure, since the more it will have non-signicant walls, the more it will be easy and not fun to solve.

Figure 6a and Table 1 shows that these two measures are not correlated, each of them cannot be considered by itself as a good evaluation of the fun. One can identify that Recursive Backtracking and Prim algorithms are almost equivalent from the diculty point of view, but signicantly distinct from the NSW point of view. On the other hand, Hunt & Kill and Twist & Merge algorithms are almost equivalent from the NSW point of view, but signicantly distinct from the Diculty point of view. We note that this last observation conrms the objective we had set ourselves in dening this algorithm.

To continue this analysis, we can note that Growing Tree algorithm produces mazes with a very small diculty, and a large number of non-signicant walls. We conrm that it is the algorithm that produces the least fun mazes to solve. The Recursive Division algorithm is also one of the algorithms producing the least fun mazes, following the same reasoning.

At another side of the diagram, the Recursive Backtracking algorithm has the least number of non-signicant walls, together with the longest solution path which is not fun to solve.

After all this observation, we can conclude that the funniest algorithm should have the highest diculty and the lowest number of signicative walls. Hence, we propose to mesure fun F as the ratio between the number of non-signicant walls ν and the diculty (table 1):

F (M) = ν(M) δ(M) . (1)
Our two algorithms original algorithms Twist & Merge and Prim & Kill are clearly improving the diculty of generated mazes comparing to previous existing algorithms, with a very low number of non-signicant walls, thus seems to be good candidates to generate fun algorithms.

To consolidate the relevance of our proposal, we used Buck measures to evaluate all the algorithms. Figure 7 illustrates that Twist & Merge generates mazes with the highest number of turns and the lowest number of straight cells, which was its goal.

Conclusion and Future Work

We proposed an original approach to classify mazes according to their fun, and we designed two original maze generators: Prim & Kill (PK) and Twist & Merge (TM). We have shown that TM algorithm is the funniest among all the other algorithms.

One future work will be to analyze each pair of algorithms, identifying the probability to generate similar mazes.

In [START_REF] Járai | The uniform spanning tree and related models[END_REF], Járai shows that the spaces of possible mazes generated by Wilson and Aldous Broder are equivalent, since they can be reduced to a spanning tree approach. A possible continuity of this work could be to use equivalent approaches to show the similarity of the generated maze spaces, thus build a statistical similarity classication of the algorithms.

Another future work will be to use our algorithms to generate other kind of mazes. One idea is naturally to see how they can be adapted to generate non perfect maze, that can be interesting for humans. To achieve this objective, we would therefore have to adapt our evaluation measures.

Other constraints could be added, for instance the shape of the solution as in [START_REF] Okamoto | How to make a picturesque maze[END_REF] or the general shape of the maze like in [START_REF] Kim | Design-centric maze generation[END_REF][START_REF] Wan | Evolving mazes from images[END_REF][START_REF] Pedersen | Organic labyrinths and mazes[END_REF] where cells are not squares. In this case, we should also have to adapt our evaluations measures.

Figure 1 :

 1 Figure 1: Examples of 40 × 40 manually generated mazes. The two marked cells are drawn in red, the solution path in light red. Non signicant walls are drawn in gray.

Figure 2 :

 2 Figure 2: On the left side an ad-hoc maze of solution length 228, complexity: 3.9 diculty: 222.6 and on the right side a maze obtained with the Hunt & Kill algorithm of solution length 324, complexity: 4.6 and diculty: 48.5.

 no wall outside the maze) The graph dened by the cells of a perfect maze M and the set of pairs such that w(c, c) = 0 is a tree: an acyclic undirected graph with a single connected component. Hence we have ∀c ∈ M, 0 ≤ ci∈N (c) w(c, c i) ≤ 3, where N (c) is (a) A crossroad. (b) A junction. (c) A straight cell. (d) A turn. (e) A dead-end. (f) Two intersection vertices. (g) An extremity wall.

Figure 3 :

 3 Figure 3: Examples of the cell classication modulo symmetries or rotations and of the wall classication.

 descriptions of each of these algorithms and simple examples. In the rest of the article, we use the following notations for the name of the algorithms Aldous Broder: AB, Binary Tree: BT, Eller: E, Growing Tree: GT, Hunt & Kill: HK, Kruskal: K, Prim: P, Prim & Kill: PK, Recursive Backtracking: RB, Recursive Division: RD, Sidewinder: S, Twist & Merge: TM, Wilson: W. Each of them produce on a board M a perfect maze in a randomized processing, using two elementary operations: destroy a wall (c, c) ∈ N (set w(c, c) = 0) and activate a wall (c, c) ∈ N (set w(c, c) = 1).

 McClendon's measure represents the vision trajectory. This generic denition is a simplied version of McClendon's one for all kind of mazes. Like McClendon, we assimilate a maze and its graph.

12 (

 12 b) Solution path (plain) and branches (dotted). The red circles are hallway delimiters and the black points are arc delimiters.

Figure 4 :

 4 Figure 4: McClendon's notations and denitions.

Figure 5 :

 5 Figure 5: Examples of 40 × 40 mazes generated by each of the algorithms. We give the rendering of one generated maze. The two marked cells are drawn in red, the solution path in light red. Non signicant walls are drawn in gray.

Figure 5 (

 5 Figure 5(b) shows a rendering maze, its solution, and the contained non-

4. 3 .

 3 Eller's Algorithm Like the Sidewinder or the Binary Tree algorithms, mazes are processed line by line. In this algorithm, a ag f (c) ∈ N is associated to each cell c, as a connected component descriptor: if (c, c) two cells are agged with the same label, it exists a path between these two cells. At the initialization, all the walls are active, thus each cell has its own ag. After each wall deletion, ags are updated according to the connected components in the maze, by updating all the ags of one side. The algorithm starts with the rst line. On the current line, a random selection of walls w(c, c) are destroyed where f (c) = f (c). The next step consists in destroying a random selection of bottom walls of the current line (at least one for each group of cells with the same ag). The following line becomes the current one. These instructions are repeated until the last line is reached. For the last line, if two adjacent cells (c, c) have a dierent ag value, the wall between them is destroyed.

Figure 5 (

 5 Figure 5(c) shows a rendering maze, its solution, and the contained non-

Figure 5 (

 5 Figure 5(d) shows a rendering maze, its solution, and the contained non-

Figure 5 (

 5 Figure 5(j) shows a rendering maze, its solution, and the contained non-

 We now are able to give the algorithm for our Hunt & Kill algorithm. More precisely, at the beginning, all the cells are unmarked, except one selected randomly. The algorithm starts with a random walk from this cell (the Kill mode of Hunt & Kill). It marks all the visited cells and removes every wall in this random walk. The walk stops when all neighbors of the current cell are marked.

Algorithm 1 : 7 U

 17 Hunt & Kill algorithm Result: A 40 × 40 perfect maze. 1 Create a 40 × 40 maze full of walls; 2 U nmarked = All cells; 3 M arked = ∅; /* HUNT MODE */ 4 current = Pick randomly in U nmarked; 5 U nmarked, M arked = Random Walk(U nmarked, M arked, current) while U nmarked = ∅ do 6 current = Pick randomly in {x ∈ M arked | Neighbours(x) ∩ U nmarked = ∅}; nmarked, M arked = Random Walk(U nmarked, M arked, current);

 (a) Number of turns. (b) Number of straight cells. (c) Number of junctions. (d) Number of crossroads. (e) Number of dead-ends. (f) Length of the solution path.

Figure 7 :

 7 Figure 7: Buck measures on 1000 generated 40 × 40 mazes per algorithm. The dotted line locates the mean while the plain one locates the standard deviation.

Table 1 :

 1 Mean number of non-signicant walls (NSW), Diculty (D) and ratio (NSW/D) for each algorithm, computed from 1.000 randomly generated 40 × 40 mazes per algorithm.

	Algos GT NSW 1521.0 1090.0 719.0 868.6 844.5 823.5 822.2 817.4 808.2 723.1 742.9 725.6 635.3 RD E P K AB W BT S HK PK TM RB D 3.13 12.72 49.29 25.13 33.87 34.88 35.18 25.57 27.86 43.90 47.82 57.18 31.74 NSW/D 485.0 89.0 14.91 35.22 25.41 24.07 23.87 32.42 29.41 16.78 15.90 12.92

A pedagogical exemple is proposed by McClendon on his website http://www.math.uco. edu/mcclendon/complexityrecmazes.pdf

[START_REF] Ashlock | Search-based procedural generation of maze-like levels[END_REF] is the formula that dene the complexity.

Procedure Biaised Random Walk(U nmarked, Label, current, i)