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We address the problem of reconstructing high quality images from undersampled MRI data. This is a challenging task due to the highly ill-posed nature of the problem. In particular, in dynamic MRI scans, the interaction between the target structure and the physical motion affects the acquired measurements leading to blurring artefacts and loss of fine details. In this work, we propose a framework for dynamic MRI reconstruction framed under a new multi-task optimisation model called Compressed Sensing Plus Motion (CS+M). Firstly, we propose a single optimisation problem that simultaneously computes the MRI reconstruction and the physical motion. Secondly, we show our model can be efficiently solved by breaking it up into two more computationally tractable problems. The potentials and generalisation capabilities of our approach are demonstrated in different clinical applications including cardiac cine, cardiac perfusion and brain perfusion imaging. We show, through numerical and graphical experiments, that the proposed scheme reduces blurring artefacts and preserves the target shape and fine details. We also report the highest quality reconstruction under highly undersampling rates in comparison to several state of the art techniques.

Introduction

A central limitation of Magnetic Resonance Imaging (MRI) is the linear relation between the number of necessary measurements to form an image and the acquisition time. This constraint causes negative effects including [START_REF] Havsteen | Are movement artifacts in magnetic resonance imaging a real problem?a narrative review[END_REF][START_REF] Hollingsworth | Reducing acquisition time in clinical MRI by data undersampling and compressed sensing reconstruction[END_REF][START_REF] Zaitsev | Motion artifacts in MRI: a complex problem with many partial solutions[END_REF]: (i) sensitivity to motion responsible for image degradation, (ii) reduced clinical throughput and (iii) patient non-compliance, generating more artefacts during the image formation. Thus, a central challenge in MRI is to respond to the question -How to decrease the long data-acquisition time?

There have been different attempts to answer this question, which solutions can be divided into two categories: hardwarebased or software-based approaches. The former ones aim to redesign the internal mechanisms of the scanner. However, despite the continuous development of technologies, at present, there is no evidence that the MRI data-acquisition time problem can be solved using a hardware-based approach [START_REF] Majumdar | Compressed sensing for magnetic resonance image reconstruction[END_REF][START_REF] Zaitsev | Motion artifacts in MRI: a complex problem with many partial solutions[END_REF]. This is primarily due to both the physical limitations of gradient hardware, and the physiological limits imposed for safe pulse sequences.

Unlike hardware-based approaches, the second category has shown significant potential for effectively reducing acquisition times. This is particularly due to the advent of Compressed Sensing (CS) in MRI [START_REF] Lustig | Sparse MRI: The application of compressed sensing for rapid MR imaging[END_REF], which is motivated by the solid mathematical foundations of CS [START_REF] Candès | Stable signal recovery from incomplete and inaccurate measurements[END_REF][START_REF] Donoho | Compressed sensing[END_REF]. The key idea of CS in MRI is to form an image -represented in an appropriate transform basis -from a considerably reduced finite-dimensional subset of k-space data acquired in an incoherent manner and relying on sparsity principles.

Notwithstanding that the body of literature has evidenced powerful results when using CS methods for MR image reconstruction, in what follows we show that there still is significant room for improvement in terms of reconstruction quality in the context of spatio-temporal MRI reconstruction. Namely, in this work we introduce a mathematical framework to improve undersampled MR image reconstruction in a dynamic setting which we call Compressed Sensing plus Motion (CS+M).

The central idea of our CS+M model is to compute, in a single model, a compressed sensing for fast MRI reconstruction loss, and an energy model derived from the complex motion patterns in the scene (i.e. from physiological or involuntary motion). More precisely, we frame the image reconstruction task as a unified minimisation problem, which is efficiently solved by an alternating scheme. Whilst this is an important part of our solution, our main contributions are:

• We propose a computationally tractable variational model framed as a multi-task framework, in which we highlight:

-A single optimisation model that allows establishing, explicitly and simultaneously, the connection between MR image reconstruction and the estimation of the inherent physical motion captured during the data acquisition.

-An efficient alternating minimisation technique to solve the original optimisation problem.

• We show that incorporating physical motion into the compressed sensing computation improves the MR image reconstruction from undersampled data, and produces images closer to fully sampled data whilst requiring less measurements. Furthermore, we show that image quality persists for higher acceleration factors than can be tolerated if motion is not included in the model.

• We validate the feasibility and generalisation capabilities of our model, through numerical and graphical results, with several clinical applications including cardiac cine, cardiac perfusion and brain perfusion data.

Related work

The problem of MRI reconstruction from highly undersampled dynamic measurements has been widely investigated in the community. In this section, we review the existing techniques in this context.

The potential and benefits of using CS in MRI have been demonstrated in different works starting with the pioneering work by [START_REF] Lustig | Sparse MRI: The application of compressed sensing for rapid MR imaging[END_REF], and followed by different approaches such as k-t SPARSE [START_REF] Lustig | k-t SPARSE: High frame rate dynamic MRI exploiting spatiotemporal sparsity[END_REF]), k-t SPARSE-SENSE Otazo et al. (2010) and L1-SPIRiT [START_REF] Lustig | SPIRiT: iterative self-consistent parallel imaging reconstruction from arbitrary k-space[END_REF], in which CS implications have been applied alone or in combination with parallel imaging.

A different direction based on low-rank matrix completion, which extends the idea of CS, has gained the attention of other scientists who have explored the effects of applying either local or global low-rank constraints. Liang in [START_REF] Liang | Spatiotemporal imagingwith partially separable functions[END_REF] proposed to compute temporal basis functions, using singular value decomposition, as a new form to achieve MR image reconstruction from undersampled k,t-space data. This work sets the basis and the motivation in the use of principal component analysis (PCA) for reconstructing a small subset of k,t-space data (e.g. [START_REF] Feng | Highly accelerated real-time cardiac cine MRI using k-t SPARSE-SENSE[END_REF][START_REF] Pedersen | k-t PCA: temporally constrained k-t BLAST reconstruction using principal component analysis[END_REF][START_REF] Velikina | Reconstruction of dynamic image series from undersampled MRI data using datadriven model consistency condition (MOCCO)[END_REF]). The idea of computing locally low-rank (LLR) constraint, in the context of undersampled MR image reconstruction, was reported in [START_REF] Miao | Accelerated cardiac cine MRI using locally low rank and finite difference constraints[END_REF][START_REF] Trzasko | Local versus global low-rank promotion in dynamic MRI series reconstruction[END_REF][START_REF] Zhang | Accelerating parameter mapping with a locally low rank constraint[END_REF], in which spatiotemporal correlations were analysed in small regions. Although LLR has been suggested to decrease computational load [START_REF] Trzasko | Local versus global low-rank promotion in dynamic MRI series reconstruction[END_REF], in comparison to global low-rank constraint, it comes at the expense of dealing with block artefacts [START_REF] Saucedo | Improved computational efficiency of locally low rank MRI reconstruction using iterative random patch adjustments[END_REF].

The concept of combining sparse and low-rank constraints was also successfully reported by the MRI community. The authors in [START_REF] Lingala | Accelerated dynamic MRI exploiting sparsity and low-rank structure: kt SLR[END_REF][START_REF] Majumdar | Exploiting rank deficiency and transform domain sparsity for MR image reconstruction[END_REF][START_REF] Zhao | Image reconstruction from highly undersampled (k, t)-space data with joint partial separability and sparsity constraints[END_REF] aimed to find a solution that is both sparse and low-rank. Also, the BCS approach was introduced in (Lingala and Jacob, 2013) and aimed at simultaneously estimating the temporal basis functions with no orthogonal constraints as well as the sparse coefficients from the undersampled measurements. A different approach based on decomposing the acquired measurements as a linear combination of low-rank (L) and sparse (S) componentsknown as Robust Principal Component Analysis (RPCA) [START_REF] Candès | Robust principal component analysis[END_REF] or L+S decompositionwas investigated in [START_REF] Gao | Compressed sensing using prior rank, intensity and sparsity model (PRISM): applications in cardiac cine MRI[END_REF][START_REF] Trémoulhéac | Dynamic MR image reconstruction-separation from undersampled k,t-space via low-rank plus sparse prior[END_REF][START_REF] Feng | Highly accelerated real-time cardiac cine MRI using k-t SPARSE-SENSE[END_REF]Otazo et al., , 2015;;[START_REF] Singh | Under-sampled functional MRI using low-rank plus sparse matrix decomposition[END_REF]. Particularly Otazo et al. demonstrated the feasibility of L+S model in (Otazo et al., 2015) for various clinical applications in MRI including cardiac cine and abdominal perfusion. Even though the L+S model has proved to be effective for MR image reconstruction, the separation of background and dynamic components, in fact, is not always possible since the incoherence required by this model, i.e. for L and S, is not always fulfilled.

Another line of search in dynamic MRI relies on the observation of motions patterns in such acquisitions e.g. [START_REF] Bilen | A motion compensating prior for dynamic MRI reconstruction using combination of compressed sensing and parallel imaging[END_REF][START_REF] Usman | Motion corrected compressed sensing for free-breathing dynamic cardiac MRI[END_REF]. For example authors of (Royueladel [START_REF] Val | Jacobian weighted temporal total variation for motion compensated compressed sensing reconstruction of dynamic MRI[END_REF] introduced a new regularisation metric based on a spatial weighting given by the Jacobian of the estimated deformation via a groupwise B-spline parametric deformable registration technique, to improve the reconstruction in a compressed sensing framework. [START_REF] Rank | 4D respiratory motion-compensated image reconstruction of free-breathing radial MR data with very high undersampling[END_REF] proposed an alternating scheme, in a coarse-to-fine setting, between motion-compensated image reconstruction based on HDTV and artefact robust motion estimating relying on the Demons algorithm and a cyclic self-consistency constraint, for 4D respiratory time-resolved MRI.

Whilst most of the literature seeks to solve only the reconstruction task or to include motion information in a sequential fashion, our work is more closely related to multi-task (joint models) approaches. The central idea of this perspective is to tackle, simultaneously and explicitly, two or more tasks that share a common structure [START_REF] Caruana | Multitask learning[END_REF]. In this work, our tasks are reconstruction and motion estimation. These tasks have been recognised as highly related to each other since early developments in MRI [START_REF] Wood | MR image artifacts from periodic motion[END_REF][START_REF] Van De Walle | Magnetic resonance imaging and the reduction of motion artifacts: review of the principles[END_REF]. Our main motivation for designing a multitask approach is to reduce the error propagation and to take advantage of the beneficial mutual influence of these two tasks.

Following the multi-task perspective different works have been reported. Authors of [START_REF] Odille | Joint reconstruction of multiple images and motion in MRI: Application to free-breathing myocardial t 2 quantification[END_REF] proposed a joint optimisation framework correcting for both inter-and intraimage motion requiring motion sensors. The Deformation Corrected -Compressed Sensing (DC-CS) model was introduced in [START_REF] Lingala | Deformation corrected compressed sensing (DC-CS): A novel framework for accelerated dynamic MRI[END_REF]. This model relied on compressed sensing techniques along with a Demons registration method, and was solved in an alternating way after introducing auxiliary variables. The philosophy of our work is similar to the works of that [START_REF] Burger | A variational model for joint motion estimation and image reconstruction[END_REF][START_REF] Zhao | Motion compensated dynamic MRI reconstruction with local affine optical flow estimation[END_REF]. Motivated by the combined principles of compressed sensing and optical flow, we emphasize that the main differences stand in the way of treating the optical flow task, which is described next.

In [START_REF] Burger | A variational model for joint motion estimation and image reconstruction[END_REF], authors provide a theoretical analysis of a general formulation, while in this work, we establish a solid proof of concept that jointly addressing highly undersampled MRI reconstruction and motion estimation, in the original and complete optical flow setting, improves the quality of the recovered images. We take this model as backbone and shape it according to our specific application. Whilst the authors of [START_REF] Zhao | Motion compensated dynamic MRI reconstruction with local affine optical flow estimation[END_REF] simplified the weighted optical flow task by considering only affine displacement fields, in our model, it is not restricted to any particular class of functions and we consider the un-weighted optical flow formulation.

MRI Reconstruction: Preliminaries

In a dynamic MRI setting, the signal measurements, y, are collected in a time-spatial-frequency space (i.e. k,t-space) and expressed as y(k, t) = Ω u(x, t)exp(-jk T x) dx + η(k, t), where Ω is a connected open bounded subset of R 2 representing the definition domain of the image and x the 2D spatial coordinate. Moreover, k is the 2D frequency variable, t denotes the temporal coordinate in [0, T ] with T being the end time of acquisition, η is inherent noise during the acquisition, and u is the target stack of images showing a moving part of the patient body over the acquisition time.

A current research direction in MRI is focused on reconstructing a small number of measurements with the aim of decreasing the acquisition time. That is, y(k, t) is available for only a small amount of values of k ∈ R 2 for each time t. However, the inverse reconstruction problem becomes highly underconstrained and can only be achieved by adding a prior information on the reconstruction. The implicit sparsity of MR images in a transform domain is often used in this prospect [START_REF] Lustig | Sparse MRI: The application of compressed sensing for rapid MR imaging[END_REF]. Based on Compressed Sensing (CS) principles, the L 1 -norm is used as a measure of sparsity, and the problem of reconstructing undersampled MRI data becomes:

argmin u T u 1 , s.t. Au -y 2 2 ≤ α, (1) 
where A denotes the associated undersampled Fourier operator , also encoding coil sensitivities, which is a linear, continuous and bounded operator according to Plancherel's theorem. Moreover, T is the transform domain, in which a sparse representation is promotedcommon transforms include Wavelet Tranform [START_REF] Lustig | Sparse MRI: The application of compressed sensing for rapid MR imaging[END_REF] widely used in compression, spatial finite differences such that T u 1 = T V(u) (Total Variation [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF]) or TGV(u) (Total Generalised Variation, [START_REF] Schloegl | Infimal convolution of total generalized variation functionals for dynamic MRI[END_REF]. In what follows, we choose the Total Variation operator favoring piecewise constant reconstruction with sharp edges, and T u 1 is replaced by T V(u). For tractability purposes, the constrained problem (1) can be relaxed to the following unconstrained problem using an L ppenalty method, which reads:

argmin u 1 2 Au -y 2 2 + γ T u 1 , (2) 
where γ > 0 is a weighting parameter between the fidelity term and the regularisation. Although the body of literature for reconstructing undersampled MRI data has provided promising results -with generalised CS approaches such as the scheme described in (2), and extended ideas [START_REF] Lingala | Accelerated dynamic MRI exploiting sparsity and low-rank structure: kt SLR[END_REF]; Majumdar and Ward (2012); Otazo et al. ( 2015)-MRI reconstruction is still a challenging and open problem and there is plenty of room for further improvements especially in the dynamic setting. In particular, one seeks to cope with -How to reconstruct high-quality MR images with less measurements? We address this question by proposing a new multi-task framework called CS+M which, unlike most of existing approaches, considers, explicitly and simultaneously, the computation of the inherent complex motion patterns derived from physiological or involuntary motion.

Compressed Sensing Plus Motion (CS+M)

In this section, we introduce our CS+M model for improving under-sampled MRI reconstruction in dynamic settings.

Our algorithmic approach is strongly motivated by the fact that MRI is well-known to be highly sensitive to motion since its early development [START_REF] Wood | MR image artifacts from periodic motion[END_REF]; [START_REF] Van De Walle | Magnetic resonance imaging and the reduction of motion artifacts: review of the principles[END_REF]. In dynamic MRI scans, in particular, the inherent physical motion of the target structure affects the acquired measurements resulting in quality degradation of classical sequential CS reconstructed images which compromises clinical interpretations. Our main motivation is thus: Assumption 1. Incorporating physical motion estimation into a given dynamic MRI reconstruction method resulting in a faster acquisition allowing for extreme under-sampling, and in higher time resolution leading to better image quality.

The first question we thus need to answer is How to model the inherent physical motion in the scene?

The problem of estimating motion from a set of images acquired dynamically, has been extensively investigated in the community with models categorised in direct and indirect methods [START_REF] Torr | Feature based methods for structure and motion estimation[END_REF][START_REF] Irani | About direct methods[END_REF]. However it is still considered as a challenging problem and remains an active research topic. In this work, we focus on the Optical Flow setting, which is one of the most wellestablished methods starting with the pioneering work of Horn and Schunck [START_REF] Horn | Determining optical flow[END_REF]. Optical Flow relies on the linearised brightness constancy assumption also known as the optical flow constraint. It links intensity variations in image sequences u(x, t) to the underlying velocity fields v(x, t) by assuming the image intensity is constant along the trajectory x(t) with v(x, t) = dx (t) dt : 0 = du dt = ∂u ∂t + ∂u ∂x ∂x ∂t = u t + ∇u.v, where ∇u is the spatial gradient image. This problem is underdetermined since it gives only one equation to estimate a bidimensional variable v for 2D images. However, one can still estimate the motion by introducing prior information on the nature of the velocity field in a variational framework [START_REF] Horn | Determining optical flow[END_REF].

From a variational setting perspective, Optical Flow can be cast as the problem of minimising an energy functional with respect to the velocity field v, composed of a fidelity term D Motion measuring the brightness constancy deviations, and a regularisation term J Motion penalising high variations in v. Formally, one seeks to solve the following functional:

E OF (u, v) = T 0 D Motion (u, v) + δJ Motion (v) dt, = T 0 ∇u.v + u t 1 + δT V(v) dt, (3) 
where δ > 0 is a weighting parameter balancing the influence of each term. Our motivation for choosing the T V -L 1 optical flow model is twofold. Firstly, we aim to gain robustness in terms of outliers, which is important for MRI as inherent noise during MRI acquisition deteriorates the quality of the reconstruction. Secondly, this formulation allows for piecewise constant flow fields with discontinuities. This model has been studied in [START_REF] Aubert | Computing optical flow via variational techniques[END_REF][START_REF] Zach | A duality based approach for realtime TV-L 1 optical flow[END_REF][START_REF] Pérez | TV-L 1 optical flow estimation[END_REF] and it proves to give a robust and good estimate of the physical motion.

We now turn to detail how ( 2) and ( 3) can be carefully intertwined. In particular, we describe our multi-task variational model for simultaneously reconstructing dynamic MR images as well as estimating the underlying physical motion, exploiting then both spatial and corrected temporal redundancy to further improve image quality. The CS+M model can be cast as an optimisation problem, in which one seeks to optimise over the MRI reconstruction u and the estimated motion v:

argmin u,v T 0 D rMRI (u(., t))
Data fidelity Reconstruction +γ R rMRI (T u(., t))

Regularisation promoting spatial sparsity

+ β D Motion (u(., t), v(., t)) Data fidelity Physical motion +δ J Motion (v(., t)) Regularisation Physical motion dt , ⇔ argmin u,v T 0 1 2 Au(., t) -y(., t) 2 2 + γT V(u(., t)) + β ∇u(., t).v(., t) + u t (., t) 1 + δT V(v(., t)) dt, (4) 
with β > 0, γ > 0, δ > 0, positive weighting parameters balancing the influence of each term. The purpose of this work is a proof-of-concept study to show that spatio-temporal approach estimating explicitly and simultaneously the physical motion can generally improve the image quality upon a simple frame-by-frame reconstruction in an MRI setting. We show in the next section, that this improvement happens also for perfusion MRI with very promising results even if the brightness constancy is not fulfilled in this context. We follow a discretise then optimise strategy to numerically solve problem (4).

Optimisation Scheme

For tractability purposes, we define a spatio-temporaldiscrete version of (4) by performing the discretisation of the time interval [0,T] into W t -steps and of the spatial domain Ω into the pixel grid {1, • • • , M} × {1, • • • , N}. This results in W t reconstructed images u and in W t -1 vector fields v on the pixel grid. We then seek to minimise the following functional:

argmin u,v W t k=1 1 2 Au k -y k 2 2 + γ ∇u k 2,1 + W t -1 k=1 δ( v k 1 2,1 + v k 2 2,1 ) + β ∇u k .v k + u k t 1 , (5) 
where T V has been replaced by the discrete isotropic T V:

∇u 2,1 := M i=1 N j=1 | u x (i, j) 2 + u y (i, j) 2 |.
Due to the scalar product ∇u k .v, the energy is nonconvex with non-differentiable L 1 norms involved making the numerical resolution challenging. Therefore, to achieve more computational tractability, we propose an alternating minimisation scheme to solve (5).

We thus break up the problem into two more tractable subproblems, in which we fix one of the variables and minimise the functional with respect to the other one alternatively. This leads to the following iterative two-step scheme in which

u l = (u k l (i, j)) i=1,••• ,N, j=1,••• ,M,k=1,••• ,W t ∈ R N MW t and v 1,l = (v k 1,l (i, j)) i=1,••• ,N, j=1,••• ,M,k=1,••• ,W t -1 ∈ R N M(W t -1) , v 2,l = (v k 2,l (i, j) i=1••• ,N, j=1,••• ,M,k=1,••• ,W t -1 ∈ R N M(W t -1) :
Sub-problem 1: Optimisation over u. The optimisation problem over u while keeping v 1,l , and v 2,l fixed is defined as

u l+1 = argmin u F(u) = W t k=1 1 2 Au k -y k 2 2 + γ ∇u k 2,1 + β W t -1 k=1 u k x v k 1,l + v k 2,l u k y + u k t 1 , (6) 
where

u k x (i, j) = D x u k (i, j) = u k (i+1, j)-u k (i-1, j) 2 if 1 < i < N, k < W t , 0 else, u k y (i, j) = D y u k (i, j) = u k (i, j+1)-u k (i, j-1) 2 if 1 < j < M, k < W t , else, and 
u k t (i, j) = D t u k (i, j) = u k+1 (i, j) -u k (i, j) if k < W t , 0 else,
This is a typical ROF problem [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF] coupled with a transport term coming from the optical flow component. We propose to use a primal-dual algorithm to solve this problem [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF]. We thus introduce the following discrete operator:

C u u =           A ∇ D t + v 1,l D x + v 2,l D y           u,
and compute the convex conjugate F * corresponding to F as:

F * (y) = W t k=1 1 2 y k 1 2 2 + y k 1 , y k + 1 {y: y 2,∞ ≤1} ( y k 2 γ ) + 1 {y: y ∞ ≤1} ( y k 3 β ). ( 7 
)
This leads to the following primal-dual problem, which reads:

argmin u argmax y W t k=1 C u u k , y k - 1 2 y 1 2 2 -y k 1 , y k -1 {y: y 2,∞ ≤1} ( y k 2 γ ) -1 {y: y ∞ ≤1} ( y k 3 β ), (8) 
and the following iterative primal-dual scheme :

ỹh+1 = y h + σC u (2u h -u h-1 ), (9) 
y 1,h+1 = ỹ1,h+1 -σy σ + 1 , (10) 
y 2,h+1 = π γ (ỹ 2,h+1 ), (11) 
y 3,h+1 = π β (ỹ 3,h+1 ), (12) 
u h+1 = u l -τC T u y h+1 , (13) 
with π α (y) = y max(1,

y 2 α )
, C T u the adjoint operator, and σ and τ step sizes. After convergence of this iterative scheme, we set u l+1 = u h .

Sub-problem 2 : Optimisation over v. The optimisation problem over v while keeping u l fixed is defined as:

argmin v=(v 1 ,v 2 ) W t -1 k=1 ∇u k l+1 .v k + u k t,l+1 1 + δ β W t k=1 ( ∇v 1 2,1 + ∇v 2 2,1 ). ( 14 
)
This is a classical L 1 -T V optical flow problem which can also be solved by a primal-dual algorithm. We thus formulate the following associated primal-dual problem as:

argmin v argmax z W t k=1 u t,l+1 + ∇u k l+1 .v 1 + C v v, z -1 {y: y 2,∞ ≤1} ( z 1 β δ ) -1 {y: y 2,∞ ≤1} ( v 2 β δ ), (15) 
where 

C v v = ∇ 0 0 ∇ v is a discrete
18 v Old ← v; 19 z ← z + σC v v; 20 z ← π δ β (z); 21 ṽ ← v -τC T v z; 22 v ← ṽ +            τβ if ρ(ṽ) < -τ β 2 2 -τβ if ρ(ṽ) > τ β 2 2 -ρ(ṽ) β 2 2 β else, ; 23 v ← 2v -v Old ; 24 v ← solve ( absdiff (v, v Old ) ) ; 25 dv error ← solve ( absdiff (v previous , v) ) ; 26 d error ← solve ( sum (du error , dv error ) ) ; 27 return u, v. v k 1,x (i, j) = v k 1 (i + 1, j) -v k 1 (i, j) if i < N 0 if i = N, v k 1,y = v k 1 (i, j + 1) -v k 1 (i, j) if j < M 0 if j = M, v k 2,x (i, j) = v k 2 (i + 1, j) -v k 2 (i, j) if i < N 0 if i = N, v k 2,y = v k 2 (i, j + 1) -v k 2 (i, j) if j < M, 0 if j = M
Similarly, applying the primal-dual algorithm leads to the following iterative scheme:

z h+1 = π δ β (z h + σC v (2v h -v h-1 )), ( 16 
) ṽh+1 = v h -τC T v z h+1 , (17) 
v h+1 = ṽh+1 +            τβ if ρ(ṽ h+1 ) < -τ β 2 2 , -τβ if ρ(ṽ h+1 ) > τ β 2 2 , -ρ(ṽ h+1 ) β 2 2 β else, (18) 
with C T v being the adjoint operator, ρ(ṽ h+1 ) = u t,l+1 +∇u l+1 .ṽ l+1 , and β = (u x,l+1 , u y,l+1 ) T . After convergence of this scheme, we set v l+1 = v h . The overall procedure is summarised in 4.1.

Experimental Results

This section describes in details the experiments that we conducted to validate our CS+M reconstruction technique.

Data Description

We evaluate our approach extensively and prove its generalisation by using data coming from: cine cardiac, cardiac perfusion and brain perfusion MR imaging. The datasets are saved as fully sampled raw data and then are retrospectively undersampled using a variable-density random sampling pattern as suggested by Lustig in [START_REF] Lustig | Sparse MRI: The application of compressed sensing for rapid MR imaging[END_REF] and using cartesian sampling. Datasets characteristics are as follows:

• Dataset I -A cine cardiac dataset which was acquired from a healthy volunteer, from [START_REF] Schloegl | Infimal convolution of total generalized variation functionals for dynamic MRI[END_REF]. Measurements were collected using a 3T Siemens scanner. Matrix size-208 × 168, heart phases-25, coils-30, FOV = 274.62 × 340mm and TA=16s.

• Datasets II and III -Realistic cardiac cine simulation generated using the MRXCAT phantom framework [START_REF] Wissmann | MRXCAT: Realistic numerical phantoms for cardiovascular magnetic resonance[END_REF]. Whilst the Dataset II was simulated during breath-holding, the III was set with free respiratory motion. The duration of the heart beat and respiratory cycles were set as 1 sec and 5 sec respectively. Both were generated with Matrix size-409 × 409, heart phases-24, coils-12.

• Datasets IV and V -Realistic cardiac perfusion simulations using MRXCAT [START_REF] Wissmann | MRXCAT: Realistic numerical phantoms for cardiovascular magnetic resonance[END_REF] framework.

Simulations were set with Matrix size-224 × 192, Frames -32, coils-12. The difference, for analysis purposes, relies on the fact that the Dataset IV was simulated with breath-holding whilst the dataset V during free-breathing with the respiratory cycle set as 5 sec.

• Dataset VI -A cardiac perfusion dataset acquired during free-breathing. Available from the computational biomedical imaging group at the University of Iowa1 . It was acquired using FLASH sequence on a 3T Siemens scanner (TR/TE=2.5/1.5ms) with a matrix size of 190 × 90 × 70.

• Dataset VII -A single-coil brain perfusion dataset acquired from multi slice 2-D dynamic susceptibility contrast (DSC) 1 with frame separation of TR=2s, and with a matrix size of 128 × 128 × 60.

All the measurements and reconstructions in this section were taken from these datasets. All tests and comparisons were run under the same conditions in a CPU-based implementation. 

Evaluation Scheme

We validate our approach based on both qualitative and quantitative analyses. Whilst the qualitative analysis is derived from the observations and interpretations of physicians, for the quantitative analysis, we rely on computing a set of metrics between the gold-standard and the reconstructed MR image. From now, we refer to the reconstruction obtained from computing the sum-of-squares (SoS) using fully sampled data as gold-standard. More precisely, we base our findings on the following evaluation scheme.

(E 1 ) Comparison of reconstructions between CS and CS+M for a range of acceleration factors associated to rates of undersampling in k-space data. This comparison is based on visual comparisons of the 2D MR reconstructions at specific time steps and of selected 1D signal intensity profiles: Fig. 3.

(E 2 ) Careful analysis of the temporal reconstruction quality for different acceleration factors between CS, L+S and CS+M using the SSIM and SLMSE image-quality metrics: Fig. 2.

(E 3 ) Visual assessment of the reconstruction quality, and numerical visualisation of the intensity profiles and the LV area of our approach and three reference techniques for reconstruction namely zero-filling, CS [START_REF] Lustig | Sparse MRI: The application of compressed sensing for rapid MR imaging[END_REF] and L+S (Otazo et al., 2015): Fig. 4.

(E 4 ) Temporal performance comparison of the reconstructions between the CS+M and three reconstruction schemes (ZF, CS and L+S) from the literature along with the analysis of three regions of interest: Fig. 5.

(E 5 ) Generalisation capabilities and global analysis performance of our approach vs. three reconstruction schemes (ZF, CS and L+S) and for different acceleration factors: Fig. 6 (E 6 ) Comparison of our approach vs MC-JPDAL [START_REF] Zhao | Motion compensated dynamic MRI reconstruction with local affine optical flow estimation[END_REF], which follows similar philosophy as our technique, that is-a joint model. Visual evaluation is reported in Fig. 8 whilst metric wise performance is displayed in Fig. 7.

We address the quantitative analysis relying on two wellestablished image-quality metrics: (i) the Structural Similarity (SSIM) Index [START_REF] Wang | Image quality assessment: from error visibility to structural similarity[END_REF], which calculates the similarity of two image reconstructions from the contrast, luminance and structure, and (ii) the inverted Localised Mean Squared Error (sLMSE) [START_REF] Grosse | Ground truth dataset and baseline evaluations for intrinsic image algorithms[END_REF] that computes the local similarity based on local patches. The computation of the sLMSE is a normalised and inverted measure such that closer to 1 means higher quality reconstruction.

Parameter Selection

Parameters of our approach and the ones we compare with were set individually chosen from a range of values with respect to the best SSIM and sLMSE, for each type of data. In particular for the case of the L+S approach, we define the range of values as suggested in (Otazo et al., 2015) along with the code provided by the authors. For our approach, there are three parameters to set γ, δ and β. These parameters were tested in a range of values and for each clinical application type as follows. For the parameter β ∈ [0.1, 1], we found the best outcome by setting it to 0.45 whilst for the other two parameters, γ and δ , we tested them in the range [10 -2 , ..., 0.9]. It is to be noticed that the parameters of the CS+M model can be easily fine-tuned for a particular clinical application and kept fixed for other datasets with similar dynamic information. Moreover, we used TV [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF] as an operator for promoting sparse representation in our and compared schemes. The objective of this work is to have a proof of concept to show the potentials and generalisation capabilities of our approach for MRI reconstruction. Therefore, a detailed investigation on regularisers shall be tackled in future work.

Results and Discussion

We describe our findings following the scheme described in Section 3.2. We start by evaluating classic CS MRI scheme against our CS+M model. In Fig. 3, we display three reconstructed samples with an acceleration factor of 8x, and for three different datasets. Visual assessment of the reconstructed samples agrees with our initial hypothesis that the incorporation of motion in the reconstruction model benefits the output quality. Most notably, it can be observed in a comparison with the gold-standard, in the right and left ventricular endocardial borders (see outlined green and red regions), that CS+M offers better reconstructions in terms of contrast and shape than the CS reconstructions (see yellow arrows). Moreover, in a closer inspection at the zoomed-in views, it is to be noticed the loss of fine details and blurring effect at the papillary muscles. This is further reflected in the signal intensity profiles on the right side of Fig. 3, where, and for all the displayed cases, the CS+M approach (red line) is closer to the gold-standard (blue line). Although CS based reconstruction (green line) offers a good approximation to the gold-standard, it fails to eliminate all perturbations such as blurring artefacts (see yellow arrows), contrary to our approach. This is reflected in the behaviour of signal intensity profile in which significant oscillations are observed; as it is visible on the zoomed-in views at the right side of Fig. 3. In particular, it can be observed in the signal intensity profile of Dataset III, acquired during free-breathing (last row of Fig. 3), that signals generated from CS describe strong oscillations compared to the gold-standard and CS+M ones yielding to an unstable behaviour (see zoom-in views).

But -Is there a significant difference in reconstruction quality between our approach and the compared reconstruction schemes? To respond to this question we compute the reconstruction of all datasets under high undersampling factors up to 12x. The plot of Fig. 2 shows the SSIM and sLMSE curves for CS, L+S and our approaches where we can observe that the CS+M outperforms CS and L+S at all acceleration counts. For example, with an acceleration of 8x, the reconstruction quality obtained with our approach can only be achieved with an acceleration of 6x for CS for both metrics. Meaning that, despite reducing the measurement samples, our approach is still able to generate higher-quality images. A similar behaviour, but with a less numerical difference, is observed in a comparison between our approach and L+S. We then underline a strength of our approach that is its performance even with highly acceleration factors.

For a more detailed analysis, we evaluate our approach by comparing its performance against three different reconstruction schemes: zero-filling, CS and L+S. Fig. 4 displays reconstructed samples, taken from datasets I and II and undersampled at 8x, of the chosen schemes and our proposed one along with the gold-standard. By visual evaluation, we observe that the compared schemes tend to produce blurring artefacts and shows that our approach produces a reconstruction with higher similarity metric to the gold-standard.

Next, we investigate -how both CS+M and the compared schemes perform in the temporal domain. We execute another experiment using the whole cardiac perfusion datasets. We select this application since the dynamic information contained in it differs from the cardiac cine information. In Fig. 5, we show four reconstructed samples resulted from the compared schemes and our approach along with the gold-standard, (A) at 7.5x and (B) at 8x acceleration. By visual inspection, we observe that the effects discussed above from the cardiac cine datasets also prevail for the perfusion cardiac case, meaning that, the compared approaches reflect perturbations in the reconstructions such as blurring effects, and loss of contrast and details especially visible in the right and left ventricular endocardium.

We also computed the reconstructions over the whole corresponding datasets, and extracted the temporal intensity for three regions of interest in the myocardium. The results are displayed at Fig. 5 -(a.1),(b.1). A closer inspection shows higher temporal fluctuations which translate in higher residual artefacts for the compared schemes (see blue arrows), whilst our approach gives a more stable signal which is in fact closer to the gold-standard in all cases. This is further reflected by the error plots (Root-mean-square error RMSE computed in the three identified regions of interest), in which our approach has the lowest error value for all reconstructed samples. From the compared schemes, the one that performs better is L+S, however, we observe on the temporal intensity signals and the resulted reconstructions (Figs. our approach displays more stable signal intensities with less fluctuations and blurring artefacts, and better preservation of the shape.

For quantitative evaluation of generalisation capabilities of our approach and for a global analysis performance, we report the results in Fig. 6. The reported numbers are the average of the selected image metrics across the entire corresponding datset. It is to be noticed, and as we previously mentioned, both metrics as closer to 1 as higher reconstruction quality. From the results, we observe that our approach outperforms the com-pared reconstruction schemes with respect to the SSIM metric. We also notice that, in the case where there are different types of dynamics -for example the organ's physiological motion along with the breathing -the reconstruction benefits from this knowledge reflecting in a significant improvement of the reconstruction (for example see Datasets V and VI). Overall, our approach reports the highest values for all datasets and for all acceleration factors. This shows the ability of our approach to generalise to different types of dynamics, e.g. free-breathing and perfusion data.

We finally compare our approach against [START_REF] Zhao | Motion compensated dynamic MRI reconstruction with local affine optical flow estimation[END_REF], which is a recent technique with similar philosophy as ours. We include an extra cine cardiac dataset provided in [START_REF] Zhao | Motion compensated dynamic MRI reconstruction with local affine optical flow estimation[END_REF] (see that paper for a detailed description of the dataset) composed of 30 temporal frames of 256 × 256. We use an undersampling golden angle radial pattern with 15 rays whilst the second dataset is undersampled with a cartesian patter of 6x. We report the results in Figs. 8,7. We start by displaying a set of visual time reconstruction outputs in Fig. 8. In a closer inspection of the outputs, we can see that MC-JPDAL reconstructions exhibit blurry artefacts and tend to lose the initial contrast. These effects are significantly less noticeable with our method. See for example, the outputs at rows 4th-6th , where the left ventricular blood pool displays loss of details, this is also observed in the first rows outputs. We further support the visual evaluation by reporting a metric wise comparison in Fig. 7. The displayed plots are the average of each metric for all the datasets and for different acceleration factor. With respect to the SSIM we outperform MC-JPDAL for the two compared datasets. Whilst for the PNSR we readily compete with that approach but specially we perform better with high acceleration factors.

We remark that although the MC-JPDAL [START_REF] Zhao | Motion compensated dynamic MRI reconstruction with local affine optical flow estimation[END_REF]) is based on similar philosophy as ours, the improvement of our approach comes from the fact that the technique of that [START_REF] Zhao | Motion compensated dynamic MRI reconstruction with local affine optical flow estimation[END_REF] simplifies the weighted optical flow task by considering only affine displacement fields whereas, in our model, the displacement field is not restricted to any particular class of functions.

Overall, a global inspection of the qualitative and quantitative analyses from the compared schemes shows the following drawbacks, on which our CS+M approach improves: Introduction of Temporal Artefacts. We notice that the compared schemes exhibit significant oscillations in the temporal signal intensity, which is translated in higher residual aliasing and blurring artefacts. This effect is prevailed for all datasets. By contrast, the CS+M approach displayed temporal stable signals which are closer to the gold-standard yielding to higher reconstructions quality.

Fine Details and Shape Preservation. From the results, we observe that compared approaches exhibit loss in details and blurring effect, for example the papillary mus-cles of the heart or in the brain, and even more significantly noticed during complex dynamic transitions such as the contraction-expansion of the heart. Conversely, our approach offered a better spatio-temporal fidelity for all applications.

Stability under Physiological Motion. We notice that the compared schemes tend to have significant fluctuations during changes in the dynamic information such as systolic phases (in the case of the heart) or when additional dynamic information appears as in the case of freebreathing datasets. During these events, the results coming from our scheme exhibit a more stable behaviour resulting in a reconstruction closer to the gold-standard.

These points comes to highlight the benefit of incorporating motion into the algorithmic MRI reconstruction whilst supporting our initial hypothesis.

Conclusion

In this paper we address a central question in MRI which is -How to get high quality MRI reconstructed images under highly undersampling factors? We respond to this question through a new approach called CS+M, in which the novelty largely relies on incorporating, explicitly and simultaneously in a single model, an estimate of the scene's motion to the algorithmic MRI reconstruction to provide higher quality images with less motion artefacts. We demonstrate the potentials of our approach based on exhaustive qualitative and quantitative analyses, in which we show that our approach outperforms traditional reconstruction schemes in terms of preservation of fine details and organs' shape and reduction of blurring artefacts.Whilst the objective of this work is to open a new line of research for further clinical investigation, since the CS+M model proves that motion has significant positive effects that translates to clinical potentials, future work might address how to improve the motion estimation. Otazo, R., Candès, E., Sodickson, D.K., 2015. Low-rank 

Figure 1 :

 1 Figure 1: From left to right: MRI setting in which spatial-frequency information is acquired to reconstruct a target body's part of the patient. Illustration of our proposed scheme, in which explicit and simultaneous computation of the physical motion is injected in the algorithmic MRI reconstruction.

Figure 2 :

 2 Figure 2: Plots comparing CS, L+S and CS+M using two reconstruction quality metrics, SSIM and sLMSE, over the whole cardiac perfusion datasets.
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 34 Figure 3: Displayed reconstruction of three samples. (From left-to-right and top-to-bottom) Reconstructed fully-sampled data (i.e. gold-standard), reconstructed samples using CS and our CS+M. Zoom-in views in the middle part show more details in which the left (red) and right (green) ventricular endocardial borders have been outlined. Yellow arrows show artefacts created during the CS reconstruction. Signal intensity profiles retrieved from the reconstructed sample: blue lines in the plots show ideal signal intensity, green and red lines represent the CS and CS+M approaches. The results show that measurements generated from our approach are closer to the gold-standard.

Figure 5 :

 5 Figure 5: Comparison performance on the temporal domain of our approach against three from the body of literature (ZF, CS and L+S). (A) and (B) display a reconstructed sample for each evaluated scheme along with the gold-standard using Datasets V and VI. (a.1) and (b.1) show the corresponding temporal signal intensity profiles and error plots of three regions of interest at myocardium. The RMSE metric in three different regions namely Septal, Anterior and Posterior, is displayed on the right hand side of the figure .
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 6 Figure6: Global performance analyses from our approach and three other reconstruction schemes (ZF, CS and L+S). Displayed SSIM measures averaged over all the corresponding dataset denoted in 10 -2 .
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 7 Figure 7: Performance comparison of our approach vs another joint model MC-JPDAL using the SSIM and PSNR metrics for two datasets.

Figure 8 :

 8 Figure 8: Visual comparison of our technique vs another joint model (MC-JPDAL) on reconstructed time samples. The first dataset was undersampled with a golden angle of 10 lines whilst the second with a cartesian one with 6x. Columns display the same time reconstructed frame along with the gold-standard.

  operator such that:

	11	y 1 ← ỹ1 -σy σ+1 ; y 2 = π γ (ỹ 2 );
	12	y 3 = π β (ỹ 3 );
	13	u ← u -τC T u y;
	14	ū ← 2u -u Old ;

15 u ← solve ( absdiff (u Old , u) ) ; 16 du error ← solve ( absdiff (u previous , u) ) ; 17 while { v > ζ stop }:

  plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components. Magnetic Resonance in Medicine , 1125-1136. Otazo, R., Emmanuel, C., Sodickson, D.K., 2013. Low-rank & sparse matrix decomposition for accelerated DCE-MRI with background & contrast separation, in: Proceedings of the ISMRM Workshop on Data Sampling and Image Reconstruction. Otazo, R., Kim, D., Axel, L., Sodickson, D.K., 2010. Combination of compressed sensing and parallel imaging for highly accelerated first-pass cardiac perfusion MRI. Magnetic Resonance in Medicine , 767-776.

https://research.engineering.uiowa.edu/cbig/