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Constructive exact controls for some semilinear PDEs

Arnaud Münch

Let Ω be a bounded domain of Rd, d ∈ {2, 3} with C1,1 boundary and ω ⊂⊂ Ω
be a non empty open set. Let T > 0 and denote QT := Ω× (0, T ), qT := ω× (0, T )
and ΣT := ∂Ω× (0, T ). We consider the semilinear wave equation

(1)


�y + g(y) = f1ω, in QT ,

y = 0, on ΣT ,

(y(·, 0), yt(·, 0)) = (u0, u1), in Ω,

where (u0, u1) ∈ V := H1
0 (Ω) × L2(Ω) is the initial state of y, f ∈ L2(qT ) is a

control function and �y := ∂tty−∆y. g : R→ R is a function of class C1 such that
|g(r)| ≤ C(1 + |r|) ln(2 + |r|) for every r ∈ R and some C > 0. (1) has a unique
global weak solution in C([0, T ];H1

0 (Ω)) ∩ C1([0, T ];L2(Ω)) (see [2]). The exact
controllability for (1) in time T is formulated as follows: for any (u0, u1), (z0, z1) ∈
V , find a control function f ∈ L2(qT ) such that the weak solution of (1) satisfies
(y(·, T ), ∂ty(·, T )) = (z0, z1). This problem has been solved by Fu,Yong and Zhang:

Theorem 1. [Fu, Yong, Zhang, 2007] For any x0 ∈ Rd\Ω, let Γ0 = {x ∈ ∂Ω, (x−
x0) · ν(x) > 0} and, for any ε > 0, let Oε(Γ0) = {y ∈ Rd | |y − x| ≤ ε forx ∈ Γ0}.
Assume

(H0) T > 2 maxx∈Ω |x− x0| and ω = Oε(Γ0) ∩ Ω for some ε > 0,

(H1) lim sup|r|→∞
|g(r)|

|r| ln1/2 |r| = 0,

then (1) is exactly controllable in time T .

Γ0 is the star-shaped part of the whole boundary of Ω introduced in [11]. The-
orem 1 extends to the multi-dimensional case the result of [15] devoted to the
one dimensional case. The proof given in [5] is based on a fixed point argu-
ment introduced in [15]: it is shown that the operator K : L∞(0, T ;Ld(Ω)) →
L∞(0, T ;Ld(Ω)) where yξ := K(ξ) is a controlled solution through the control
function fξ (of minimal L2(qT )-norm) of the linear boundary value problem

�yξ + yξ ĝ(ξ) = −g(0) + fξ1ω, in QT ,

yξ = 0, on ΣT ,

(yξ(·, 0), ∂tyξ(·, 0)) = (u0, u1), in Ω,

ĝ(r) :=


g(r)− g(0)

r
r 6= 0,

g′(0) r = 0
,

satisfying (yξ(·, T ), yξ,t(·, T )) = (z0, z1) has a fixed point. The existence of a fixed
point for the compact operator K is obtained by using the Leray-Schauder’s degree
theorem: it is shown under the growth assumption (H1) that there exists a con-
stantM = M(‖u0, u1‖V , ‖z0, z1‖V ) such thatK maps the ballBL∞(0,T ;Ld(Ω))(0,M)
into itself.

Our goal is to construct an explicit sequence (fk)k∈N that converges strongly to
an exact control for (1). The controllability of nonlinear partial differential equa-
tions has attracted a large number of works in the last decades (see [3]). However,
as far as we know, few are concerned with the approximation of exact controls for
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nonlinear partial differential equations, and the construction of convergent control
approximations for nonlinear equations remains a challenge.

A first idea that comes to mind is to consider the Picard iterations (yk)k∈N
associated with the operator K defined by yk+1 = K(yk), k ≥ 0 initialized with
any element y0 ∈ L∞(0, T ;Ld(Ω)). Such a strategy usually fails since the operator
K is in general not contracting, even if g is globally Lipschitz.

Given any initial data (u0, u1) ∈ V , we design an algorithm providing a sequence
(yk, fk)k∈N converging to a controlled pair for (1), under assumptions on g that
are slightly stronger than (H1). Moreover, after a finite number of iterations, the
convergence is super-linear. This is done by introducing a least-squares functional
measuring how much a pair (y, f) ∈ A is close to a controlled solution for (1) and
then by determining a particular minimizing sequence enjoying the announced
property. We define the Hilbert space H

H =

{
(y, f) ∈ L2(QT )× L2(qT ) | �y ∈ L2(QT ), (y(·, 0), ∂ty(·, 0)) ∈ V , y = 0 on ΣT

}
.

Then, for any (u0, u1), (z1, z1) ∈ V , we define the subspaces of H

A =

{
(y, f) ∈ H | (y(·, 0), ∂ty(·, 0)) = (u0, u1), (y(·, T ), ∂ty(·, T )) = (z0, z1)

}
,

A0 =

{
(y, f) ∈ H | (y(·, 0), ∂ty(·, 0)) = (0, 0), (y(·, T ), ∂ty(·, T )) = (0, 0)

}
and consider the following non convex extremal problem

(2) inf
(y,f)∈A

E(y, f), E(y, f) :=
1

2

∥∥�y + g(y)− f 1ω
∥∥2

2

observing that any zero (y, f) ∈ A of E is a solution of the controllability problem.
Our main result is

Theorem 2. [Lemoine, Münch, 2021] Assume for some s ∈ (0, 1]

(Hs) [g′]s := sup a,b∈R
a 6=b

|g′(a)−g′(b)|
|a−b|s < +∞,

(H2) There exists α ≥ 0 and β ∈ [0,
√

s
2C(2s+1) ) such that |g′(r)| ≤ α +

β ln1/2(1 + |r|) for every r in R.

Then, for any (y0, f0) ∈ A, the sequence (yk, fk)k∈N defined by

(3)


(y0, f0) ∈ A,
(yk+1, fk+1) = (yk, fk)− λk(Y 1

k , F
1
k ), k ∈ N,

λk = argminλ∈[0,1]E
(
(yk, fk)− λ(Y 1

k , F
1
k )
)
,

where (Y 1
k , F

1
k ) ∈ A0 is the solution of minimal control norm of

(4)


�Y 1

k + g′(yk)Y 1
k = F 1

k 1ω + �yk + g(yk)− fk1ω, in QT ,

Y 1
k = 0, on ΣT ,

(Y 1
k (·, 0), ∂tY

1
k (·, 0)) = (0, 0), in Ω
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strongly converges to a pair (y, f) ∈ A satisfying (1). Moreover, the convergence
is at least linear and is at least of order 1 + s after a finite number of iterations.

As far as we know, the method described here is the first one providing an
explicit, algorithmic construction of exact controls for semilinear wave equations
with non Lipschitz nonlinearity and defined over multi-dimensional bounded do-
mains. It extends the one-dimensional study addressed in [14]. The parabolic
case can be addressed as well: for semilinear heat equation, we mention [6] for
d ∈ {2, 3} with Lipschitz nonlinearity and [10] for d = 1 and non Lipschitz nonlin-
earity. These works devoted to controllability problems takes their roots in [9, 7]
concerned with the direct problem for the Navier-Stokes equation: they refine the
analysis performed in [8, 12] inspired from the seminal contribution [1].
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