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Abstract

The emergence of Elastic Optical Networks allowed a more flexible
spectrum allocation for routing traffic demands within telecommunication
networks. From this context arises the Routing and Spectrum Assignment
problem, which consists of routing a given set of origin-destination traffic
demands and assigning them to contiguous spectrum frequencies such that
no frequency slot is assigned to more than one demand within a network
link. This work deals with the variant where each demand route must ad-
ditionally satisfy a maximal-length constraint. In this paper we propose a
compact extended formulation for the Constrained Routing and Spectrum
Assignment Problem. We show that our extended formulation is theoret-
ically stronger than formulations known in the literature. Experimental
results demonstrate the efficiency of our approach.

1 Introduction

Modern optical networks represent a crucial infrastructure for our information
society. To transmit signals, light is used as a communication medium between
sending and receiving nodes. For over two decades, Wavelength-Division Multi-
plexing (WDM) has been the most popular technology used in optical networks,
where different wavelengths are used to simultaneously transmit signals over a
single optical fiber. Hereby, the wavelengths have to be selected from a rather
coarse fixed grid of frequencies specified by the United Nations agency ITU
(International Telecommunication Union), which leads to an inefficient use of
spectral resources.

In response to the continuous growth of data traffic volumes in communi-
cation networks, a new generation of optical networks, called Elastic Optical

∗This work was supported by the French National Research Agency grant ANR-17-CE25-
0006, project FLEXOPTIM.
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Networks (EONs), has been introduced to enhance the spectrum efficiency and
to enlarge the network capacity [6]. In EONs, the frequency spectrum of an
optical fiber is divided into many narrow frequency slots, and any sequence
of contiguous slots can form a channel to create an optical connection between
sending and receiving nodes, called lightpath (an optical connection represented
by a route and a channel). That way, EONs enable capacity gain by allocating
minimum required bandwidth to every traffic demand thanks to a finer spectrum
granularity than in the traditional WDM networks.

To operate EONs, the so-called Routing and Spectrum Assignment (RSA)
problem has to be solved which consists of establishing the lightpaths (repre-
sented by a route and a channel) for a set of traffic demands (given as sending
and receiving nodes and required slot numbers), thereby optimizing some objec-
tive function. To comply with ITU regulations, the following constraints need
to be respected when dealing with the RSA problem:

1. spectrum continuity : the frequency slots allocated to a demand remain
the same on all the links of a route;

2. spectrum contiguity : the frequency slots allocated to a demand must be
contiguous;

3. non-overlapping spectrum: on each link of the network, a frequency slot
can be allocated to at most one demand.

In addition, technical properties further force that the length of a route must not
exceed the transmission reach of the optical signal which leads to the Constraint
Routing and Spectrum Assignment (CRSA) problem, see Section 2 for details
and examples.

The RSA problem has started to receive a lot of attention over the last few
years. It has been shown to be NP-hard [2, 14] and remains hard even when
the optical network is a path [12] which makes the RSA problem much harder
than the WDM problem which is polynomially solvable on paths, see e.g. [3].

To solve the RSA problem, various approaches have been studied in the lit-
erature, based on different Integer Linear Programming (ILP) models. Hereby,
detailed models aiming at precisely describing all technological aspects of EONs
and being able to handle various criteria for optimization typically suffer from
tractability issues resulting from their greater complexity such that the tendency
is to use simplified or restricted models.

The majority of the existing models uses an edge-path formulation where for
each demand, variables are associated either with all possible routing paths or
with all possible lightpaths for this demand. One characteristic of this formu-
lation is, therefore, an exponential number of variables issued from the total
number of all feasible paths between origin-destination pairs in the network,
which grows exponentially with the size of the network and the number of de-
mands.

To bypass the exponential number of variables, edge-path formulations with
a precomputed subset of all possible paths per demand have been studied e.g. in
[7, 9, 13, 15], see [15] for an overview. However, such formulations cannot
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guarantee optimality of the solutions in general (as only a precomputed subset
of paths is considered and, thus, a restricted problem solved). In order to be
able to find optimal solutions of the RSA problem w.r.t. any objective function
with the help of an edge-path formulation, all possible paths have to be taken
into account. As the explicit models are far too big for computation, it is in
order to apply column-generation methods. However, computational results
from e.g. [8, 10, 11] show that the size of the instances that can be solved that
way is rather limited.

An alternative to edge-path formulations is to use edge-node formulations
that have the advantage to be compact in terms of the number of variables and
constraints, but have the disadvantage that the routing is rather involved and
less intuitive. Only few authors made use of this type of model, as Cai et al.
[1], Velasco et al. [13], Zotkiewiez et al. [15], and Jia et al. who used in [5] an
edge-node formulation to treat a more general problem.

As noticed in [4], the models from [1, 13, 15] are incomplete as their feasi-
ble region is a superset of all feasible solutions of the RSA problem and can,
thus, handle only some objective functions. The first complete edge-node for-
mulation presented in [4] exactly encodes the feasible solutions, but requires an
exponential number of constraints to ensure proper routings. Moreover, in [4]
a procedure is given to separate the exponentially-sized families of constraints
in polynomial time, which makes the model computationally competitive with
the compact but incomplete models from [1, 13, 15].

The computational tests in [4] were performed on a set of instances that
resembles those used in [1, 13, 15]. However, the used instances are rather small
and it is expected that the running time to optimally solve real-sized instances
of the RSA problem (e.g., for the French national network operator Orange)
will be drastically increase with all existing edge-node formulations.

Our contribution is to develop the edge-node formulations from [4] further to
a compact model that enables solving real-sized instances of the CRSA problem
in reasonable time.

For that, we propose an extended formulation in an auxiliary network con-
structed from the original optical network and an appropriate modification of
involved variables to simplify the way to encode routings, see Section 3. We
show that our extended formulation is theoretically stronger than the original
formulation from [4]. Experimental results presented in Section 5 demonstrate
the efficiency of our approach.

We close with some concluding remarks and lines of future research.

2 Problem Definition

In this section, we formally define the CRSA problem by describing in detail the
input and the desired output of the CRSA problem together with the studied
objective functions.

As input of the CRSA problem, we are given
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• an optical spectrum S = {1, . . . , s̄} of available frequency slots;
• an optical network, represented as an undirected, loopless, connected

graph G = (V,E) that may have parallel edges (if parallel optical fibers are
installed between two nodes), and for each edge e ∈ E its length `e ∈ R+,

• a multiset K of demands where each demand k ∈ K is specified by

– an origin node ok ∈ V and a destination node dk ∈ V \ {ok},
– a requested number wk ∈ N+ of slots, and
– a transmission reach ¯̀

k ∈ R+.

The task is to determine for each demand k ∈ K a lightpath composed of
an (ok, dk)-path Pk in G respecting the transmission reach ¯̀

k and a channel
Sk ⊂ S of wk consecutive frequency slots (spectrum contiguity) that is available
on all edges of Pk (spectrum continuity) and disjoint from the channels Sk′ of all
other demands k′ ∈ K routed along an edge of Pk (non-overlapping spectrum),
thereby minimizing some objective function. Note that we focus on the case
where all demands must be satisfied.

Hence, the desired output of the CRSA problem is, for each demand k ∈ K,
a lightpath composed of

• an (ok,dk)-path Pk in G with
∑
e∈E(Pk) le ≤ ¯̀

k,
• a subset Sk ⊂ {1, . . . , s̄} of wk consecutive slots with Sk ∩Sk′ = ∅ for each

demand k′ ∈ K routed along an edge e ∈ E(Pk).

This output can be given in terms of a matrix M ∈ N|E|×s̄ with

Me,s =
{

k if slot s ∈ S is allocated to demand k ∈ K on edge e ∈ E,
0 otherwise (i.e., slot s is not used by any demand on edge e).

In addition, the selected set of lightpaths is supposed to minimize a chosen
objective function, for instance:

O1: minimize the sum of hops in paths (where the term hops refers to the
number of edges in a path Pk),

O2: minimize the sum of the total length of paths (taking the edge weights le
into account),

O3: minimize the maximal used slot position (and, thus, the width of the sub-
spectrum of S used for the spectrum assignment),

O4: minimize the sum of the maximal used slot positions over all demands.

Note that the two objective functions O1 and O2 are only related to the routing
(provided that a feasible spectrum assignment within S exists for this routing),
whereas the other two objective functions O3 and O4 seek for the most efficient
spectrum assignments over all possible routings.

Example 1. Consider the following small instance of the CRSA problem, given
by a spectrum of width s̄ = 7, the network G shown in Figure 1 with edge length
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Figure 1: The network G used in Example 1.

as indicated, and the following set K of demands:

k ok → dk wk ¯̀
k

1 a→ c 2 4
2 a→ d 1 4
3 b→ f 2 4
4 b→ e 1 4
5 d→ f 3 4

An optimal solution w.r.t. objective function

O1 with minimum sum 11 of hops in paths is represented by matrix M1,
O2 with minimum total length 13 of paths is represented by matrix M2,
O3 with minimum maximal used slot position 4 is represented by matrix M3,
O4 with minimum sum 12 of maximal used slot positions is represented by

matrix M4.

M1 =



1 2 3 4 5 6 7
ab 3 3 4
af 1 1 3 3 2 4
bc
cd
cf 1 1
de 2
df 5 5 5
ef 2 4


M2 =



1 2 3 4 5 6 7
ab 1 1 2
af
bc 1 1 3 3 2 4
cd 2 4
cf 3 3
de 5 5 5 4
df
ef 5 5 5



M3 =



1 2 3 4 5 6 7
ab 4
af 1 1 2 4
bc 3 3
cd
cf 1 1 3 3
de 2
df 5 5 5
ef 2 4


M4 =



1 2 3 4 5 6 7
ab 4
af 2 4 1 1
bc 3 3
cd
cf 3 3 1 1
de 2
df 5 5 5
ef 2 4
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3 Extended Formulation

Our extended formulation is based on the Integer Linear Programming (ILP)
formulation proposed by [4], hereafter denoted by RSA-BASE. This formulation
mainly uses the following three sets of binary variables (other variables may
be added according to the choice of the objective function) in order to model
the RSA problem. For each demand k ∈ K and each edge e ∈ E, variables
xke ∈ {0, 1} are used to indicate whether or not demand k is routed through edge
e. For each demand k ∈ K and each slot s ∈ {1, . . . , s̄}, variables zks ∈ {0, 1}
expresses the fact of whether or not the slot s is the last slot of the channel
assigned to demand k. Finally, for each demand k ∈ K, each slot s ∈ {1, . . . , s̄}
and each edge e ∈ E, variables tske ∈ {0, 1} indicates whether or not demand
k uses the slot s on edge E. Due to page limit the reader is referred to [4] for
further details on formulation RSA-BASE.

The extended formulation proposed in this paper consists of constructing a
directed graph G′ from the network graph G as well as combining these three
sets of variables into a single set of flow variables. The directed graph G′ is
constructed by simply creating an in-going arc (u, v) and an out-going arc (v, u)
for each edge uv in E(G). Then for each demand k ∈ K, each slot s ∈ {1, . . . , s̄}
and each arc a ∈ A(G′), we define the binary variable fska as follows.

fska =

{
1, if demand k is routed through arc a and s is its last channel slot
0, otherwise.

It follows that every variable x, z and t from the formulation RSA-BASE
can be described as a linear function of the above defined variables f . Indeed,
we have that

xkuv =
s̄∑
s=1

(
fsk(u,v) + fsk(v,u)

)
∀uv ∈ E, k ∈ K, (1)

zks =
∑

a∈δ+(ok)

fska ∀k ∈ K, s ∈ {1, . . . , s̄}, (2)

tskuv =
min{s̄,s+wk−1}∑

i=s

(
f ik(u,v) + f ik(v,u)

)
∀uv ∈ E, k ∈ K, s ∈ {1, . . . , s̄}. (3)

By applying this variable transformation we obtain the extended formulation
hereafter denoted RSA-EXT. In this way, we can now perceive the RSA as
a multi-commodity flow problem where each commodity is associated with a
demand.

Notice that while formulation RSA-BASE requires s̄|K||E|+ s̄|K|+ |E||K|
variables, formulation RSA-EXT requires 2(s̄|K||E|) variables. Therefore RSA-
EXT uses less than twice the number of variables employed in RSA-BASE.
Moreover, RSA-BASE and RSA-EXT uses the same number of constraints.
Finally, RSA-BASE and RSA-EXT are equally strong in the sense that the
optimal solutions of their linear relaxations have, by definition, the same value.
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4 Formulation improvement

In this section we describe how formulation RSA-EXT can be reinforced and
hence stronger than RSA-BASE.

4.1 Reinforcement of length constraints

In RSA-BASE, the maximum reach of a demand routed path is ensured through
the following length constraints∑

e∈E(G)

lex
k
e ≤ ¯̀

k ∀k ∈ K,

which become ∑
a∈A(G′)

s̄∑
s=1

laf
sk
a ≤ ¯̀

k ∀k ∈ K, (4)

with the variable transformation described in Section 3. Consider now the
following disaggregated length inequalities.∑

a∈A(G′)

laf
sk
a ≤ ¯̀

k

∑
a∈δ+(ok)

fska ∀k ∈ K, s ∈ {1, . . . , s̄}. (5)

Proposition 2. The disaggregated length inequalities (5) are valid inequalities.

Proof. For a given demand k and slot s, 0 ≤
∑
a∈δ+(ok) fska ≤ 1 since only one

path is to be found for routing k. If
∑
a∈δ+(ok) fska = 0, then demand k cannot

be routed through channel {s−wk+1, . . . , s} and hence variable fska must equal
0 for any a ∈ A(G′). In return, if

∑
a∈δ+(ok) fska = 1, then the path used for

routing demand k should respect its maximum reach ¯̀
k.

Notice that by summing up inequalities (5) for each s ∈ {1, . . . , s̄} one
obtains the original length constraints (4). Moreover, it is easy to see that there
exists some fractional solutions that satisfy the original inequalities (4) but
violate the proposed inequalities (5). The following example illustrates such
situation.

Consider the following RSA instance where the topology G′ is depicted in
Figure 2 and all arcs have length 1. Let s̄ = 2, and let K be composed of a
single demand k going from node 1 to node 2, wk = 1 and Lk = 2. Clearly the
fractional solution proposed in Figure 3 verifies the original length constraints
(4) but is cutoff by inequalities (5). For this reason, we replace the original
length constraints (4) by the proposed disaggregated length constraints (5) in
the RSA-EXT formulation.
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Figure 2: Topology G′.

s

t

Figure 3: Illustration of a fractional solution satisfying constraints (4) and vio-
lating constraints (5): all represented arcs are associated with 0.5 valued vari-
ables, the dashed path uses channel {1} and the dotted path uses channel {2}.

4.2 Making the extended formulation compact

In order to ensure path-continuity (i.e., the fact that the path leaving ok reaches
dk for each demand k ∈ K) and to eliminate any cycle in the demand route,
formulation RSA-BASE requires an exponential number of constraints. Next,
we show how in RSA-EXT these constraints can either be dropped or replaced
with a polynomial number of inequalities in order to obtain a compact extended
formulation.

4.2.1 Ensuring path continuity

The demand’s path continuity is ensured in RSA-BASE through the following
constraints ∑

e∈δ(S)

xke ≥ 1, ∀k ∈ K, S ⊆ V, ok ∈ S, dk /∈ S,

which become

∑
a∈δ+(S)

s̄∑
s=1

fska +
∑

a∈δ−(S)

s̄∑
s=1

fska ≥ 1, ∀k ∈ K, S ⊆ V, ok ∈ S, dk /∈ S, (6)
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with the variable transformation proposed in Section 3. Consider now the fol-
lowing classic flow conservation constraints.

∑
a∈δ+(v)

s̄∑
s=1

fska −
∑

a∈δ−(v)

s̄∑
s=1

fska =


1, if v = ok

0, if v ∈ V \ {ok, dk}
−1, if v = dk

∀k ∈ K, v ∈ V.

(7)

Proposition 3. The classic flow conservation constraints (7) are valid.

Proof. If v = ok (resp. dk), then the demand path must leave (resp. enter)
node v through some channel. If v ∈ V \ {ok, dk}, then the demand route can
only leave (and must leave) node v if the route enters it.

Proposition 4. The path continuity constraints (6) are dominated by the classic
flow conservation constraints (7).

Proof. For a given subset S ⊆ V \ {dk}, ok ∈ S, and a demand k ∈ K, summing
up equations (7) for each v ∈ S yields the equation

∑
a∈δ+(S)

s̄∑
s=1

fska −
∑

a∈δ−(S)

s̄∑
s=1

fska = 1.

Since every variable is required to be nonnegative,
∑
a∈δ+(S)

∑s̄
s=1 fska ≥ 1. It

follows directly that

∑
a∈δ+(S)

s̄∑
s=1

fska +
∑

a∈δ−(S)

s̄∑
s=1

fska ≥
∑

a∈δ+(S)

s̄∑
s=1

fska ≥ 1,∀k ∈ K, S ⊆ V, ok ∈ S, dk /∈ S.

Consider now the following disaggregated flow conservation constraints (8).∑
a∈δ+(v)

fska −
∑

a∈δ−(v)

fska = 0 ∀k ∈ K, v ∈ V \ {ok, dk}, s ∈ {1, . . . , s̄}. (8)

Proposition 5. The disaggregated flow conservation constraints (8) are valid.

Proof. For any demand k ∈ K and any node v ∈ V \{ok, dk}, the demand route
leaves node v with channel {s−wk + 1, . . . , s} if and only if the route enters it
with the same channel (recall spectrum continuity).

Notice that the disaggregated flow constraints (8) are stronger than the
initially proposed flow constraints (7). Indeed, summing up constraints (8) for
s ∈ {1, . . . , s̄} yields the former constraints (7). For this reason, we replace
the path continuity constraints (6) by the disaggregated flow constraints (8) in
RSA-EXT formulation.
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4.2.2 Dropping cycle-elimination constraints

In order to prevent cycles in the route of the demands, RSA-BASE includes
an exponential number of cycle-elimination constraints. Next we show that for
the objective functions studied in this paper, such constraints can be dropped,
and whenever a solution including cycles is found, a simple post-processing is
capable of finding a solution of at most the same cost without any cycles in
polynomial time.

Cycles may appear in a demand route either attached to it or detached from
it. For cycles attached to the route (e.g., Figure 4), including a polynomial sized
family of degree constraints suffices for excluding such solutions.

s t

Figure 4: The flow path of an (s, t)-demand with a cycle attached to it.

s t

Figure 5: The flow path of an (s, t)-demand with a cycle detached from it.

Proposition 6. The following degree constraints are valid:

∑
a∈δ+(v)

s̄∑
s=1

fska ≤ 1 ∀k ∈ K, v ∈ V. (9)

Proof. For any demand k ∈ K, there can exist at most one arc leaving node
v ∈ V with at most one channel.

For excluding cycles that are detached from the demand’s route (e.g., Fig-
ure 5), an exponential number of inequalities is required in formulation RSA-
BASE. For the objective functions studied here however such inequalities can
be dropped, making formulation RSA-EXT compact. The next proposition
describes how to obtain a feasible solution from a solution with cycles. The
obtained solution has at most the same cost as the cyclic one.

Proposition 7. Given linear objective function where every variable fska implies
a cost cska ≥ 0, any solution to the RSA containing cycles can be transformed
into an acyclic solution of at most the same cost as the former solution.
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Proof. Let f̄ be a solution of the RSA-EXT formulation where the route of a
given demand k′ ∈ K includes a cycle detached from its main path (e.g., Figure
5). Let C denote the set of arcs composing a cycle in the route of demand
k′. Then, since every variable cost cska and every arc length is nonnegative, the
solution f̂ defined as

f̂ska = f̄ska ∀k ∈ K \ k′, a ∈ A(G′), s ∈ {1, . . . , s̄},

f̂sk
′

a = f̄sk
′

a ∀a ∈ A(G′) \ C, s ∈ {1, . . . , s̄},

f̂sk
′

a = 0 ∀a ∈ C, s ∈ {1, . . . , s̄},

is a feasible solution without cycle C that costs at most the cost of solution
f̄ .

It follows from Proposition 7 that whenever RSA-EXT yields a solution
containing cycles, a postprocessing method is capable of providing an acyclic
solution of at most the same cost in polynomial time. Such postprocessing
involves a simple labeling algorithm. Our formulation is therefore compact and
solves the RSA problem for all the objective functions studied.

4.3 Variable elimination

In order to boost the performances of the proposed formulation, a preprocessing
method for eliminating variables may be applied.

Proposition 8. If, for a given demand k ∈ K, the shortest path from ok to dk
passing through arc a ∈ A(G′) has length strictly greater than ¯̀

k, then

fska = 0 ∀s ∈ {1, . . . , s̄}. (10)

Proof. If the shortest path from ok to dk passing through arc a ∈ A(G′) has
length strictly greater than ¯̀

k, then arc a can never be used for routing demand
k.

Computing the shortest path between two nodes s and t passing through an
arc (u, v) can be done in polynomial time by computing the shortest path from
s to u and from v to t. In order to identify the variables in Proposition 8 that
can be eliminated, we apply this preprocessing method for every demand k ∈ K
and every arc (u, v) ∈ A(G′). Such preprocessing is hereafter denoted as length
preprocessing.

Since G is supposed to be connected, there always exists a path between
any two given nodes in G′. However, when applying the variable elimination
described in Proposition 8, one might trouble this property. Let Dk ⊆ A(G′)
denote the set of arcs that are unable to route demand k due to length restric-
tions (i.e., the arcs identified through length preprocessing). Now, consider the
practical graph for demand k ∈ K defined as G′k = (V (G′), A(G′) \Dk). Graph
G′k is not necessarily a connected graph and hence the following proposition
holds.
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Proposition 9. If there is no path in G′k from ok to dk passing through arc
a ∈ A(G′k), then

fska = 0 ∀s ∈ {1, . . . , s̄}. (11)

Proof. If there is no path from ok to dk passing through arc a, then arc a can
never be used for routing demand k.

For identifying the variables that can be eliminated as a consequence of
Proposition 9, it suffices to construct graphs G′k and run a preprocessing similar
to length preprocessing.

5 Computational results

In order to confirm the relevance of our approach, in this section we evaluate
the computational performances achieved with the proposed extended compact
formulation. For this, three network topologies are investigated: Spain, NSF
and German. Spain topology consists of 5 nodes, 7 edges and 30 slots. NSF
topology has 9 nodes, 13 edges and 120 slots. German topology consists of 17
nodes, 25 edges and 140 slots. For each network topology three sets of randomly
generated demands are evaluated.

Tables 1-4 provide a sample of the performances obtained with each for-
mulation using each of the objective functions described in Section 2. All the
experiments were performed using the state-of-the-art MIP solver CPLEX 12.10
on a computer equipped with a 1.60 GHz Intel Core i5-8265U processor and 16
Gb RAM. A time limit of two hours was imposed in each run. For each for-
mulation, the total time in seconds required for the optimization is displayed
under column CPU. If the time limit of two hours is exceeded, the remaining gap
percentage is displayed under column gap. The number of nodes explored in the
enumeration tree is given under column node. The absence of results for some
of the instances indicates that the model breaks down and no feasible solution
was found within the two hours time limit.

Network |K| CPU UB LB gap node CPU UB LB gap node

Spain 15 2.7 18 18 0 0 0.2 18 18 0 0
Spain 20 6.3 24 24 0 0 0.3 24 24 0 0
Spain 25 38.6 37 37 0 21 0.9 37 37 0 0
NSF 30 4167.4 69 69 0 165 16.5 69 69 0 0
NSF 40 2468.0 90 90 0 0 38.0 90 90 0 0
NSF 50 7200 - 98 - - 37.9 98 98 0 0
German 40 7200 - 93.7 - - 51.6 95 95 0 0
German 50 5194.6 82 82 0 0 43.3 82 82 0 0
German 60 7200 - 176 - - 77.4 180 180 0 0

Table 1: Comparison between formulations RSA-BASE (left) and RSA-EXT
(right) for objective function O1.

On all tested instances, we could either prove optimality faster or the remain-
ing gap by the end of the time limit was smaller using formulation RSA-EXT
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Network |K| CPU UB LB gap node CPU UB LB gap node

Spain 15 0.9 5680 5680 0 0 0.2 5680 5680 0 0
Spain 20 3.5 8150 8150 0 0 0.3 8150 8150 0 0
Spain 25 108.2 10830 10830 0 226 0.8 10830 10830 0 0
NSF 30 252.1 24018 24018 0 0 15.8 24018 24018 0 0
NSF 40 314.8 33253 33253 0 0 36.5 33253 33253 0 0
NSF 50 1856.3 34431 34431 0 0 43.6 34431 34431 0 0
German 40 7200 - 12615 - - 52.5 12615 12615 0 0
German 50 5039.2 9125 9125 0 0 41.6 9125 9125 0 0
German 60 7200 - 14184 - - 55.9 28516 28516 0 0

Table 2: Comparison between formulations RSA-BASE (left) and RSA-EXT
(right) for objective function O2.

Network |K| CPU UB LB gap node CPU UB LB gap node

Spain 15 2510.2 15 15 0 29136 4.2 15 15 0 5394
Spain 20 7200 22 15 31.82 24767 7.0 22 22 0 5279
Spain 25 2398.6 29 29 0 4527 2.2 29 29 0 0
NSF 30 7200 - 15.3 - - 7200 48 46.4 3.3 4615
NSF 40 7200 - 9.7 - - 7200 53 30.3 42.9 0
NSF 50 7200 - 20.8 - - 7200 120 34.2 71.5 0
German 40 7200 - 6.0 - - 7200 140 17.2 87.7 0
German 50 7200 - 7.6 - - 7200 140 20.68 85.2 0
German 60 7200 - 6.9 - - 7200 - 31.0 - -

Table 3: Comparison between formulations RSA-BASE (left) and RSA-EXT
(right) for objective function O3.

than when using RSA-BASE. For objectives O1 and O2, the extended formula-
tion could solve all tested instances to optimality within less than 1.5 minute,
while the original formulation struggled substantially more. Indeed, 5 instances
could not be solved to optimality within the time limit of 2 hours. Consider-
ing the instances that could be solved by both formulations, RSA-EXT was in
average 65.7 times faster than RSA-BASE. For objectives O3 and O4, RSA-
BASE could only solve the instances tested over Spain network, and for all
other topologies it could not even find a feasible solution. RSA-EXT, in return,
only failed to find a feasible solution for the largest instance tested (i.e., Ger-
man, 60 demands) with objective O3. Considering the instances that could be
solved by both formulations, RSA-EXT was in average 4742 times faster than
RSA-BASE. Such computational results strongly confirm the efficiency of the
proposed extended formulation.

6 Concluding remarks

Objective functions related to efficient spectrum assignments were found to be
much harder to optimize than the objective functions related to routing aspects.
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Network |K| CPU UB LB gap node CPU UB LB gap node

Spain 15 218.2 117 117 0 6206 0.2 117 117 0 0
Spain 20 5370.5 217 217 0 56471 0.4 217 217 0 0
Spain 25 3755.2 341 341 0 6775 0.5 341 341 0 0
NSF 30 7200 - 508.3 - - 273.1 598 598 0 6688
NSF 40 7200 - 539.8 - - 777.6 788 788 0 6278
NSF 50 7200 - 716.1 - - 3248.8 1053 1053 0 7333
German 40 7200 - 269.7 - - 888.7 461 461 0 7063
German 50 7200 - 366.4 - - 7200 601 593.4 1.26 2478
German 60 7200 - 370.6 - - 7200 1498 1307.8 12.7 0

Table 4: Comparison between formulations RSA-BASE (left) and RSA-EXT
(right) for objective function O4.

This has probably to do with the fact that when trying to fit all demands
within a smaller subspectrum width, the non-overlapping requirements become
increasingly restrictive and hence the interactions between demands grow to be
progressively conflicting. Moreover, such spectrum related objectives induce a
great degree of symmetry in the MILP. Symmetry-breaking techniques might
be useful to be considered in these cases. As the number of demands to be
routed increases, the root node becomes progressively harder to be solved. A
promising idea is to consider other methods (e.g., Lagrangian relaxation) for
obtaining good approximations of the linear relaxation values.
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