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An extended formulation for the Constraint Routing and Spectrum Assignment Problem in Elastic Optical Networks *

The emergence of Elastic Optical Networks allowed a more flexible spectrum allocation for routing traffic demands within telecommunication networks. From this context arises the Routing and Spectrum Assignment problem, which consists of routing a given set of origin-destination traffic demands and assigning them to contiguous spectrum frequencies such that no frequency slot is assigned to more than one demand within a network link. This work deals with the variant where each demand route must additionally satisfy a maximal-length constraint. In this paper we propose a compact extended formulation for the Constrained Routing and Spectrum Assignment Problem. We show that our extended formulation is theoretically stronger than formulations known in the literature. Experimental results demonstrate the efficiency of our approach.

Introduction

Modern optical networks represent a crucial infrastructure for our information society. To transmit signals, light is used as a communication medium between sending and receiving nodes. For over two decades, Wavelength-Division Multiplexing (WDM) has been the most popular technology used in optical networks, where different wavelengths are used to simultaneously transmit signals over a single optical fiber. Hereby, the wavelengths have to be selected from a rather coarse fixed grid of frequencies specified by the United Nations agency ITU (International Telecommunication Union), which leads to an inefficient use of spectral resources.

In response to the continuous growth of data traffic volumes in communication networks, a new generation of optical networks, called Elastic Optical Networks (EONs), has been introduced to enhance the spectrum efficiency and to enlarge the network capacity [START_REF] Jinno | Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies[END_REF]. In EONs, the frequency spectrum of an optical fiber is divided into many narrow frequency slots, and any sequence of contiguous slots can form a channel to create an optical connection between sending and receiving nodes, called lightpath (an optical connection represented by a route and a channel). That way, EONs enable capacity gain by allocating minimum required bandwidth to every traffic demand thanks to a finer spectrum granularity than in the traditional WDM networks.

To operate EONs, the so-called Routing and Spectrum Assignment (RSA) problem has to be solved which consists of establishing the lightpaths (represented by a route and a channel) for a set of traffic demands (given as sending and receiving nodes and required slot numbers), thereby optimizing some objective function. To comply with ITU regulations, the following constraints need to be respected when dealing with the RSA problem:

1. spectrum continuity: the frequency slots allocated to a demand remain the same on all the links of a route; 2. spectrum contiguity: the frequency slots allocated to a demand must be contiguous; 3. non-overlapping spectrum: on each link of the network, a frequency slot can be allocated to at most one demand.

In addition, technical properties further force that the length of a route must not exceed the transmission reach of the optical signal which leads to the Constraint Routing and Spectrum Assignment (CRSA) problem, see Section 2 for details and examples.

The RSA problem has started to receive a lot of attention over the last few years. It has been shown to be NP-hard [START_REF] Christodoulopoulos | Elastic bandwidth allocation in flexible OFDM based optical networks[END_REF][START_REF] Wang | A study of the routing and spectrum allocation in spectrum-sliced elastic optical path networks[END_REF] and remains hard even when the optical network is a path [START_REF] Shirazipourazad | On routing and spectrum allocation in spectrum sliced optical networks[END_REF] which makes the RSA problem much harder than the WDM problem which is polynomially solvable on paths, see e.g. [START_REF] Fayez | Spectrum Assignment in Mesh Elastic Optical Networks[END_REF].

To solve the RSA problem, various approaches have been studied in the literature, based on different Integer Linear Programming (ILP) models. Hereby, detailed models aiming at precisely describing all technological aspects of EONs and being able to handle various criteria for optimization typically suffer from tractability issues resulting from their greater complexity such that the tendency is to use simplified or restricted models.

The majority of the existing models uses an edge-path formulation where for each demand, variables are associated either with all possible routing paths or with all possible lightpaths for this demand. One characteristic of this formulation is, therefore, an exponential number of variables issued from the total number of all feasible paths between origin-destination pairs in the network, which grows exponentially with the size of the network and the number of demands.

To bypass the exponential number of variables, edge-path formulations with a precomputed subset of all possible paths per demand have been studied e.g. in [START_REF] Klinkowski | An overview of routing methods in optical burst switching networks[END_REF][START_REF] Klinkowski | Routing and Spectrum Assignment in Spectrum Sliced Elastic Optical Path Network[END_REF][START_REF] Velasco | Modeling the routing and spectrum allocation problem for flexgrid optical networks[END_REF][START_REF] Zotkiewicz | Optimization models for flexgrid elastic optical networks[END_REF], see [START_REF] Zotkiewicz | Optimization models for flexgrid elastic optical networks[END_REF] for an overview. However, such formulations cannot guarantee optimality of the solutions in general (as only a precomputed subset of paths is considered and, thus, a restricted problem solved). In order to be able to find optimal solutions of the RSA problem w.r.t. any objective function with the help of an edge-path formulation, all possible paths have to be taken into account. As the explicit models are far too big for computation, it is in order to apply column-generation methods. However, computational results from e.g. [START_REF] Klinkowski | Spectrum allocation problem in elastic optical networks -a branchand-price approach[END_REF][START_REF] Klinkowski | A Simulated Annealing Heuristic for a Branch and Price-Based Routing and Spectrum Allocation Algorithm in Elastic Optical Networks[END_REF][START_REF] Ruiz | Column generation algorithm for RSA problems in flexgrid optical networks[END_REF] show that the size of the instances that can be solved that way is rather limited.

An alternative to edge-path formulations is to use edge-node formulations that have the advantage to be compact in terms of the number of variables and constraints, but have the disadvantage that the routing is rather involved and less intuitive. Only few authors made use of this type of model, as Cai et al. [START_REF] Cai | Novel Node-Arc Model and Multiiteration Heuristics for Static Routing and Spectrum Assignment in Elastic Optical Networks[END_REF], Velasco et al. [START_REF] Velasco | Modeling the routing and spectrum allocation problem for flexgrid optical networks[END_REF], Zotkiewiez et al. [START_REF] Zotkiewicz | Optimization models for flexgrid elastic optical networks[END_REF], and Jia et al. who used in [START_REF] Jia | An integrated ILP model for Routing, Modulation Level and Spectrum Allocation in the next generation DCN[END_REF] an edge-node formulation to treat a more general problem.

As noticed in [START_REF] Hadhbi | A novel integer linear programming model for routing and spectrum assignment in optical networks[END_REF], the models from [START_REF] Cai | Novel Node-Arc Model and Multiiteration Heuristics for Static Routing and Spectrum Assignment in Elastic Optical Networks[END_REF][START_REF] Velasco | Modeling the routing and spectrum allocation problem for flexgrid optical networks[END_REF][START_REF] Zotkiewicz | Optimization models for flexgrid elastic optical networks[END_REF] are incomplete as their feasible region is a superset of all feasible solutions of the RSA problem and can, thus, handle only some objective functions. The first complete edge-node formulation presented in [START_REF] Hadhbi | A novel integer linear programming model for routing and spectrum assignment in optical networks[END_REF] exactly encodes the feasible solutions, but requires an exponential number of constraints to ensure proper routings. Moreover, in [START_REF] Hadhbi | A novel integer linear programming model for routing and spectrum assignment in optical networks[END_REF] a procedure is given to separate the exponentially-sized families of constraints in polynomial time, which makes the model computationally competitive with the compact but incomplete models from [START_REF] Cai | Novel Node-Arc Model and Multiiteration Heuristics for Static Routing and Spectrum Assignment in Elastic Optical Networks[END_REF][START_REF] Velasco | Modeling the routing and spectrum allocation problem for flexgrid optical networks[END_REF][START_REF] Zotkiewicz | Optimization models for flexgrid elastic optical networks[END_REF]. The computational tests in [START_REF] Hadhbi | A novel integer linear programming model for routing and spectrum assignment in optical networks[END_REF] were performed on a set of instances that resembles those used in [START_REF] Cai | Novel Node-Arc Model and Multiiteration Heuristics for Static Routing and Spectrum Assignment in Elastic Optical Networks[END_REF][START_REF] Velasco | Modeling the routing and spectrum allocation problem for flexgrid optical networks[END_REF][START_REF] Zotkiewicz | Optimization models for flexgrid elastic optical networks[END_REF]. However, the used instances are rather small and it is expected that the running time to optimally solve real-sized instances of the RSA problem (e.g., for the French national network operator Orange) will be drastically increase with all existing edge-node formulations.

Our contribution is to develop the edge-node formulations from [START_REF] Hadhbi | A novel integer linear programming model for routing and spectrum assignment in optical networks[END_REF] further to a compact model that enables solving real-sized instances of the CRSA problem in reasonable time.

For that, we propose an extended formulation in an auxiliary network constructed from the original optical network and an appropriate modification of involved variables to simplify the way to encode routings, see Section 3. We show that our extended formulation is theoretically stronger than the original formulation from [START_REF] Hadhbi | A novel integer linear programming model for routing and spectrum assignment in optical networks[END_REF]. Experimental results presented in Section 5 demonstrate the efficiency of our approach.

We close with some concluding remarks and lines of future research.

Problem Definition

In this section, we formally define the CRSA problem by describing in detail the input and the desired output of the CRSA problem together with the studied objective functions.

As input of the CRSA problem, we are given

• an optical spectrum S = {1, . . . , s} of available frequency slots;

• an optical network, represented as an undirected, loopless, connected graph G = (V, E) that may have parallel edges (if parallel optical fibers are installed between two nodes), and for each edge e ∈ E its length e ∈ R + , • a multiset K of demands where each demand k ∈ K is specified by

-an origin node o k ∈ V and a destination node d k ∈ V \ {o k }, -a requested number w k ∈ N + of slots, and -a transmission reach ¯ k ∈ R + .
The task is to determine for each demand k ∈ K a lightpath composed of an (o k , d k )-path P k in G respecting the transmission reach ¯ k and a channel S k ⊂ S of w k consecutive frequency slots (spectrum contiguity) that is available on all edges of P k (spectrum continuity) and disjoint from the channels S k of all other demands k ∈ K routed along an edge of P k (non-overlapping spectrum), thereby minimizing some objective function. Note that we focus on the case where all demands must be satisfied.

Hence, the desired output of the CRSA problem is, for each demand k ∈ K, a lightpath composed of

• an (o k ,d k )-path P k in G with e∈E(P k ) l e ≤ ¯ k , • a subset S k ⊂ {1, . . . , s} of w k consecutive slots with S k ∩ S k = ∅ for each demand k ∈ K routed along an edge e ∈ E(P k ).
This output can be given in terms of a matrix M ∈ N |E|×s with M e,s = k if slot s ∈ S is allocated to demand k ∈ K on edge e ∈ E, 0 otherwise (i.e., slot s is not used by any demand on edge e).

In addition, the selected set of lightpaths is supposed to minimize a chosen objective function, for instance:

O 1 : minimize the sum of hops in paths (where the term hops refers to the number of edges in a path P k ), O 2 : minimize the sum of the total length of paths (taking the edge weights l e into account), O 3 : minimize the maximal used slot position (and, thus, the width of the subspectrum of S used for the spectrum assignment), O 4 : minimize the sum of the maximal used slot positions over all demands.

Note that the two objective functions O 1 and O 2 are only related to the routing (provided that a feasible spectrum assignment within S exists for this routing), whereas the other two objective functions O 3 and O 4 seek for the most efficient spectrum assignments over all possible routings. Example 1. Consider the following small instance of the CRSA problem, given by a spectrum of width s = 7, the network G shown in Figure 1 as indicated, and the following set K of demands:
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Extended Formulation

Our extended formulation is based on the Integer Linear Programming (ILP) formulation proposed by [START_REF] Hadhbi | A novel integer linear programming model for routing and spectrum assignment in optical networks[END_REF], hereafter denoted by RSA-BASE. This formulation mainly uses the following three sets of binary variables (other variables may be added according to the choice of the objective function) in order to model the RSA problem. For each demand k ∈ K and each edge e ∈ E, variables x k e ∈ {0, 1} are used to indicate whether or not demand k is routed through edge e. For each demand k ∈ K and each slot s ∈ {1, . . . , s}, variables z k s ∈ {0, 1} expresses the fact of whether or not the slot s is the last slot of the channel assigned to demand k. Finally, for each demand k ∈ K, each slot s ∈ {1, . . . , s} and each edge e ∈ E, variables t sk e ∈ {0, 1} indicates whether or not demand k uses the slot s on edge E. Due to page limit the reader is referred to [START_REF] Hadhbi | A novel integer linear programming model for routing and spectrum assignment in optical networks[END_REF] for further details on formulation RSA-BASE.

The extended formulation proposed in this paper consists of constructing a directed graph G from the network graph G as well as combining these three sets of variables into a single set of flow variables. The directed graph G is constructed by simply creating an in-going arc (u, v) and an out-going arc (v, u) for each edge uv in E(G). Then for each demand k ∈ K, each slot s ∈ {1, . . . , s} and each arc a ∈ A(G ), we define the binary variable f sk a as follows.

f sk a = 1, if demand k is routed through arc a and s is its last channel slot 0, otherwise.

It follows that every variable x, z and t from the formulation RSA-BASE can be described as a linear function of the above defined variables f . Indeed, we have that

x k uv = s s=1 f sk (u,v) + f sk (v,u) ∀uv ∈ E, k ∈ K, (1) 
z k s = a∈δ + (o k ) f sk a ∀k ∈ K, s ∈ {1, . . . , s}, (2) 
t sk uv = min{s,s+w k -1} i=s f ik (u,v) + f ik (v,u) ∀uv ∈ E, k ∈ K, s ∈ {1, . . . , s}. (3) 
By applying this variable transformation we obtain the extended formulation hereafter denoted RSA-EXT. In this way, we can now perceive the RSA as a multi-commodity flow problem where each commodity is associated with a demand.

Notice that while formulation RSA-BASE requires s|K||E| + s|K| + |E||K| variables, formulation RSA-EXT requires 2(s|K||E|) variables. Therefore RSA-EXT uses less than twice the number of variables employed in RSA-BASE. Moreover, RSA-BASE and RSA-EXT uses the same number of constraints. Finally, RSA-BASE and RSA-EXT are equally strong in the sense that the optimal solutions of their linear relaxations have, by definition, the same value.

Formulation improvement

In this section we describe how formulation RSA-EXT can be reinforced and hence stronger than RSA-BASE.

Reinforcement of length constraints

In RSA-BASE, the maximum reach of a demand routed path is ensured through the following length constraints

e∈E(G) l e x k e ≤ ¯ k ∀k ∈ K, which become a∈A(G ) s s=1 l a f sk a ≤ ¯ k ∀k ∈ K, (4) 
with the variable transformation described in Section 3. Consider now the following disaggregated length inequalities.

a∈A(G ) l a f sk a ≤ ¯ k a∈δ + (o k ) f sk a ∀k ∈ K, s ∈ {1, . . . , s}. (5) 
Proposition 2. The disaggregated length inequalities (5) are valid inequalities.

Proof. For a given demand k and slot s, 0 ≤ a∈δ + (o k ) f sk a ≤ 1 since only one path is to be found for routing k. If a∈δ + (o k ) f sk a = 0, then demand k cannot be routed through channel {s-w k +1, . . . , s} and hence variable f sk a must equal 0 for any a ∈ A(G ). In return, if a∈δ + (o k ) f sk a = 1, then the path used for routing demand k should respect its maximum reach ¯ k .

Notice that by summing up inequalities (5) for each s ∈ {1, . . . , s} one obtains the original length constraints (4). Moreover, it is easy to see that there exists some fractional solutions that satisfy the original inequalities (4) but violate the proposed inequalities [START_REF] Jia | An integrated ILP model for Routing, Modulation Level and Spectrum Allocation in the next generation DCN[END_REF]. The following example illustrates such situation.

Consider the following RSA instance where the topology G is depicted in Figure 2 and all arcs have length 1. Let s = 2, and let K be composed of a single demand k going from node 1 to node 2, w k = 1 and L k = 2. Clearly the fractional solution proposed in Figure 3 verifies the original length constraints (4) but is cutoff by inequalities [START_REF] Jia | An integrated ILP model for Routing, Modulation Level and Spectrum Allocation in the next generation DCN[END_REF]. For this reason, we replace the original length constraints (4) by the proposed disaggregated length constraints (5) in the RSA-EXT formulation. 

Making the extended formulation compact

In order to ensure path-continuity (i.e., the fact that the path leaving o k reaches d k for each demand k ∈ K) and to eliminate any cycle in the demand route, formulation RSA-BASE requires an exponential number of constraints. Next, we show how in RSA-EXT these constraints can either be dropped or replaced with a polynomial number of inequalities in order to obtain a compact extended formulation.

Ensuring path continuity

The demand's path continuity is ensured in RSA-BASE through the following constraints e∈δ(S)

x k e ≥ 1, ∀k ∈ K, S ⊆ V, o k ∈ S, d k / ∈ S, which become a∈δ + (S) s s=1 f sk a + a∈δ -(S) s s=1 f sk a ≥ 1, ∀k ∈ K, S ⊆ V, o k ∈ S, d k / ∈ S, (6) 
with the variable transformation proposed in Section 3. Consider now the following classic flow conservation constraints. Proof. For a given subset S ⊆ V \ {d k }, o k ∈ S, and a demand k ∈ K, summing up equations [START_REF] Klinkowski | An overview of routing methods in optical burst switching networks[END_REF] for each v ∈ S yields the equation

a∈δ + (v) s s=1 f sk a - a∈δ -(v) s s=1 f sk a =      1, if v = o k 0, if v ∈ V \ {o k , d k } -1, if v = d k ∀k ∈ K, v ∈ V. (7 
a∈δ + (S) s s=1 f sk a - a∈δ -(S) s s=1 f sk a = 1.
Since every variable is required to be nonnegative, a∈δ + (S) s s=1 f sk a ≥ 1. It follows directly that

a∈δ + (S) s s=1 f sk a + a∈δ -(S) s s=1 f sk a ≥ a∈δ + (S) s s=1 f sk a ≥ 1, ∀k ∈ K, S ⊆ V, o k ∈ S, d k / ∈ S.
Consider now the following disaggregated flow conservation constraints [START_REF] Klinkowski | Spectrum allocation problem in elastic optical networks -a branchand-price approach[END_REF].

a∈δ + (v) f sk a - a∈δ -(v) f sk a = 0 ∀k ∈ K, v ∈ V \ {o k , d k }, s ∈ {1, . . . , s}. (8) 
Proposition 5. The disaggregated flow conservation constraints (8) are valid.

Proof. For any demand k ∈ K and any node v ∈ V \ {o k , d k }, the demand route leaves node v with channel {s -w k + 1, . . . , s} if and only if the route enters it with the same channel (recall spectrum continuity).

Notice that the disaggregated flow constraints [START_REF] Klinkowski | Spectrum allocation problem in elastic optical networks -a branchand-price approach[END_REF] are stronger than the initially proposed flow constraints [START_REF] Klinkowski | An overview of routing methods in optical burst switching networks[END_REF]. Indeed, summing up constraints (8) for s ∈ {1, . . . , s} yields the former constraints [START_REF] Klinkowski | An overview of routing methods in optical burst switching networks[END_REF]. For this reason, we replace the path continuity constraints (6) by the disaggregated flow constraints (8) in RSA-EXT formulation.

Dropping cycle-elimination constraints

In order to prevent cycles in the route of the demands, RSA-BASE includes an exponential number of cycle-elimination constraints. Next we show that for the objective functions studied in this paper, such constraints can be dropped, and whenever a solution including cycles is found, a simple post-processing is capable of finding a solution of at most the same cost without any cycles in polynomial time.

Cycles may appear in a demand route either attached to it or detached from it. For cycles attached to the route (e.g., Figure 4), including a polynomial sized family of degree constraints suffices for excluding such solutions. Proposition 6. The following degree constraints are valid:

a∈δ + (v) s s=1 f sk a ≤ 1 ∀k ∈ K, v ∈ V. (9) 
Proof. For any demand k ∈ K, there can exist at most one arc leaving node v ∈ V with at most one channel.

For excluding cycles that are detached from the demand's route (e.g., Figure 5), an exponential number of inequalities is required in formulation RSA-BASE. For the objective functions studied here however such inequalities can be dropped, making formulation RSA-EXT compact. The next proposition describes how to obtain a feasible solution from a solution with cycles. The obtained solution has at most the same cost as the cyclic one. Proposition 7. Given linear objective function where every variable f sk a implies a cost c sk a ≥ 0, any solution to the RSA containing cycles can be transformed into an acyclic solution of at most the same cost as the former solution.

Proof. Let f be a solution of the RSA-EXT formulation where the route of a given demand k ∈ K includes a cycle detached from its main path (e.g., Figure 5). Let C denote the set of arcs composing a cycle in the route of demand k . Then, since every variable cost c sk a and every arc length is nonnegative, the solution f defined as

f sk a = f sk a ∀k ∈ K \ k , a ∈ A(G ), s ∈ {1, . . . , s}, f sk a = f sk a ∀a ∈ A(G ) \ C, s ∈ {1, . . . , s}, f sk a = 0 ∀a ∈ C, s ∈ {1, . . . , s},
is a feasible solution without cycle C that costs at most the cost of solution f .

It follows from Proposition 7 that whenever RSA-EXT yields a solution containing cycles, a postprocessing method is capable of providing an acyclic solution of at most the same cost in polynomial time. Such postprocessing involves a simple labeling algorithm. Our formulation is therefore compact and solves the RSA problem for all the objective functions studied.

Variable elimination

In order to boost the performances of the proposed formulation, a preprocessing method for eliminating variables may be applied. 

Proof. If the shortest path from o k to d k passing through arc a ∈ A(G ) has length strictly greater than ¯ k , then arc a can never be used for routing demand k.

Computing the shortest path between two nodes s and t passing through an arc (u, v) can be done in polynomial time by computing the shortest path from s to u and from v to t. In order to identify the variables in Proposition 8 that can be eliminated, we apply this preprocessing method for every demand k ∈ K and every arc (u, v) ∈ A(G ). Such preprocessing is hereafter denoted as length preprocessing.

Since G is supposed to be connected, there always exists a path between any two given nodes in G . However, when applying the variable elimination described in Proposition 8, one might trouble this property. Let D k ⊆ A(G ) denote the set of arcs that are unable to route demand k due to length restrictions (i.e., the arcs identified through length preprocessing). Now, consider the practical graph for demand k ∈ K defined as 

G k = (V (G ), A(G ) \ D k ). Graph G k is not
Proof. If there is no path from o k to d k passing through arc a, then arc a can never be used for routing demand k.

For identifying the variables that can be eliminated as a consequence of Proposition 9, it suffices to construct graphs G k and run a preprocessing similar to length preprocessing.

Computational results

In order to confirm the relevance of our approach, in this section we evaluate the computational performances achieved with the proposed extended compact formulation. For this, three network topologies are investigated: Spain, NSF and German. Spain topology consists of 5 nodes, 7 edges and 30 slots. NSF topology has 9 nodes, 13 edges and 120 slots. German topology consists of 17 nodes, 25 edges and 140 slots. For each network topology three sets of randomly generated demands are evaluated.

Tables 1-4 provide a sample of the performances obtained with each formulation using each of the objective functions described in Section 2. All the experiments were performed using the state-of-the-art MIP solver CPLEX 12.10 on a computer equipped with a 1.60 GHz Intel Core i5-8265U processor and 16 Gb RAM. A time limit of two hours was imposed in each run. For each formulation, the total time in seconds required for the optimization is displayed under column CPU. If the time limit of two hours is exceeded, the remaining gap percentage is displayed under column gap. The number of nodes explored in the enumeration tree is given under column node. The absence of results for some of the instances indicates that the model breaks down and no feasible solution was found within the two hours time limit. On all tested instances, we could either prove optimality faster or the remaining gap by the end of the time limit was smaller using formulation RSA-EXT
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 9 necessarily a connected graph and hence the following proposition holds. If there is no path in G k from o k to d k passing through arc a ∈ A(G k ), then f sk a = 0 ∀s ∈ {1, . . . , s}.

Table 1 :

 1 Comparison between formulations RSA-BASE (left) and RSA-EXT (right) for objective function O 1 .

	Network |K|	CPU UB	LB gap node	CPU	UB	LB gap node
	Spain	15	2.7 18	18	0	0	0.2	18	18	0	0
	Spain	20	6.3 24	24	0	0	0.3	24	24	0	0
	Spain	25	38.6 37	37	0	21	0.9	37	37	0	0
	NSF	30 4167.4 69	69	0	165 16.5	69	69	0	0
	NSF	40 2468.0 90	90	0	0	38.0	90	90	0	0
	NSF	50	7200	-	98	-	-37.9	98	98	0	0
	German	40	7200	-93.7	-	-	51.6	95	95	0	0
	German	50	5194.6 82	82	0	0	43.3	82	82	0	0
	German	60	7200	-	176	-	-77.4 180 180	0	0

* This work was supported by the French National Research Agency grant ANR-17-CE25-0006, project FLEXOPTIM.

than when using RSA-BASE. For objectives O 1 and O 2 , the extended formulation could solve all tested instances to optimality within less than 1.5 minute, while the original formulation struggled substantially more. Indeed, 5 instances could not be solved to optimality within the time limit of 2 hours. Considering the instances that could be solved by both formulations, RSA-EXT was in average 65.7 times faster than RSA-BASE. For objectives O 3 and O 4 , RSA-BASE could only solve the instances tested over Spain network, and for all other topologies it could not even find a feasible solution. RSA-EXT, in return, only failed to find a feasible solution for the largest instance tested (i.e., German, 60 demands) with objective O 3 . Considering the instances that could be solved by both formulations, RSA-EXT was in average 4742 times faster than RSA-BASE. Such computational results strongly confirm the efficiency of the proposed extended formulation.

Concluding remarks

Objective functions related to efficient spectrum assignments were found to be much harder to optimize than the objective functions related to routing aspects. This has probably with the fact that when trying to fit all demands within a smaller subspectrum width, the non-overlapping requirements become increasingly restrictive and hence the interactions between demands grow to be progressively conflicting. Moreover, such spectrum related objectives induce a great degree of symmetry in the MILP. Symmetry-breaking techniques might be useful to be considered in these cases. As the number of demands to be routed increases, the root node becomes progressively harder to be solved. A promising idea is to consider other methods (e.g., Lagrangian relaxation) for obtaining good approximations of the linear relaxation values.