N
N

N

HAL

open science

Linear-time algorithms for three domination-based

separation problems in block graphs

Gabriela Argiroffo, Silvia Bianchi, Yanina Lucarini, Annegret K Wagler

» To cite this version:

Gabriela Argiroffo, Silvia Bianchi, Yanina Lucarini, Annegret K Wagler. Linear-time algorithms for
three domination-based separation problems in block graphs. Discrete Applied Mathematics, 2020,

281, pp.6-41. 10.1016/j.dam.2019.08.001 . hal-03154751

HAL Id: hal-03154751
https://uca.hal.science/hal-03154751

Submitted on 1 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://uca.hal.science/hal-03154751
https://hal.archives-ouvertes.fr

Linear-time algorithms for three
domination-based separation problems in block
graphs

G. Argiroffo, S. Bianchi, Y. Lucarini

Universidad Nacional de Rosario, Rosario, Argentina

{garua,sbianchi,lucarini}fceia.unr.edu.ar

Annegret Wagler
LIMOS, Université Clermont Auvergne, Clermont-Ferrand, France

annegret.waglerQuca.fr

Abstract

The problems of determining minimum identifying, locating-domina-
ting or open locating-dominating codes are special search problems that
are challenging both from a theoretical and a computational point of view,
even for several graph classes where other in general hard problems are
easy to solve, like bipartite graphs or chordal graphs. Hence, a typi-
cal line of attack for these problems is to determine minimum codes of
special graphs. In this work we study the problem of determining the car-
dinality of minimum such codes in block graphs (that are diamond-free
chordal graphs). We present linear-time algorithms for these problems,
as a generalization of a linear-time algorithm proposed by Auger in 2010
for identifying codes in trees. Thereby, we provide a subclass of chordal
graphs for which all three problems can be solved in linear time.

1 Introduction

For a graph G that models a facility or a multiprocessor network, detection
devices can be placed at its vertices to locate an intruder (like a fire, a thief or
a saboteur) or a faulty processor. Depending on the features of the detection
devices (to detect an intruder only if it is present at the vertex v where the
detector is installed and/or also at a vertex adjacent to v), different dominating
sets can be used to determine the optimal distribution of the detection devices
in G. In the following, we study three problems arising in this context which
all have been actively studied during the last decade, see e.g. the bibliography
maintained by Lobstein [16].

Let G = (V, E) be a graph. The (open) neighborhood of a vertex wu is the
set N(u) of all vertices of G adjacent to u, and N[u] = {u} U N(u) is the closed
neighborhood of w.

Identifying codes A subset C' C V is an identifying code (for short: ID-
code) of G if



e NulNC # 0 for all uw € V (domination),
e NulNnC # N[v]nC for all u,v € V (separation),

see Figure 1(a) for an example. Identifying codes were introduced by Karpovsky
et al. [15]. There it was noted that not every graph G admits an identifying
code, i.e. is identifiable: this holds if and only if there are no true twins in G,
i.e., there is no pair of distinct vertices u,v € V with N[u] = Nv] [15]. On the
other hand, for every identifiable graph, its whole vertex set trivially forms an
identifying code.

The identifying code number vrp(G) of a graph G is the minimum cardinality
of an identifying code of G. Determining v;p(G) is in general NP-hard [10] and
remains hard for several graph classes where other in general hard problems are
easy to solve, including bipartite graphs [10] and two classes of chordal graphs,
namely split graphs and interval graphs [12].

Hence, typical lines of attack for the identifying code problem are to de-
termine minimum identifying codes of special graphs. Closed formulas for the
exact value of y7p(G) have been found so far only for restricted graph families
(e.g. for paths and cycles [6], for stars [13], for complete multipartite graphs [1]
and some subclasses of split graphs [3]). A linear-time algorithm to determine
~vip(G) if G is a tree was provided by Auger [5].

Locating-dominating codes A subset C' C V is a locating-dominating code
(for short: LD-code) of G if

e NulnC #0( forall u e V,
e N(uynC # N(w)NC for all u,v € V — C,

see Figure 1(b) for an example. Locating-dominating codes were introduced by
Slater [20, 21]. By definition, every graph has a locating-dominating code (as
its whole vertex set trivially forms an LD-code).

The locating-dominating number vrp(G) of a graph G is the minimum car-
dinality of a locating-dominating code of G. Determining 7, p(G) is in general
NP-hard [10] and even remains hard for bipartite graphs [10]. This result is
extended to planar bipartite unit disk graphs in [17].

Hence, a typical line of attack for the L D-code problem is again to determine
minimum LD-codes of special graphs. Closed formulas for the exact value of
~vp(G) have been found so far for restricted graph families as e.g. paths [21],
cycles [6], stars, complete multipartite graphs and thin suns [4]. Bounds for the
LD-number of trees were provided in [8], characterizations of trees with unique
minimum locating-dominating sets were found in [7]. A linear-time algorithm
to determine v, p(G) if G is a tree was provided by Slater in [20].

Open locating-dominating codes A subset C C V is an open locating-
dominating code (for short: OLD-code) of G if

e N(u)NC # () for all u € V (open-domination),
e N(u)yNC # N(v)NC for all u,v € V (open-separation),

see Figure 1(c) for an example. Open locating-dominating codes were introduced
by Seo and Slater [22]. There it was noted that not every graph G admits an
OLD-code: this holds if and only if there are neither isolated vertices nor false



twins in G (i.e., no pair of distinct vertices u,v € V with N(u) = N(v)) [22].
On the other hand, the whole vertex set trivially forms an OLD-code of any
false twin-free graph.

The open locating-dominating number yor,p(G) of a graph G is the minimum
cardinality of an OLD-code of G. Determining vorp(G) is in general NP-hard
[22] and remains NP-hard for perfect elimination bipartite graphs and APX-
complete for chordal graphs with maximum degree 4 [18]. Closed formulas for
the exact value of yorp(G) have been found so far only for restricted graph
families such as cliques and paths [22], some algorithmic aspects are discussed
in [19].

@ (b) ©

Figure 1: A block graph where the black vertices form a minimum (a) I D-code,
(b) LD-code, (¢) OLD-code.

More results on all three problems are listed in [16]. Concerning the relation
of the three studied domination numbers, it is immediate from the definitions
that

vLo(G) < min{vrp(G),vorp(G)}

as every ID-code and every OLD-code satisfy the conditions for locating-
domination.

In this paper, we determine the identifying code, locating-dominating and
open locating-dominating numbers of block graphs. A block graph is a graph
in which every maximal 2-connected subgraph (block) is a clique (see Figure
1). Block graphs are precisely the diamond-free chordal graphs [9] resp. those
chordal graphs in which every two maximal cliques have at most one vertex in
common [14].

We present linear-time algorithms for the three studied problems on block
graphs, as a generalization of the linear-time algorithm by Auger [5] for v;p(G)
on trees.

In fact, trees are exactly the block graphs with clique size 2 and constitute
exactly the intersection of block graphs with bipartite graphs.

Note that a tree is identifiable (i.e. has no true twins) whenever it is different
from the clique of size 2, whereas a block graph B admits an identifying code if
and only if each maximal clique K of B satisfies that all vertices in K, except
at most one, have a neighbor that is not in V(K).

In [22] it was observed that a tree has an OLD-code (i.e. has no false twins)
if and only if no two vertices with degree one (called endpoints) have a common
neighbor (called support vertex). It is straightforward to see that this condition
carries over to block graphs. Also, a block graph B admits an OLD-code if and
only if no vertex in G has more than one neighbor with degree one.



Hence, in contrary to Auger’s algorithm for identifying codes in trees, our
algorithms have to take into account that the block graph given as input might
not admit an I D-code or an OLD-code.

In Section 2, we provide basic definitions and notations necessary for what
follows. In Section 3, we present our general algorithmic framework for deter-
mining the three studied domination numbers in block graphs, and give the
details and proofs for finding minimum I D-codes, LD-codes and OLD-codes in
Sections 4, 5 and 6, resp. We close with some concluding remarks and lines of
future research. The results on I D-codes were presented without proofs in [2].

2 Basic definitions and notations

In order to provide linear-time algorithms that compute v;p(B), v.p(B) and
Yorp(B) of a block graph B, we adopt the following notation from [5]. Let
G = (V,E) be a graph and v € V. Then C C V is a v-almost X -code of
G where X € {ID,LD,OLD}, if the code C is an X-code for the induced
subgraph G — {v} of G. Moreover, we say that C' satisfies the property

ID (LD, OLD) if C'is an ID (LD or OLD resp.)-code in G,

CO ifv e C,

ADJ if v has a neighbour in C,

FN if v has a neighbour w with N[w] N C = {v},

OFN if v has a neighbour w with N(w) N C = {v},

P if C does not satisfy property P € {ID,LD,OLD,CO,ADJ, FN,OFN}.

In properties F'N and OF N the vertex w is called the favored neighbor of v. Let
?={ID,LD,OLD,CO,ADJ,FN,OFN,ID,LD,OLD,CO,ADJ,FN,OFN}
and X € {ID,LD,OLD}. We denote by vp, .. p.(v,G) the function that re-
turns the minimum size of a v-almost X-code in G satisfying the properties
{P1,..., Py} C P or oo if no such code exists.

We observe that there exist dependency relationships between these prop-
erties. In fact, if a v-almost X-code C satisfies F'N then it satisfies CO, if C
satisfies ID or LD then it satisfies CO or ADJ, if C satisfies ID, CO and FN
then it must satisfy ADJ and finally, if C satisfies OLD then it must satisfy
ADJ. As a consequence we observe the following:

Remark 1 There is no v-almost X-code in G that satisfies the following sets
of properties:

ID, CO, ADJ and FN,
ID, CO, ADJ and FN,
ID, CO, ADJ and FN,
ID, CO, ADJ and FN,
LD, CO, ADJ and FN,
LD, CO, ADJ and FN,

LD, CO, ADJ and FN,
OLD, CO, ADJ and OFN,
OLD, CO, ADJ and OFN,
OLD, CO, ADJ and OFN,
OLD, CO, ADJ and OFN,
OLD, CO, ADJ and OFN.

Let X € {ID,LD,OLD}. If v € V(G), we denote by vx (v, G) the minimum
size of a v-almost X code. From Remark 1 it follows that

) G ’ FN\Ys G
~vip(v,G) = min Y1p,c0,AD5,FN (v, G) VID,CO,ADJ,FN(U ) (1)
71D,CO,ADJ(“7 G), W’ID,@,ADJ(% G)



Yro(v, G) = min{yLp,co(v,G),vp (v, G)} (2)

Yorp (v, G) = min{yorp,co,orn(v,G), YoLp,cO,0FN (v, G), VOLD,@(% Gz})

3

In the particular case of a block graph, we observe the following. If B is

a block graph, v; € V(B) and K a maximal clique with V(K) = {v1,..., v}

then deleting all the edges in K yields k£ block subgraphs, say By, Bs, ..., B,

containing vy, vs, ..., vk, respectively. In the sequel, it is therefore convenient
to use the following notation:

Notation 2 Let B be a block graph, v1 a chosen vertex and K a mazimal clique

with vertices vy,..., v, i.€., containing vi. We denote by B1,..., By the block
graphs, containing v, ..., v respectively, obtained from B after deletion of the
edges in K.

Remark 3 Let X € {ID,LD,OLD}, B be a block graph, V(K) = {v1,...,vx}.
If C is a vi-almost X -code in B then C; = CNV(B;) is a v;-almost X -code in
B; for allie {1,2,...,k}.

Lemma 4 Let X € {ID,LD,OLD}, B be a block graph, V(K) = {v1,...,vx}.
If C; is a vi-almost X -code in B; fori € {1,2,...,k}, and C = Ule C; then

the vertices in V' = Ule(V(Bi) —{vi}) are dominated and separated by C.

Proof. Observe that u, v are trivially separated if d(u,v) > 2. Consider u,v € V'
such that d(u,v) < 2. Hence u,v € V(B;) — {v;} for some i € {1,2,...,k}. By
assumption C; is a v;-almost X-code in B; for all ¢ € {1,2,..., k}, the vertices
in V/ are dominated and separated by C. [J

Lemma 5 Let X € {ID,LD,OLD}, B be a block graph, V(K) = {v1,...,v}.
If C is a vi-almost X -code in B and C; = C NV (B;) Vi€ {1,2,...,k} then,

(i) if X = ID and C satisfies ID then there exists at most onei € {1,2,...,k}

such that C; satisfies ADJ,

(i) if X = LD (resp. OLD) and C satisfies LD (resp. OLD) then there
exists at most one i € {1,2,...,k} such that C; satisfies ADJ and CO,

(i1i) if X = ID then there exists at most one i € {2,...,k} such that C;
satisfies ADJ,

(iv) if X = LD (resp. OLD) then there exists at most one i € {2,...,k} such
that C; satisfies ADJ and CO.

Proof. Consider the maximal clique K with V(K) = {v1,va,...,v;}. If there is
j €{2...,k} such that C; and C; satisfy ADJ then N[v;]NC = N[v;]NC =
V(K)NC. Then C clearly does not satisfy 1D, and (i) is proved. If in addition
the same pair satisfies CO then N(v;) NC = N(v1)NC = V(K)NC and C is
neither an LD- nor an OLD-code, proving (ii). Suppose that C' is a vj-almost
X-code with X € {ID,LD,OLD}, then using the previous items the lemma
follows. [J



3 An algorithm for determining the minimum
X-code of block graphs

Let B be a block graph and v € V(B), in order to obtain the X-number of B,
with X € {ID,LD,OLD}, we will prove that we need to compute 46 functions
that are based on the formulas (1), (2) and (3). The first 27 functions will be
called main functions and are given in Table 1 and the latter 21 auziliary func-
tions in Table 2. Sometimes it is necessary to point out the particular problem
we are dealing with. In such cases, we write v(p, ... p,), (v,G) when properties
Py, ..., P, must be satisfied for the problem X, with X € {ID,LD,OLD}.
Observe that if B = {v} the values of the functions are straightforward and are
also given in Table 1 and 2.

Name | Function Initial value f;(v,{v})
f1 YID,CO,ADJ,FN 00
T2 Y1D,cO,ADJFN o0
I3 Yi1p,coADT 1
fa YID,CO,ADJ S
f5 NCO,ADJ,FN),;, |
fe Y(c0,ADJFN);p 0
Vid Y(co,ADI,FN);p |
I8 YcoADI,FN),;p | L
fo V(©0,AD1); o0
fro V(COADT) 0
fi1 YLD,CcO 1
fi2 YLD,CO oo
fi3 NCO,ADJ,FN),, |
J1a Y(€co,ADJFN), p |
fis Y(coADJ,FN),, |
Ji6 Y(co,ADI,FN) . p 1
fiz Y(©6,ADT); 1 00
fis VCO.ADT) 0
f19 YOLD,CO,0FN 00
J20 YoLD,cO,OFN s
fo1 YoLD,CO oo
faz YCO,ADJ,OFN 00
J23 Yc0,ADJ,OFN o0
J2a Yco,ADJ,0FN 0
J25 Yco,ADJ,0FN 1
f26 Y(C0,ADT) o1 p o0
far (€O, ADN)p1p 0

Table 1: List of main functions together with their initial values f;(v, {v}).

According to the notation introduced in Table 1, we can rewrite the formulas

(1), (2) and (3).

’YID(U7B) = min{fl(vaB)an(vaB);f3(v7B)7f4(UvB)}
Yp(v, B) = min{fii(v, B), fia(v, B)} (4)
Yorp(v,B) = min{fig(v, B), fao(v, B), fo1(v, B)}

Below, we present the algorithms XB for X € {ID,LD,OLD} that find
~vx (v, B) applying the equations above.



Name | Function Initial value f;(v,{v})
fos | Yco,apy),, = mindfr, fs} 1
f20 | vco,aDy),, = min{fs, fe} oo
fs0 | vco,FNy,, = min{fs, fr} 0
f31 Yo, FN);p = min{fe, fs} 1
fa2 Yoo, , = min{fo, fio} 0
fa3 YADJ;p = min{fs, fe, fo} o0
f3a Y1D,co,ApJ = min{ f1, f2} o0
fss | vcovapy), , = min{fis, fia, 15, f16, frr} | 1
f36 Yo FN), p = Min{f14, fre} 1
J37 Y(co,FN), , = min{fis, fi5} oo
f38 Yoo, , = min{fir, fis} 0
f39 Yoo, p = mind fi3, f14, f15, f16} 1
fa0 Yorp,co = min{ fig, f20} oo
fa Y(CO,ADT) oL p = Min{f22, fas} 0o
faz NCO,ADT) oy p = M f24, fos} 1
fa3 Ycoorp = min{ fez2, f23, fa4, fo5} 1
faa YADJorp = Mind fa2, fos, fo6} 00
fas YCOVADT) G, p = Min{f22, f23, f2a, f25, f26} | 1
fae Yco,0FN = min{ fa2, faa} o0
far Yeo.oFN = min{ fas, f2s} 1
fas Y600, = mind fas, for} 0

Table 2: List of auxiliary functions together with their initial values f;(v, {v}).

Algorithm 6 (Algorithm X B)

Input: a connected block graph B and its list of maximal cliques.
Output: yx(B).
1: randomly select a vertex v, and call RX B(vy, B);

2(If X = ID):

return ’YID(UDB) = min{fl(vhB)afZ(vlaB)u fg(’l}17B)7f4(’U1,B)}.
(It X = LD):

return v p(vy, B) = min{ f11(v1, B), f12(v1, B)}.

2(If X = OLD):

return Yorp(vi, B) = min{ fi9(v1, B), fao(v1, B), f21(v1, B)}.

Algorithm RX B chooses a maximal clique K with vertices {v1,...,v;} and
either returns the initial function values if K = {v;} or deletes all edges of K and
calls recursively RX B(v;, B;) for all so-obtained components B; of B — E(K)
to compute the lists of functions LX; for (v;, B;) with i € {1,...,k} according
to the problem X € {ID,LD,OLD}.

In the following sections, we use this common algorithmic scheme for all
3 studied problems and specify which of the main and auxiliary functions are
relevant for the particular problem and how we can compute them in all 3 cases.



Algorithm 7 (Algorithm RX B)

Input: a block graph B, its list of maximal cliques and v; € V(B).
Output: list L of the values of the main functions f; on (v, B)

corresponding to problem X.

1: if vy has degree 0 in B then

2 initialize LX (corresponding to problem X);

3: else

4: let K be a maximal clique with V(K) = {v1,..., v} and delete its edges;
) let By, ..., By be the remaining block graphs, resp., containing vy, ..., vg;
6: let LX; = RXB(v;,B;) for all i € {1,...,k} corresponding to problem X;
7:  compute the main functions on (vy, B) from LX; for all i € {1,...,k}

corresponding to problem X.

8: end if

9: return the list LX of the values of the main functions f; on (v, B)

corresponding to problem X.

4 A linear-time algorithm for the identifying code
number of B

Let v1 € V(B) and let k be the order of a maximal clique containing v;. We will
see that the algorithm RIDB needs to compute the main functions f;(vi, B)
with 7 € {1,...,10}. Actually, for i € {1,...,k} we need the list LID; that
consists in functions f;(v;, B;) for j € {1,...,10}. In order to do so we need
the auxiliary functions f;(v;, B;) for j € {28,...,34}.

To see the correctness of our algorithm, let us prove first a technical lemma.

Lemma 8 Consider a block graph B and V(K) = {v1,va,...,v;}. Let C; be
k

a v;-almost identifying code in B; for i € {1,2,....k} and C = |J C; and
i=1

1=

k
Vi= UWViBi) = {vih)-

(1) Let v € V' and v; € V(K) such that d(v,vj) = 1. Then v; and v are
dominated and separated by C if there is i € {1,2,...,k} i # j such that
C; is CO.

(2) Letv € V' andv; € V(K) with d(v,v;) = 2. Thenv; and v are dominated
and separated by C if C; satisfies CO or there isi € {1,2,...,k} i # j
such that C; is CO and v ¢ V(B;).

(8) Letv;,v; € V(K) withi# j. Thenv; and v; are dominated and separated
by C if either C; or C; is ADJ.

Proof. If v € V' and v; € V(K) such that d(v,v;) = 1 then it is clear that
v € V(By). If there is i # j such that C; is CO then v; € N[v;] — N[v] and (1)
follows.

Let v € V(B,) — {v.} for some r € {1,2,...,k} and j € {1,2,...,k} such
that d(vj,v) = 2. Clearly v; € N[v,] — N[v]. If v; € C then (2) follows.
Otherwise suppose that there is ¢ # j such that v; € C and ¢ # r. Hence
v; € N[v;] — N[v] and this completes the proof of (2).



It is easy to observe that if C; (C;) is ADJ then there is w € (N[v;] — N[v;])
(w € N[vj] — N[v;]) with w € V(B;) N C; (w € V(B;) N C;) and the proof is
complete. [

The following result shows how to compute f;(v1, B) for a given v1 € V(B).

Theorem 9 Consider a block graph B and V(K) = {v1,va,...,v;}. Let C be
a code in B and C; = CNV(B;) foralli € {1,2,...,k}. Then C is a vi-almost
identifying code in B with properties ID, CO, ADJ, FN if and only if C; is a
vi-almost identifying code in B; for alli € {1,2,...,k}, and one of the following
sets of assertions is satisfied:

(i) Cy satisfies ID, CO, ADJ and FN, there exists j # 1 such that C;
satisfies CO and ADJ, and C; satisfies CO and ADJ for all i #1,5.

(i1) C1 satisfies CO, ADJ and FN, there exists j # 1 such that C; satisfies
CO and ADJ, and C; satisfies ADJ for all i # 1, 5.

(iii) If k > 3, Cy satisfies CO, ADJ and FN, there exists hneql such that C},
satisfies CO, there exists j # 1 such that C; satisfies CO and ADJ, and
C; satisfies ADJ for all i # j.

(iv) Cy satisfies CO and FN, there exists h # 1 such that C}, satisfies CO, and
C; satisfies ADJ for all i # 1.

(v) Cy satisfies ID, CO, ADJ and FN, and C; satisfies CO and ADJ for all
1 # 1.

Proof. Let C' be a vi-almost identifying code in B with properties I D, CO,
ADJ and FN. Observe that by Remark 3, C; is a v;-almost identifying code in
B; for all i. Also, C satisfies CO since C satisfies CO and vy € V(By). Since C
is F'N there is only one w € V(B) — C such that N[w]NC = {v;}. We analyze
the different cases that may occur (see Figure 2).

If w = v, for some j € {2,...,k} then C4 is FN, C;is CO for all i # 1 and
Cj is ADJ. Then by Lemma 5 and the fact that C is ID it follows that C; is
ADJ for all i # j. Since N(v1)NCNV(B;) =0 foralli# 1 and Cis ID, Cy
is ID and (i) is proved.

Now, if w € V(By) then C; is FN. Since C is ADJ there is v € N(v1)NC.

If V(K)NC = {v;} then v € V(B;) and Cy is ADJ, C; is CO for all i # 1.
Since C'is ID and Cy is F'N it follows that C; is ADJ for all ¢ # 1 and C; is
ID. Then (v) follows.

If [V(K)NC| > 2 then there is h # 1 such that C}, is CO. Hence, if C; is
ADJ for all i # 1 then we obtain (iv). But, if C} is ADJ, Lemma 5 implies
that C; is ADJ for all ¢ # h which proves (i¢). In addition if there is j # h such
that C; is ADJ and CO again from Lemma 5 C; is ADJ for all i # j which
gives us (iii).

Conversely, let C; be a v;-almost identifying code in B; for alli € {1,...,k}

k
satisfying one of the sets of properties from (i) to (v) and let C = |J C; (see
i=1
Figure 2).
We will prove that C' is a vi-almost identifying code in B with the properties
ID, CO, ADJ and FN.
It is easy to see that C' is CO and ADJ since C is CO and either C satisfies
ADJ or Cp, is CO with h # 1 in each one of the statements (i) to (v). Also, it

is easy to verify that each of the statements implies that C' is F'N.



Then it remains to prove that C' is ID, i.e., we need to prove that given
u,v € V(B) with d(u,v) < 2 they are dominated and separated by C.
k

From Lemma 4 if u,v € |J (V(B;) — {v;}) the theorem follows.

i=1

Consider u,v € V(B) with d(u,v) = 2 such that v € V(K). Then v €
V(B;) — {v;} for some i and u = v, for some r. If r = 1, by using Lemma 8 (2)
and the fact that Cy is CO in any of the statements (i) to (v), it follows that
v1 and v are dominated and separated by C.

Now, let » # 1. If i # 1 again Lemma 8 (2) together with the fact that
v1 € C imply that v, and v are dominated and separated by C.

When, r # 1 and i = 1, statements (i7) to (iv) say that there is h # 1 with
vp, € C and Lemma 8 (2) ensures that v, and v are separated and dominated by
C. If statement (7) holds then C; is F'N and then there is w € Nv]NCNV(By)
and w ¢ Nv,]. If statement (v) is satisfied then C, is AD.J. In both cases v
and v, are dominated and separated by C.

If w,v € V(B) with d(u,v) = 1 such that v € V(K) and v ¢ V(K) then
v € V(B;) — {v;} and u = v; for some 4. If i = 1 we see that statements (i7)
to (iv) ensure there is h # 1 such that Cj is CO while statements (i) and (v)
state that C; is ID. Hence Lemma 8 (1) implies that they are dominated and
separated. In case i # 1 all statements imply that C; is CO and the same
lemma proves that u and v are dominated and separated by C.

Finally, if u = v; and v = v; with i # j then either C; is ADJ or C; is AD.J
but not both. Hence Lemma 8 (3) completes the proof. O

In all the pictures used as illustrations for the proofs, black dots represent
vertices in the corresponding code, white dots depict vertices out of the code
and crosses represent vertices that may be or may not be in the code.

AN

co
By ADJ, _ By ) ADJ 1 ADJ 1 AD.J el
D CO co co .. Japs  coapt €0 D} &)
ARJ FN AD. AN N ADJ PN Y 2 AD,
Z o8 DS X z = NS
-~ -
— /,/ N /// <N 17~ N — . _<_N
co T %o ~ _ _ X < « N
e 059, ADJ 9, aps f %= — — e L0
.................... B B B

Figure 2: Tllustration for the proof of Theorem 9, cases (ii) to (v).

From Theorem 9 we obtain the following:

Corollary 10 With the notation of Theorem 9, we have the following equalities:
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Ja(v1, B1) + fio(ve, B2)

o if k=2, fi(vi, B) = min

fs(v1, B1) + fas(ve, B2)

fao(v1, B1) + f29(v2, B2)
f1(v1, B1) + fo(v2, B2)

e if k>3, then fi(vi, B) equals

f2(vi,B1) + min
j=2 k

,,,,,
=2,....k

.....

f3o(v1, B1) + h:rrgl}n

Jro(vs, By) + i fg(vi,Bi)}
=2
b

fs(vr, Bi) + min {fzs(vm Bp) + éf&i(”h Bi)}

i

min . k
f5(U1,B1)+jhg1m k{flo(vj,Bj)-ﬁ-fzs)(Uhth)-ﬁ- Z: fSS(Ui,Bi)}

=2
i#j,h

n {f29(vh,Bh) + Z: f33(U¢,Bz')}

i£h
k
fr(vi, Bu) + 32 fo(vi, Bi)
=2
In a similar way, the remaining main functions f;(vi, B) for j € {2,...,10}

can be obtained. We give them in Tables 3, 4, 5 and 6.

Function

Function

f2(vi, B1) + fio(v2, B2)
f5(v1, B1) + fag(va2, B2)
f30(v1, B1) + fag(v2, B2)
fi(vi, B1) + fo(v2, B2)
fe(v1, B1) + fag(va2, B2)
f2(vi, B) = min < fs1(vi, B1) + f2g(v2, B2)
f2(vi, B1) + fo(v2, B2)
f3(v1, B) = f3(v1, B1) + fo(v2, B2)
fo(vi, B1) + f3(v2, B2)
fio(v1, B1) + f2(v2, B2)
fo(v1, B1) + f34(v2, B2)
fa(vi, B1) + fa(v2, B2)
fe(vi, B1) + fio(v2, B2)
f30(v1, B1) + fas(v2, B2)
f30(v1, B1) + fag(v2, B2)
fs(vi, B1) + fo(v2, B2)

f1(v1, B) = min

fa(v1, B) = min

f5(v1, B) = min

f31(v1, B1) + fos(ve, B2)
fo(v1, B) = min < fa1(vi, B1) + fag(va2, B2)
fe(vi, B1) + fo(v2, B2)

fz(v1, B1) + fo(vz2, B2)
fs(vi, B1) + fio(v2, B2)

fs(v1, B) = fs(v1, B1) + fo(v2, B2)

f32(v1, B1) + f3(v2, B2)
fo(v1, B) = min g fa2(v1, B1) + f34(v2, B2)
Jo(vi, B1) + fa(v2, B2)

fr(v1, B) = min {

firo(vi, B) = fio(v1, B1) + fa(v2, B2)

Table 3: Case |V(K)| =2 for RIDB.

From the formulas in Tables 3, 4, 5 and 6, it is immediate to see that for
each of the ten functions f; with j € {1,...,10}, we can compute f;(v1,B)
from LID;(v;, B;) for all i € {1,...,k} in time O(k), where k is the order of a

maximal clique containing vertex v.

Theorem 11 Algorithm IDB computes in linear time vrp(B) of an identifiable
block graph B or returns oo if no identifying code exists in B.




Proof. In what follows we call g(B) the number of operations the algorithm
needs to solve the problem on graph B. The proof is by induction on the
number of vertices of graph B. If V(B) = {v} then using the initial values
we get that g(B) € O(1). Assume that for every block graph with less than n
vertices the result holds and let B be a block graph of order n.

Let v € V(B) and consider a maximal clique K containing v. Then, we
erase all the edges in K and obtain |V (K)| = k block subgraphs called B; with
i=1,...,k. From induction hypothesis g(B;) € O(n; +m;) where n;, = |V (B;)|
and m; = |E(B;)| for ¢ = 1,...,k. Then, in order to obtain y;p(B) we need
fj(v,B) for j € {1,...,10}. As we have mentioned above, this can be computed
in time O(k). Then g(B) € O(n +m) and the proof is complete. [J

5 A linear-time algorithm for determining the
locating-dominating number of B

We will see that the algorithm RLDB needs to compute the main functions
fj(vi, B) with j € {11,...,18}. In fact, for i € {1,...,k} we need the list LLD;
that consists in functions f;(v;, B;) for j € {11,...,18}, and in order to do so
we need also the auxiliary functions f;(v;, B;) for j € {35,...,39}.

Theorem 12 Consider a block graph B and V(K) = {v1,va,...,v;}. Let C
be a code in B and C; = C NV (B;) for alli € {1,2,...,k}. C is a vi-almost
locating-dominating code in B having properties LD, CO if and only if C; is a
vi-almost locating-dominating code in B; for alli € {1,2,...,k} and one of the
following statements is satisfied.

(i) Cy is CO, FN, there exists j # 1 such that C; is CO and ADJ, and C;
is CO and ADJ for alli #1,j.

(i) If k > 3, Cy is CO, there exists h # 1 such that Cy, is CO, there exists
j # 1,h such that C; is CO and ADJ, and C; is CO or ADJ for all
i #j,h.

(iii) Cy is CO, and C; is CO or ADJ for all i.

Proof. Let C be a vi-almost LD-code satisfying LD and CO.

From Remark 3, C; is a v;-almost LD-code in B; for all i € {1,...,k}. Also
Cy is CO, since C' is CO and vy € V(By). In addition, Lemma 5 ensures that
there is at most one j # 1 such that C; is CO and AD/J.

Let j €# 1 such that C; is CO and ADJ. If C; is CO for all i # 1, C; is
ADJ for all i # 1 and as C is LD, Cy is FN and (i) holds.

Now, let h # 1,4 such that C}, is CO. Then for all ¢ # 1,4, h, C; is CO or
ADJ and (i7) holds.

Finally, if C; is CO or AD.J for all i # 1 then (7i¢) holds.

Conversely, let C; be a v;-almost LD-code in B; for all i satisfying one of

k
the statements from (i) to (i#) and let C' = |J C;. We will prove that C is a

vi-almost LD-code in B with properties LD ;nld CO.

It is easy to see that C' is C'O since C7 is C'O in every case. Then to prove
that C is LD we need to verify that u,v € V(B), d(u,v) < 2 are dominated
and separated by C.

12



k
From Lemma 4, u,v € V(B) — |J {v;} are dominated and separated by C.

=1

Then, let u,v € V(B), d(u,v) = 2and v € V(K). We have that v € V(B;)—{v;}
for some i and u = v, for r # 4 such that C, is CO.

If i # 1, u and v are dominated and separated by C' since C is CO.

Let i = 1. In case (i), as O is FN it exists w € N[v]NC — N(u), w # v;.
In the remaining cases, since C, is CO and it is AD.J or there exists h # 1 such
that Cj is CO. Then u and v are separated and dominated.

Now, let u,v € V(B), d(u,v) =1, u € V(K) and v ¢ V(K).

If u = v; for some i, then v € V(B;) — {v;} and C; is CO. Since i # 1 and
C4 is CO, u and v are separated and dominated.

Finally, let v = v; and v = vy, 4,5 # 1 and C;, C; be CO. In all the cases,
from Lemma 5 at least one of C; and Cj is ADJ. Then u and v are separated
and dominated. [

Corollary 13 With the notation of Theorem 12, we have:

fae(v1, B1) + fis(v2, B2)

o for k=2, fi1(v1,B) = min {f39(’u1,31) + fas(v2, B2)

o fork >3, fi1(v1, B) equals

k

f36(v1, B1) +J_ n21in . fig(vj, Bj) + > f17(vi7B¢)}
J=2,..., i=2
i#5

i k
m f39(v1, B1) t+,  min {flS(Uj:Bj) + fao(vn, Br) + 32 f35(Ui:Bi)}
Ci#h iih
k
f39(v1, B1) + 37 fas(vi, Bi)
=2
In a similar way, the remaining main functions f;(v1, B) for j € {12,...,18}

can be obtained. We give them in Tables 7, 8, 9 and 10.

From the formulas given in Tables 7, 8, 9 and 10, it is immediate to see that
for each of the eight functions f; j € 11,...,18, we can compute f;(vi, B) from
LLD;(v;, B;) for alli € {1,...,k} in time O(k).

The next result can be proved in a similar way as Theorem 11 was proved.

Theorem 14 Algorithm LDB computes in linear time the locating-dominating
number yp(B) of a block graph B.

6 A linear-time algorithm for the open locating-
dominating number of B

We will see that the algorithm ROLDB needs to compute the main functions
fi(vi,B) with j € {19,...,27}, and in order to do so we need for all i €
{1,...,k} the main functions f;(v;, B;) for j € {19,...,27} and the auxiliary
functions f;(v;, B;) for j € {40,...,48}.

Theorem 15 Consider a block graph B and V(K) = {v1,va,...,vs}. Let C be

a code in B and C; = CNV(B;) foralli € {1,2,...,k}. C is a vi-almost open
locating-dominating code in B having properties OLD, CO and OFN if and only

13



if C; is a vi-almost open locating-dominating code in B; for alli € {1,2,...,k}
and one of the following sets of statements is satisfied.

(i) Cy is OLD, CO and OFN, there exists j # 1 such that C; is CO and
ADJ, and C; is CO and ADJ for all i #1,3.

(ii) If k > 3, Cy is CO, ADJ and OFN, there exists h # 1 such that C}, is
CO, there exists j # 1,h such that C; is CO and ADJ, C; is CO and
ADJ and for alli # 1,h,j.

(iii) If k > 3, Cy is CO and OFN, there exists h # 1 such that Cj, is CO,
there exists j # 1,h such that C;j is CO and ADJ and OFN, and C; is
CO and ADJ for alli # 1,j.

(iv) If k >3, Cy is CO, ADJ and OFN, there exists j # 1 such that C; is CO
and ADJ, there exists h # 1,7 such that Cp, is CO and ADJ, and C; is
CO and ADJ for all i # 1, ], h.

(v) If k >3, Cy is CO and OFN, there exists j # 1 such that C; is CO and
ADJ, there exists h # 1,4 such that C}, is CO, ADJ and OFN, and C;
is CO and ADJ for alli # 1,3, h.

(vi) If k > 4, Cy is CO and OFN, there exists j # 1 such that C; is CO and
ADJ, there exist h,1 # 1, h # 1 such that C),, C; are CO, and C; is CO
or ADJ for alli # 1,34, h,l.

(vii) Oy is OLD, CO and OFN, and C; is CO and ADJ for all i # 1.
(viii) Cy is CO, ADJ and OFN, there ezists h # 1 such that Cp, is CO and
ADJ, and C; is CO and ADJ for all i # 1, h.

(iz) Cy is CO and OFN, there exists h # 1 such that Cy, is CO, ADJ and
OFN, and C; is CO and ADJ for alli # 1, h.

(x) If k > 3, Cy is CO and OFN, there exist h,l # 1, h # 1 such that Cp,, C;
are CO, and C; is CO or ADJ for alli # 1,h,l.

Proof. Let C be a vy-almost OLD-code satisfying OLD, CO and OF N. From
Remark 3, C; is a v;-almost OLD-code in B; for all i. Also, C7 is C'O, since
Cis CO and vy € V(By). In addition, as C is OF N, there exists a unique
w € V(B) such that N(w)NC = {v;}.

Assume that w = v; for some j # 1, then C; is OFN, C; is CO for all
i #1,j and C; is ADJ. In addition, if C; is CO, then C; is ADJ for i # 1, j.
Since N(v1)NC NV (B;) =0 for all i # 1 and C is OLD, we have that C; is
OLD, and (i) holds. On one hand, if C; is CO, from Lemma 5 there exists at
most one h # 1, j such that C}, is ADJ. On the other hand, since C' is OLD the
neighbors of v; are open-separated from v;. Then, either C; is ADJ and (ii) is
proved, or C; is OF N and (iii) holds. Now, if w € V(By) then C; is OFN. We
have to analyze different cases.

Assume first that there exists j # 1 such that C; is CO and ADJ (such a j
is unique from Lemma 5). As C} is OF N, there exists h # 1, j such that C), is
CO. If C; is CO for all i # 1,h, C; is ADJ for all i # 1,4, h since C is OLD v
is open-separated from v;. Besides, as C7 is OF N, we have that C}, is ADJ and
as C'is OLD, v is open-separated from the vertices in N (vy,). Hence, either Cy
is ADJ and (iv) holds, or C}, is OFN and (v) holds.

Assume now that there exists at least two h,l # 1,7, h # [ such that C}, and
Cy are CO. Then C; is CO or ADJ for all i # 1, j, h,l, proving (vi). Now, if C;
is CO or ADJ for all i # 1, we have three cases.

14



If C; is CO for all i # 1, then C; is ADJ for all i # 1 and as C is OLD and
N(v1)NCNV(B;) =0 for all ¢ # 1, we have that Cy is OLD proving (vii). If
there exists a unique h # 1 such that C) is CO, then C; is CO and ADJ for
all i # 1, h. In addition, as Cy is OF N, we have that C}, is ADJ. Now, as C'is
OLD, v, and the vertices in N (vy) are open-separated, hence either Cy is ADJ
and (viit) holds, or C}, is OF N and (ix) holds.

Finally, if C), and C; are CO for some h,l # 1, h # 1, C; is CO or ADJ for
all i # 1, h,1 and (z) holds.

k
Conversely, let C; be a v;-almost OLD-code in B; for all i and let C = (J C;.

We will prove that C' is a v;-almost OLD-code in B with properties OLb,lc’O
and OFN. C'is CO since C is CO in all the sets of statements from (z) to ().
Also, it is immediate to check that C'is OF N.

To prove that C' is OLD we need to verify that if u,v € V(B), d(u,v) <
2 are open-dominated and open-separated by C. From Lemma 4, if u,v €

k
V(B) — U{v}, v and v are open-dominated and open-separated by C. Now,

=1
let u,v € V(B), d(u,v) =2 and u € V(K). Then v € V(B;) — {v;} for some i
and u = v, for some 7.

Assume first that » = 1. If ¢ = 1, in (¢) and (vii) C; is OLD. In the
remaining cases, there exists h # 1 such that C}, is CO. Hence, in any case,
u and v are open-dominated and open-separated. Now, let ¢ # 1. In (4), (i),
(iv), (vii) and (viii), Cy is ADJ, thus u and v are open-dominated and open-
separated. In (vi) and (x), {vp,v;} € N(u) N C, but at most one of v, and v,
is in N(v) N C, thus v and v are open-dominated and open-separated. In (ii7),
if i = j, as C; is OF' N there exists w # v; such that w € (N(v) N C) — N(u),
otherwise, if i # j, v; € (N(u) NC) — N(u), then u and v are open-dominated
and open-separated.

In (v) and (iz), if i = h as C), is OFN there exists w # vy such that
w € (N(v) NC) — N(u), otherwise, if i # h, v, € (N(u) NC) — N(v), then u
and v are open-dominated and open-separated.

Finally, let » # 1. If ¢ # 1, as C; is CO in all the cases from (i) to (z),
it holds that v; € (N(u) N C) — N(v) and u and v are open-dominated and
open-separated. If ¢ = 1, in (¢), (i4) and (ii7), C1 is OFN and there exists
w € (N(v)NC)— N(u) — {v1} and v and v are open-dominated and open-
separated. In the remaining cases, C,. is ADJ or there exists h # 1,r such that
v, € N(u)NC, thus v and v are open-dominated and open-separated. Now, let
u,v € V(B), d(u,v) =1, u € V(K) and v ¢ V(K). Then, v € V(B;) — {v;} for
some 7 and u = v;.

Ifi =1, 1in (¢) and (vit) Cy is OLD. In the remaining cases there exists h # 1
such that C}, is CO, thus u and v are open-dominated and open-separated. If
i # 1, in all the cases from (¢) to (x) C; is CO and u and v are open-dominated
and open-separated.

Finally, let u = v; and v = v; for ¢ # j. In all the cases from (i) to (z), C;
and C; are CO or ADJ. Then u and v are open-dominated and open-separated.
O

Corollary 16 With the notation of Theorem 15, we have the following:
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f20 U17B1

( + for(v2, Ba
flg('th7 By

(

(

(
+ f26(’U2,BQ
(
(

if k=2, th B) = mi
o if , then fig(v1, B) = min Fos(0r. By

f46 Ul,Bl

+ fa1(v2, B
+ fa3(v2, B2

— — — —

)
)
)
)

e if k=3, then fi9(v1, B) equals

fao(v1, B1) + min{ for (v2, B2) + fa6( ), f26(v2, B2) + far(vs, B3)}
fas(v1, B1) + min{f48(v2, B2) + faz(vs, Bs), faz(v2, B2) + fas(vs, Bs)}
far(v1, B1) + min{ fag(v2, B2) + fas(v3, B3), fos(v2, B2) + fag(vs, Bs)}
fa2(v1, B1) + min{ for (v2, B2) + fa1(vs, B3), fa1(ve, B2) + for(vs, Bs)}
min ¢ fu(v1, B1) + min{ for (ve, B2) + f23(vs, B3), f23(v2, B2) + fa7(vs, B3)}

fro(v1, B1) + f26(v2, B2) + fa6(vs, Bs)

fa2(v1, Br) 4+ min{ fa1 (v2, B2) + f26(vs, B3),
6(v1, B1) + min{ fa3(v2, B2) + fos(vs, Bs),
fae(v1, B1) + fag(v2, B2) + faz(vs, Bs)

J26(va, B2) + fa1(vs, Bs)}
fgg(Uz,Bz) +f23('l)37B3)}

=

e if k>4, then fig(v1, B) equals

f20(v1, B1) + rélln far(vj, Bj) + Z fa6(vi, B; )}
1#1

f23(v17B1)+th=nQiI.1“k; fag(vp, Br) + fa2(vj, Bj) + Z fze(U“B)}

i#h i3 h
fa7(v1, By) +]_ hm2in fag(vn, By) + fos(vj, Bj) + Z fa6(vi, Bi)}
h=2,..., i=2

i#h i

..... —2
z;ﬁ] h

.....

f22(v1,B1)+jhmin {f27(U]:B)+f41(UhvBh)+ > fze(qu)}

fae(v1, B1) + ,hm2in . far(vj, By) + fa3(vp, Br) + E f26(vi, Bi)
min Js S =2

i#j.h
Jae(v1, B1) + in z@lzn for(vj, Bj) + faz(vn, Bn) + faz(v, By) + Z Jas (vi, 2)}
J?ﬁh i il
fio(vi, B1) + Z f26(vi, Bi)
=2
fa2(vr, Bu) +  min  { far(vn, Bp) + Z Ja6(vi, B)
..... 2
fae(v1, B1) + rélln f23(vn, Bn) + Z f26(vi, Bi)
..... 2
fas(v1, B1) + =~ min Ja3(vn, Br) + fas(vi, Br) + Z fas(vi, Bi)
' h¥i”’ Pyt
In a similar way, the remaining main functions f;(v1, B) for j € {20,...,27}

can be obtained, see Tables 11, 12, 13, 14, 15, 16 and 17.

From these formulas, it is immediate to see that for each of the nine functions
fi 7 €{19,...,27}, we can compute f;(vy, B) from LOLD;(v;, B;) for all i €
{1,...,k} in time O(k).
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The next result can be proved in a similar way as Theorem 11 was proved.

Theorem 17 Algorithm OLDB computes in linear time vorp(B) of a block
graph B (or returns oo if no open locating-dominating code exists in B).

7 Concluding remarks

The three here studied domination problems are challenging both from a the-
oretical and a computational point of view and even remain hard for several
graph classes where other in general hard problems are easy to solve, including
bipartite graphs and chordal graphs.

In this paper, we present linear-time algorithms that find the identifying
code, locating-dominating and open locating-dominating numbers of a given
block graph, as a generalization of the linear-time algorithm proposed by Auger
[5] for identifying codes in trees. Although our algorithms work in a similar
way, they take into account the identifiable and open locating-dominating con-
dition for block graphs and the recomposition steps are built by defining distinct
functions accordingly.

Thus, we provide a subclass of chordal graphs for which all the three here
studied domination problems can be solved in linear time. Moreover, recall that
trees are exactly the block graphs with clique size 2 and constitute exactly the
intersection of block graphs with bipartite graphs. Hence, our results provide in
particular a linear-time algorithm that finds the OLD-code number of a tree.

Furthermore, note that our algorithms could be modified in order to obtain
the studied code of minimum size, just by keeping track of the functions where
the minimum values are attained. In addition, if B is a vertex-weighted block
graph, the algorithms can be easily modified in order to return the minimum
weighted identifying code number by just replacing in Table 1 and 2 the entry
with value 1 by the weight corresponding to the vertex.

Finally, it is interesting whether similar ideas could be adapted for graph
classes with a similar structure, e.g. for cacti (graphs in which every maximal
2-connected subgraph is an edge or a cycle) or for block-cacti (graphs in which
every maximal 2-connected subgraph is a clique or a cycle).
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Function

f1(v1, B) = min

fa(v1, B) = min

f3(v1, B) = f3(v1,

fa(v1, B) = min

f5(v1, B) = min

fe(v1, B) = min

fr(v1, B) = min

f2(v1, B1) + min { fi0(v2, B2) + fo(v3, B3), fo(v2, B2) + fi0(v3, B3)}
f5(v1, B1) 4+ min { fag(v2, B2) + f33(v3, B3), f33(v2, B2) + fos(v3, B3)}
f5(v1, B1) 4+ min { fio(v2, B2) + f29(v3, B3), f2g(v2, B2) + f10(vs, B3)}
f30(v1, B1) + min { fag(v2, B2) + f33(v3, B3), f33(v2, B2) + f20(v3, B3)}
fi(vi, B1) + fo(v2, B2) + fo(vs, B3)

fe(v1, B1) + min { fog(ve, B2) + f33(v3, B3), f33(v2, B2) + f2s(vs, B3)}
fe(vi, B1) 4+ min { fio(v2, B2) + f29(v3, B3), fao(v2, B2) + f10(v3, B3)}
f31(vi, B1) + min { fag(v2, B2) + f33(v3, B3), f33(v2, B2) + fa9(v3, B3)}
f2(v1, B1) + fo(v2, B2) + fo(vs, B3)

Bi1) + fo(v2, B2) + fo(v3, B3)

fo(vi, B1) 4+ min { fag(v2, B2) + fag(v3, B3), foo(v2, B2) + f2s(v3, B3)}
fo(v1, B1) + min { fio(v2, B2) + f2(v3, B3), f2(v2, B2) + fio(vs, B3)}
fo(v1, B1) + min { f3(v2, B2) + fo(vs, B3), fo(va, B2) + f3(v3, B3)}
f32(v1, B1) + fa9(v2, B2) + foo(v3, B3)

fio(v1, B1) + min { f2(ve, B2) + fo(v3, B3), fo(v2, B2) + f2(v3, B3)}
fo(v1, B1) + min { f34(v2, B2) + fo(vs, B3), fo(v2, B2) + f34(v3, B3)}
fa(vi, B1) + fa(v2, B2) + fa(vs, B3)

fe(v1, B1) + min { fio(v2, B2) + fo(vs, B3), fo(v2, B2) + fi0(v3, B3)}
f3o(v1, B1) + min { fio(v2, B2) + f29(v3, B3), fag(v2, B2) + fio0(vs, B3)}
f30(vi, B1) + min { fag(v2, B2) + f33(v3, B3), f33(v2, B2) + fag(vs, B3)}
f30(v1, B1) + min { fag(v2, B2) + f33(v3, B3), f33(v2, B2) + f29(vs, B3)}
f5(v1, B1) + fo(v2, B2) + fo(vs, B3)

f31(v1, B1) + min { fog(v2, B2) + f33(v3, B3), f33(v2, B2) + fag(vs, B3)}
f31(v1, B1) + min { fio(v2, B2) + f29(v3, B3), foo(v2, B2) + fio0(vs, B3)}
f31(v1, B1) + min { fag(v2, B2) + f33(v3, B3), f33(v2, B2) + f20(v3, B3)}
fe(vi, B1) + fo(v2, B2) + fo(vs, B3)

fr(vi, B1) + fo(v2, B2) + fo(vs, B3)

fs(vi, B1) 4+ min { fio(v2, B2) + fo(v3, B3), fo(v2, B2) + fio(v3, B3)}

fs(v1, B) = fs(v1, B1) + fo(v2, B2) + fo(vs, B3)

fo(v1, B) = min

f32(v1, B1) + min { f3(ve, B2) + fo(v3, B3), fo(v2, B2) + f3(v3, B3)}
f32(v1, B1) + min { fi0(v2, B2) + f2(v3, B3), fa(v2, B2) + fio(vs, B3)}
f32(v1, B1) + min { fag(v2, B2) + f29(v3, B3), fog(v2, B2) + fag(vs, B3)}
fa2(v1, B1) + fa9(v2, B2) + fa9(vs, B3)

f32(v1, B1) 4 min { f34(v2, B2) + fo(v3, B3), fo(v2, B2) + f34(vs, B3)}
fo(vi, B1) + fa(v2, B2) + + fa(v3, B3)

f1o(v1, B) = fio(v1, B1) + fa(v2, B2) + fa(vs, B3)

Table 4: Case |V(K)| =3 for RIDB.
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Function

Ji(vi, B) =

J2(v1, B) =

f3(v1,B) = f3

f4(v1’B) =

f5(v1,B) =

min

min

min

min

(v1,B1

fz(vl,Bl)Jrj min {flO(UJaB )+ > f9(vi,B¢)}

----- i=2,. k]

f5('U17B1)+h min k{fzs(vh,Bh)-l- > f33('Ui7Bi)}

=2, i=2,.. k,itj

fs(vi,B1) + m2in . firo(vj, Bj) + fao(vp, By) + Z f33(vs, Bi)

J,h=2,..., =2
j#h ikjh
fao(vi,B1) + min < fag(vp, Bp) + > fa3(vi, By)
h=2,....k i=2,... k,i#h
k
Ji(vi, Br) + >° fo(vi, Bi)
i=2
fe(vi,B1)+ min < fog(vp, Bp) + > f33(vi, B;)
h=2,....k i=2, Thiith
fe(v1, B1) +j hr:nzin . fio(vj, Bj) + fa9(vp, Br) + Z f33(vi, Bi)
e iSih
fa1(v1,B1) + min < fag(vp, Bp) + > f33(vi, Bi)
h=2,....k i=2,...k,i%h
k
fa(vi, B1) + >° fo(vi, Bi)
i=2
k
)+ > fo(vi, Bi)
i=
k
fo(v1, B1) + it zmlzn . fro(vj, Bj) + f29(vn, Bn) + fao(vi, By) + Z f33(vi, By)
JEh AL AL i

f9(v1,Bl)+jh£n2in . Jas(vj, Bj) + fao(vn, Bp) + Z f33(vi, B

.....

#h iSih

fo(vr, Br) +  min 9 fio(vs, Bj) + f2(va, Bp) + Z fo(vi, B;)
3 FERE) =2
JFh i ,h

fo(vi,B1)+ min < f3(vn,Bn)+ > fo(vi, Bi)
h=2,....k i=2,... k,i%h

f32(v1,31)+hl: min {f29(vhvBh)+f29(Ul:Bl)+ > fSS(Ui,Bi)}

2,k h£l i=2,... k,i#h,l

fro(vi, B1) + pmin {fz(vh,Bh) + > fo(vi, B;)

1=2,..., k,i#h

fo(v1,B1) + min {f34(vh,3h) + > Jfo(vi, By)

=2, i=2,... k,i#h

k

'21 Ja(vi, Bi)

fe(v1,B1) + min {flo(vijj)“‘ 2 fg(vi’Bi)}
=2,...,k 1=2,...,k,i#j

vy, By) + min
foolvr, Br)+  wmin

{flO(Uj;Bj)+f29(Uh:Bh)+ > f33(’0i,Bi)}

i=2,... k,i%j,h

fao(vi, B1) + h:n;in . fos(vn, Bn) + > f33(vi, Bi)

1=2,..., k,i#h

fao(vi,B1) + min < fag(vp, By) + > f33(vi, Bi)
h=2,....k i=2,...k,i%h

k
fs(v1, B1) + >° fo(vi, Bi)

=2

Table 5: Case |V(K)| > 4 for RIDB.
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Function

.....

B i B
J31(v1, 1)+hfglnk{f29(vh, )

=2,...,

fe(v1, B) = min "i%h

,,,,,

Frlor, B1) + 5 folos By
f7(v1, B) = min

,,,,,

fa(v1, B) = fs(v1,B1) + 3 fo(vi, Bi)

.....

" i#h
2.k

fo(v1, B) = min

i#h

< B
fa2(v1, B1) + o

h#l

folor, B1) + 3 falos By

k
fio(v1, B)f = fio(vi, B1) + ;2f4(yivBi)

k

+ > f33(vi, By)

=2
i#h

. {fw(vj,Bj) + fa9(vp, Bp,)

=2

i#h

k
fs(v1,B1) +  min {flo(vj,Bj)-ﬂ- > fo(vi, Bi)
J=2,...,k i=2

i#]

i=
i#h

i£h

k
f31(vi, B1) + N min . f20(vn, Br) + - f3a(vi, Bi)

|

k
f32(v1, B1) +, min {fs(vh,Bh) + > f9(vi,B¢)}
- =2

k
f32(v1, B1) +, min {f34(vh,Bh) + > fo(vi, By)
=2,..., i=2

=2 }
i#j,h

k
+ Z: f33(vi, Bi)

k
h_2' k{flo(vijj)+f2(vh,Bh)+ > f9(vi7Bi)}
=2,..., P
i#4,h

k
f32(v17B1)+jth:11n fro(vj, By) + f20(vn, Br) + fao(vi, Bi) + 30 fas(vi, Bi)
R, gAL R

=2
i#5,h,l

k
f32(v1731)+],hm2in . {f28(vjaBj)+f28(Uhth) + > f33(vi, By)
3y = yeeey 72

i=
i#jh

k

min k{fQQ(UmBh)'f‘f?Q(UlaBl)"" > f33(vi,Bi)}
PEREEY 1=2
iZhl

|

Table 6: Case |V(K)| > 4 for RIDB.
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Function Function
f36(v1, B1) + fis(v2, Ba) ) fie(v1, B1) + fis(v2, B2)
f11(’U1,B) mzn{ 9(1} Bl) + f35(7.12, ) fla(’ULB) =mwn {f15(v1,31) + f17(’[)27B2)
fig(v1, B1) + fze(v2, B2)
fi2(v1, B) = min g fi2(v1, B1) + fi2(ve2, B2) fie(v1, B) = fi6(v1, B1) + fi7(v2, B2)
fi7(v1, B1) + fag(ve, B2)
f1a(vi, B1) + fig(v2, B2)
f13(v1, B) min f13(1}1 Bl) —+ f17(1}2 BQ) f17(’L)1, B) = min {;175”17 g1§ I ;12&’1)2, §2§
Far(o1. Br) + fao(vs, Ba) 38(v1, B1 39(v2, B2
fra(vr, B) = mi {2281: oy fistonB) = fus(on, Bu) + fua(va. B2)
Table 7: Case |V(K)| =2 for RLDB.
Function

f11(vi, B) = min {

fi2(v1,B) =

fiz3(v1, B) =

min

min

f1a(vi, B) = min {

fis5(v1, B) = min {

fi6(v1, B) =

fi7(v1, B) =

fig(v1, B) =

f36(v1, B1) + min { f1s(v2, B2) + fi17(v3, B3), fi7(v2, B2) + fi1s(vs, B3)}

f39(vi, B1) + min { fig(v2, B2) + f39(v3, B3), f39(v2, B2) + fis(vs, B3)}
,B1) + f35(v2, B2) + f35(vs, B3)
fi7(v1, B1) + min { f1s(v2, B2) + f36(v3, B3), fas(v2, B2) + fi1s(vs, B3)}
B1) + min{f36(v2, B2) + fi7(v3, B3), fi7(v2, B2) + f36(v3, B3)}
Bi1) + f39(v2, B2) + f39(v3, B3)
B1) + fi12(v2, B2) + f12(vs, B3)
B1) + min{ f3g(v2, B2) + f35(v3, B3), f35(v2, B2) + f39(v3, B3)}
B1) + min { fis(v2, B2) + fi7(v3, B3), fi7(v2, B2) + fis(vs, B3)}
B1) + fi7(v2, B2) + fi7(v3, B3)
Bi) + min { fig(v2, B2) + f39(v3, B3), f39(v2, B2) + fis(vs, B3)}
B1) + min {f39(v2, B2) + f35(v3, B3), f35(v2, B2) + f30(v3, B3)}
36(v1, B1) + min { f1g(v2, B2) + f39(vs, B3), f39(v2, B2) + fis(v3, B3)}
B1) + fi7(v2, B2) + fi7(vs, B3)
B1) + min {f39(v2, B2) + f35(v3, B3), f35(v2, B2) + f39(v3, B3)}
v1, B1) + min { fig(v2, B2) + f17(v3, B3), fi7(v2, B2) + fis(v3, B3)}
v1, B1) + fi7(v2, B2) + fi7(vs3, B3)

91}

(
(
(
(
fis(v1,
fis(v1,
f12(v1,
frr (v,
fra(v1,
fia(v1,
far (v,
far (v,
(
fra(vi,
fae(v1,
16

(
Jas(

flG(Uh Bi1) + fi7(v2, B2) + fi7(vs, B3)
fi7(v1, B1) + fi2(v2, B2) + fi2(vs, B3)

min

8’1_)

(

(v1, B1
fag(v1, B1

(

) + min { fig(v2, B2) + f36(v3, B3), fae(v2, B2) + f1s(vs, B3)}
) + min { f39(v2, B2) + f17(vs, Bs), fi7(v2, B2) + f39(vs, B3)}
)

f3g(v1, B1) + f39(v2, B2) + f39(v3, B3)
fi18(v1, B1) + fi2(v2, B2) + fi2(vs, B3)

Table 8: Case |V (K
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Function

f11(v1, B) = min

fi2(vi, B) = min

f1z(vi, B) = min

f1a(vi, B) = min

fis5(v1, B) = min

.....

=2,...,

i#h

i

k
J18(vj, Bj) + fao(vn, Br) + >° fas(vs, Bi)
iih

k
fao(v1,B1) + Z: f35(vs, Bs)

=2

f17(v17B1)+j

fiz(vi, B1) + .

PR

Jsh,l=2
J#h,j#lLh#l

k

> fir(vi, Bi)
2
istjoh

f18(vj, Bj) + f36(vn, Bn)

k
fis(vj, By) + f39(vn, Bn) + f3o(vy, By) + > f35(vi, Bi)
i=2
i#j,h,l

k
fis(v1, B1) + . 1121in . f36(vn, Br) + > fi7(vi, B;)
= =

,,,,,

min

B
fis(vi, B1) + i

h#l

k
'21 f12(vi, Bi)

P
furlon, B, min

1=
i£h

k
f3o(vn, Br) + fao(vy, Bi) + 3 fas(vi, By)
i;é_hQ,l

k
fao(vn, Bn) + 22 fas5(vi, Bi)

i#h

k
J1a(v1, B1) + rélin i fi8(vj, Bj) + X fir(vi, Bi)
j= i=2

.....

i#]

fis(vi, B1) + 2: fi7(vi, B;)

far(v1, B1) +j

sh=2,...,

Jj#h

min
k

k
J18(vs, Bj) + fao(vn, Br) + 3= fas(vi, Bi)
ish

k
fa7(v1, B1) + . Dgﬂin . fa9(vn, Br) + > f35(vi, Bs)
i =

f3e(v1, B1) + .

,h=2,...,

Jj#h

min
k

i=
i%h

k
f18(vj, Bj) + f30(vn, Bn) + > f35(vi, Bi)
2
istj,h

fia(v1, B1) + i fi7(vs, By)

1=2

k
fae(v1, B1) + . Igin . fag(vn, Br) + > f35(vi, Bs)
=2,..., i=2

i£h

k
fi6(v1, B1) +j Iélin . fig(vj, Bj) + > fir(vi, Bi)
=3,..., =

i#]

k
fis(v1, B1) + z_: J17 (v, Bs)

=2

k
fi6(v1, B) = fie(v1, B1) + 22 fr7(vs, By)

Table 9: Case |V(K)| > 4 for RLDB.
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Function

&
fiz(vi, Br) + 22 f12(vs, By)

fss(vlyBl)-i-jhElQir'lhk{fls(vg, i) + f36(vn, Br) + Z frr(vi, 7,)}

=2
Jj#h 'Lyéj h

J3s(v1, B1) + HQHH {fSQ(Uh:Bh)+Zf17(Uu B;)

fi7(vi, B) = min i7h

f3g(vi,B1) +  min {flS(U]> i) + f39(vn, Br) + f39(vy, By) + Z f35(U'L:B)}

Gihd=2,...,
];éh J#L, h;él 'L;éj h !
f38(v1731)+hl£n2 f39(vn, Br) + fao(vy, By) + E f35(vi, Bi)
" h * z;ﬁhl

k
_Zlfn(vi,Bi)
B k
fig(v1, B) = fig(v1, B1) + > fi2(vi, By)

=2

Table 10: Case |V(K)| > 4 for RLDB.

Function Function

f20 v1, B1) + far(v2, B
f19(v1, B1) + fa6(v2, B
v1, B1) + fa1(v2

(
( fas(v1, B1) + fa7(v2, B2)
(
v1, B1) + fa3(
(
(
(
(v2

fio(v1, B) = min fea(vi, B1) + fa6(v2, B2)

f24(v1, B) = min {

fo2
fas
20(v1, B1) + f26
fa3(v1, B1) + fa1(v2

V2
v2

(
(
(
( Bz
{ (
( f2s(v1, B) = fas5(v1, B1) + f26(v2, B2)
far(v1, B1) + fo3(v2, Bz
. { 7EvljBl)+f20U foe(v1, B1) + fa1(v2, B2)
(
(
(
(
{ (

2)
2)
Bs3)
)
Ba)
Bs3)
)
2)
) fag(v1, B1) + fao(v2, B2)

f21(v1, B1) + f21(v2, Ba
fa6(v1, B1) + fao(v2, B2)
v1, B1) + fa7(v2, B2)
far(v1, B1) + faz(v2, B2)
f22(v1, B1) + fo6(v2, B2)
fae(v1, B1) + fa1(v2, B2)
23(v1, B1) + fas(v2, B2)
(v1, B1) + fa1(v2, B2)

f26(v1, B) = min {

fa3

far(v1, B) = far(v1, B1) + f21(v2, B2)

47

Table 11: Case |V(K)| =2 for ROLDB.
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Function

Jio(v1, B) =

J20(v1, B) =

fe1(vi,B) =

fo2(v1,B) =

f23(v1, B) =

faa(vi, B) = min {

fos(v1,B) =
fa6(v1, B) =
for(v1, B) =

min

min

min

min

min

foa

fzo v1, B1) + mln{f27(U2,B2
fas(v1 Bl) -+ mm{f4g(v2,
far(v1, B1) + min{ f4g (v, B
fo2(v1, B1) + mln{f27(U2,B2

+ fa(v3, B
+ fa2(v3, B
(
(

3), f26 (v2, B2) + far(v3, B3)}
3), ) )}
2) + fa5(v3, B3), fas5(v2, B2) + fas(vs, B3)}
3), ) )}
)s ) )}

fa2(v2, B2) + fag(vs, B3

+ fa1(v3, B3), fa1(v2, B2) + far(vs, B3
v1, B1) + min{ fa7(v2, B2) + f23(vs3, B3

v1, B1) + fa6(v2, B2) + f26(v3, B3)

fae fa23(v2, B2) + fa7(vs, B3

(

(

(

(

(

J1o(

fo2(v1, B1) + min{ f41 (v2, B2) + f26(v3, B3), fa6(v2, B2) + fa1(v3, B3)}

fa6(v1, B1) + min{ fa3(v2, B2) + f26(v3, B3), f26(v2, B2) + f23(v3, B3)}

fas(v1, B1) + faz(v2, B2) + faz(vs, B3)

f23(v1, B1) + min{ for(v2, B2) + fa1(v3, B3), fa1(v2, B2) + far(v3, B3)}

faz(v1, B1) + min{ for(v2, B2) + f23(vs, B3), fa3(v2, B2) + f27(vs, B3)}

f20(v1, B1) + fa6(v2, B2) + f26(v3, B3)

f23(v1, B1) + min{ f41 (v2, B2) + f26(v3, B3), fa6(v2, B2) + fa1(v3, B3)}

far(v1, B1) + min{ fa3(ve2, B2) + f26(vs, B3), f26(v2, B2) + f23(v3, B3)}

far(v1, B1) + faz(v2, B2) + faz(vs, B3)

f26(v1, B1) + min{ far (v2, B2) + f20(v3, B3), f20(v2, B2) + f2r(v3, B3)}

f27(v1, B1) + min{ fao0(v2, B2) + f26(v3, B3), f26(v2, B2) + f20(v3, B3)}

fag(v1, B1) + fa1(v2, B2) + fa1(vs, B3)

(v1,B1) + fa7(v2, B2) + far(v3, B3)

fag(v1, B1) + min{ fa3(v2, B2) + f23(vs, B3), fa3(v2, B2) + fa3(v3, B3)}

fo1(v1, B1) + f21(v2, B2) + f21(vs, B3)

fa6(
(
(
(
(
(
(
(
(
(
(
(

fas

v1, B1) + min{ f40(v2, B2) + f26(v3, B3), f26(v2, B2) + fao(v3, B3)}
foa(v1, B1) + min{ far(v2, B2) + fa6(v3, B3), f26(v2, B2) + far(v3, B3)}
far(v1, B1) + min{ fa7 (v2, B2) + fa2(vs, B3), fa2(v2, B2) + f27(v3, B3)}
faz(v1, B1) + min{ fa2(v2, B2) + fa26(vs3, B3), ) )}
fa6(v1, B1) + min{ far(v2, B2) + fa1(v3, B3), ) )}
f22(v1, B1) + f26(v2, B2) + fo6(v3, B3)
fae(v1, B1) + min{ fa1 (v2, B2) + fa6(v3, B3), fa6(v2, B2) + fa1(v3, B3)}
fae(v1, B1) + faz(ve, B2) + fa3(vs, B3)
far(v1, B1) + min{ fa7 (v2, B2) + fa1(vs, B3), fa1(v2, B2) + fa7(v3, B3)}
f23(v1, B1) + fa6(v2, B2) + f26(v3, B3)
fa7(v1, B1) + min{ f41 (v2, B2) + fa6(v3, B3), fa6(v2, B2) + fa1(v3, B3)}
far(v1, B1) + faz(v2, B2) + fa3(v3, B3)
25(v1, B1) + min { fa7(v2, B2) + f26(v3, B3), fa6(v2, B2) + f27(v3, B3)}
(v1, B1) + f26(v2, B2) + fa6(v3, B3)

f26(v2, B2) + fa2(v3, B3
fa1(ve, B2) + far(vs, B3

f25(017 Bi1) + f26(v2, B2) + f26(v3, B3)

min

f26(v1, B1) + fa1(v2, B2) + f21(v3, B3)
Jas(v1, B1) 4+ min{ fao(v2, B2) + f26(v3, B3), f26(v2, B2) + fao(vs, Bs)}
fag(v1, B1) + min{ fo7(v2, B2) + f20(v3, B3), fa0(v2, B2) + f27(v3, B3)}

fa7(v1, B1) + f21(v2, B2) + f21(v3, B3)

Table 12: Case |V(K)| =3 for ROLDB.
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Function

fi9(v1, B) =

feo(v1,B) =

f21(v1, B) =

min

min

min

k
fa0(v1, B1) +j rélin i far(vj, Bj) + X fae(vi, Bi)
=2,..., i—=2
i)

Fas(vr, By) + . min 9 fas(n, Br) + fa (v, Bj) + _Z f26(vi, Bi)

yh=2,...,

i#h 17&37

far(v1, B1) + ,hmin . fag (v, Br) + fa5(vj, Bj) + _Z fa6(vi, Bi)

sh=2,...,

i#h 1#37

fo2(vi, B1) + thin . far(vj, Bj) + fa1(vp, Bp) + 22 f26(vi, Bi)

Jn=2a,..0

J#h i#j,h

f46(v1731)+jhglin . for(vj, Bj) + fa3(vp, By) + Z f26(vi, Bi)
i#h i

f46(vlaBl)+jthliQH . Jor(vj, By) + faz(vh, Bp) + fas(vi, By) + E fas(vi, Bi)

J#h JALR#L 17'5] h l
f1o(v1, B1) + Z fa6(vi, Bi)

1=2

fa2(v1, B1) + L min Ja1(vp, Bp) + Z f26(vi, Bi)
z#h

f46(v1,31)+h=g1in . fos(vn, Bn) + Z f26(vi, Bi)
z;ﬁh

k
f46(v17B1)+M§12in . fas(vn, Br) + fas(vi, Bi) + 32 fas(vi, By)

TR oyt
B B; B B
v1, B1) + . 234#”#5 z;és{f%(v“ i) + f27(vj, Bj) + fa1(vs, Bs)}

fa7(v1,B1) + R #J iz, Hés{f27(v ,Bi) + f23(vj, Bj) + fa6(vs, Bs)}

far(v1,B1) + n;ln {for(vj,B;)+ > # faz(vi, By)}
i=2,34,i#]
f20(v1, B1) + fa6(v2, B2) + f26(v3, B3) + f26(va, Ba)

fa3(
(
(
(
fa3 (’01731)-!— mln {f41(v]7B])+ > f26(vi, Bi)}
(
(
(
(
(

i=2,3,4,i]
fa7(v1, B1) + mln {f23(v]7B]) + > f26(vi, Bi)}
2,3,4 i=2,3,4,i#]
faz(v1, B1) + _min {f45(vijj) + > fas(vi, Bi)}
2,34 i=2,3,4,i#]
fa6(v1, B1) + - 2,3,4,17&],]7&5 s {fer(vi, B;) + f20(vj, Bj) + fa6(vs, Bs)}
f26(v1, B1) + mln {f27(vJ,B]) + > fa1(vi, Bi)}
2,3,4 i=2,3,4,i#]
f26(v1, B1) + mln {f27(v],B )+ > far(vi, Bi)}
i=2,34,ij
f26(v1, B1) + A 3’211_1;1],’],#3 i;és{fz?(vi, B;) + f23(vj, Bj) + faz(vs, Bs)}
f27(vl,B1)+ rmn {fzo(v],B )+ > fae(vi, Bi)}
i=2,3,4,i#]
fag(v1, B1) + f43(U27 B2) + fa3(vs, B3) + fa3(va, Ba)
(
(

fag v17B1)+ mln {f45(vJ,B )+ > fa1(vi, Bi)}

1=2,3,4,i#£]
fag(v1, B1) + mln {f45(v]7B )+ > far(vi, Bi)}
i=2,3,4,i#]
f4s(U17B1)+ min {f23(vi, B;) + fa3(vj, Bj) + fas(vs, Bs)}

0,5,5=2,3,4,i4,j #5,i#s
fo1(vi, B1) + fa1(v2, B2) + f21(vs, Bs) + f21(va, Ba)
f26(v1,B1)+j;ni§14{f4o(vg, i)+ > fae(vi, Bi)}

2,3, i=2,3,4,i#]

Table 13: Case |V(K)| =4 for ROLDB.




Function

f22(v1, B) =

fo3(vi, B) =

f24(v1, B) =

fas(v1, B) =

fee(v1, B) =

fer(v1,B) =

fo3(v1, B1) + _min {f27(vij Y+ > fae(vi, Bi)}
=23 i=2,3,4,ij
far(v1, B1) + A 37211,1;1], i, #S{fze‘(vi, B;) + far(vj, Bj) + fa2(vs,

(
(
far(vi,B1) + H%ln {faz(vj,B;)+ > fae(vs, By)}
i=2,34,i#]
(
(

1,5,8=2 3,4,2;&],]7&3 i#£s

fa6(v1, B1) + mln {f27(v],B )+ > faz(vi, B;)}
1=2,3,4,i#£]

fe2(vi, B1) + fzﬁ(vz, B2) + fa26(vs, B3) + f26(va, Ba)

fae(v1, B1) + min {fa1(vj,B;)+ > fae(vi, Bi)}
Jj=2,3,4 1=2,3,4,i#]

(
(
Ja(vr, Br) + min {fas(v;, Bj) + >0 fas(vi, Bi)}
7j=2,3,4
(
(

min

i=2,3,4,i#j

1,§,5=2,3,4,i#7,j#8,i#s

faz(v1, B1) + min {for(vs, Bj) + > faz(vs, Bi)}
J=2,3,4 i=2,3,4,i#]

min { f23(v1, B1) + fae(v2, B2) + fa6(v3, B3) + f26(va, Ba)

far(vi, B1) + min {fai(vj, Bj)+ > fae(vi, Bi)}
Jj=2,3,4 i1=2,3,4,i#]

Jaz(v1, B1) + min {fas5(vs, Bj) + > fas(vi, Bi)}
J=2,3,4 i=2,3,4,i#]

{fzs(’UlvBl)+.min {for(vj, Bj) + > fas(vi, Bi)}
min 7=2,3,4

i=2,3,4,i#j
faa(v1, B1) + fa6(v2, B2) + fa6(v3, B3) + fos(va, Ba)
fas(v1, B1) + fa6(v2, B2) + fo6(v3, B3) + fa6(va, Ba)
fa6(v1, B1) + f21(v2, B2) + f21(v3, B3) + f21(va, Bs)
fag(v1, B1) + rr%ln {fao(vj, Bj) + > fa6(vi, B;i)}

(
i=2,3.4,i#]
f48( 1,7,8=2,3,4,i#£],jF#s,iF#s
min f48(vhBl)+ min {f48(v]73 )+ > far(vi, By}
=23 1=2,3,4,1#7]
f48(v1731)+ min Jfas(vy, Bj)+ 30 far(vi, Bi)}
1=2,3,4,i#£]
fag(vi,B1) + e 23,472;&],]#9Z¢g{f23(viaBi)+f43(vjaBj)+f48(U37
fag(v1, B1) + faz(v2, B2) + faz(v3, B3) + faz(va, Ba)
for(v1, B1) + fo1(v2, B2) + fo1(v3, B3) + f21(va, Ba)

fae(v1, B1) + {f26(vi, B;) + for(vj, Bj) + fa1(vs, Bs

Bs)}

)}

fa7(vi, B1) + min {f26(vi, Bi) + for(vj, Bj) + fa1(vs, Bs)}

v1, B1) + min {f26(vs, B;) + fa7(vj, Bj) + fao(vs, Bs)}

Bs)}

Table 14: Case |V(K)| =4 for ROLDB.
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Function

fi9(v1, B) = min

f20(v1, B) = min

k
f20(v1, B1) +j rélin i far(vj, Bj) + X fa6(vi, Bi)
=2,..., i=2
i)

k
f23(”1731)+].hr312in . f21(Why Br) + faz(vj, Bj) + > fae(vs, Bi)
g#h i

k

fa3(v1, B1) +j r;lin . faz2(vj, Bj) + 3 foe(vi, Bi)
=2,..., i=2
i#]

k

f47(U1731)+j min 4 f25(05, Bj) + 3 fae(vi, Bi)
=2,..., i=2
i#]

k
f22(v1731)+jh212in . f21(vj, Bj) + far(vn, Br) + >° f2e(vi, Bi)
T i

k
fae(v1,B1) + min . far(vj, Bj) + fas(vn, Bp) + 22 fa6(vi, Bi)

iR i%g.h
) k
fas(v1, B1) + oo for(vj, By) + fas(vn, By) + faz(vy, Bi) +  >°  fas(vi, B)
=2,k i=2
R AL R il
k
fro(vi, Bi) + 32 fa6(vi; Bi)
=2

k
fa2(vi, Bu) + min Q fa1(va, B) + 3 fae(vi, Bi)
o =h
. k
fas(vi, Br) + min Q f23(va, Br) + 3 foe(vi, Bi)
=2,..., i—2
izh
. k
fas(v1, B1) + i Jaz(vn, Br) + fas(vy, Br) + 32 fas(vi, By)
=2,.. iz
ithl

s

h£l

k
f23(v1,31)+jhr112in . for(vj, By) + fa1(vh, Br) + > fa6(vi, Bi)
bt =,

T gk
) k
f47(v1,B1)+],h£nln . f21(vj, Bj) + f23(vn, Br) + >° fae(vs, Bi)
T i
k
faz(v1, B1) + S f2r(vj, Bj) + fas(vn, Br) + fas(v, Bl) + >0 fas(vi, Bi)
Fn A it
k
fa0(v1, B1) + 2 fa6(vi, Bi)
i=2
fas(vi, B1) + min 3 fa1(vn, Bp) + > J26(vi, Bi)

i=2,.. k,ith

far(v1, B1) + min 9 fos(vp, Bp) + > Ja6(vi, Bi)
h=2,....k i=2,....k,i%h

k
f47(U1731)+thQiH . faz(vn, Bp) + faz(vi, By) + > fas(vi, By)
M=2,..., i—2

i=
h£l i#h,l

Table 15: Case |V(K)| > 5 for ROLDB.
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Function

fo1(vi, B) =

f26(v1, B1) +

i i, B B
j,h—Q{r‘{%I,lk,jyih{fQ?(U‘w i) + f20(vn, Br) +

f26(v1, B1) + far(vj, B
jsh,l,s=2,

JAR AL Fs
noAl s s

B
fee(vi, B1) + hllgln N

J#hd#l hetl

Jar(vj, B

; B
foe(v1, B1) + hlIlen .

J#h,ﬁﬁl hetl

Jar(v;, B

(v, B min
fee(v1, B1) + o nin

J#h, AL RAL

Jar(v;, B

1=

i) + faz(vn, By) + fas(vi, By) + faz(vs, Bs) + Z fas(vi,

2, kyi#jh

> f26('Ui7Bi)}

z#]hls

) + far(vn, Br) + far (v, Br) + Z fas(vi, Bi)

l#ﬁhl

5) 4 far(vn, By) + far(v, By) + Z fas (vi, Bi)

z;&j }L l

5) + faz(vn, Br) + faz(v, Br) + Z fas (vi, Bi)

z;ﬁ]hl

min
foe(vi, B1) + min < foo(vp, By) + > Ja26(vi, B;)
h=2,....,k i=2,...,k,i#%h
Jas(v1, Br) + _hgln faz(vj, Bj) + faz(vn, Br) + faz(v, Bi) + Z fas(vi, Bi)
FeR, ot il
fag(v1, B1) + min fa1(vp, Bp) + fa1(vi, By) + > fas(vi, By)
h,1=2,....k,h#l i=2,...,k,i#h,l
fag(vi, B1) + min far(vn, Bn) + far(vi, By) + > fas(vi, Bi)
hl=2,. ..k, h#l i=2,.. kyi#th,l
fag(v1, B1) + min faz(vp, By) + fas3(vi, By) + > Jas(vi, By)
hl=2,....k, h#l i=2,...,k,i#h,l
k
Z f21(vi, Bi)
fee(vi,B1) + min < fio(vy, By) + > f26(vi, Bs)
h=2,....k i=2,.  hith
fe3(vi, B1) +  min < for(vj, Bj) + > f26(vi, Bi)
J=2,....k i=2,...,k,i#£j]
faz(v1, B1) + ; in for(vp, Br) + faz(vj, Bj) + Z fo6(vi, B;)
TR i
far(vi,B1) + min faz(vj, Bj) + > fa6(vi, Bi)
J=2,0,k i=2,. ki)
fae(v1,B1)+ ~ min {f27(”ijj)+f4l(”Uhth)+ > f26(vi7Bi)}
fa2(v1, B) = min $h=2,....k,j7h =2 k0070, h
f46(v1731)+jhlmi2ﬂ S for(vj, Bj) + fas(vn, Br) + fas(vi, By) + Z Jas(vi, By)
J;’ﬂi,#i h#l il
fo2(v1, B1) + Z f26(vi, By)
=2
fa6(v1, B1) + min < fa1(vs, Bj) + > fa6(vi, Bi)
h=2,...,k i=2,...,k,i%h
fas(v1, B1) + min faz(vn, By) + faz(v, By) + > fas(vi, By)
hl=3,....k,hl i=2,.. kyi#th,l

Bi)

Table 16: Case |V(
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K)| > 5 for ROLDB.




Function

f47(v1731)+jh£nin . for(vj, Bj) + fa1(vp, Bp) + Z fo6(vi, Bi)
FT i
Jaz(v1, B1) + n lmm Ja7(vj, Bj) + faz(vn, Bp) + faz(vy, By) + E Jas(vi, B;)
n’ﬂl G#Lh# i
fa3(v1, B) = min q faz(v1, B1) + Z fa6(vi, Bi)
i=2
far(vi, Br) +  min 4 far(vn, Br) + Z fa6(vi, Bi)
o z;éh,
far(vr, B1) + min S fag(vn, Br) + fas(vi, Br) + _E fas(vi, Bi)
Tl 7.;éh2l
k
fas(v1, B1) +  min  q far(vj, Bj) + 3 fae(vi, Bi)
faa(vi, B) = min I =
k
foa(v1, B1) + Z J26(vi, Bi)
f25(v1, B) = fas(v1, B1) + Z f26(vi, Bs)
iz
fa6(v1, B) =
k
fee(v1, B1) + > fo1(vi, By)
i=1
‘ k
Jas(v1, B1) + L Jmin Jao(vn, Br) + 32 fa6(vi, Bi)
T i
f4g(v1,Bl)+jh£n2in . Ja7(vs, Bj) + fa0(vn, Bp) + _Z fa26(vi, B;)
Y J#)L ’ z#]h
fag(vi, B1) + ,hlrgiQH fag(vj, Bj) + fa1(vn, Bp) + fa1(vi, Br) + Z f26(vi, B;)
G, il hAL z;éj,h,z
min
fag(vi,B1) + hln_lln " fag(vj, Bj) + faz(vn, Br) + faz(vi, By) + Z f26(vi, Bi)
FeR, ot n it
fag(vi, Br) + | min 4 fas(vj, Bj) + fa3(vn, Bn) + fas(vi, Br) + Z f26(vi; By)
J#h,ﬁél h#l 172J hl
fas(vr, Bi) + | min 3 fag(vn, Br) + fas(vi, Br) + faz(vs, Bs) + Z fas(vi, B;)
hotl ht sl %s it
f48(“1731)+jh,g‘,ir2‘ . f27(Wi Bi) + fas(vn, Br) + fas (v, Br) + fas(vs, Bs) + Z Jas(vi,
JANGALGEs itils
h#l,h#s,l#s
k
for(v1, B) = for(v1, B1) + Y fo1(vi, B;)
i=2

Bi)

Table 17: Case |V(

K)| > 5 for ROLDB.
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