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Abstract

The problems of determining open locating-dominating or locating
total-dominating sets of minimum cardinality in a graph G are variations
of the classical minimum dominating set problem in G and are all known
to be hard for general graphs. A typical line of attack is therefore to
determine the cardinality of minimum such sets in special graphs.

In this work we study the two problems from a polyhedral point of
view. We provide the according linear relaxations, discuss their combi-
natorial structure, and demonstrate how the associated polyhedra can be
entirely described or polyhedral arguments can be applied to find mini-
mum such sets for special graphs.

Keywords: open locating-dominating code problem, locating total-dominating
code problem, polyhedral approach

1 Introduction

For a graph G that models a facility, detection devices can be placed at its
nodes to locate an intruder (like a fire, a thief or a saboteur). Depending on
the features of the detection devices (to detect an intruder only if it is present
at the node where the detector is installed and/or also at any of its neighbors),
different dominating sets can be used to determine the optimal distribution of
the detection devices in G. In the following, we study three problems arising
in this context which all have been actively studied during the last decade, see
e.g. the bibliography maintained by Lobstein [16].

Let G = (V,E) be a graph. The open neighborhood of a node i is the
set N(i) of all nodes of G adjacent to i, and N [i] = {i} ∪ N(i) is the closed
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neighborhood of i. A subset C ⊆ V is dominating (resp. total-dominating) if
N [i] ∩C (resp. N(i) ∩C) are non-empty sets for all i ∈ V . A subset C ⊆ V is:

• an identifying code (ID) if it is a dominating set and N [i]∩C 6= N [j]∩C,
for distinct i, j ∈ V [15];

• an open locating-dominating set (OLD) if it is a total-dominating set and
N(i) ∩ C 6= N(j) ∩ C, for distinct i, j ∈ V [20];

• a locating total-dominating set (LTD) if it is a total-dominating set and
N(i) ∩ C 6= N(j) ∩ C, for distinct i, j ∈ V − C [13].

Figure 1 illustrates the three concepts.

(a) (b) (c)

Figure 1: A graph where the black nodes form a minimum (a) ID-code, (b)
OLD-set, (c) LTD-set.

Note that a graph G admits an ID-code (or is identifiable) only if there are
no true twins in G, i.e., there is no pair of distinct nodes i, j ∈ V such that
N [i] = N [j], see [15]. Analogously, a graph G without isolated nodes admits an
OLD-set if there are no false twins in G, i.e., there is no pair of distinct nodes
i, j ∈ V such that N(i) = N(j), see [20].

Given a graph G, for X ∈ {ID,OLD,LTD}, the X-problem on G is the
problem of finding an X-set of minimum size of G. The size of such a set is
called the X-number of G and is denoted by γX(G). From the definitions, the
following relations hold for any graph G (admitting an X-set):

γLTD(G) ≤ γOLD(G), (1)

whereas γID(G) and γOLD(G) are not comparable in general.
Determining γID(G) is in general NP-hard [9] and even remains hard for

several graph classes where other in general hard problems are easy to solve,
including bipartite graphs [9], split graphs and interval graphs [10].

Also determining γOLD(G) is in general NP-hard [20] and remains NP-hard
for perfect elimination bipartite graphs and APX-complete for chordal graphs
with maximum degree 4 [18]. Concerning the LTD-problem we observe that it
is as hard as the OLD-problem by just using the same arguments as in [20].

Typical lines of attack are to determine minimum ID-codes of special graphs
or to provide bounds for their size. Closed formulas for the exact value of
γID(G) have been found so far only for restricted graph families (e.g. for paths
and cycles by [8], for stars by [12], and for multipartite graphs, some suns and
split graphs by [2, 3, 4, 5]). Closed formulas for the exact value of γOLD(G)
have been found so far only for cliques and paths [20], some algorithmic aspects
are discussed in [18]. Bounds for the LTD-number of trees are given in [13, 14],
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whereas the LTD-number in special families of graphs, including cubic graphs
and grid graphs, is investigated in [14].

As polyhedral methods have been already proved to be successful for several
other NP-hard combinatorial optimization problems, it was suggested in [2] to
apply such techniques to the ID-problem. For that, the following reformulation
as set covering problem has been proposed.

For a 0/1-matrix M with n columns, the set covering polyhedron is Q∗(M) =
conv

{
x ∈ Zn

+ : Mx ≥ 1
}

and Q(M) =
{
x ∈ Rn

+ : Mx ≥ 1
}

is its linear relax-
ation. A cover of M is a 0/1-vector x such that Mx ≥ 1, and the covering
number τ(M) equals min 1T x,x ∈ Q∗(M).

We obtain such a constraint system Mx ≥ 1 for the ID-problem as follows.
Consider a graph G = (V,E). Domination clearly requires that any ID-code C
intersects the closed neighborhood N [i] of each node i ∈ V ; separation means
that no two intersections C ∩N [i] and C ∩N [j] are equal. The latter condition
can be reformulated that C intersects each symmetric difference N [i] 4 N [j]
for distinct nodes i, j ∈ V . It was shown in [2] that only symmetric differences
matter if the nodes i, j ∈ V have distance dist(i, j) = 1 (i.e., are adjacent) or
distance dist(i, j) = 2 (i.e., are non-adjacent but have a common neighbor).

Hence, determining a minimum ID-code in a graph G = (V,E) can be for-
mulated as set covering problem min 1T x,MID(G)x ≥ 1,x ∈ {0, 1}|V | by:

min 1T x
x(N [j]) =

∑
i∈N [j] xi ≥ 1 ∀j ∈ V (domination)

x(N [j]4N [k]) =
∑

i∈N [j]4N [k] xi ≥ 1 ∀j, k ∈ V, j 6= k (separation)
x ∈ {0, 1}|V |

By [2], the matrix MID(G) encoding row-wise the closed neighborhoods of the
nodes and their symmetric differences is called the identifying code matrix of
G, and the identifying code polyhedron of G is defined as

PID(G) = Q∗(MID) = conv{x ∈ Z|V |+ : MID(G) x ≥ 1}.

It is clear by construction that a graph is identifiable if and only if none of the
symmetric differences results in a zero-row of MID(G), and that γID(G) equals
the covering number τ(MID(G)).

It turned out that studying the ID-problem from a polyhedral point of view
can lead to interesting results, see e.g. [2, 3, 4, 5]. The aim of this paper is to
apply the polyhedral approach to find minimum OLD- or LTD-sets.

In Section 2, we give the according definitions of the matrices MOLD(G)
and MLTD(G) and of the associated polyhedra, provide some basic properties
of the polyhedra POLD(G) and PLTD(G) and introduce their canonical linear
relaxations. Afterwards, we discuss several lines to apply polyhedral techniques.

In Section 3, we present cases where MOLD(G) or MLTD(G) are composed
of matrices for which the set covering polyhedron is known and we, thus, im-
mediately can obtain a complete description of POLD(G) or PLTD(G) and the
exact value of γOLD(G) or γLTD(G).
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This demonstrates how polyhedral techniques can be applied in this context.
We close with a discussion on future lines of research, including how the here
obtained results can be extended to other classes of graphs.

2 Polyhedra associated to OLD- and LTD-sets

In order to apply the polyhedral approach to the OLD- and the LTD-problem,
we first give according reformulations as set covering problem.

Theorem 1 Let G = (V,E) be a graph.

(a) Let G have neither isolated nodes nor false twins. C ⊆ V is an OLD-set
if and only if C has a non-empty intersection with

OLD1 N(i) for all i ∈ V ,
OLD2 N(i)4N(j) for all distinct i, j ∈ V with dist(i, j) ∈ {1, 2};

(b) C ⊆ V is an LTD-set if and only if C has a non-empty intersection with

LTD1 N(i) for all i ∈ V ,
LTD2 N(i)4N(j) for all distinct i, j ∈ V with dist(i, j) = 1,
LTD3 N [i]4N [j] for all distinct i, j ∈ V with dist(i, j) = 2.

The matrices MOLD(G) and MLTD(G) encoding row-wise the open neigh-
borhoods and their respective symmetric differences read, therefore, as

MOLD(G) =

 N(G)
41(i, j)
42(i, j)

 MLTD(G) =

 N(G)
41(i, j)
42[i, j]


where every row in N(G) is the characteristic vector of an open neighborhood
of a node in G and 4k(i, j) (resp. 4k[i, j]) is composed of the characteristic
vectors of the symmetric difference of open (resp. closed) neighborhoods of
nodes at distance k. We define by

PX(G) = Q∗(MX(G)) = conv{x ∈ Z|V |+ : MX(G) x ≥ 1}

the X-polyhedron for X ∈ {OLD,LTD}. We first address the dimension of the
two polyhedra. It is known from Balas and Ng [7] that a set covering polyhedron
Q∗(M) is full-dimensional if and only if the matrix M has at least two ones per
row.

From the submatrix N(G) encoding the open neighborhoods, we see that

VN (G) = {k ∈ V : {k} = N(i), i ∈ V }

are the cases that result in a row with only one 1-entry. From the submatrix
41(i, j), every row has at least two 1-entries (namely for i and j). From the
submatrix 42(i, j), we see that

V2(G) = {k ∈ V (G) : {k} = N(i)4N(j), i, j ∈ V }
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are the cases that result in a row with only one 1-entry, whereas every row from
the submatrix 42[i, j] has at least two 1-entries (namely for i and j).

We conclude:

Corollary 2 Let G = (V,E) be a graph. We have

• dim(POLD(G)) = |V − VN (G)− V2(G)| and the constraint xi ≥ 0 defines
a facet of POLD(G) if and only if i /∈ VN (G)∪V2(G), provided that G has
neither isolated nodes nor false twins;

• dim(PLTD(G)) = |V − VN (G)| and the constraint xi ≥ 0 defines a facet
of POLD(G) if and only if i /∈ VN (G).

In addition, MOLD(G) and MLTD(G) may contain redundant rows, where
we say that y is redundant if x and y are two rows of M and x ≤ y. As the
covering number of a matrix does not change after removing redundant rows,
we define the corresponding clutter matrices COLD(G) and CLTD(G), obtained
by removing redundant rows from MOLD(G) and MLTD(G), respectively. We
clearly have

PX(G) = Q∗(CX(G)) = conv{x ∈ Z|V |+ : CX(G) x ≥ 1}

for X ∈ {OLD,LTD}. Moreover, also in [7] it is proved that the only facet-
defining inequalities of a set covering polyhedron Q∗(M) with integer coefficients
and right hand side equal to 1 are those of the system Mx ≥ 1. Hence we have:

Corollary 3 All constraints from CX(G) x ≥ 1 define facets of PXD(G) for
X ∈ {OLD,LTD}.

We obtain the corresponding linear relaxations, the fractional OLD-polyhedron
QOLD(G) and the fractional LTD-polyhedron QLTD(G) of G, by considering all
vectors satisfying the above inequalities:

QX(G) = Q(CX(G)) =
{
x ∈ R|V |+ : CX(G) x ≥ 1

}
for X ∈ {OLD,LTD}. To study the two problems from a polyhedral point
of view, we propose to firstly determine the clutter matrices COLD(G) and
CLTD(G) and then to determine which further constraints have to be added to
QOLD(G) andQLTD(G) in order to obtain POLD(G) and PLTD(G), respectively.

3 Complete p-partite graphs

In this section, we consider complete p-partite graphs and establish a connection
to so-called complete 2-roses of order n. Given n > q ≥ 2, let Rq

n = (V, E) be
the hypergraph where V = {1, . . . , n} and E contains all q-element subsets of V .
Nobili and Sassano [17] called the incidence matrix of Rq

n the complete q-rose
of order n and we denote it by M(Rq

n). In [6], it was shown:
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Theorem 4 ([6, 2]) The covering polyhedron Q∗(M(Rq
n)) is given by

x(V ′) ≥ |V ′| − q + 1

for all subsets V ′ ⊆ {1, . . . , n} with |V ′| ≥ q.

Note that the above inequalities yield, for |V ′| = 1 and q = 2, the nonnega-
tivity constraints xi ≥ 0 for all i ∈ {1, . . . , n}.

Complete bipartite graphs First we consider complete bipartite graphs
Km,n with bipartition A = {1, . . . ,m} and B = {m + 1, . . . ,m + n}. We note
that Km,n has false twins (unless m = 1 = n) and, thus, no OLD-set, hence we
only analyse LTD-sets. We begin with the case of stars K1,n, i.e., A = {1} and
n ≥ 2. Note that K1,2 = P3 and it is easy to see that γLTD(K1,2) = 2 holds.

Lemma 5 For a star K1,n with n ≥ 3, we have

CLTD(K1,n) =


1 0 . . . 0
0
... M(R2

n)
0

 .

From the above description of the facets of the covering polyhedron associ-
ated with complete q-roses by [2], we conclude:

Corollary 6 PLTD(K1,n) with n ≥ 3 is described by the inequalities x1 ≥ 1
and x(B′) ≥ |B′| − 1 for all nonempty subsets B′ ⊆ {2, ..., n+ 1}.

Furthermore, combining x1 ≥ 1 and x(B) ≥ |B| − 1 yields the full rank
constraint x(V ) ≥ |B| which immediately implies γLTD(K1,n) = |V | − 1 = n
(and provides an alternative proof for the result given in [14]).

Observe that for K2,2, it is easy to see that γLTD(K2,2) = 2. For general
complete bipartite graphs Km,n with m ≥ 2, n ≥ 3, we obtain:

Lemma 7 For a complete bipartite graph Km,n with m ≥ 2, n ≥ 3, we have

CLTD(Km,n) =
(
M(R2

m) 0
0 M(R2

n)

)
.

Note that results from [2] show that CID(Km,n) = CLTD(Km,n). Hence, we
directly conclude from the facet description of PID(Km,n) by [2]:

Corollary 8 PLTD(Km,n) is given by the inequalities

1. x(C) ≥ |C| − 1 for all nonempty C ⊆ A,
2. x(C) ≥ |C| − 1 for all nonempty C ⊆ B.

Moreover, γLTD(Km,n) = |V | − 2 = m+ n− 2.

This provides an alternative proof for the result given in [14].
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Complete p-partite graphs The results above can be further generalized
for complete p-partite graphs. Consider Kn1,...,np = (U1 ∪ · · · ∪ Up, E) where
each Ui induces a nonempty stable set and all edges between Ui and Uj , i 6= j
are present. We use |Ui| = ni for i = 1, . . . , p, |V | = n and assume n1 ≤ n2 ≤
. . . ≤ np as well as p ≥ 3. For illustration, complete 3-partite and 4-partite
graphs are depicted in Figure 2.

Figure 2: (a) A complete 3-partite graph with n1 = 2, n2 = 3 and n3 = 4, (b)
A complete 4-partite graph with n1 = 1, n2 = n3 = 2 and n4 = 3.

We note that Kn1,...,np
has false twins and, thus, no OLD-set, unless n1 =

· · · = np = 1 and the graph is a clique.

Lemma 9 Let Kn1,n2,...,np
be a complete p-partite graph.

(a) If n1 = · · · = np = 1, then Kn1,n2,...,np
equals the clique Kp and

COLD(Kn1,n2,...,np
) = CLTD(Kn1,n2,...,np

) = M(R2
p).

(b) If n1 = · · · = nr = 1 with r ≥ 2 and nr+1 ≥ 2, then

CLTD(Kn1,n2,...,np
) =


M(R2

r) 0 0 . . . 0
0 M(R2

nr+1
) 0 . . . 0

...
. . .

...
0 . . . M(R2

np
)

 .

(c) If n1 = 1 and n2 ≥ 2, then

CLTD(Kn1,n2,...,np
) =


0 M(R2

n2
) 0 0 . . . 0

0 0 M(R2
n3

) 0 . . . 0
...

. . . . . .
...

0 0 . . . M(R2
np

)

 .

(d) If n1 ≥ 2, then

CLTD(Kn1,n2,...,np
) =


M(R2

n1
) 0 0 . . . 0

0 M(R2
n2

) 0 . . . 0
...

. . .
...

0 . . . M(R2
np

)

 .
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From the description of the facets of the covering polyhedron associated
with complete q-roses by [2] and taking the block structure of the matrices into
account, we conclude:

Corollary 10 Let Kn1,n2,...,np
be a complete p-partite graph.

(a) If n1 = · · · = np = 1, then PX(Kn1,n2,...,np) is given by the inequalities

• x(V ′) ≥ |V ′| − 1 for all nonempty subsets V ′ ⊆ V

and γX(Kn1,n2,...,np) = n− 1 for X ∈ {OLD,LTD}.
(b) If n1 = · · · = nr = 1 with r ≥ 2 and nr+1 ≥ 2, then

• x(V ′) ≥ |V ′| − 1 for all nonempty subsets V ′ ⊆ U1 ∪ · · · ∪ Ur,
• x(V ′) ≥ |V ′| − 1 for all nonempty subsets V ′ ⊆ Ui for i ∈ {r+ 1, . . . , p}

and γLTD(Kn1,n2,...,np
) = n− p+ r − 1.

(c) If n1 = 1 and n2 ≥ 2, then PLTD(Kn1,n2,...,np
) is given by the inequalities

• x(V ′) ≥ |V ′| − 1 for all nonempty subsets V ′ ⊆ Ui for i ∈ {2, . . . , p}

and γLTD(Kn1,n2,...,np
) = n− p.

(d) If n1 ≥ 2, then PLTD(Kn1,n2,...,np) is given by the inequalities

• x(V ′) ≥ |V ′| − 1 for all nonempty subsets V ′ ⊆ Ui for i ∈ {1, . . . , p}

and γLTD(Kn1,n2,...,np) = n− p.

Corrollary 10(a) provides an alternative proof for the result on OLD-sets in
cliques given in [20].

4 Some families of split graphs

A graph G = (C ∪S,E) is a split graph if its node set can be partitioned into a
clique C and a stable set S. Split graphs are closed under taking complements
and form the complementary core of chordal graphs since G is a split graph if
and only if G and G are chordal or if and only if G is (C4, C4, C5)-free [11].

Our aim is to study LTD-sets in some families of split graphs having a regular
structure from a polyhedral point of view.

Complete split graphs. A complete split graph is a split graph where all
edges between C and S are present. Complete split graphs can be seen as
special case of complete multi-partite graphs studied in Section 3. In fact, a
complete split graph is a clique if |S| = 1, a star if |C| = 1, and a crown if
|C| = 2, see Fig. 3(a),(b). Otherwise, the graph can be seen as a complete
multi-partite graph where all parts but one have size 1, i.e. as Kn1,n2,...,np with
n1 = · · · = np−1 = 1 and np ≥ 2 such that U1 ∪ · · · ∪ Up−1 induce the clique
C and Up the stable set S. Hence, we directly conclude from Lemma 9 and
Corollary 10:
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(a) (d)(c)(b)

Figure 3: (a) star, (b) crown, (c) thin headless spider, (d) thick headless spider.

Corollary 11 Let G = (C ∪ S,E) be a complete split graph.

(a) If |S| = 1, then G is a clique,

CX(G) = M(R2
|C|+1)

and γX(G) = |C| for X ∈ {OLD,LTD}.
(b) If |C| = 1, then G is a star,

CLTD(G) =


1 0 . . . 0
0
... M(R2

|S|)
0

 .

and γLTD(G) = |S|.
(c) Otherwise, we have

CLTD(G) =

(
M(R2

|C|) 0
0 M(R2

|S|)

)

and γLTD(G) = |S|+ |C| − 2.

Headless spiders. A headless spider is a split graph with C = {c1, . . . , ck}
and S = {s1, . . . , sk}; it is thin (resp. thick) if si is adjacent to cj if and only if
i = j (resp. i 6= j), see Figure 3(c),(d) for illustration. Clearly, the complement
of a thin spider is a thick spider, and vice-versa. It is easy to see that for k = 2,
the path P4 equals the thin and thick headless spider. Moreover, it is easy to
check that headless spiders are twin-free.

A thick headless spider with k = 3 equals the 3-sun S3 and it is easy to see
that γOLD(S3) = 4 and γLTD(S3) = 3 holds. To describe the clutters for k ≥ 4,
we use the following notations. Let Jn denote the n×n matrix having 1-entries
only and In the n × n identity matrix. Furthermore, let Jn−1,n(i) denote a
matrix s.t. its i-th column has 0-entries only and removing the i-th column
results in Jn−1, and In−1,n(j) denote a matrix s.t. its j-th column has 1-entries
only and removing the j-th column results in In−1.
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Lemma 12 For a thick headless spider G = (C ∪ S,E) with k ≥ 4, we have

COLD(G) =

(
M(R|S|−1

|S| ) 0
0 M(R2

|C|)

)

and

CLTD(G) =



0 M(R|C|−1
|C| )

Jk−1,k(k) Ik−1,k(k)
...

...
Jk−1,k(1) Ik−1,k(1)
M(R2

|S|) M(R2
|C|)

J|S| I|C|


.

From the description of the polyhedron associated with complete q-roses by
[2] and taking the block structure of COLD(G) into account, we conclude:

Corollary 13 For a thick headless spider G = (C∪S,E) with k ≥ 4, POLD(G)
is given by the inequalities

• xi ≥ 0 for all i ∈ C ∪ S,
• x(S′) ≥ |S′| − k + 2 for all S′ ⊆ S with |S′| ≥ k − 1,
• x(C ′) ≥ |C ′| − 1 for all C ′ ⊆ C with |C ′| ≥ 2,

and γOLD(G) = |C|+ 1.

On the other hand, from the clutter matrix CLTD(G), we immediately see
that C is an LTD-set. However, C is a minimum LTD-set only if k = 4. For
thick headless spiders with k ≥ 5, we can show, using polyhedral arguments,
that k − 1 is a lower bound for the cardinality of any LTD-set. Exhibiting an
LTD-set of size k − 1 thus ensures minimality:

Theorem 14 For a thick headless spider G = (C ∪ S,E) with k ≥ 5, we have
γLTD(G) = k − 1.

The situation is different for thin headless spiders:

Lemma 15 For a thin headless spider G = (C ∪ S,E) with k ≥ 3, we have

COLD(G) = CLTD(G) =
(

0 I|C|
)
.

We immediately conclude:

Corollary 16 For a thin headless spider G = (C ∪ S,E) with k ≥ 3, PX(G) is
given by the inequalities

• xi ≥ 1 for all i ∈ C,

C is the unique X-set and γX(G) = |C| follows for X ∈ {OLD,LTD}.
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5 Concluding remarks

In this paper, we proposed to study the OLD- and LTD-problem from a poly-
hedral point of view, motivated by promising polyhedral results for the ID-
problem [2, 3, 4, 5]. That way, we were able to provide closed formulas for the
LTD-numbers of all kinds of complete p-partite graphs (Section 3), and for the
studied families of split graphs as well as the OLD-numbers of thin and thick
headless spiders (Section 4).

In particular, if we have the same clutter matrix for two differentX-problems,
then we can conclude that every solution of one problem is also a solution for
the other problem, and vice versa, such that the two X-polyhedra coincide and
the two X-numbers are equal. This turned out to be the case for

• complete bipartite graphs as CID(Km,n) = CLTD(Km,n) holds by Lemma
7 and results from [2],

• thin headless spiders G as COLD(G) = CLTD(G) holds by Lemma 15.

Furthermore, we were able to provide the complete facet descriptions of

• the LTD-polyhedra for all complete p-partite graphs (including complete
split graphs) and for thin headless spiders (see Section 3 and Lemma 15),

• the OLD-polyhedra of cliques, thin and thick headless spiders (see Corol-
lary 10 and Section 4).

The complete descriptions of someX-polyhedra also provide us with information
about the relation between Q∗(CX(G)) and its linear relaxation Q(CX(G)). A
matrix M is ideal if Q∗(M) = Q(M). For any nonideal matrix, we can evaluate
how far M is from being ideal by considering the inequalties that have to be
added to Q(M) in order to obtain Q∗(M). With this purpose, in [1], a matrix
M is called rank-ideal if only 0/1-valued constraints have to be added to Q(M)
to obtain Q∗(M). From the complete descriptions obtained in Section 3 and
Section 4, we conclude:

Corollary 17 The LTD-clutters and OLD-clutters of thin headless spiders are
ideal for all k ≥ 3.

Corollary 18 The LTD-clutters of all complete p-partite graphs and the OLD-
clutters of cliques and thick headless spiders are rank-ideal.

Finally, the LTD-clutters of thick headless spiders have a more complex
structure such that also a facet description of the LTD-polyhedra is more in-
volved. However, using polyhedral arguments, is was possible to establish that
k− 1 is a lower bound for the cardinality of any LTD-set. Exhibiting an LTD-
set of size k − 1 thus allowed us to deduce the exact value of the LTD-number
of thick headless spiders (Theorem 14).

This demonstrates how the polyhedral approach can be applied to find X-
sets of minimum size for special graphs G, by determining and analyzing the
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X-clutters CX(G), even in cases where no complete description of PX(G) is
known yet.

As future lines of research, we plan to work on a complete description of
the LTD-polyhedra of thick headless spiders and to apply similar and more
advanced techniques for other graphs in order to obtain either X-sets of min-
imum size or strong lower bounds stemming from linear relaxations of the X-
polyhedra, enhanced by suitable cutting planes.
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