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Abstract

Perfect graphs form a well-known class of graphs introduced by Berge

in the 1960s in terms of a min-max type equality involving two famous

graph parameters. In this work, we study variants and subclasses of per-

fect graphs defined by means of min-max relations of other graph pa-

rameters. Our focus is on clique-perfect, coordinated, and neighborhood-

perfect graphs. We show the connection between graph classes and both

hypergraph theory and the clique graph operator. We review different par-

tial characterizations of them by forbidden induced subgraphs, present the

previous results, and the main open problems. Computational complexity

problems are also discussed.
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1 Introduction

Perfect graphs were defined by Berge in the 1960s in terms of a min-max type
equality involving two important parameters: the clique-number and the chro-
matic number. Coloring a graph is the task of assigning colors to its vertices
in such a way that no two adjacent vertices receive the same color. In many
situations we are interested in knowing the minimum number of different colors
needed to color a certain graph G. This minimum number is called the chro-
matic number of G and is denoted by χ(G). A complete is a set of vertices
that are pairwise adjacent and a clique is a complete set that is not properly
contained in any other. The maximum cardinality of a clique of a graph G is
called the clique number of G and is denoted by ω(G). Clearly, in any coloring,
the vertices of a clique must receive different colors. Thus, ω(G) is a trivial
lower bound for χ(G), i.e., the min-max type inequality

ω(G) ≤ χ(G) holds for any graph G.

Moreover, the difference between χ(G) and ω(G) can be arbitrarily large. My-
cielski presented in [61] a family of graphs {Gn}n≥2 with ω(Gn) = 2 and
χ(Gn) = n. In this context, Berge defined a graph G to be perfect if and only if
the min-max type equality ω(G′) = χ(G′) holds for each induced subgraph G′

of G.
Min-max type relations play a remarkable role in the field of discrete mathe-

matics. In the following pages, we will recall two famous min-max type theorems
due to Kőnig for bipartite graphs. Other notable examples are Dilworth’s theo-
rem [31] that dictates that in any partial order the maximum size of an antichain
equals the minimum number of chains needed to cover it, Menger’s theorem [60]
that states that the maximum number of disjoint paths joining two vertices s
and t equals the minimum number of edges in an st-cut, and its generalization,
the max-flow min-cut theorem [40] that ensures that the maximum amount of
flow in a network equals the capacity of a minimum cut.

The complement of a graph G is the graph G whose vertex set is the same
as the vertex set of G but such that any pair of different vertices are adjacent in
G if and only if they are nonadjacent in G. In 1972, Lovász, and shortly after
Fulkerson, proved a conjecture by Berge stating the following:

Theorem 1 (Perfect Graph Theorem [56]) A graph is perfect if and only
if its complement is perfect.

A stable set of a graph is a set of vertices that are pairwise nonadjacent. The
stability number of a graph G is the maximum cardinality α(G) of a stable set of
G. The clique covering number of a graph G is defined as the minimum number
of cliques of G needed to cover the vertices of G, and it is denoted by θ(G).
Clearly, α(G) ≤ θ(G). Moreover, α(G) = ω(G) and θ(G) = χ(G). Therefore,
by the Perfect Graph Theorem, the notion of perfection can also be formulated
in terms of a min-max type equality involving the stability number and the
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clique covering number: a graph G is perfect if and only if α(G′) = θ(G′) for
each induced subgraph G′ of G.

A hole is a chordless cycle of length at least 5 (a chord is an edge joining
two nonconsecutive vertices of the cycle). An antihole is the complement of a
hole. A hole, or antihole, is said odd or even if it has an odd or an even number
of vertices. We say that a graph has an odd hole (resp. antihole) if it contains
an induced odd hole (resp. antihole). A hole of length n is denoted by Cn.

It is not difficult to verify that odd holes and odd antiholes are imperfect (i.e.,
not perfect). Since the class of perfect graphs is hereditary, any perfect graph
has no odd holes and no odd antiholes. Furthermore, Berge conjectured, and
Chudnovsky, Robertson, Seymour, and Thomas proved the following forbidden
induced subgraph characterization for perfect graphs:

Theorem 2 (Strong Perfect Graph Theorem (SPGT) [24]) A graph G
is perfect if and only if G has no odd hole and no odd antihole.

Shortly before, Chudnovsky, Cornuéjols, Liu, Seymour, and Vušković devised
a polynomial-time algorithm for recognizing perfect graphs [23].

The class of clique-perfect graphs is defined in a somewhat similar fashion. A
clique-independent set of a graph G is a subset of pairwise disjoint cliques of G.
A clique-transversal of G is a subset of vertices intersecting all the cliques of G.
Denote by αc(G) and τc(G) the maximum cardinality of a clique-independent set
and the minimum cardinality of a clique-transversal of G, respectively. Clearly,
the min-max type inequality

αc(G) ≤ τc(G) holds for any graph G.

In analogy to perfect graphs, a graph G is said to be clique-perfect if and only
if αc(G

′) = τc(G
′) holds for each induced subgraph G′ of G. A graph that

is not clique-perfect is said clique-imperfect. It is important to mention that
clique-perfect graphs do not need to be perfect since, for instance, odd antiholes
of length 6n + 3 are clique-perfect for each n ≥ 1 (Reed, 2001, cf. [36]). The
difference between αc(G) and τc(G) can be arbitrarily large. Durán, Lin, and
Szwarcfiter presented in [36] a family of graphs {Gn}n≥2 such that αc(Gn) = 1
and τc(Gn) = n where the number of vertices of Gn grows exponentially. Later,
Lakshmanan S. and Vijayakumar [51] found another family of graphs {Hn}n≥1

such that αc(Hn) = 2n+1 and τc(Hn) = 3n+1 but Hn has only 5n+2 vertices.
The equality between αc(G) and τc(G) has been implicitly studied in the lit-

erature for long time, but the name ‘clique-perfect’ was first introduced by Gu-
ruswami and Pandu Rangan [47]. Some well-known graph classes being clique-
perfect are: balanced graphs [7], comparability graphs [2], dually chordal graphs
[19], complements of acyclic graphs [9], and distance-hereditary graphs [52].

A matching of a graph G is a set of edges that pairwise do not share end-
points. A vertex cover of G is a set S of vertices of G such that every edge of
G has at least one endpoint in S. The matching number ν(G) is the maximum
cardinality of a matching of G, and the vertex covering number τ(G) is the
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minimum cardinality of a vertex cover. Kőnig’s matching theorem [49] asserts
that the min-max equality

ν(G) = τ(G) holds for any bipartite graph G.

Notice that if G is bipartite and with no isolated vertices then the cliques of G
coincide with its edges and, as a consequence, αc(G) = ν(G) and τc(G) = τ(G).
Then, by Kőnig’s matching theorem, if G is bipartite and without isolated
vertices then αc(G) = τc(G). It is easily seen that this equality holds even if
the bipartite graph G is permitted to have isolated vertices. Since the induced
subgraphs of a bipartite graph are also bipartite then bipartite graphs are clique-
perfect. Thus, bipartite graphs can be regarded as a special type of clique-
perfect graphs.

Coordinated graphs form a subclass of perfect graphs and are defined simi-
larly. Let G be a graph, let γc(G) be the minimum number of colors needed to
color the cliques of G in such a way that two intersecting cliques receive different
colors, and let ∆c(G) be the maximum cardinality of a family of cliques all of
which have at least one vertex of G in common. Clearly,

∆c(G) ≤ γc(G) holds for any graph G.

Parameters ∆c and γc are generally denoted in the literature by M and F ,
respectively.

A graph G is called coordinated if ∆c(G
′) = γc(G

′) for each induced subgraph
G′ of G. Since the class of coordinated graphs is hereditary by definition, and
since odd holes and odd antiholes are not coordinated [12] then, by the SPGT,
coordinated graphs are perfect. Also in this case, the difference between the
parameters can be arbitrarily large. In fact, in [12] it is shown that, for antiholes,
the difference γc(Cn) − ∆c(Cn) grows exponentially in n.

If G is a triangle-free graph without isolated vertices, the cliques of G coincide
with the edges, then γc(G) coincides with γ(G), the so called chromatic index
(minimum number of colors to color the edges of a graph so that edges that
share an endpoint receive different colors), and the parameter ∆c(G) coincides
with the maximum degree ∆(G) of the vertices of G. By Kőnig’s edge coloring
theorem [49],

γ(G) = ∆(G) holds for any bipartite graph G.

As in the case of clique-perfection, we can conclude that γc(G) = ∆c(G) holds
for any bipartite graph G and hence bipartite graphs are coordinated. Thus,
coordinated graphs constitute another way of generalizing bipartite graphs.

Neighborhood-perfect graphs were defined in [53], also by the equality of two
parameters for all induced subgraphs. Given a graph G, a set C ⊆ V (G) is a
neighborhood-covering set (or neighborhood set) if each edge and each vertex of G
belongs to G[v] for some v ∈ C, where G[v] denotes the subgraph of G induced
by the closed neighborhood of the vertex v. Two elements of E(G) ∪ V (G)
are neighborhood-independent if there is no vertex v ∈ V (G) such that both
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Figure 1: Some small graphs

elements are in G[v]. A set S ⊆ V (G) ∪ E(G) is said to be a neighborhood-
independent set if every pair of elements of S is neighborhood-independent.
Let ρn be the size of a minimum neighborhood-covering set and αn(G) of a
maximum neighborhood-independent set. Clearly, ρn ≥ αn(G) for every graph
G. When ρn(G′) = αn(G′) for every induced subgraph G′ of G, G is called
a neighborhood-perfect graph. It was proved in [53] that odd holes and odd
antiholes are not neighborhood-perfect and hence, the Strong Perfect Graph
Theorem implies that neighborhood-perfect graphs are also perfect.

In Section 2 we present the basic definitions and preliminary results. In Sec-
tion 3 we discuss the connection between our subject and hypergraph theory.
In Section 4 we study how clique-perfection and coordination depend on prop-
erties of the clique graph. In Section 5 the studied variants of perfect graphs
are analyzed when restricted to different graph classes, detailing the previous
results and providing some new contributions and open problems.

2 Definitions and preliminaries

All graphs in this paper are undirected, without loops and without multiple
edges. We denote the vertex set of the graph G by V (G), and the edge set
by E(G). For any set S, |S| will denote its cardinality. Cn will denote the
chordless cycle with n vertices, Pn the chordless path with n vertices, and Kn a
complete with n vertices. Path and cycles are assumed to be simple (i.e., with
no repeated vertices aside from the starting and ending vertices in the case of
cycles). A cycle of a graph is Hamiltonian if it visits every vertex of the graph.
By the edges of a cycle we mean those edges joining two consecutive vertices of
the cycle. A triangle is a complete with three vertices. A graph is triangle-free
if it contains no induced triangle. Some small graphs to be referred in the sequel
are depicted in Figure 1.

A universal vertex in a graph is a vertex that is adjacent to all the other
vertices of the graph. An isolated vertex is a vertex that is not adjacent to any
other vertex of the graph. The neighborhood of a vertex v in a graph G is the
set NG(v) consisting of all the vertices that are adjacent to v. The degree of v

5



Figure 2: The graph N1 and its clique graph

is dG(v) = |NG(v)|. The common neighborhood of an edge e = vw is NG(e) =
NG(v)∩NG(w), and, in general, the common neighborhood of a nonempty subset
W of vertices is NG(W ) =

⋂
w∈W NG(w), while NG(∅) = V (G). If H is a

subgraph of G then NH(v) = NG(v) ∩ V (H), NH(e) = NG(e) ∩ V (H) and
NH(W ) = NG(W ) ∩ V (H) for every vertex v, every edge e and every subset
of vertices W . The closed neighborhood of v is the set NG[v] = NG(v) ∪ {v}.
Two vertices v and w are true twins in G if NG[v] = NG[w], and false twins if
NG(v) = NG(w). The subgraph of G induced by the vertex set W ⊆ V (G) is
denoted by G[W ], and G − W denotes G[V (G) \ W ]. A vertex set W ⊆ V (G)
is a vertex covering of G if each edge of G has at least one endpoint in W .

A graph G is anticonnected if G is connected. An anticomponent of G is the
subgraph of G induced by the vertices of a connected component of G.

A class C of graphs is called hereditary if, for every graph of C, all its induced
subgraphs belong to C. Let G and H be graphs. We say that G is H-free to
mean that G contains no induced H. If H is a collection of graphs we say that
G is H-free to mean that G contains no induced H for any H ∈ H.

Let F be a family of sets. The intersection graph of F is a graph whose
vertices are the members of F , and such that two members of F are adjacent
if and only if they intersect. For instance, the line graph L(G) of a graph G is
the intersection graph of the edges of G. Whitney [76] proved that if H and H ′

are connected graphs such that L(H) = L(H ′) 6= K3 then H = H ′.
Another example of an intersection graph is the clique graph. The clique

graph K(G) of a graph G is the intersection graph of the cliques of G. The
map K : G 7→ K(G) is known as the clique graph operator or simply the clique
operator. A graph G is said to be K-perfect if K(G) is perfect. If G is not K-
perfect we say that it is K-imperfect. Notice that the class of K-perfect graphs
is not hereditary. For instance, the graph N1 of Figure 2 is K-perfect but it
contains an induced C5 and K(C5) = C5 is imperfect. Because of this, the
following terminology is introduced in [66]: a graph is hereditary K-perfect if
all its induced subgraphs are K-perfect. It turns out that hereditary K-perfect
graphs are perfect, as implied by the SPGT together with the following lemma.

Lemma 3 ([66]) A hereditary K-perfect graph has no odd holes and has no
antiholes with more than 6 vertices.

Proof. It is clear that hereditary K-perfect graphs have no odd holes since odd
holes are K-imperfect. All along the proof, Cn will denote the graph such that
V (Cn) = {0, 1, . . . , n− 1} and E(Cn) = {01, 12, 23, . . . , (n − 1)0}. Assume that
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Figure 3: From left to right: 0-, 1-, 2- and 3-pyramid

n ≥ 5 and n 6= 6, 7, 9, 12. By elementary number theory, n = 5a + 3b for some
a ≥ 1 and some b ≥ 0. This implies that there exists a sequence a1, . . . , ak

of integers taken from the set {2, 3} that satisfies the following conditions: (i)
a1 + · · · + ak = n; (ii) ai = 2 for some i ∈ {1, . . . , k}; and (iii) for each
j = 1, . . . , k, aj = 2 implies aj+1 = 3 (where ak+1 means a1). Assume such a
sequence {ai} is given and define bi equal to a1 + · · · + ai modulo n for each
i = 1, . . . , k. In particular, bk = 0. Let Q1 = {b1, b2, . . . , bk}, Q2 = Q1 + 2,
Q3 = Q1 + 4, Q4 = Q1 + 1, and Q5 = Q1 + 3, where A + p = {a + p : a ∈ A}
and the sum is taken modulo n. Then, Qi is a clique of Cn for i = 1, 2, . . . , 5
and, by construction, Q1Q2 . . . Q5 is an odd hole in K(Cn). Finally, observe
that K(C7) = C7; that if Q1 = {0, 2, 4, 6} then {Q1, Q1 + 1, Q1 + 2, . . . , Q1 + 8}
induces a C9 in K(C9); and that if Q1 = {0, 2, 5, 7, 9} and Q2 = {1, 3, 5, 7, 10}
then {Q1, Q1 + 1, Q1 + 2, Q1 + 3, Q1 + 9, Q2, Q2 + 1, Q2 + 2, Q2 + 3} induces a
C9 in K(C12). ¤

Interestingly, hereditary K-perfection has been implicitly characterized when
restricted to several graph classes; many of these characterizations are presented
in Section 5.

A family F of nonempty sets is said to satisfy the Helly property if every
nonempty subfamily of F of pairwise intersecting members has nonempty in-
tersection. A graph G is said to be clique-Helly (CH) if the family of its cliques
satisfies the Helly property. The graphs of Figure 3 are examples of graphs that
are not clique-Helly. Clique-Helly graphs were characterized in [32] and inde-
pendently in [71]. Notice that any graph with a universal vertex is clique-Helly
and thus a clique-Helly graph may contain any prescribed induced subgraph.
Instead, a graph is hereditary clique-Helly (HCH) [64] if all its induced sub-
graphs are clique-Helly. Prisner gave several characterizations of hereditary
clique-Helly graphs, one by means of minimal forbidden induced subgraphs:

Theorem 4 ([64]) A graph is hereditary clique-Helly if and only if it contains
none of the graphs of Figure 3 as induced subgraph.

In the sequel, we call any of the graphs in Figure 3 a pyramid. The graph
0-pyramid is also called 3-sun. In [64] and [74], it is proved that a hereditary
clique-Helly graph G has at most |V (G)| + |E(G)| cliques.

Let G and H be two graphs. Assume that V (G) ∩ V (H) = ∅. The disjoint
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union of G and H is a graph G ∪ H whose vertex set is V (G) ∪ V (H) and
whose edge set is E(G) ∪ E(H). The disjoint union is clearly an associative
operation, and for each nonnegative integer t we will denote by tG the disjoint
union of t copies of G. The join of G and H is a graph G+H whose vertex set is
V (G)∪V (H) and whose edge set is E(G)∪E(H)∪{vw : v ∈ V (G), w ∈ V (H)}.

A graph is bipartite if its vertex set can be partitioned into two (possibly
empty) stable sets. A graph is chordal if every cycle of length at least 4 has at
least one chord. A comparability graph is a graph that admits a transitive acyclic
orientation of its edges. Bipartite and chordal graphs can be recognized in linear
time and comparability graphs can be recognized in polynomial time [65, 70].
Bipartite, chordal and comparability graphs are subclasses of perfect graphs.

A cograph [29] is a P4-free graph, that is, a graph without chordless paths on
4 vertices. Equivalently, cographs are those graphs that can be obtained from
isolated vertices by successively applying disjoint union and join operations.
Cographs form a well-known class of perfect graphs.

We will study in this survey two superclasses of cographs: P4-tidy graphs
and tree-cographs. A graph G = (V,E) is P4-tidy if for every vertex set A
inducing a P4 in G there is at most one vertex v ∈ V \ A such that G[A ∪ {v}]
contains at least two induced P4’s. They were introduced in [45]. A starfish is
a graph whose vertex set can be partitioned into three sets S, C and R, where
each of the following conditions holds: (1) S = {s1, . . . , st} is a stable set and
C = {c1, . . . , ct} is a clique, for some t ≥ 2; (2) si is adjacent to cj if and only if
i = j; and (3) R is allowed to be empty and if it is not, then all the vertices in
R are adjacent to all the vertices in C and nonadjacent to all the vertices in S.
An urchin is a graph whose vertex set can be partitioned into three sets S, C,
and R satisfying the same conditions (1) and (3) but that instead of condition
(2) satisfies: (2’) si is adjacent to cj if and only if i = j. Clearly, urchins are the
complements of starfishes and vice versa. A fat starfish (resp. fat urchin) arises
from a starfish (resp. urchin) with partition (S,C,R) by substituting exactly
one vertex of S ∪ C by K2 or 2K1.

Theorem 5 ([45]) If G is a P4-tidy graph, then exactly one of the following
statements holds:

1. G or G is disconnected;

2. G is isomorphic to C5, P5, P5, a starfish, a fat starfish, an urchin, or a
fat urchin.

Tree-cographs were defined in [72] by the following recursive definition:

1. Every tree is a tree-cograph.

2. If G is a tree-cograph, then G is a tree-cograph.

3. The disjoint union of tree-cographs is a tree-cograph.

This definition implies that if G is a tree-cograph, then either G or G is dis-
connected, or G is a tree or the complement of a tree. Tree-cographs are also a
subclass of perfect graphs.
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Distance-hereditary graphs form another superclass of cographs. A graph G
is called distance-hereditary if and only if the distance between any two vertices
of G is the same in every connected induced subgraph of G containing the
two vertices. Equivalently, a graph is distance-hereditary if and only if it is
{house,domino,gem}-free and has no holes of length at least 5 [3].

A circular-arc graph [46] is the intersection graph of arcs of the unit circle.
A representation of a circular-arc graph is a collection of arcs (of the unit circle),
each corresponding to a unique vertex of the graph, such that two arcs intersect
if and only if the corresponding vertices are adjacent. A Helly circular-arc
(HCA) graph [44] is a circular-arc graph admitting a representation whose arcs
satisfy the Helly property.

Let G be a graph, Q1, . . . , Qk all its cliques and v1, . . . , vn all its vertices.
A clique matrix (or clique-vertex incidence matrix ) of G is the k × n matrix
A = (aij) where aij is 1 if vj ∈ Qi and 0 otherwise. The clique matrix of a
graph is unique up to permutations of rows and/or columns. Let A be a m× n
zero-one matrix. We say that A is perfect if the set packing polytope

{x ∈ R
n | x ≥ 0, Ax ≤ 1}

has all integer extreme points. Perfect graphs and perfect matrices are related
by the following result [26, 63]: a graph is perfect if and only if its clique matrix
is perfect.

A zero-one matrix A is said to be balanced if and only if it contains no
odd square submatrix with exactly two 1’s in each row and in each column.
Clearly, balancedness is preserved by row permutations, column permutations
and transpositions. There is a forbidden submatrix characterization for balanced
matrices in terms of perfect matrices: Let A be a zero-one matrix. Then A is
balanced if and only if all submatrices of A are perfect [4, 63]. In particular,
balanced matrices are perfect. By analogy with the relation between perfect
graphs and perfect matrices, Dahlhaus, Manuel and Miller proposed to call a
graph balanced if its clique matrix is balanced [30]. There is a characterization
of balanced graphs in terms of forbidden structures defined as follows. An
unbalanced cycle of a graph G is an odd cycle C such that for each edge e of C
there exists a (possibly empty) complete We of G such that We ⊆ NG(e) \ C
and NC(We) ∩ NC(e) = ∅.

Theorem 6 ([4, 14]) A graph is balanced if and only if it contains no unbal-
anced cycle.

In [64], Prisner proved that a graph is hereditary clique-Helly if and only if its
clique matrix does not contain a 3×3 submatrix with exactly two 1’s in each row
and in each column. In particular, it turns out that balanced graphs are heredi-
tary clique-Helly, thus the number of cliques of a balanced graph is bounded by
its number of vertices plus its number of edges. Dahlhaus, Manuel and Miller
observed that combining the polynomial-time algorithm in [73] that outputs the
clique matrix of a hereditary clique-Helly graph, together with the polynomial-
time algorithm in [27] that recognizes balanced matrices, a polynomial-time
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Figure 4: Inclusions and intersections of the studied classes related to coordi-
nated graphs, together with separating examples

algorithm to recognize balanced graphs is obtained. The algorithm proposed in
[27] by Conforti, Cornuéjols, Kapoor and Vušković was quite involved, but Zam-
belli [77] developed a simpler polynomial-time algorithm to test balancedness
of a matrix.

Figures 4 and 5 show the inclusion and intersection schemes of the graph
classes that are the subject of this paper related to coordinated and neighborhood-
perfect graphs, respectively.
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Figure 5: Inclusions and intersections of the studied classes related to
neighborhood-perfect graphs, with separating examples. The shaded region
corresponds to an empty set.
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3 Connection with hypergraph theory

A hypergraph H is an ordered pair (X, E) where X is a finite set and E is a
family of nonempty subsets of X. The elements of X are the vertices of H
and the elements of E are the hyperedges of H. If x1, . . . , xn are the vertices of
H and E1, . . . , Em are the hyperedges of H then a hyperedge-vertex incidence
matrix of H is the m × n matrix A = (aij) where aij is 1 if xj ∈ Ei and
0 otherwise. A hypergraph has the Helly property if every nonempty family of
pairwise intersecting hyperedges has a nonempty intersection. The line graph (or
representative graph) of a hypergraph H, denoted by L(H), is the intersection
graph of the family E of hyperedges of H.

We will restrict ourselves to hypergraphs (X, E) where
⋃
E = X. A partial

hypergraph of H is a hypergraph H ′ whose hyperedge set E ′ is a subset of the
hyperedge set of H and whose vertex set is the union of the members of E ′.

We will be mostly interested in studying clique hypergraphs of graphs.
Namely, the clique hypergraph of a graph G is the hypergraph K(G) = (X, E)
where X is the set of vertices of G and E is the family of cliques of G. The
hyperedge-vertex incidence matrix of K(G) is the clique matrix of G, and G is
clique-Helly if and only if K(G) has the Helly property. Besides, clique graph
and clique hypergraph are related in the following way: K(G) = L(K(G)).

3.1 The Kőnig property

A matching of H is a family of pairwise disjoint hyperedges and the matching
number ν(H) is the maximum cardinality of a matching of H. A transversal of
H is a set of vertices that meet all the hyperedges and the transversal number
τ(H) is the minimum cardinality of a transversal of H. Clearly, ν(H) ≤ τ(H)
for each hypergraph H. A hypergraph is said to satisfy the Kőnig property if
ν(H) = τ(H). Notice that αc(G) = ν(K(G)) and τc(G) = τ(K(G)). Thus, we
have by definition:

Remark 1 A graph G is clique-perfect if and only if the clique hypergraph K(G′)
has the Kőnig property for each induced subgraph G′ of G.

3.2 The colored edge property

Another property of hypergraphs being of our interest is the following. Let
H be a hypergraph. The chromatic index γ(H) of H is the least number of
colors necessary to color the hyperedges of H such that any two intersecting
hyperedges are colored with different colors. The degree dH(x) of a vertex x
of H is the number of hyperedges of H containing x. The maximum degree
of the hypergraph H is defined as ∆(H) = maxx∈X dH(x). Clearly, ∆(H) ≤
γ(H) for any hypergraph H. Finally, a graph is said to have the colored edge
property [6, p. 15] if and only if γ(H) = ∆(H). Since γc(G) = γ(K(G)) and
∆c(G) = ∆(K(G)) hold, we obtain:
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Remark 2 A graph G is coordinated if and only if the clique hypergraph K(G′)
has the colored edge property for each induced subgraph G′ of G.

3.3 Normality

Lovász proved the following (we use the formulation of Berge [6, pp. 195–197]):

Theorem 7 ([56]) Let H be a hypergraph, AH be the hyperedge-vertex inci-
dence matrix of H and AT

H be its transpose. Then the following conditions are
equivalent:

1. Every partial hypergraph of H has the Kőnig property.

2. Every partial hypergraph of H has the colored edge property.

3. The matrix AT
H is perfect.

4. H satisfies the Helly property and L(H) is perfect.

Any hypergraph satisfying any of these conditions is said to be normal. Since
K(G) = L(K(G)), it follows as a corollary:

Corollary 8 Let G be a graph, AG the clique matrix of G and AT
G be its trans-

pose. Then the following are equivalent:

1. Every partial hypergraph of K(G) has the Kőnig property.

2. Every partial hypergraph of K(G) has the colored edge property.

3. The matrix AT
G is perfect.

4. G is clique-Helly and K(G) is perfect.

In light of this theorem we introduce the following terminology: a graph
G will be called clique-normal if G is clique-Helly and K(G) is perfect, or
equivalently, if its clique hypergraph K(G) is normal. Notice that an induced
subgraph of a clique-normal graph may not be clique-normal. For instance, the
graph N1 of Figure 2 is clique-normal but contains an induced C5 which is not
even K-perfect.

So we introduce also the following definition: a graph G is said to be hered-
itary clique-normal if all the induced subgraphs of G are clique-normal. Equiv-
alently, G is hereditary clique-normal if it is hereditary clique-Helly and hered-
itary K-perfect. Combining Corollary 8 with Remarks 1 and 2 it follows:

Corollary 9 If G is hereditary clique-normal (i.e., hereditary clique-Helly and
hereditary K-perfect) then G is clique-perfect and coordinated.

The converse is not true because there are graphs that are clique-perfect
and coordinated but not even hereditary K-perfect (see Figure 4). Neverthe-
less, Corollaries 16 and 20 of Section 4 can be regarded as partial converses of
Corollary 9.

A different characterization of clique-normal graphs arises from defining
clique subgraphs, which are closer to partial hypergraphs of the clique hyper-
graph than induced subgraphs. Let G be a graph, Q the set of cliques of G and
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Q′ ⊆ Q. Denote by GQ′ the subgraph of G formed exactly by the vertices and
edges corresponding to the cliques in Q′. If every clique of GQ′ is also a clique
of G then GQ′ is called a clique subgraph of G [13]. A graph G is called c–clique-
perfect if τc(H) = αc(H) for every clique subgraph H of G, and c–coordinated
if γc(H) = ∆c(H) for every clique subgraph H of G.

By definition, if H is a clique subgraph of a graph G then K(H) is an induced
subgraph of K(G). This property allows to prove the following theorem:

Theorem 10 ([12, 13]) Let G be a clique-normal graph. Then G is c–clique-
perfect and c–coordinated.

Moreover, when G is hereditary clique-Helly, every induced subgraph of K(G)
is the clique graph of a clique subgraph of G [64]. So the following holds:

Theorem 11 ([12, 13]) Let G be a hereditary clique-Helly graph. Then the
following statements are equivalent:

1. K(G) is perfect.

2. G is c–clique-perfect.

3. G is c–coordinated.

4. G is clique-normal.

It remains an open question whether the equivalence among assertions (1), (2),
and (3) of the above theorem holds for (general) clique-Helly graphs G.

Berge defined in 1969 a hypergraph to be balanced (cf. [33, p. 397]) if its
hyperedge-vertex incidence matrix is balanced. Recall that balanced graphs
are those whose clique matrix is balanced, that is, those graphs whose clique
hypergraph is balanced. We have also the following:

Theorem 12 ([7, 56]) If a hypergraph is balanced then it is also normal.

Since the class of balanced graphs is hereditary [14, 46] then:

Corollary 13 Balanced graphs are hereditary clique-normal (i.e., hereditary
clique-Helly and hereditary K-perfect). In particular, balanced graphs are clique-
perfect and coordinated.

The class of balanced graphs is a common subclass of clique-perfect and
coordinated graphs that is interesting from a computational point of view. In
fact, the problems of determining each of the parameters αc, τc, ∆c and γc

are NP-complete [20], NP-hard [38], #P-complete [8] and {#P,NP}-hard [8],
respectively. However, all these problems are known to be polynomially solvable
when restricted to balanced graphs. Indeed, as we already mentioned, the size
of the clique matrix of a balanced graph is bounded by a polynomial in the
number of vertices and, consequently, can be computed in polynomial time.
This, combined with the fact that the set packing and set covering polyhedra
of balanced matrices are integral [41], implies the following:

Theorem 14 ([30, 41]) Each of the parameters αc, τc, ∆c and γc can be com-
puted in polynomial time (in the number of vertices) for balanced graphs.
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Figure 6: An example of an α(K)-perfect and χ(K)-perfect but K-imperfect
graph

4 Connection with the clique graph operator

The following result relates the parameters used to define clique-perfect graphs
with the parameters used to define perfect graphs applied to the clique graph:

Theorem 15 ([13]) Let G be a graph. Then:

1. αc(G) = α(K(G)).

2. τc(G) ≥ θ(K(G)).

3. If G is clique-Helly then τc(G) = θ(K(G)).

The theorem above asserts, in particular, that

αc(G) = α(K(G)) ≤ θ(K(G)) ≤ τc(G) holds for any graph G (∗)

and we shall notice that a graph is clique-perfect exactly when both inequalities
are satisfied at equality for each of its induced subgraphs.

A graph G is called α-good when α(G) = θ(G), and α-bad otherwise. Con-
trary to the case of perfect graphs, the equality is not imposed to the induced
subgraphs, and α-goodness is strictly weaker than perfection. We will say
that a graph G is α(K)-good if K(G) is α-good, i.e. if α(K(G)) = θ(K(G)).
We will say that it is α(K)-bad otherwise. Finally, we define a graph to be
α(K)-perfect if each of its induced subgraphs is α(K)-good, or equivalently,
if α(K(G′)) = θ(K(G′)) for each induced subgraph G′ of G. The graph de-
picted in Figure 6 is an example of an α(K)-perfect graph that is not hereditary
K-perfect. Notice that given a graph G, the clique graph K(G) may contain
some induced subgraphs which are not clique graphs of any induced subgraph
of G and this is one reason why α(K)-perfection turns out to be strictly weaker
property than hereditary K-perfection.

With all this terminology, Theorem 15 implies the following variant of Corol-
lary 9:

Corollary 16 ([13]) If G is a clique-perfect graph then G is α(K)-perfect. Fur-
thermore, if G is hereditary clique-Helly then the converse also holds.

Thus the class of α(K)-perfect graphs is a superclass of both clique-perfect
graphs and hereditary K-perfect graphs. Below we introduce some graphs that
are known to be clique-imperfect and study whether they are α(K)-good or not.
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An r-sun or simply sun [39] is a chordal graph G on 2r vertices, r ≥ 3,
whose vertex set can be partitioned into two sets, W = {w1, . . . , wr} and U =
{u1, . . . , ur}, such that W is a stable set and for each i and j, wj is adjacent to
ui if and only if i = j or i ≡ j + 1 mod r. A sun is odd if r is odd. A sun is
complete if U is a complete.

The concept of suns was later extended as follows. Let G be a graph and
C be a cycle of G not necessarily induced. An edge of C is non-proper (or
improper) if it forms a triangle with some vertex of C. An r-generalized sun,
r ≥ 3, is a graph G whose vertex set can be partitioned into two sets: a cycle C
of r vertices, with all its non-proper edges {ej}j∈J (J is permitted be an empty
set) and a stable set U = {uj}j∈J , such that for each j ∈ J , uj is adjacent
exactly to the endpoints of ej . An r-generalized sun is said to be odd if r is
odd. Clearly odd holes and odd suns are odd generalized suns. We call a cycle
proper if none of its edges is improper. By definition, proper odd cycles are odd
generalized suns. It turns out that odd generalized suns are not clique-perfect.
Indeed, the following holds.

Theorem 17 ([13, 36]) Odd generalized suns and antiholes of a length not
divisible by 3 are clique-imperfect.

It is not hard to see that the 3-sun is hereditary K-perfect and, in particular,
α(K)-perfect. We will now show that this is the only odd-generalized sun that
is α(K)-good. More precisely:

Theorem 18 Odd generalized suns different from the 3-sun and antiholes of a
length not divisible by 3 are α(K)-bad.

Proof. Let G be a (2r+1)-generalized sun for some r ≥ 2 and let C, {ej}j∈J

and {uj}j∈J be as in the definition of odd generalized suns. In [13] it is proved
that α(K(G)) = αc(G) ≤ r. We claim that θ(K(G)) ≥ r + 1. Notice that
θ(K(G)) is the minimum number of colors needed to color the cliques of G
in such a way that if two cliques receive the same color then they intersect.
Consider any such coloring with θ(K(G)) colors. We assign to each edge e = xy
of C a clique Qe of G as follows: if e is proper then Qe = {x, y} and if e is
improper then there exists j ∈ J such that e = ej and let Qe = {x, y, uj}.
Clearly, Qe ∩ Qe′ 6= ∅ if and only if e′ and e are adjacent. Since r ≥ 2 then the
edges of C do not form triangles and then there are not three pairwise different
and pairwise adjacent edges of C. This means that among all the cliques Qe

there are no more than two of them that receive the same color, and therefore
θ(K(G)) ≥ (2r + 1)/2 > r ≥ α(K(G)).

Regarding antiholes, let n ≥ 5 and n not be a multiple of 3. Then α(K(Cn)) =
2 [36]. By the proof of Lemma 3, K(Cn) is not the complement of a bipartite
graph, and this accounts for θ(K(Cn)) > 2. (In fact, it is easy to see that
θ(K(Cn)) = 3 because given three consecutive vertices v1, v2, v3 of Cn, the
cliques of Cn that contain vi constitute a clique of K(Cn), and conversely every
clique of K(Cn) contains at least one vertex from {v1, v2, v3}.) ¤
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In particular, C8 is not α(K)-good, which shows that perfect graphs are
not necessarily α(K)-perfect. Also notice that antiholes C3k are α(K)-perfect
because they are clique-perfect. This shows that α(K)-perfect graphs are not
necessarily perfect. We have the following:

clique-perfect ⊂ α(K)-perfect ⊂ {(2r + 1)-generalized sun, r > 1}-free ∩

{Cn : n ≥ 5, n 6= 3k}-free

To see that the inclusions are proper, notice that the 3-sun is α(K)-perfect
(because it is hereditary K-perfect) but not clique-perfect because αc(3-sun) = 1
and τc(3-sun) = 2, and that S2 (cf. Figure 10, p. 28) contains no induced odd
generalized sun and has no antiholes but is not α(K)-good since α(K(S2)) = 2
and θ(K(S2)) = 3.

According to equation (∗) (p. 15), we propose to classify the minimal for-
bidden induced subgraphs for clique-perfection into two classes (whenever we
say minimal, it should be understood in the sense of induced subgraphs). The
class O1 of those graphs G with α(K(G)) < θ(K(G)), and the class O2 of those
graphs G for which θ(K(G)) < τc(G) holds. We will call its elements simply
obstructions. Notice that all odd generalized suns belong to O1 with the only
exception of the 3-sun that consequently belongs to O2. If n ≥ 5 and n is not a
multiple of 3 then also Cn ∈ O1. The classes O1 and O2 may actually overlap.
Indeed there are graphs G for which α(K(G)) < θ(K(G)) < τc(G), but all ex-
amples of such graphs G that we know contain an induced C5 and so they are
not minimally clique-imperfect.

Due to Theorem 15 all graphs G that are hereditary clique-Helly satisfy
θ(K(G)) = τc(G), thus, if an obstruction contains no pyramid then it belongs
to O1. It would be interesting to find a weaker condition on the obstructions
G that still ensures that θ(K(G)) = τc(G) holds. We wonder, for instance, the
following:

Problem 1 Is there any minimally clique-imperfect graph G that contains no
induced 0-, 1-, or 2-pyramid and such that θ(K(G)) = τc(G) does not hold?

Clearly, if there is any such graph G then it must contain an induced 3-
pyramid. Currently, we do not know any example to answer this question affir-
matively.

In Table 1 the number of minimally clique-imperfect graphs in the classes
O1 and O2 were tabulated by computer, and suggest that the class O1 is much
larger than the class O2.

The analogous to Theorem 15 for coordinated graphs was formulated in [12]:

Theorem 19 ([12]) Let G be a graph. Then:

1. γc(G) = χ(K(G)).

2. ∆c(G) ≤ ω(K(G)).

3. If G is clique-Helly then ∆c(G) = ω(K(G)).
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Number

of vertices

Minimally clique-imperfect

graphs (those that in addition

are odd generalized suns)

Elements

of O1

Elements

of O2

≤ 4 0 (0) 0 0

5 1 (1) 1 0

6 1 (1) 0 1

7 3 (2) 3 0

8 13 (2) 7 6

9 45 (5) 31 14

10 201 (10) 158 43

11 1048 (21) 875 173

Table 1: Classifying minimally clique-imperfect graphs

As a consequence,

∆c(G) ≤ ω(K(G)) ≤ χ(K(G)) = γc(G) holds for any graph G,

and coordinated graphs are exactly those for which both inequalities are satisfied
at equality for each induced subgraph. Again, as a corollary of Theorem 19 we
will obtain Corollary 20, which is another variant of Corollary 9 but in terms
of χ-goodness. A graph is called χ-good if χ(G) = ω(G). The same property is
not required for induced subgraphs, and for this reason χ-goodness is strictly
weaker than perfection. Let us call a graph χ(K)-good if its clique graph is χ-
good, and define a graph G to be χ(K)-perfect if all its induced subgraphs are
χ(K)-good. Equivalently, G is χ(K)-perfect if and only if χ(K(G′)) = ω(K(G′))
for each induced subgraph G′ of G. Again, the graph of Figure 6 shows that
χ(K)-perfection is strictly weaker than hereditary K-perfection. Finally, the
analogous to Corollary 16 is the following.

Corollary 20 If G is a coordinated graph then G is χ(K)-perfect. Furthermore,
if G is hereditary clique-Helly then the converse also holds.

Therefore χ(K)-perfect graphs constitute a superclass of both coordinated
graphs and hereditary K-perfect graphs. In [12] the following is proved for
coordinated graphs:

Theorem 21 ([12]) If G is a coordinated graph then G has no odd holes and
has no antiholes with more than 6 vertices.

The analogous for hereditary K-perfect graphs was proved in Lemma 3. In
the next theorem we extend both results to the class of χ(K)-perfect graphs.
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Theorem 22 If G is χ(K)-perfect then G has no odd holes and has no antiholes
with more than 6 vertices.

Proof. Since K(Cn) = Cn then odd holes are not χ(K)-good. In [12] it is shown
that χ(K(Cn)) ≥ (|V (K(Cn))| − 1)/2 for each n ≥ 5 and a recursive formula is
given for |V (K(Cn))| which implies that |V (K(Cn))| > 2n + 1 for n ≥ 8. All
along the proof, Cn will denote the graph such that V (Cn) = {0, 1, . . . , n−1} and
E(Cn) = {01, 12, 23, . . . , (n− 1)0}. Let Q be a clique of Cn and define the orbit
of Q as O(Q) = {Q + j : 0 ≤ j ≤ n− 1} where Q + j stands for {a + j : a ∈ Q}
and the sum is taken modulo n. The period of Q is |O(Q)|. The orbits induce
a partition of the cliques of Cn and the period of each clique Q divides n. For
each clique Q of Cn it holds that (Q+ j)∩ (Q+ j +1) = ∅ and consequently any
complete of K(Cn) cannot contain both Q+j and Q+j+1 for any j. Therefore,
each complete of K(Cn) contains at most ⌊|O(Q)|/2⌋ members of O(Q), for each
clique Q of Cn (where ⌊x⌋ denotes the largest integer not exceeding x).

Since K(C7) = C7 then C7 is not χ(K)-good, so henceforth we can assume
that n ≥ 8. We claim that there is a set S that is the union of orbits of cliques
of Cn such that any complete of K(Cn) contains at most |S|/2 − 1 elements of
S. This will imply that ω(K(Cn)) ≤ (|V (K(Cn))| − 2)/2, which together with
χ(K(Cn)) ≥ (|V (K(Cn))| − 1)/2 shows that Cn is not χ(K)-good.

When n is odd this is easy. Since we are assuming that n ≥ 8 then
|V (K(Cn))| > 2n + 1 and then there are at least two cliques Q1 and Q2 of
Cn such that O(Q1) ∩ O(Q2) = ∅ and let S = O(Q1) ∪ O(Q2). Since n is odd
then |O(Q1)| and |O(Q2)| are both odd and each complete of K(Cn) contains
at most ⌊|O(Q1)|/2⌋ + ⌊|O(Q2)|/2⌋ = (|O(Q1)| + |O(Q1)|)/2 − 1 = |S|/2 − 1
elements from S, and the claim is proved.

Consider the case when n = 4k+4 and k ≥ 1. Let a1, . . . , a2k+1 be the finite
sequence formed by k terms equal to 2, followed by one 3, followed by k − 1
terms equal to 2, followed by one 3, and let Q ⊆ {0, 1, . . . , n − 1} be the set of
the partial sums of {ai} modulo n, i.e., Q = {b1, . . . , b2k+1} where bi is equal to
a1 + · · · + ai modulo n, for each i = 1, 2, . . . , 2k + 1 (in particular, b2k+1 = 0).
Then Q is a clique of Cn of period n. Let S = O(Q) and let Q be any complete
of K(Cn). If Q∩S = ∅ then the claim is trivially true. Without loss of generality
Q ∈ Q. By construction, Q ∩ (Q + 2k + 2) = ∅, thus Q + 2k + 2 /∈ Q. Since Q
does not contain both Q + j and Q + j + 1 for any j then Q contains at most
2k + 1 = |S|/2 − 1 elements of S, as claimed.

Finally, consider the case n = 4k + 6 for any k ≥ 1. Let a1, . . . , a2k+2 be
the finite sequence formed by k terms equal to 2, followed by one 3, followed by
k terms equal to 2, followed by one 3, let b1, . . . , b2k+2 be the sequence formed
by k terms equal to 2, followed by one 3, followed by k − 1 terms equal to 2,
followed by one 3, followed by one 2, and let Q1, Q2 ⊆ {0, 1, . . . , n − 1} be the
partial sums modulo n of {ai} and {bj}, respectively. Then Q1 and Q2 are
cliques of Cn, Q1 has period n/2 = 2k + 3 and Q2 has period n = 4k + 6. Let
S = O(Q1)∪O(Q2) and let Q be any complete of K(Cn). It is enough to prove
that |Q∩S| ≤ 3k+3. If Q∩O(Q2) = ∅ then the claim is trivially true. Without
loss of generality Q2 ∈ Q and then Q2 + 1, Q2 + 2k + 4 /∈ Q, which implies that
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|Q ∩O(Q2)| ≤ 2k + 2. Since necessarily |Q ∩O(Q1)| ≤ k + 1, we conclude that
|Q ∩ S| ≤ 3k + 3 and the claim is proved also in this case. ¤

We have the following inclusions:

coordinated ⊂ χ(K)-perfect ⊂ ({C2k+1 : k ≥ 2} ∪ {Cn : n ≥ 7})-free ⊂ perfect.

To see that the three inclusions are proper, notice that the 3-sun is χ(K)-
perfect (as it is hereditary K-perfect) but not coordinated since ∆c(3-sun) = 3
and γc(3-sun) = 4, and that S2 (cf. Figure 10, p. 28) has no odd holes and no
antiholes but K(S2) is not χ-good since ω(K(S2)) = 3 and χ(K(S2)) = 4, and
finally C8 proves that the rightmost inclusion is also proper.

As we did with the classes O1 and O2, we propose to classify the minimal
forbidden induced subgraphs for the class of coordinated graphs into two classes
of obstructions. The class O3 of those graphs G with ∆c(G) < ω(K(G)) and
the class O4 of those graphs G for which ω(K(G)) < χ(K(G)) holds. Again,
Theorem 19 tells us that hereditary clique-Helly obstructions satisfy ∆c(G) =
ω(K(G)), and necessarily belong to the class O4. The obstructions appearing
in the partial minimal forbidden induced subgraphs characterizations in the
literature belong all to the class O4 with the only exceptions of the 3-sun, 2P4

and R (cf. Theorem 34).
Finally, note that the α(K)-perfect and χ(K)-perfect graphs define classes

that are incomparable because C9 is α(K)-perfect but not χ(K)-perfect, and the
viking with 7 vertices (cf. Figure 10, p. 28) is χ(K)-perfect but not α(K)-perfect.
The graph of Figure 6 is α(K)-perfect and χ(K)-perfect but not K-perfect, and
proves the following proper inclusion:

hereditary K-perfect ⊂ α(K)-perfect ∩ χ(K)-perfect

5 Partial characterizations

In this section we review characterizations of clique-perfect and coordinated
graphs when restricted to different graph classes. We review the previous re-
sults, present some new contributions and formulate the main open problems.
Computational complexity issues are also discussed.

The class of clique-perfect graphs is hereditary and thus admits some forbid-
den induced subgraph characterization. Nevertheless, although some families of
forbidden induced subgraphs were identified and some partial characterizations
were formulated, a complete list of forbidden induced subgraphs for the class of
clique-perfect graphs is not known. Furthermore, the problem of determining
the complexity of the recognition of clique-perfect graphs is also open. These
two questions are regarded as the main open problems related to clique-perfect
graphs (see for instance [10]).

The coordinated graph recognition problem is NP-hard and it is NP-complete
even restricted to {gem,C4,odd hole}-free graphs with ∆ = 4, ω = 3 and
∆c = 3 [67]. The main open problem regarding coordinated graphs is to find the
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complete list of minimal forbidden induced subgraphs. This problem seems to
be difficult because in [69] several families of minimally non-coordinated graphs
were described whose cardinality grows exponentially on the number of vertices
and edges.

Although there are some partial results, the problem of given a characteriza-
tion by forbidden induced subgraphs of neighborhood-perfect graphs is also open
in general. Similarly, although some polynomial-time algorithms for recogniz-
ing neighborhood-perfectness when the input graph is known to belong to cer-
tain graph classes, the computational complexity of recognizing neighborhood-
perfect graphs in general is not known. These are the main open problems
regarding neighborhood-perfect graphs.

In this section we present the known partial results on clique-perfect, co-
ordinated graphs, and/or neighborhood-perfect graphs regarding the problems
of characterizing by minimal forbidden induced subgraphs and determining the
computational complexity of their recognition when restricted to different graph
classes. These graph classes are: chordal graphs, diamond-free graphs, P4-tidy
graphs, Helly circular-arc graphs, complements of forests, line graphs and com-
plements of line graphs, some other subclasses of claw-free graphs and two su-
perclasses of triangle-free graphs.

5.1 Chordal graphs

Lehel and Tuza [53] proved that in chordal graphs, balanced and neighborhood-
perfect graphs coincide and they are those graphs with no induced odd suns.
This, together with Theorem 17, implies the following result.

Theorem 23 ([53, 9]) Let G be a chordal graph. Then G is clique-perfect if
and only if G contains no induced odd sun, if and only if G is balanced, if and
only if G is neighborhood-perfect.

Notice that odd suns may properly contain odd suns as induced subgraphs,
thus unfortunately this characterization is not by minimal forbidden induced
subgraphs. Indeed, it is an open problem to determine the minimal odd suns
in the sense of induced subgraphs. As balanced graphs can be recognized in
polynomial time, the same algorithm solves, in polynomial time, the problem
of recognizing clique-perfect graphs (and thus neighborhood-perfect graphs) re-
stricted to chordal graphs.

Since clique-perfect chordal graphs coincide with balanced chordal graphs
then both are subclasses of coordinated chordal graphs. The inclusion is proper
since, for instance, the graph displayed in Figure 7 is an example of an odd sun
that is coordinated. The fact that clique-perfect chordal graphs are balanced
implies, by Theorem 14, that for clique-perfect chordal graphs both parameters
αc and τc (that coincide) can be computed in polynomial time.

Notice that also the 3-sun is chordal and hereditary K-perfect but not clique-
perfect, or coordinated. So hereditary K-perfection does not coincide with co-
ordination or clique-perfection or balancedness even when restricted to chordal
graphs.
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Figure 7: A chordal coordinated odd sun.

5.2 Diamond-free graphs

The characterization by forbidden induced subgraphs of those diamond-free
graphs that are clique-perfect is the following:

Theorem 24 ([11]) Let G be a diamond-free graph. Then G is clique-perfect
if and only if G contains no induced odd generalized sun.

In fact, the authors prove that diamond-free graphs with no odd generalized
suns are hereditary clique-Helly and hereditary K-perfect, and therefore clique-
perfect.

The problem of deciding whether there exists a polynomial-time algorithm
for the recognition of the clique-perfection of a diamond-free graph was left
open in [11]. This problem was solved in [15], where it was proved that such an
algorithm exists, based on the following result.

Theorem 25 ([15]) Let G be a diamond-free graph. Then G is clique-perfect
if and only if G is balanced.

Proof. Since balanced graphs are clique-perfect then we only need to prove
that diamond-free clique-perfect graphs are balanced, or equivalently, that a
diamond-free graph that is not balanced is not clique-perfect. Assume that G
is a diamond-free graph and that G is not balanced. By Theorem 6, G contains
an unbalanced cycle C, that is, an odd cycle C and for each edge e of C a
(possibly empty) complete We ⊆ NG(e) \ C such that NC(We) ∩ NC(e) = ∅.
We claim that C is proper. Suppose, for contradiction, that some edge e = xy
of C is improper, and let v in C such that {x, y, v} is a triangle of G. Since
NC(We) ∩ NC(e) = ∅, then there is a vertex w ∈ We such that v is not adja-
cent to w, and thus {v, w, x, y} induces a diamond in G, a contradiction. We
conclude that C is proper and thus V (C) induces an odd generalized sun. By
Theorem 17, G is clique-imperfect. ¤

Thus, the problems of recognizing balancedness and recognizing clique-per-
fection coincide when restricted to diamond-free graphs. Therefore the recogni-
tion of clique-perfection can also be solved in polynomial time for diamond-free
graphs. Moreover, by Theorems 14 and 25, αc (and therefore also τc) can be
computed in polynomial time for clique-perfect diamond-free graphs.
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Figure 8: A coordinated diamond-free odd generalized sun.

Notice that if G is a diamond-free graph, the problem of deciding whether
G is a minimal odd generalized sun can be solved in polynomial time (it suffices
to check that G is not clique-perfect but G − {v} is clique-perfect for every
vertex v of G). Surprisingly, the problem of deciding whether G is an odd
generalized sun (not necessarily minimal) is NP-complete even if G is a triangle-
free graph [50]. Notice that an odd cycle in a triangle-free graph cannot have
improper edges. Hence, if G is a triangle-free graph with an odd number of
vertices, then G is an odd generalized sun if and only if G has a Hamiltonian
cycle, and the Hamiltonian cycle problem on triangle-free graphs with an odd
number of vertices is NP-complete [43, pp. 56–60].

Since

balanced graphs ⊂ hereditary clique-Helly∩hereditary K-perfect ⊂ clique-perfect

holds and diamond-free graphs are hereditary clique-Helly we conclude, as a
corollary of Theorem 25 and its proof, the following.

Corollary 26 Let G be a diamond-free graph. Then the following conditions
are equivalent (and can be decided in polynomial time):

1. G is balanced.

2. G is hereditary K-perfect.

3. G is clique-perfect.

4. G contains no induced proper odd cycle.

Since diamond-free clique-perfect graphs are balanced then they are also
coordinated. Therefore the class of clique-perfect diamond-free graphs is a sub-
class of the class of coordinated diamond-free graphs. The inclusion is proper
since the graph of Figure 8 is coordinated but not clique-perfect.

Odd holes and complete odd suns are minimally clique-imperfect. However,
there are other odd generalized suns that contain proper induced odd generalized
suns and consequently are not minimally clique-imperfect. The same is true
even for proper odd cycles. Thus, the characterizations of Theorem 25 and
Corollary 26 are not by minimal forbidden induced subgraphs. The minimal
forbidden induced subgraph characterization of clique-perfect (or equivalently
balanced) graphs restricted to diamond-free graphs was described in [1]. The
corresponding minimal forbidden diamond-free induced subgraphs are the odd
holes and the sunoids (which can be put in correspondence with Dyck-paths);
the reader is referred to [1] for the details.
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5.3 Superclasses of cographs

It is known that comparability graphs are clique-perfect [2]. Since cographs
are comparability graphs [42] then cographs are also clique-perfect. In [51] the
authors gave a simpler proof of the clique-perfection of cographs based on the
following result.

Theorem 27 ([51]) Let G be the join of the graphs G1 and G2. Then αc(G) =
min{αc(G1), αc(G2)} and τc(G) = min{τc(G1), τc(G2)}. In particular, G is
clique-perfect if and only if G1 and G2 are clique-perfect.

As a corollary it is possible to compute αc(G) and τc(G) of a given cograph G
in linear time by first computing its cotree [29].

Distance-hereditary graphs and P4-tidy graphs define two superclasses of
cographs not included in the class of comparability graphs. In [52], distance-
hereditary graphs were shown to be clique-perfect, relying on a decomposition
tree of distance-hereditary graphs introduced in [21]. In [52], linear-time al-
gorithms for computing αc(G) and τc(G) for any distance-hereditary graph are
also presented. In [15], those P4-tidy graphs that are clique-perfect were charac-
terized by minimal forbidden induced subgraphs. Moreover, it was shown that
the problems of recognizing clique-perfect graphs can be solved in linear time
for P4-tidy graphs.

Theorem 28 ([15]) Let G be a P4-tidy graph. Then G is clique-perfect if and
only if G contains neither C5 nor 3-sun as an induced subgraph. Moreover,
clique-perfectness of P4-tidy graphs can be decided in linear time.

Furthermore, it was shown that both parameters that define clique-perfect-
ness can be computed in linear time for P4-tidy graphs.

Theorem 29 ([15]) There are linear-time algorithms that compute αc(G) and
τc(G) for any given P4-tidy graph G.

The proof of the above theorems relies on the structural characterization of
P4-tidy graphs given in Theorem 5. Analogous results to the above theorems
for neighborhood-perfectness of P4-tidy graphs were obtained in [37].

Theorem 30 ([37]) A P4-tidy graph G is neighborhood-perfect if and only if
G has no induced 3K2, 3-sun, or C5. Moreover, neighborhood-perfectness of
P4-tidy graphs can be decided in linear time.

Theorem 31 ([37]) There are linear-time algorithms that compute αn(G) and
ρn(G) for any given P4-tidy graph G.

Since the 3-sun and C5 are not coordinated, the class of coordinated P4-
tidy graphs is included in the class of clique-perfect P4-tidy graphs. Moreover,
the inclusion is proper since the graph tent ∪ K2 is P4-tidy and clique-perfect
(having αc = τc = 2) but not coordinated (since ∆c = 3 and γc = 4). The graph

24



Figure 9: The graph R

3K2 is an example of a coordinated P4-tidy graph that is not neighborhood-
perfect; thus, coordinated P4-tidy graphs are not contained in neighborhood-
perfect P4-tidy graphs.

It was proved in [9] that if F is a forest then F is clique-perfect. As the class
of complements of forests is closed under taking induced subgraphs, it suffices
to prove that αc(F ) = τc(F ). We may assume that F has no isolated vertex,
because if u were an isolated vertex of F then every clique of F would contain
u implying αc(F ) = τc(F ) = 1. Thus F has no universal vertex, which means
that τc(F ) > 1. Moreover F has some leaf u and let v be the only neighbor of
u in F . Then {u,w} is a clique-transversal of F , which shows that τc(F ) = 2.
Furthermore, since every connected component of F is a tree with at least two
vertices, αc(F ) = τc(F ) = 2. This, together with Theorem 27 immediately
implies the following.

Theorem 32 ([9, 51]) Every tree-cograph is clique-perfect.

In [37], the following characterization of neighborhood-perfect graphs by
forbidden induced subgraphs was proved.

Theorem 33 ([37]) If G is a tree-cograph, then G is neighborhood-perfect if
and only if G contains no induced 3K2 or P6 + 3K1.

Moreover, from this a linear-time recognition algorithm for neighborhood-
perfectness of tree-cographs was also found in [37]. Furthermore, in the same
work, linear-time algorithms for computing αn(G) and ρn(G) for any tree-
cograph G were devised. In the following subsection, we will present the char-
acterization of coordinated graphs for complements of forests, a subclass of
tree-cographs.

5.4 Complements of forests

Recall from the previous subsection that all complements of forests are clique-
perfect. Moreover, it follows from Theorem 33 that those complements of
forests that are neighborhood-perfect are those that are 3-pyramid-free. In [18]
a characterization by minimal forbidden induced subgraphs of those coordi-
nated graphs within the class of complements of forests was found. Recall that
2P4 is the disjoint union of two P4’s and let R be the graph depicted in Fig-
ure 9. Both 2P4 and R are not coordinated, since ∆c(2P4) = ∆c(R) = 6 and
γc(2P4) = γc(R) = 7. The characterization is as follows.

Theorem 34 ([18]) Let G be the complement of a forest. Then G is coordi-
nated if and only if G contains no induced 2P4 and no induced R.
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A characterization of those forests obtained by identifying the false twins
of G when G is coordinated, called c-forest, leads to a linear time recognition
algorithm for coordinated graphs within the class of complements of forests [18].

5.5 Line graphs and complements of line graphs

The characterization by forbidden induced subgraphs of those line graphs that
are clique-perfect is as follows.

Theorem 35 ([10]) Let G be a line graph. Then G is clique-perfect if and only
if G has no odd holes and contains no induced 3-sun.

The first part of the proof consists of proving that perfect line graphs are
K-perfect, and relies on the characterization of perfect line graphs in [58] and on
a property of clique-cutsets in perfect graphs [5]. Therefore, those perfect line
graphs that are in addition hereditary clique-Helly are also clique-perfect. In the
second part of the proof those line graphs that are not hereditary clique-Helly
are treated separately. In fact, hereditary K-perfection and clique-perfection do
not coincide for line graphs as one realizes by considering the 3-sun.

Those line graphs that are coordinated were characterized by forbidden in-
duced subgraphs in [18].

Theorem 36 ([18]) Let G be a line graph. Then G is coordinated if and only
if G has no odd hole and contains no induced 3-sun.

Reasoning as in the first part of the proof of Theorem 35, line graphs without
odd holes are K-perfect, and then those that in addition are hereditary clique-
Helly, are coordinated. Therefore the proof consists of studying those line graphs
that have no odd holes but have some family of cliques that does not satisfy the
Helly property.

Notice that by Theorems 35 and 36, coordinated and clique-perfect graphs
coincide when restricted to line graphs.

In [18] also a characterization of coordinated line graphs in terms of its root
graph is given. To formulate it, the authors introduce the following definitions.
Given a graph H and a set S ⊆ V (H), denote by EH(S) the set of edges of H
that have both endpoints in S. The set S ⊆ V (H) is an edge separator of H
if every vertex of S belongs to a different connected component of G \ EH(S).
Let t = {v1, v2, v3} be a triangle of a graph H. The triple (v1, v2, v3) is a well
ordering of t if dH(v1) ≤ dH(v2) ≤ dH(v3) and at least one of the following
conditions holds: (i) dH(v1) < dH(v2), or (ii) NH [v3] is equal to both NH [v1]
and NH [v2], or (iii) NH [v3] is equal to none of NH [v1] and NH [v2]. Every
triangle admits some well ordering permutation [18]. Let Et be the set of edges
{v1v2, v2v3, v3v1}, and if T is a family of triangles, let ET =

⋃
t∈T Et. With

this terminology, the characterization can now be formulated as follows:

Theorem 37 ([18]) Let H be a graph and T be the set of triangles of H. Then
the following statements are equivalent:

26



1. L(H) is coordinated.

2. H\ET is bipartite and every well ordered triangle (v1, v2, v3) of H satisfies
one of the following statements:

(a) dH(v1) = 2 and NH [v2] ∩ NH [v3] is an edge separator of H.
(b) dH(v1) = 3, v1 and v2 are true twins and NH [v1] is an edge separator

of G.

This characterization leads to a linear-time recognition algorithm for coor-
dinated graphs within the class of line graphs. As a corollary, a linear-time
recognition algorithm for clique-perfect graphs within this class follows. In [18],
a linear-time algorithm for determining ∆c(G) and γc(G) for any coordinated
line graph G = L(H) is also presented.

We would like to remark that the first part of the proof of Theorem 36
implies the following: a line graph is hereditary K-perfect if and only if it has
no odd holes, if and only if it is perfect.

In [16], clique-perfectness of complements of line graphs was characterized
by minimal forbidden induced subgraphs.

Theorem 38 ([16]) If G is the complement of a line graph, then G is clique-
perfect if and only if G contains no induced 3-sun and has no antihole Ck for
any k ≥ 5 such that k is not a multiple of 3.

Let G be the complement of the line graph of a graph H. In order to prove
the above theorem, the parameters αc(G) and τc(G) are expressed in terms of
the graph H. Clearly, the cliques of G are precisely the maximal matchings of
H. The matching-transversal number of H, denoted by τm(H), is defined as
the minimum size of a set of edges of H that meets every maximal matching
of H. Similarly, the matching-independence number of H, denoted by αm(H),
is defined as the maximum size of a set of pairwise-disjoint maximal matchings
of H. A graph is called matching-perfect [16] if τm(H) = αm(H) for every
subgraph (induced or not) of H. It is not hard to see that G is clique-perfect if
and only if H is matching-perfect. In fact, the proof of Theorem 38 follows as
a corollary of the following characterization of matching-perfect graphs.

Theorem 39 ([16]) A graph H is matching-perfect if and only if H contains
no bipartite claw and the length of each cycle of H is at most 4 or a multiple of
3.

In its turn, Theorem 39 is proved by means of a decomposition theorem
describing in detail the linear and circular structure of graphs containing no
bipartite claw proved in [16].

Notice that since the 3-sun and antiholes different from C6 are neither co-
ordinated nor neighborhood-perfect, coordinated (resp. neighborhood-perfect)
complements of line graphs are clique-perfect. Moreover, these inclusion are
proper and coordination and neighborhood-perfectness differ for complements
of line graphs. In fact, the 3-pyramid = L(K4) is clique-perfect and coordi-
nated but not neighborhood-perfect, whereas 2P4 = L(2P5) is clique-perfect
and neighborhood-perfect but not coordinated.
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Figure 10: Minimal forbidden induced subgraphs for clique-perfect graphs inside
the class of Helly circular-arc graphs. Dashed lines represent induced paths of
length 2k − 3 for each k ≥ 2.

5.6 Helly circular-arc graphs

In [11] a characterization of those Helly circular-arc graphs that are clique-
perfect was formulated in terms of forbidden induced subgraphs. The forbidden
induced subgraphs are displayed in Figure 10. The 3-sun, odd holes, vikings
and 2-vikings are all odd generalized suns. The authors show that, within Helly
circular-arc graphs, there are only two families of minimally clique-imperfect
graphs which are not odd generalized suns or antiholes, namely, Sk and Tk for
each k ≥ 2. Since the graphs of Figure 10 do not contain properly each other as
induced subgraphs then the following is a characterization by minimal forbidden
induced subgraphs:

Theorem 40 ([11]) Let G be a Helly circular-arc graph. Then G is clique-
perfect if and only if it does not contain a 3-sun, an antihole of length 7, an odd
hole, a viking, a 2-viking or one of the graphs Sk or Tk for each k ≥ 2.

Whether a graph is a Helly circular-arc graph can be decided in linear time
and, if affirmative, both parameters αc(G) and τc(G) can also be computed in
linear time [34, 35, 55]. However, these facts do not immediately imply the
existence of a polynomial-time recognition algorithm for clique-perfect Helly
circular-arc graphs (because we need to verify the equality for every induced
subgraph). The characterization given in [11] leads to such an algorithm, which
is strongly based on the recognition of perfect graphs [23]. The idea of the
algorithm is similar to the one used in [28] for recognizing balanceable matri-
ces. It was proved in [75] that clique-perfectness coincides with neighborhood-
perfectness for Helly circular-arc graphs. As in [11], the proof strategy consists
in studying separately those Helly circular-arc graphs that are hereditary clique-
Helly from those that are not so.

Theorem 41 ([75]) If G is a Helly circular-arc graph, then G is clique-perfect
if and only if G is neighborhood-perfect.
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Coordinated Helly circular-arc graphs and clique-perfect Helly circular-arc
graphs are not comparable. In fact, on the one hand, for each k ≥ 2, the viking
with 2k + 3 vertices is coordinated but not clique-perfect (since αc = k and
τc = k + 1), and on the other hand, the graph R (cf. Figure 9) is an example
of a Helly circular-arc graph which is clique-perfect but not coordinated (since
∆c = 6 and γc = 7).

5.7 Some subclasses of claw-free graphs

Another class where clique-perfectness, coordination and neighborhood-perfectness
coincide is the class of hereditary clique-Helly claw-free graphs.

Theorem 42 ([10]) Let G be a hereditary clique-Helly claw-free graph. Then
G is clique-perfect if and only if no induced subgraph of G is an odd hole or an
antihole of length 7.

It is well-known that for hereditary clique-Helly graphs, each clique has
some proper edge; i.e., an edge that belongs to that clique only. Moreover, it
was proved in [53] that every graph G for which each clique has a proper edge
satisfies αc(G) = αn(G) and τc(G) = ρn(G). Thus, the following holds.

Theorem 43 ([53]) A hereditary clique-Helly graph G is clique-perfect if and
only if G is neighborhood-perfect.

The proof of Theorem 42 relies on the decomposition theorem for claw-free
graphs that appears in [25]. Indeed, in [10] it is proved more, that hereditary
clique-Helly claw-free graphs with no odd holes and no induced C7 are K-perfect.
Since, conversely, odd holes and C7 are not K-perfect, then, by Theorem 42,
Corollary 9, Theorem 21 and Theorem 43, the following set of equivalencies
follow.

Corollary 44 ([10]) Let G be a hereditary clique-Helly claw-free graph. Then
the following assertions are equivalent:

1. G is clique-perfect.

2. G is hereditary K-perfect.

3. G is coordinated.

4. G is neighborhood-perfect.

5. G is perfect.

6. G has no odd holes and contains no induced C7.

Recall that deciding whether a graph is perfect is solvable in polynomial
time [23].

Relying on Theorem 42, the following characterization of those claw-free
planar graph that are clique-perfect was found in [54].

Theorem 45 ([54]) Let G be a claw-free graph such that G is planar or ∆(G) ≤
4. Then, G is clique-perfect if and only if G contains no odd hole and neither a
3-sun nor the graph of Figure 11 as an induced subgraph.
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Figure 11: A minimal forbidden induced subgraph for the class of clique-perfect
graphs

As an immediate consequence, they observe that every cubic claw-free graph
is clique-perfect.

5.8 Superclasses of triangle-free graphs

Triangle-free graphs were extensively studied in the literature, usually in the
context of graph coloring problems (see for instance [48, 59, 62]). It is easy to
see that if a graph G is triangle-free, then G is perfect if and only if G is clique-
perfect, if and only if G is coordinated, because bipartite graphs are perfect,
clique-perfect, and coordinated.

In [17], these equivalencies were extended to two superclasses of triangle-free
graphs: paw-free and {gem,W4,bull}-free graphs.

Theorem 46 ([17]) Let G be a paw-free graph. The following statements are
equivalent:

1. G is perfect.

2. G is clique-perfect.

3. G is coordinated.

4. G does not contain odd holes.

For paw-free graphs, not every perfect graph is hereditary K-perfect. In [68],
it is proved that if G is a paw-free graph having at least three anticomponents
and each anticomponent of G has at least 3 vertices, then K(G) contains an
induced C5. In particular, K(3K3) contains an induced C5, so it is not perfect.
Moreover, the following theorem is proved.

Theorem 47 [68] Let G be a perfect connected paw-free graph. Then the fol-
lowing statements are equivalent:

1. G is K-perfect.

2. K(G) does not contain an induced C5.

3. Either G is bipartite or at least one anticomponent of G has at most two
vertices.

As a corollary of Theorem 47 (and reasoning as in the proof of Theorem 46)
the following characterizations of hereditary K-perfect paw-free graphs can be
obtained:

Corollary 48 Let G be a paw-free graph. Then the following conditions are
equivalent:
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1. G is hereditary K-perfect.

2. G has no odd holes and contains no induced 3K3.

3. Each connected component of G is either bipartite or not anticonnected
and, in the latter case, at most two of its anticomponents have more than
two vertices.

For {gem,W4,bull}-free graphs instead, all the discussed main notions co-
incide. Notice that {gem,W4,bull}-free graphs are hereditary clique-Helly by
Theorem 4 and recall Theorem 43.

Theorem 49 ([17]) Let G be a {gem,W4,bull}-free graph. Then the following
statements are equivalent:

1. G is perfect.

2. G is clique-perfect.

3. G is coordinated.

4. G is neighborhood-perfect.

5. G is hereditary K-perfect.

6. G does not contain odd holes.

Using this characterization and the fact that perfect graphs can be recognized
in polynomial time, the clique-perfect recognition problem restricted to the class
of {gem,W4,bull}-free graphs can be solved in polynomial time.

The major step to verify Theorem 49 is to prove that {gem,W4,bull}-free
graphs without odd holes are K-perfect. Since the class of {gem,W4,bull,odd
hole}-free graphs is hereditary then it follows that they are hereditary K-perfect.
Since {gem,W4,bull}-free graphs are hereditary clique-Helly then the remaining
implications follow by Corollary 9.

In [17] it is mentioned as an interesting open problem to determine the
‘biggest’ superclass of triangle-free graphs where clique-perfect and coordinated
graphs are equivalent.

6 Final remarks

We would like to put forward some possibilities to study these classes further.
Take for instance the case of clique-perfect graphs. We feel that there may
be still many opportunities for finding more obstructions to clique-perfection.
Indeed, the larger family of obstructions for clique-perfection that are clearly
identified in the literature are those that correspond to odd generalized suns,
and Table 1 suggests that they represent only a restricted portion of the total
set of obstructions.

In most of the cases the approach taken to obtain the partial characterization
of clique-perfection (and coordination) reviewed in Sec. 5 depend heavily on the
equality between clique-perfection and hereditary K-perfection (at least when
the graphs are further restricted to be hereditary clique-Helly). So one of the
main parts of these characterizations consists on studying how the imperfection
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Figure 12: A viking as a partial subgraph of Sk.

of K(G) translates into a forbidden structure on G. This part of the proof differs
radically when restricting to different graph classes. So it would represent a
progress to find a way to handle this situation more generally. Notice that by the
SPGT, if K(G) is imperfect then K(G) or K(G) contains an odd hole. Consider
the case when K(G) contains a hole Q1, . . . , Qn of cliques of G. By taking a
vertex in each consecutive pair of cliques a cycle C arises in G. It happens, as
one may suspect, that many possibilities emerge by combining presence of some
adjacencies and absence of others. At this point we could think about grouping
the arising possibilities together by similarity and a tool that can help to achieve
this is the concept of trigraph [22]. A trigraph is a generalization of a graph
were some adjacencies are set to be present, some adjacencies are set to be not
present, but the remaining adjacencies can be freely set to be present or not.
That is, a trigraph represent the whole family of graphs resulting from deciding
the presence or not of each of the undecided edges. This could help to reduce
the number of forbidden structures into consideration, which Table 1 suggests
grows fast. Notice that there are still minimally clique-imperfect graphs that
are hereditary K-perfect so that their clique graphs do not have odd holes or
odd antiholes, this indicates that to describe the full set of obstructions we may
need to study also some cycles in the clique graph that do not correspond to
odd holes or antiholes.

Further possibilities of attack may arise by classifying the obstructions ac-
cording to the underlying structure of the odd holes of K(G). This structure
may resemble the structure of hypomatchable graphs, which can be constructed
from odd holes by attaching paths each of which creates a new hole (see [57] for
details). A similitude is observed when we look at the clique graph as extension
of the line graph, since for a hypomatchable graph, the graphs obtained by the
removal of any vertex admit a perfect matching, that is exactly a stable set in
the line graph that, in addition, is a vertex cover. Notice that in a minimally
clique-imperfect graph from the set of obstructions O1, the removal of a single
vertex produces a graph such that its clique graph admits a stable set and a
vertex cover of the same size.

In the same spirit, there is an interesting fact that shows up if we take a
closer look at the graphs of Figure 10. For instance, we could consider Sk as
a merging of two vikings. Figure 12 shows a partial subgraph of Sk that is a
viking, and other candidates can be found symmetrically. Contrary to what one
could expect the clique graph of Sk contains just one odd hole and not two odd
holes that share some edges. It would be interesting to generalize this or find

32



new merging procedure as they may allow us to classify certain obstructions as
nonbasic and concentrate on the more restricted basic ones that do not admit
such decompositions.

Furthermore, it is interesting to find more general characterizations of hered-
itary K-perfect graphs, as well as characterizing α(K)-perfect and χ(K)-perfect
graphs.
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[19] A. Brandstädt, V. D. Chepoi, F. F. Dragan, Clique r-domination and clique
r-packing problems on dually chordal graphs, SIAM J. Discrete Math.
10 (1) (1997) 109–127.

[20] M. Chang, M. Farber, Z. Tuza, Algorithmic aspects of neighbourhood num-
bers, SIAM J. Discrete Math. 6 (1) (1993) 24–29.

[21] M.-S. Chang, S.-Y. Hsieh, G.-H. Chen, Dynamic programming on distance-
hereditary graphs, Lect. Notes Comput. Sci. 1350 (1997) 344–353.

[22] M. Chudnovsky, Berge trigraphs, J. Graph Theory 53 (1) (2006) 1–55.
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