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Abstract

We study minor related row family inequalities for the set covering
polyhedron of circular matrices. We address the issue of generating these
inequalities via the Chvátal-Gomory procedure and establish a general
upper bound for their Chvátal-rank. Moreover, we provide a construction
to obtain facets with arbitrarily large coefficients and examples of facets
having Chvátal-rank strictly larger than one.

1 Introduction

Given a (m × n)-matrix A with (0, 1)-entries and a cost vector c ∈ Zn, the set
packing problem (SPP) and the set covering problem (SCP) can be stated as

(SPP) max{cTx : Ax ≤ 1, x ∈ Zn+},
(SCP) min{cTx : Ax ≥ 1, x ∈ Zn+}.

Both are classic problems in combinatorial optimization with important practi-
cal applications, and are known to be hard to solve in general. One established
approach to tackle such problems is to study the polyhedral properties of their
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sets of feasible solutions. The set packing polytope P ∗(A) and the set covering
polyhedron Q∗(A) are the sets defined by the convex hull of all feasible solutions
of SPP and SCP, respectively. Their fractional relaxations P (A) and Q(A) are
given by

P (A) := {x ∈ Rn+ : Ax ≤ 1} and Q(A) := {x ∈ Rn+ : Ax ≥ 1}.

In general, we have P (A) 6= P ∗(A) and Q(A) 6= Q∗(A), even when A belongs
to the particular class of circular matrices, on which we focus throughout this
paper. For n ∈ N, let [n] denote the additive group defined on the set {1, . . . , n},
with integer addition modulo n. We consider the columns (resp. rows) of A to
be indexed by [n] (resp. by [m]). A is said to be circular if its rows are the
incidence vectors of a set I of cyclic intervals on [n], with the property that
no interval contains another one, i.e., A has no dominating rows. A square
circular matrix is called a circulant. In this case, all intervals in I have the same
number of elements k, and I contains all n possible intervals of this size. Thus,
a circulant is completely defined by the two parameters n and k, and we shall
denote it by Ckn.

The set packing polytope related to circular matrices A has been studied
through the equivalent stable set polytope of circular interval graphs G in e.g. [7,
10, 12]. In [7] a complete linear description of P ∗(A) is obtained in terms of three
families of inequalities: (i) nonnegativity constraints, (ii) clique inequalities, and
(iii) the class of clique family inequalities introduced in [9]. All relevant clique
family inequalities can be associated with certain induced circulant subgraphs
of G [12].

We are interested in studying these aspects for Q∗(A). Valid and facet-
defining inequalities for Q∗(A) have been studied for a long time. The boolean
facets include the inequalities x ≥ 0 and Ax ≥ 1 defining Q(A) which can be
considered as the inequalities corresponding to (i) and (ii) for the set covering
polyhedron. More recently, the class of row family inequalities was proposed
in [3] as a counterpart of clique family inequalities in the set covering case. In
fact, the same ideas used for P ∗(A) can be extended to show that Q∗(A) is
completely described by boolean facets and a particular subclass of row family
inequalities associated with certain minors [5].

Given N ⊂ [n], the minor of A obtained by contraction of N , denoted by
A/N , is the submatrix of A that results after removing all columns with indices
in N and all dominating rows (whose support contains the support of one of
the remaining rows). A minor of a circular matrix A is called a circulant minor
if it is equal to a circulant matrix Ck

′

n′ , up to permutation of rows and columns.

We shall denote this by A/N ≈ Ck′n′ .
Conditions for the existence of circulant minors of a circulant matrix have

been studied in [1, 6]. Let Gkn be a directed graph having [n] as the set of nodes
and all arcs of the form (j, j+ k), (j, j+ k+ 1), for 1 ≤ j ≤ n. Circulant minors
can be characterized in terms of directed circuits in Gkn.

Theorem 1 ([1]) Assume 2 ≤ k ≤ n − 1, 2 ≤ n′ < n, 0 < k − k′ <
min {k, n− n′}. Ckn/N ≈ Ck

′

n′ if and only if there exist d = gcd(n − n′, k − k′)
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disjoint simple directed circuits in Gkn, D1, . . . , Dd, each having length n−n′

d ,such
that N = ∪dt=1V (Dt).

Circulant minors of Ckn are known to induce valid (and in some cases facet-
defining) inequalities for Q∗(Ckn). The class of minor inequalities was introduced
in [2] and was further studied and generalized in [4, 13]. In [5] it was observed
that a circulant minor Ckn/N ≈ Ck

′

n′ also induces a row family inequality that
either is equivalent to or enhances the corresponding minor inequality. This
minor related row family inequality (minor rfi) has the form

r
∑
j 6∈W

xj + (r + 1)
∑
j∈W

xj ≥ r
⌈
n′

k′

⌉
, (1)

where r = n′ mod k′, and W ⊂ N is the set of nodes in the circuits Dt that
are heads of arcs of the form (j, j + k + 1).

In [4] it was conjectured that (0, 1)- and (1, 2)-valued minor inequalities
suffice to describe Q∗(Ckn). This was disproved in [13], where a first example
of a facet-defining (2, 3)-valued minor inequality is presented. Using similar
ideas as for the case of P ∗(Ckn) in [8], in this paper we show that there are
circulant matrices such that Q∗(Ckn) has facet-defining minor related row family
inequalities with two consecutive arbitrarily large coefficients.

Moreover, we are interested in studying the difference between Q(A) and
Q∗(A) in terms of the Chvátal-Gomory procedure. For given a ∈ Zn and b 6∈ Z,
assume aTx ≥ b is valid for Q(A) and tight for some x∗ ∈ Q(A). Then the
inequality aTx ≥ dbe is valid for Q∗(A), but violated by x∗. Such an inequality
is called a Chvátal-Gomory cut for Q(A) and the procedure for obtaining it
is the Chvátal-Gomory procedure. The first Chvátal closure Q′(A) is the set
of points of Q(A) satisfying all Chvátal-Gomory cuts. Let Q0 := Q(A) and
Qt := (Qt−1)′ for all t ∈ N. Evidently, Q∗(A) ⊆ Qt ⊆ Qt−1 holds for every

t ∈ N. Moreover, it is known that there exists a finite t̂ ∈ N with Qt̂ = Q∗(A);
the smallest such t̂ is the Chvátal-rank of Q(A). An inequality is said to have
Chvátal-depth equal to t if it is valid for Qt, but not valid for Qt−1.

The Chvátal-rank of Q(A) has been addressed in several previous works.
Any minor inequality has Chvátal-depth at most one, but it has been observed
in [3] that this might not be the case for row family inequalities.

In the context of set packing, a general upper bound has been presented in
[11] for the Chvátal-depth of clique family inequalities. In this paper, we follow
a similar approach to establish a general upper bound for the Chvátal-depth
of minor rfi’s, and provide examples of minor rfi’s with Chvátal-depth strictly
larger than one.

2 Facets with arbitrarily large coefficients

In the following we provide a construction to show that minor related row family
inequalities with arbitrarily large coefficients can occur as facets of Q∗(A), even
in the particular case when A is a circulant matrix Ckn.
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Let α ∈ N with α ≥ 6 and define n := (α − 1)(α + 1), k := α. Moreover,
consider the finite sequences of natural numbers given by

nr := (α− 1)(α− r) kr := α− r − 1,

where r takes values from the set S :=
{

1, . . . ,
⌊
α
2

⌋
− 1
}

. It is straightforward to
verify that Ckrnr

is a circulant minor of Ckn, for all r ∈ S. Indeed, the conditions
of Theorem 1 are satisfied as Gkn contains d = r + 1 disjoint simple directed
circuits, each one consisting of α−1 arcs of length k+1 and no arcs of length k.
Let Wr denote the union of the sets of nodes of these circuits. Moreover, since
2r + 1 < α, it follows that r < α− r − 1 and

nr
kr

=
(α− 1)(α− r)
α− r − 1

= α+
r

α− r − 1
< α+ 1.

Hence,
⌈
nr

kr

⌉
= α+1 and nr = r mod kr,∀r ∈ S. The minor related row family

inequality of Q∗(Ckn) induced by Ckrnr
is

r
∑
j 6∈Wr

xj + (r + 1)
∑
j∈Wr

xj ≥ r(α+ 1). (2)

Theorem 2 Inequality (2) defines a facet of Q∗(Ckn) if gcd(r, α− 1) = 1.

In particular, if α− 1 is a prime number then Q∗(Cαα2−1) has facets steming

from minor rfi’s with all possible coefficients r, r + 1, for 1 ≤ r ≤
⌊
α
2

⌋
− 1.

Example 3 Choosing α = 8, we obtain that C8
63 contains all circulant minors

of the form C7−r
7(8−r) with r ∈ {1, 2, 3}. As α − 1 is prime, these minors C6

49,

C5
42, C4

35 induce (r, r + 1)-valued facets of Q∗(C8
63).

Moreover, with the help of Theorem 2, we can construct sequences of circu-
lants and (sub)circulant minors such that the associated minor rfi’s have arbi-
trarily high coefficients:

Example 4 For each r ≥ 2 and α = 2(r + 1), the row family inequality asso-
ciated with the minor Cr+1

(2r+1)(r+2) of C2r+2
(2r+1)(2r+3) induces an (r, r + 1)-valued

facet of Q∗(C2r+2
(2r+1)(2r+3)), since gcd(r, α− 1) = gcd(r, 2r + 1) = 1.

Example 5 For each r ≥ 2 and α = 3r+2, the row family inequality associated
with the minor C2r+1

(3r+1)(2r+2) of C3r+2
(3r+1)(3r+3) induces an (r, r + 1)-valued facet

of Q∗(C3r+2
(3r+1)(3r+3)), since gcd(r, α− 1) = gcd(r, 3r + 1) = 1.

Corollary 6 There exist infinite families of circulants Ckn for which Q∗(Ckn)
has facets with two arbitrarily large consecutive coefficients.
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3 On the Chvátal-depth of minor rfi’s

Here, we study the Chvátal-depth of the above defined minor rfi’s and address
bounds for their Chvátal-depth.

Upper bounds. In a similar spirit as upper bounds for the Chvátal-depth of
clique family inequalities where obtained in [11], we establish here one general
upper bound for the Chvátal-depth of any minor rfi

r
∑
j 6∈W

xj + (r + 1)
∑
j∈W

xj ≥ r
⌈
n′

k′

⌉

with r = n′ mod k′ induced by a circulant minor Ck
′

n′ of some circulant matrix
Ckn. Consider the inequality obtained by adding all rows corresponding to the
circulant minor, together with (possibly) some non-negativity constraints. This
inequality is valid for Q(A) and has the form

k′
∑
j 6∈W

xj + (k′ + 1)
∑
j∈W

xj ≥ n′ = k′
⌈
n′

k′

⌉
− k′ + r. (3)

Furthermore, for i = 0, . . . , r , let h(i) be the inequality

h(i) : i
∑
j 6∈W

xj + (i+ 1)
∑
j∈W

xj ≥ i
⌈
n′

k′

⌉
.

Observe that h(0) is valid for Q(A), as it is a combination of non-negativity
constraints, while h(r) is precisely the minor rfi (1). We can prove:

Lemma 7 For i ∈ {1, . . . , r}, inequality h(i) can be obtained from (3) and
h(i− 1) with a single application of the Chvátal-Gomory procedure.

Moreover, for k′ − r ≤ r, denote by g(i) the following inequality

g(i) : (k′ − i)
∑
j 6∈W

xj + (k′ − i+ 1)
∑
j∈W

xj ≥ (k′ − i)
⌈
n′

k′

⌉
− k′ + r + i.

Observe that g(0) coincides with inequality (3) and is therefore valid for Q(A),
while g(k′ − r) is precisely the minor rfi (1). We can prove the following:

Lemma 8 For i ∈ {1, . . . , k′− r}, inequality g(i) can be obtained from h(i− 1)
and g(i− 1) with a single application of the Chvátal-Gomory procedure.

As a consequence from Lemma 7 and Lemma 8, we obtain the following.

Theorem 9 The Chvátal-depth of the minor rfi (1) induced by a circulant mi-
nor Ck

′

n′ of some circulant matrix Ckn is bounded from above by min{r, k′ − r}
where r = n′ mod k′.
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This shows, for instance, that the minor rfi’s with arbitrarily high coeffi-
cients r, r + 1 for any r ≥ 2 from Example 4 have only Chvátal-depth 1 by
min{r, k′ − r} = min{r, (r + 1)− r} = 1, whereas the minor rfi’s from Example
5 have Chvátal-depth at most r by min{r, k′ − r} = min{r, (2r + 1) − r} = r
(and, thus may have arbitrarily high Chvátal-depth).

Lower bounds. It is open to establish lower bounds on the Chvátal-depth
of minor rfi’s for general circular matrices A. The following lemma provides a
condition for a minor rfi to have Chvátal-depth strictly larger than one when A
is a circulant.

Lemma 10 If r2 < (α − r − 1)(r − 1) then the inequality (2) induced by Ckrnr

cannot be obtained from the inequalities in the system defining Q(Ckn) by a single
application of the Chvátal-Gomory procedure.

The last result does not necessarily imply that the inequality induced by
the minor Ckrnr

has Chvátal-depth larger than one, as it can still be obtained
as a nonnegative combination of other inequalities with Chvátal-depth equal to
one. However, this cannot be the case if the studied inequality defines a facet
of Q∗(Ckn). Together with Theorem 2, this implies:

Theorem 11 If (α−r−1)(r−1) > r2 and gcd(r, α−1) = 1 then the inequality
(2) induced by Ckrnr

has Chvátal-depth strictly larger than one.

In particular, choosing r = 2 it follows that Q(Cαα2−1) has Chvátal-rank
strictly larger than one for all even α ≥ 8. The smallest such example with
r = 2 and α = 8 is Q(C8

63), as Q∗(C8
63) has a facet with Chvátal-depth larger

than one induced by the minor C5
42.

This lower bound also applies to the (r, r+1)-valued minor rfi’s from Example
5, since r2 < kr(r−1) = (2r+ 1)(r−1) = 2r2− r−1 holds by r+ 1 < r2 ∀r ≥ 2
and shows that these minor rfi’s have Chvátal-depth strictly larger than one
(and are potential examples of minor rfi’s with arbitrarily high Chvátal-depth
in view of the upper bound of r).

4 Concluding remarks

In this paper, we studied the family of minor related row family inequalities for
the set covering polyhedron related to circular matrices. We addressed the issue
of generating these inequalities via the Chvátal-Gomory procedure and estab-
lished a general upper bound for their Chvátal-depth. Moreover, we provided
a construction for facets of Q∗(Ckn) with arbitrarily large coefficients, belonging
to the class of minor rfi’s. We presented examples of (r, r + 1)-valued facets of
this type with Chvátal-depth bounded from above by 1 and r, where the latter
have Chvátal-depth strictly larger than one. This shows that, in this respect,
minor rfi’s differ from other previously described minor induced inequalities for
Q∗(Ckn), which are known to have Chvátal-depth at most one. As future work,
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we intend to investigate whether larger lower bounds on the Chvátal-depth can
be proven for inequalities with large coefficients.

Acknowledgement. Silvia Bianchi from Universidad Nacional de Rosario has
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bitrarily large coefficients. We thank her for many fruitful discussions.
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