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Abstract

The routing and spectrum assignment problem is an NP-hard problem

that receives increasing attention during the last years. Existing integer

linear programming models for the problem are either very complex and

su�er from tractability issues or are simpli�ed and incomplete so that

they can optimize only some objective functions. The majority of mod-

els uses edge-path formulations where variables are associated with all

possible routing paths so that the number of variables grows exponen-

tially with the size of the instance. An alternative is to use edge-node

formulations that allow to devise compact models where the number of

variables grows only polynomially with the size of the instance. However,

all known edge-node formulations are incomplete as their feasible region

is a superset of all feasible solutions of the problem and can, thus, handle

only some objective functions. Our contribution is to provide the �rst

complete edge-node formulation for the routing and spectrum assignment

problem which leads to a tractable integer linear programming model. In-

deed, computational results show that our complete model is competitive

with incomplete models as we can solve instances of the RSA problem

larger than instances known in the literature to optimality within reason-

able time and w.r.t. several objective functions. We further devise some

directions of future research.

1 Introduction

Today's communication networks are optical networks where light is used as
communication medium between sender and receiver nodes. For over two decades,
Wavelength-Division Multiplexing (WDM) has been the most popular technol-
ogy used in �ber-optic communication. WDM combines multiple wavelengths
to simultaneously transport signals over a single optical �ber, but must select
the wavelengths from a rather coarse �xed grid of frequencies speci�ed by the
United Nations agency ITU (International Telecommunication Union) and leads
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to ine�cient use of spectral resources and bans allocating more than a single
wavelength to a tra�c demand.

In response to the sustained growth of data tra�c volumes in communication
networks, a new generation of optical networks, called �exgrid Elastic Optical
Networks (EONs), has been introduced in the last few years to enhance the
spectrum e�ciency and enlarge the network capacity [7].

In EONs, the frequency spectrum of an optical �ber is divided into many
narrow frequency slots of �xed spectrum width. Any sequence of consecutive
slots can form a channel that can be switched in the network nodes to create
a lightpath (i.e., an optical connection represented by a route and a channel).
EONs enable capacity gain by allocating minimum required bandwidth thanks
to a �ner spectrum granularity than in the traditional WDM networks.

However, the spectrum assignment in EONs leads to the Routing and Spec-
trum Assignment (RSA) problem that is much harder to handle in practice than
its counterpart using Wavelength-Division Multiplexing. In fact, the RSA prob-
lem consists of two parts: the routing (to select for each tra�c demand a path
through the communication network) and the spectrum assignment (to assign
for each demand an interval of consecutive frequency slots within the optical
spectrum such that the intervals of lightpaths using a same edge in the network
are disjoint), see e.g. [15] and Section 2 for details. Thereby, the following
constraints need to be respected when dealing with the RSA problem:

1. spectrum continuity : the frequency slots allocated to a demand remain
the same on all the links of a route;

2. spectrum contiguity : the frequency slots allocated to a demand must be
contiguous;

3. non-overlapping spectrum: a frequency slot can be allocated to at most
one demand.

The RSA problem is a generalization of the well-studied Routing and Wavelength
Assignment (RWA) problem that is associated with a �xed grid of frequencies
[3]. The former problem has started to receive a lot of attention over the last
few years. It has been shown to be NP-hard [2, 18]. In fact, if for each demand
the route is already known, the RSA problem reduces to the so-called Spectrum
Assignment (SA) problem and only consists of determining the demands' chan-
nels. The SA problem has been shown to be NP-hard on paths [14] which makes
the SA problem (and thus also the RSA problem) much harder than the RWA
problem which is well-known to be polynomially solvable on paths, see e.g. [3].

To solve the RSA problem, various approaches have been studied in the lit-
erature, based on di�erent Integer Linear Programming (ILP) models. Hereby,
detailed models aiming at precisely describing all technological aspects of EONs
and being able to handle various criteria for optimization typically su�er from
tractability issues resulting from their greater complexity such that the tendency
is to use simpli�ed or restricted models.

The majority of the existing models uses an edge-path formulation where
for each demand, variables are associated either with all possible routing paths
or with all possible lightpaths for this demand. One characteristic of this for-
mulation is, therefore, an exponential number of variables issued from the total
number of all feasible paths between origin-destination pairs in the network,
which grows exponentially with the size of the network.
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To bypass the exponential number of variables, edge-path formulations with
a precomputed subset of all possible paths per demand have been studied e.g. in
[8, 10, 16, 19], see [19] for an overview. However, such formulations cannot
guarantee optimality of the solutions in general (as only a precomputed subset
of paths is considered and, thus, a restricted problem solved). In order to be
able to �nd optimal solutions of the RSA problem w.r.t. any objective function
with the help of an edge-path formulation, all possible paths have to be taken
into account. As the explicit models are far too big for computation, it is in
order to apply column-generation methods. However, computational results
from e.g. [9, 11, 13] show that the size of the instances that can be solved that
way is rather limited.

An alternative to edge-path formulations is to use edge-node formulations
that lead to less intuitive models for the routing, but have the advantage that
the number of variables grows only polynomially with the size of the instance.
Despite this advantage, edge-node formulations are not yet well-studied. Only
few authors made use of this type of model, as Cai et al. [1], Velasco et al. [16],
Zotkiewiez et al. [19], and Jia et al. who used in [6] an edge-node formulation
to treat a more general problem.

All three models from [1, 16, 19] are compact models as both the number
of variables and constraints is polynomial in terms of the size of the instance.
However, all three models are incomplete as their feasible region is a superset
of all feasible solutions of the RSA problem and can, thus, handle only some
objective functions (see Section 4 for details).

Our contribution is to provide the �rst complete edge-node formulation for
the RSA problem that precisely encodes the set of all feasible solutions and
can, therefore, be used to optimize any chosen objective function. For that, we
propose an appropriate combination of variables and constraints (partly using
new variables and constraints), see Section 3 for details. Our model uses, as
in [1, 16, 19], a polynomial number of variables, but an exponential number of
constraints to ensure the exact encoding of feasible solutions. As we are able
to separate the exponentially-sized families of constraints in polynomial time,
our model is computationally tractable and, therefore, competitive with the
compact but incomplete models from [1, 16, 19].

While Zotkiewiez et al. [19] do not give computational results, Velasco et
al. [16] tested their formulation on a network topology of Spain with 35 edges
(64 slots per edge) and 21 nodes with a very small number of 12 demands and
requested numbers of slots in {1, 2, 4}. The results show that Cplex version
12 could optimally solve the problem after 6 hours by minimizing the number
of edges activated for the routing (which can be looked as a network design
problem).

Cai et al. [1] tested their formulation on two small network topologies, one
with 6 nodes and 9 links and the other with 10 nodes and 22 links, one demand
between each pair of nodes in the network and requested numbers of slots in
{1, ..., 3}, . . . , {1, ..., 9}. The results show that Gurobi 5.0 could optimally solve
the problem after 1 hour by minimizing the max-slot position for the 6 nodes
and 9 links topology (but did not report on time limits to solve the instances
on the other network).

Our model allows us to solve instances of the RSA problem larger than the
instances in [1, 16] to optimality within reasonable time w.r.t. several objective
functions (see Section 5 for details).
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The paper is organized as follows. In Section 2, we describe in detail the
input and the desired output of the RSA problem together with the studied
objective functions. In Section 3, we present our new edge-node formulation
and compare it in Section 4 with existing models from the literature [1, 16, 19].
In Section 5, we report on computational results achieved with the help of our
formulation. We close with some concluding remarks and future research.

2 The RSA problem

In this section, we formally de�ne the RSA problem by describing in detail the
input and the desired output of the RSA problem together with the studied
objective functions. As input of the RSA problem, we are given

• an optical spectrum S = {1, . . . , s̄} of available frequency slots;
• an optical network, represented as an undirected, loopless, connected
graph G = (V,E) that may have parallel edges (if parallel optical �bers are
installed between two nodes), and for each edge e ∈ E its length `e ∈ R+,

• a multiset K of demands where each demand k ∈ K is speci�ed by

� an origin node ok ∈ V and a destination node dk ∈ V \ {ok},
� a requested number wk ∈ N+ of slots, and
� a transmission reach ¯̀

k ∈ R+.

The task is to determine for each demand k ∈ K a lightpath composed of an
(ok,dk)-path Pk in G respecting the transmission reach ¯̀

k and a subset Sk ⊂ S
of wk consecutive frequency slots that is available on all edges of Pk and disjoint
from the subsets Sk′ of all other demands k′ routed along an edge of Pk, thereby
minimizing some objective function.

Hence, the desired output of the RSA problem is, for each demand k ∈ K,
a lightpath composed of

• an (ok,dk)-path Pk in G with
∑
e∈E(Pk) le ≤ ¯̀

k,
• a subset Sk ⊂ {1, . . . , s̄} of wk consecutive slots with Sk ∩Sk′ = ∅ for each
demand k′ ∈ K routed along an edge e ∈ E(Pk).

This output can be given in terms of a matrix M ∈ N|E|×s̄ with

Me,s =
{
k if slot s ∈ S is allocated todemand k ∈ K on edge e ∈ E,
0 otherwise (i.e., slot s is not used by any demand on edge e).

In addition, the selected set of lightpaths is supposed to minimize a chosen
objective function. In this paper, we will focus on the following objective func-
tions that have been used in [1, 16, 19] to be able to compare our computational
results with those from the literature:

O1: minimize the sum of hops in paths (where the term hops refers to the
number of edges in a path Pk) [19],

O2: minimize the number of edges from the network used to route the demands
[16],

O3: minimize the maximal used slot position (and, thus, the width of the
subspectrum of S used for the spectrum assignment) [1].
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Figure 1: The network G used in Example 2.1.

Note that the �rst two objective functions are only related to the routing (pro-
vided that a feasible spectrum assignment within S exists for this routing),
whereas the third objective function seeks for the most e�cient spectrum as-
signment over all possible routings.

Example 2.1 Consider the following small instance of the RSA problem, given
by a spectrum of width s̄ = 10, the network G shown in Figure 1 with edge length
as indicated, and the following set K of demands:

k ok → dk wk ¯̀
k

1 a→ c 2 4
2 a→ d 1 4
3 b→ f 2 4
4 b→ e 1 4
5 d→ f 3 4

An optimal solution w.r.t. objective function

• O1 with minimum sum 11 of hops in paths is represented by matrix M1,
• O2 with minimum number 5 of edges from the network used to route the
demands is represented by matrix M2,

• O3 with minimum maximal used slot position 4 is represented by matrix
M3.

M1 =



1 2 3 4 5 6 7 8 9 10
ab 3 3 4
af 1 1 3 3 2 4
bc
cd
cf 1 1
de 2
df 5 5 5
ef 2 4



M2 =



1 2 3 4 5 6 7 8 9 10
ab 3 3 4
af 1 1 3 3 2 4
bc
cd
cf 1 1
de 5 5 5 2
df
ef 5 5 5 2 4
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M3 =



1 2 3 4 5 6 7 8 9 10
ab 4 2
af 1 1 4
bc 3 3 2
cd 3 3 2
cf 1 1
de 3 3
df 5 5 5
ef 3 3 4


3 A novel edge-node formulation

In this section we introduce our novel edge-node ILP model for the RSA problem
in the general variant where demands may be rejected.

Variables For the routing, demand-edge variables

xke =
{

1 if demand k is routed through edge e,
0 otherwise,

are used for all k ∈ K and all e ∈ E as in [17, 19].
For the spectrum assignment, several di�erent variables are necessary. As in

[2, 16], demand-slot variables

zks =
{

1 if slot s is the last slot allocated for demand k,
0 otherwise,

are used which indicate that s is the last of the wk consecutive slots allocated
for the demand k ∈ K, with s ∈ S. The consecutive slots s′ ∈ {s−wk + 1, ..., s}
shall form the channel assigned to this demand k whenever zks = 1.

We newly propose demand-edge-slot variables

tke,s =
{

1 if slot s is assigned to demand k on edge e,
0 otherwise,

for all demands k ∈ K, all edges e ∈ E and all slots s ∈ S.
When we optimize objective functions involving max-used slot positions, we

newly propose edge-max-slot-position variables pe ∈ Z+ for all edges e ∈ E
(which indicate the position of the last slot allocated on the edge e ∈ E), as
well as a max-slot-position variable p ∈ Z+ (which represents the position of the
highest slot used over all the edges e ∈ E as in [2]).

When we optimize the number of edges used for the routing, we newly pro-
pose edge-activation variables

ae =
{

1 if some demand k is routed throught edge e,
0 otherwise,

for all edges e ∈ E.
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Constraints To formulate the constraints, we employ the following notations.
For any non-empty subset X ⊂ V , let δ(X) denote the set of edges having one
endnode in X and the other endnode in V \X. The pair (X,V \X) is called
a cut of G, the edges in δ(X) are said to cross this cut. In the special case
X = {v}, we write δ(v) instead of δ({v}).

For the routing, we use demand-edge variables xke and have to ensure by
appropriate constraints that the subset

E(k) = {e ∈ E : xke = 1}

of edges selected for the routing of demand k indeed forms an (ok, dk)-path Pk
in G, for each demand k ∈ K. For that, we use the following constraints. The
origin constraints ∑

e∈δ(ok)

xke ≤ 1, for all k ∈ K (1)

ensure that at most one path Pk can leave the origin ok as at most one of the
edges e ∈ δ(ok) incident to ok can be selected for E(k). Similarly, destination
constraints ∑

e∈δ(dk)

xke −
∑

e∈δ(ok)

xke = 0, for all k ∈ K (2)

force that the path Pk enters its destination dk, provided that there is a path Pk
leaving ok. (Note that if no path is selected for demand k, then

∑
e∈δ(ok) x

k
e = 0

holds and ensures that no edge from δ(dk) can be selected either for E(k).)
Origin and destination constraints are used in [1, 16, 19] in a slightly di�erent
manner.

In addition, we newly propose path-continuity constraints∑
e∈δ(X)

xke −
∑

e∈δ(ok)

xke ≥ 0,∀k ∈ K, ∀X, ok ∈ X, dk ∈ V \X. (3)

These constraints are important whenever a path Pk is selected for demand
k (and, thus,

∑
e∈δ(ok) x

k
e = 1 holds): they guarantee that there is an edge

e ∈ δ(X) ∩ E(k) such that the path Pk indeed crosses the cut (X,V \ X) for
each X with ok ∈ X and dk ∈ V \X.

Hence, origin, destination and path-continuity constraints together imply
that E(k) contains an (ok, dk)-path Pk. It is left to prevent E(k) from having
more edges than needed for Pk and Pk from having a length exceeding the
transmission reach of demand k.

For that, we use as in [6, 16] degree constraints∑
e∈δ(v)

xke ≤ 2, for all k ∈ K, and all v ∈ V \ {ok, dk} (4)

to prevent that more than two edges from E(k) are incident to any node. Fur-
thermore, we newly propose cycle-elimination constraints∑

e′∈δ(Xe)

xke′ ≥
{

2xke if |Xe ∩ {ok, dk}| = 0
xke if |Xe ∩ {ok, dk}| = 1

∀k ∈ K,∀e ∈ E,∀Xe ⊂ V

(5)
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where Xe ⊂ V denotes a subset of nodes containing both endnodes of edge e, to
avoid cycles isolated from Pk (note that isolated edges also fall into this case).

Moreover, we newly propose a transmission-reach constraint∑
e∈E

lex
k
e − ¯̀

k

∑
e∈δ(ok)

xke ≤ 0, for all k ∈ K (6)

to ensure that the length of Pk does not exceed the transmission reach of k if
the demand k is accepted, otherwise all the variables xke are forced to equal zero.

When we optimize the number of edges used for the routing, we need in
addition the following constraints

ae − xke ≥ 0, for all k ∈ K, and all e ∈ E (7)

to force ae = 1 when xke = 1 for some k ∈ K, and

ae ≤
∑
k∈K

xke , for all e ∈ E (8)

to guarantee ae = 0 if edge e is not used in any routing.
For the spectrum assignment, we have to guarantee that, whenever demand

k is accepted and an (ok, dk)-path Pk has been selected,

• a channel Sk ⊂ S of wk consecutive frequency slots is assigned to k,
• this channel is the same on all edges of Pk and disjoint from the channels
Sk′ of all other demands k′ routed along an edge of Pk.

We newly propose channel selection constraints

s̄∑
s=wk

zks −
∑

e∈δ(ok)

xke = 0, for all k ∈ K (9)

that do not allow to assign a channel to demand k when no path Pk is selected
(by not allowing to assign a slot s as last slot in the channel), but force to select
such a last slot in the channel whenever a path is leaving ok. In addition, we
specify the available last slots for the channel of demand k by forbidden-slot
constraints

wk−1∑
s=1

zks = 0, for all k ∈ K, (10)

to prevent demand k to occupy a slot s as last slot in the channel whenever
s < wk. Klinkowski et al. [10] proposed a similar idea using demand-edge-�rst-
slot variables.

We newly propose edge-slot constraints∑
s∈S

tke,s − wkxke = 0, for all k ∈ K and all e ∈ E (11)

to ensure that precisely wk slots are allocated on edge e to demand k if and only
if demand k is routed through edge e.
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Spectrum contiguity and continuity are handled by the following new demand-
edge-slot constraints

xke +
min(s+wk−1,s̄)∑

s′=s

zks′ − tke,s ≤ 1,∀k ∈ K,∀e ∈ E,∀s ∈ S (12)

to force that slot s on edge e is allocated to demand k if and only if demand
k passes through edge e and slot s belongs to the channel assigned to demand
k (which is the case if one slot s′ ∈ {s, . . . , s + wk − 1} is the last slot of the
channel).

We newly propose non-overlapping constraints∑
k∈K

tke,s ≤ 1, for all e ∈ E and all s ∈ S (13)

to ensure that a slot s on edge e can be allocated to at most one demand.
When we optimize objective functions involving max-used slot positions, we

newly propose two additional constraints

stke,s − pe ≤ 0, for all k ∈ K, all e ∈ E and all s ∈ S (14)

to guarantee that no slot s above pe is used on edge e and

pe −
∑
k∈K

∑
s∈S

stke,s ≤ 0, for all e ∈ E (15)

to force the max used slot position on edge e to equal 0 if no demand is routed
through edge e, set the bounds pe ≤ p ≤ s̄, and force pe ∈ N for all e ∈ E
and p ∈ N to be integral. Finally, we force all other variables to be binary and
require non-negativity for all variables.

Objective functions With the help of these variables, the considered objec-
tive functions read as follows:

• min
∑

e∈E,k∈K

xke to minimize the sum of number of hops in the paths,

• min
∑
e∈E

ae to minimize the number of edges used for the routing, and

• min p to minimize the max-used slot position.

Recall that our model encodes the general variant of the RSA problem when
demands may be rejected. This situation does not comply with the objective
functions studied in [1, 16, 19] (as for all three objective functions, rejecting all
demands would yield the optimal solution, with objective function value equal to
0). Our model can be easily adapted to the special case where all demands have
to be served, by requiring equality in the origin constraint (1) and simplifying
the constraints (2), (3), (6) and (9) by replacing the term

∑
e∈δ(ok) x

k
e by 1.
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4 Comparison of edge-node formulations

All three edge-node formulations from [1, 16, 19] for the RSA problem are
compact models as both the numbers of variables and constraints grow only
polynomially in the size of the instance, i.e., in the size of the networkG = (V,E)
(measured by |V | and |E|), the width of the optical spectrum S (measured by
|S|), and the number of demands (measured by |K|). Table 1 summarizes the
order of the number of variables and constraints for the three models1.

number of variables number of constraints

model in [16] O(|K|2|E||S|) O(|K|2|E||S|)
model in [19] O(|K|(|E|+ |S|)) O(|K|2|E||S|)
model in [1] O(|K|(|E|+ |S|+ |K|)) O(|K|(|E|+ |V |+ |K|))

Table 1: The order of the number of variables and constraints in the models
from the literature.

Our model uses also a polynomial number of variables, namely O(|K||E||S|),
but an exponential number of constraints due to

• path-continuity constraints (3) for all subsets X ⊂ V with ok ∈ X, dk ∈
V \X, for all demands k ∈ K,

• cycle-elimination constraints (5) for all subsets Xe ⊂ V containing both
endnodes of edge e, for all edges e ∈ E and all demands k ∈ K.

Recall that path-continuity constraints (3) are used to force that the set E(k) of
edges selected for the routing of demand k contains an (ok, dk)-path Pk, whereas
cycle-elimination constraints (5) are used to prevent E(k) from containing cycles
isolated from Pk, see Figure 2 for illustration. None of the models from [1, 16, 19]

ok kP kd

Figure 2: A set E(k) containing an (ok, dk)-path Pk together with a cycle iso-
lated from Pk.

can exclude the occurrence of cycles isolated from Pk, the model presented in
[19] can even not exclude cycles attached to Pk, see Figure 3 for illustration.

In addition, none of the three models checks whether the transmission reach
of routing paths is respected. Hence, all three models from [1, 16, 19] are
incomplete as their feasible region is a superset of all feasible solutions of the
RSA problem and can, thus, handle only some objective functions (where the

1To allow a comparison, we count integer variables with n possible values as n binary

variables, and express variables encoding channels in terms of the spectrum width |S|.
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ok kP kd

Figure 3: A set E(k) containing an (ok, dk)-path Pk together with a cycle at-
tached to Pk.

optimal solution does neither contain cycles isolated from Pk nor cycles attached
to Pk).

Our model is the �rst complete edge-node formulation for the RSA problem
as it precisely encodes the set of all feasible solutions, i.e., any integral vector
satisfying all constraints from our model indeed corresponds to a feasible solu-
tion of the RSA problem. Therefore, our model can be used to optimize any
objective function chosen as quality measure by the network operator.

In addition, our model is not only complete, but still tractable as we are
able to separate the two exponentially-sized families of constraints (3) and (5)
in polynomial time.

In fact by the polynomial equivalence between separation and optimization
over rational polyhedra [5], the linear relaxations of our model can be solved in
polynomial time if and only if the separation problem associated with inequali-
ties (3) and (5) can be solved in polynomial time. The separation problem for
the path-continuity constraints (3) reduces to O(|K|) minimum-cut problems
in G and the separation problem for the cycle-elimination constraints (5) to
O(|K||E|) minimum-cut problems in an auxiliary graph.

Therefore the separation problem associated with (3) and (5) is polynomially
solvable using any polynomial-time maximum-�ow algorithm (e.g., the pre�ow-
push algorithm of Goldberg and Tarjan [4] running in O(|V |3) time). Note that
this separation approach provides the most-violated inequality if any w.r.t. a
demand or a pair of a demand and an edge.

5 Computational results

In this section we present some preliminary computational results that mainly
aim at assessing the empirical performances of a branch-and-cut framework
based on our model for the three objectives functions presented in Section 2
and at comparing them with the results obtained by Velasco et al. [16] for O2

and by Cai et al. [1] for objective O3.
In our experiments we therefore consider the Spanish Telefónica network

represented in Figure 4 from [16] and three networks represented in Figure 5
from [1]. The characteristics of the topology of these four networks are given in
Table 2 together with the available numbers of slots per link.

As none of the instances considered in [1, 16] were available, we randomly
generated multisets of tra�c demands, some of them using Net2Plan [12], while
guaranteeing that some of those multisets share the properties described in
[1, 16], that is, the same number of tra�c demands (12 for Spanish Telefónica
and 30 for n6s9) and the same range of values for the requested numbers of slots
(in {1, 2, 4} for Spanish Telefónica and in {1, . . . , 3}, . . . , {1, . . . , 9} for n6s9).
Table 3 summarizes the di�erent types of tra�c-demand multisets we considered
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Figure 4: Spanish Telefónica Network from [16]

for each network.

Network's name number of nodes number of links number of slots per link
Spanish Telefónica 21 35 64
n6s9 6 9 80
SmallNet 10 22 {80, 100, 140, 180}
NSFNET 14 21 {120, 160, 210, 285}

Table 2: Characteristics of the network topologies

Network's name number of demands number of requested slots
Spanish Telefónica {12, 15} {1, 2, 4}
n6s9 {30, 50} {1, . . . , i}, i = 3, . . . , 9
SmallNet {100, 150, . . . , 500} {1, . . . , 4}
NSFNET {100, 150, . . . , 250} {2, . . . , 6}

Table 3: Characteristics of the tra�c demands

All our results were obtained on a laptop, running Microsoft Windows 10
Pro (64-bit), equipped with a 2.5GHz Intel Core i5-7300 HQ processor and 16-
GB RAM. The branch-and-cut framework was implemented using IBM ILOG
CPLEX Optimization Studio 12.8 C++ library. Note that using user-cut call-
backs (needed for the separation of constraints (3) and (5)) in CPLEX 12.8
automatically deactivates the multithreading. To balance some struggles that
the default heuristic of CPLEX has to generate good feasible solutions, we im-
plemented a heuristic callback based on
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Figure 5: n6s9, SmallNet, and NSFNET Networks from [1]

• �rst decomposing for each demand k ∈ K its �ow (given by the xke -
variables) into (ok, dk)-paths and

• second using a �rst-�t greedy approach to assign the best possible channels
to the demands,

The �rst objective function O1 was considered in neither [1] nor [16]. Within
a one-hour time limit, our branch-and-cut framework was able to solve to opti-
mality all our instances but the ones with 500 demands for which the optimality
gap was under 0.5%. Over the course of the solution process, both the lower
and upper bounds kept improving and only towards the end, optimal solutions
were found.

For the second objective function O2, Velasco et al. [16] were able to solve
to optimality a single instance of Spanish Telefónica with 12 demands in over
6 hours. It took less than 3 hours for our branch-and-cut framework to solve
to optimality the Spanish Telefónica instances with 12 demands and less than
6 hours for the Spanish Telefónica instances with 15 demands. We also ran
our branch-and-cut framework on all the instances associated with n6s9 and
were able to get optimal solutions within at most 15 minutes. Very early in
the solution process, optimal solutions were found meaning that most of the
solution time is dedicated to proving the optimality of those solutions (e.g.,
for the Spanish Telefónica with 12 demands, an optimal solution is found after
about 15 minutes but proved optimal after about 2 hours and 40 minutes).

Cai et al. [1] only considered the third objective function O3 in their exper-
iments with the additional property that given any two distinct nodes o and d
of G, the multiset K of tra�c demands contains either both demands having
nodes o and d as their extremities (with the same requested number of slots) or
none of them, and for the former case one assigned route is the reverse of the
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other one. Some of our generated instances for n6s9 ful�lled that property and
were all solved to optimality within 20 minutes while Cai et al. [1] needed up
to one hour to solve their similar instances (with CPLEX multithreading being
active). We also ran our branch-and-cut framework on n6s9 instances without
the reverse-demand property and for most of the instances were able to �nd
optimal solutions within two hours and an optimality gap lower than 5% for
the others. We noticed a similar behavior of the lower and upper bounds as for
objective function O1.

6 Concluding remarks

The RSA problem in �exgrid elastic optical networks is an NP-hard problem for
which various ILP models have been proposed in the literature. Hereby, detailed
models aiming at precisely describing all technological aspects and being able
to handle di�erent criteria for optimization typically su�er from tractability
issues resulting from their greater complexity such that the tendency is to use
simpli�ed models.

The majority of the existing models uses edge-path formulations where the
numbers of variables and constraints grow exponentially with the size of the in-
stance, due to the huge number of feasible paths between all origin-destination
pairs in the network. Hence, models based on edge-path formulations are of-
ten simpli�ed by considering only subsets of precomputed paths (which cannot
guarantee optimality, except for few objective functions) or require column-
generation techniques (which limits the size of the instances that can be solved
to optimality).

An alternative to edge-path formulations is to use edge-node formulations
that have the advantage that the number of variables grows only polynomi-
ally with the size of the instance. Three compact edge-node formulations are
presented in [1, 16, 19] where both the number of variables and constraints is
polynomial in terms of the size of the instance. However, all three models are
incomplete as their feasible region is a superset of all feasible solutions of the
RSA problem and can, thus, handle only some objective functions. 4 Our con-
tribution is to provide the �rst complete edge-node formulation for the RSA
problem that precisely encodes the set of all feasible solutions and can, there-
fore, be used to optimize any chosen objective function. For that, we propose an
appropriate combination of variables and constraints (partly using new variables
and constraints) which results in a model having, as in [1, 16, 19], a polynomial
number of variables, but an exponential number of constraints to ensure the
exact encoding of feasible solutions.

As we are able to separate the exponentially-sized families of constraints in
polynomial time, our model is computationally competitive with the compact
but incomplete models from [1, 16, 19]. The computational results support this
as our branch-and-cut solver was able, on the one hand, to e�ciently handle
larger instances and, on the other hand, to �nd optimal solutions for instances
similar to those in [1, 16] in shorter time.

Hereby, we noticed by analyzing the computational results for objective func-
tion O2 that for most instances the optimal solution was found early in the
computation process, but that most of the computation time was needed to cer-
tify its optimality. Hence, our future research also includes to strengthen lower
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bounds for the value of di�erent objective functions in order to shorten the time
during the computation needed for certifying optimality of a solution.

Therefore, we plan as future research, on the one hand, to strengthen our
model further by devising new inequalities, e.g. derived as Chvátal-Gomory
cuts from the initial constraints, and, on the other hand, to further improve the
separation procedure for the exponentially-sized families of constraints.

Finally, recall that many di�erent objective functions may be considered,
depending on the network operator's choice. Besides O1, O2, O3, the following
objective functions may be of interest:

O4: minimize the sum of the total length of paths (taking the edge weights le
into account),

O5: minimize the maximum load over all edges (where the load of an edge e
is expressed by the number se of slots allocated on edge e),

O6: minimize the total cost of the solution (where the cost is expressed as the
product of the length le and the load se of an edge e, summed up over all
edges e).

Hereby, the optimal solutions w.r.t. di�erent objective functions may signi�-
cantly di�er such that an optimal solution for one objective may provide rather
bad values according to other optimality criteria. For instance, the three op-
timal solutions presented in Example 2.1 (M1 for O1, M2 for O2, M3 for O3

which is also optimal for O5 minimizing the maximum edge load of 3) di�er
from each other and from the optimal solution for O4 and O6 presented in M4

(with minimum total length 13 of paths and minimum total cost 22).

M4 =



1 2 3 4 5 6 7 8 9 10
ab 1 1 2
af
bc 1 1 3 3 2 4
cd 2 4
cf 3 3
de 5 5 5 4
df
ef 5 5 5


We notice that the objective functions

• O1, O2, O4 for the routing may lead to solutions where some edges are
highly loaded (with 6 slots in M1, M2 and M4 where 3 slots su�ce as in
M3) which also forces a large used spectrum width (6 slots inM1, M2 and
M4 where 4 slots su�ce as in M3),

• O3 and O5 for the spectrum assignment may lead to routings along longer
paths (total length of 17 in M3 where 13 su�ce as in M4) which may also
increase the total cost of the solution (29 for M3 where 22 su�ce in M4).

Hence, it is also in order to develop strategies to cope simultaneously with
di�erent quality measures of solutions.
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