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Dating of rockfall damage in trees yields insights 
into meteorological triggers of process activity in 

the French Alps
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Rockfall release is a rather unpredictable process. As a result, the occurrence of rockfall often threatens humans and (infra)structures.
The assessment of potential drivers of rockfall activity therefore remains a major challenge, even if the relative influence of rainfall,
snowmelt, or freeze–thaw cycles has long been identified in short-term monitoring projects. In the absence of longer-term assess-
ments of rockfall triggers and possible changes thereof, our knowledge of rockfall dynamics remains still lacunary as a result of
the persisting scarcity of exhaustive and precise rockfall databases. Over the last decades, several studies have employed growth dis-
turbances (GDs) in tree-ring series to reconstruct rockfall activity. Paradoxically, these series were only rarely compared to meteoro-
logical records. In this study, we capitalize on the homogeneity of a centennial-old reforestation plot to develop two reconstructions
– R1 including only growth suppressions, and R2 based on injuries – with limited biases related to decreasing sample size and
changes
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By

 

doing

 

so,
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GDs
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reconstructions.
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we
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that

 

summer
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are
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study
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Despite
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our

 

detection

 

procedure,
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variables
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comparable

 

to
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reported
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and

 

multiplicity
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triggering

 

factors.

 

We

 

therefore
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for

 

a

 

more

 

systematic

 

coupling

 

of

 

tree-ring

 

analysis

 

with

 

rockfall

 

and

 

microclimatic

 

monitoring

 

in

 

future

 

studies.
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Introduction

Rockfall is one of the most common geohazards on steep slopes
and can lead to major economic losses and casualties (Hantz
et al., 2003). The process involves the detachment and transport
of independent blocks of relatively small sizes from a cliff: rock-
fall is characterized by high energy and mobility of fragments
moving down slopes by gravity in a combination of free fall,
bouncing, and rolling (Michoud et al., 2012; Sazid, 2019).
Slope stability on slopes susceptible to produce rockfall is pre-
dominantly controlled by the presence, orientation, and
geomechanical properties of discontinuities (Terzaghi, 1962).
The actual triggering of rockfall is due either to external factors
(Cruden and Varnes, 1996) such as earthquakes (Keefer, 2002;
Malamud et al., 2004; Stoffel et al., 2019), volcanic eruptions

(Hale et al., 2009), sea waves (Rosser et al., 2005), or anthropo-
genic activities (Heim, 1931; Müller, 1964), whereas their tem-
poral frequency is modulated by meteorological parameters
(Delonca et al., 2014; D’Amato et al., 2016). Intense rainfall ep-
isodes (Rapp, 1960; André, 1997; Ilinca, 2009; Berti
et al., 2012), freeze–thaw cycles of interstitial water (Wieczorek
and Jäger, 1996; Matsuoka and Sakai, 1999; Ilinca, 2009; Dun-
lop, 2010), the thawing of permafrost (Huggel et al., 2012; Sass
and Oberlechner, 2012; Stoffel and Huggel, 2012), or repeat
rock surface temperature variations (Luckman, 1976;
Gunzburger et al., 2005; Frayssines and Hantz, 2006) have thus
been mentioned as the main triggering mechanisms of rockfall
activity in the past. Yet, a large body of the above-mentioned
studies were based on short-term field observations or monitor-
ing. Even if such approaches provide very high-quality datasets
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(Matsuoka, 2008; D’Amato et al., 2016), they will not cover pro-
cess activity on specific sites over continuous periods of several
years and therefore have to be considered as too short for a pre-
cise assessment of the full spectrum of triggering factors and
threshold conditions of rockfalls (Schneuwly and
Stoffel, 2008b; Šilhán et al., 2011). By contrast, multidecadal se-
ries of past rockfall activity are typically gathered from historical
archives (Hantz et al., 2003; Barnikel, 2004; Guzzetti and
Tonelli, 2004; Delonca et al., 2014), but Guzzetti et al. (1999)
pertinently emphasized that historical records are only rarely
available and difficult to obtain for single events or
event-prone areas. In addition, archival data remains usually
fragmentary (Dussauge-Peisser et al., 2002), and records tend
to contain information mainly on events that caused fatalities
or the destruction of human assets, but will – in contrast – lack
data on small-scale events and non-damageable activity. Such
limitations have often precluded precise assessments of (meteo-
rological) triggers of past rockfall activity (Sass and
Oberlechner, 2012). On forested slopes, falling blocks interact
with forest stands (Dorren et al., 2007) and may inflict scars
and other growth anomalies on trees (Trappmann and
Stoffel, 2015). The detection and dating of growth disturbances
(GDs) in tree-ring series, also referred to as
dendrogeomorphology (Alestalo, 1971; Stoffel and
Bollschweiler, 2008; Stoffel and Corona, 2014), has been dem-
onstrated to represent a reliable approach to (partly) overcome
the gaps and limitations inherent in historical archives (Ibsen
and Brunsden, 1996; Sass and Oberlechner, 2012). Limitations
in the ability of tree-ring records to yield accurate representa-
tions of past rockfall activity at a site remain and can be ascribed
to (1) the continuous reduction in the number of trees available
for analysis and the total diameter of exposed trees as one goes
back in time (Stoffel et al., 2005), (2) the associated decline of
potentially recordable GDs (Trappmann et al., 2013), as well
as (3) interferences induced by climate conditions or exogenous
disturbances (Favillier et al., 2017a). The latter have been used
successfully to compute the frequency of past rockfall events
(Stoffel and Perret, 2006; Trappmann et al., 2014; Morel
et al., 2015; Mainieri et al., 2019), and/or to map preferential
trajectories or parameterize three-dimensional, process-based
rockfall models (Stoffel et al., 2006; Corona
et al., 2013, 2017). Yet, with the exception of Perret
et al. (2006), Šilhán et al. (2011), and Zielonka and Wrońska-
Wałach (2019), tree-ring reconstructions were only rarely com-
pared with instrumental series to assess meteorological trigger-
ing parameters. In addition, the above studies have accounted
for changing sample depths, but have considered neither any re-
ductions of target size (i.e. smaller tree diameters) back in time,
nor the potential influence of climatic conditions or exogenous
disturbances (e.g. insect and pathogen attacks, windstorms or
anthropogeneous influences) on dendrogeomorphic recon-
structions. In order to account for the latter parameter, which
could potentially bias the detection of meteorological triggers
of rockfall, we (1) base this study on samples taken in a protec-
tion forest planted since the end of the 19th century, with the
aim to minimize potential biases related to increasing sample
size over time. In addition, we (2) used the systematic mapping
of all trees within the plot to precisely quantify uncertainties re-
lated to the decrease of total stem diameter exposed to rockfalls
over time. To evidence potential noise induced by climatic con-
ditions or exogeneous signals, we then (3) realized two recon-
structions, namely R1 including only growth suppression and
R2 accounting for all other growth types of disturbances. Finally,
we (4) compared the corrected rockfall activity with highly re-
solved time series of potential meteorological triggers extracted
from the snow andmeteorological reanalysis products available
for France (Durand et al., 2009a, b).

Study Site

The study site is located at Valdrôme (146 inhabitants, Figure 1-
b), on a west-facing slope of the Arcs mountain (44°32′90N,
5°33′76 E, 790–880m a.s.l.), Diois massif (French Alps,
Figure 1a). At this site, rockfall fragments are detached from
several release areas located within a roughly 40 m-high,
west-facing cliff (890–930m a.s.l.). This Jurassic (Thitonian) cliff
is composed of sublithographic limestone (Figure 1e) with a
content of marls (5–6%) characterized by narrow jointing,
subhorizontal bedding, and subvertical orthogonal joints,
favouring fragmentation and the release of small rock fragments
with volumes ranging from a few cubic centimetres to a few cu-
bic decimetres. In the field, the presence of recent scars in rock
cliffs, fresh injuries on tree stems (in the form of bark scratches
or wood-penetrating injuries), and fresh blocks (recognizable
through the absence of lichens, mosses, or patina) deposited
on the slope was used to verify the existence of current rockfall
activity at the site (Moya et al., 2010; Trappmann and
Stoffel, 2015). Down the cliff, the talus slope, with angles vary-
ing from 35 to 45° (40° on average), is characterized by a
marked longitudinal sorting of clasts with volumes of a few cu-
bic centimetres at the apex to a few cubic decimetres in the dis-
tal segment. At an altitude of 730m a.s.l., the talus slope is
crossed by a road leading to Valdrome. At its lower end, the site
is limited by the Drôme River (at 720m a.s.l.). The 1.3 ha (110 ×
115m) tree plot analysed here is located at the foot of the cliff
(Figure 1d); it is covered by a dense (1800 trees ha�1) monospe-
cific forest stand composed of Pinus nigra (Austrian black pine).
Trees were planted at the beginning of the 20th century (1902)
by the French forestry service with the aim of protecting the na-
tional road from rockfalls. According to the SAFRAN reanalysis
(Durand et al., 2009b), total precipitation at the study site
(1958–2017) totalled 1022 (±201) mm on average; the driest
season is winter (182 ± 172mm), whereas wetter conditions
prevail in autumn (339 ± 143mm). Mean annual, winter, and
spring temperatures average 10.2 (±0.6), 1.1 (±1.1), and 8.2
(±0.9) °C, respectively (Figure 1c). On average, 90 (±14)
freeze–thaw cycles occurred each year at the study sites be-
tween 1958 and 2017, mainly during winter and spring
(85%). Although no event could be retrieved from historical ar-
chives, field observations (i.e. scars on stems, presence of im-
pact craters on the ground) confirm that rockfall is the
dominant geomorphic process on the slope and that other geo-
morphic processes susceptible to damage trees can be totally
excluded.

Methods

Tree plot

At the study site, virtually all trees show visible growth anoma-
lies on the stem surface resulting from past rockfall, predomi-
nantly in the form of injuries. As scars represent the most
accurate and reliable GD to date past rockfalls in tree-ring re-
cords (Schneuwly et al., 2009a,b; Stoffel et al., 2013), we ac-
tively searched for visible stem wounds at the study site. To
assess spatial and temporal patterns of past rockfall activity,
trees with a diameter at breast height (DBH) >4 cm were sys-
tematically mapped in a 110 × 115m large tree plot. The posi-
tion of each tree (n =1479) was determined (±100 cm) with a
theodolite measuring azimuth (compass), distance (vertex),
and slope (inclinometer). All trees were positioned in a geo-
graphical information system (GIS) as geo-objects. The resulting
map has been used to optimize our sampling strategy by (1)
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increasing the conditional impact probability and (2) selecting
individual trees for each rockfall trajectory (see below).

Computation of conditional impact probability

The conditional impact probability approach (CIP), first devel-
oped by Moya et al. (2010), has recently been refined further
by Trappmann et al. (2013) and Favillier et al. (2017b). This ap-
proach aims to quantify the range covered by trees during a
given year, and is employed here to estimate the likelihood that
a rockfall event misses tree trunks (Perret et al., 2006). The as-
sessment depends on both the characteristics of the forest (i.e.
stand density, tree location, tree diameter, spatial structure of

the forest stand) and the characteristics of the rockfall event it-
self (diameter of the falling blocks). The CIP concept is based
on the idea that each tree is surrounded by a ‘circle of impact’
(i.e. covering a range of the slope that determines the probabil-
ity of a tree being impacted). A falling rock will impact a tree if
its trajectory is closer to the stem than half of its diameter (∅).
This ‘circle of impact’ can therefore be expressed as a circular
area around each tree, with diameter defined by the tree’s
DBH and the mean diameter of falling blocks (∅). According
to this principle, the sum of impact circles of all trees represents
the total length of impact circles (LIC) or the range that is cov-
ered by trees (Figures 2a and b). Accordingly, with a given
mean rock diameter, tree position, and the DBH measured for
all trees, the CIP can be calculated for the plot as

FIGURE 1. The Valdrôme plot is located in the Southern French Alps (a), 60 km south of Grenoble and 30 km west of Gap (b). It is characterized by
mountainous climatic conditions with a mean annual temperature of 9.1 ± 1.1 °C and precipitation totals of 1082 mm on average over the period
1958–2017 (c). At the study plot, 1479 trees were mapped at 1-m resolution, mainly Austrian black pines (P. nigra) that were planted at the turn of
the 20th century (d, e). [Colour figure can be viewed at wileyonlinelibrary.com]
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CIP ¼ LIC=Lplot (1)

where LIC is the cumulative length of the projections of the ‘cir-
cles of impact’ on the downslope side of the plot, and Lplot is
the length of the plot in the fall line (i.e. 110m in our case).
Usually, the CIP is used to estimate the number of rockfall

events that are missed (i.e. not recorded) in a given year as well
as the quality and reliability of the reconstruction (Trappmann
et al., 2013; Favillier et al., 2017b). Here, to quantify CIP evo-
lution back in time, a polynomial diameter-age regression has
been built for P. nigra. To this end, a total of 53 undisturbed P.
nigra trees with DBH > 5 cm were cored using a Pressler incre-
ment borer. Trees were selected from three stem diameter clas-
ses (<8, 8–18, and >18 cm), representative of the distribution
of tree diameters observed at the plot. Increment cores were
analysed and data processed following standard dendrochro-
nological procedures (Bräker, 2002). In the laboratory, tree
rings were counted with a digital LINTAB positioning table con-
nected to a Leica stereomicroscope. Missing rings toward the
pith were estimated from ring curvature (Villalba and Veb-
len, 1997; Bollschweiler et al., 2008).
Based on this regression model, we estimated the age of each

tree within the plot and derived an annually resolved CIP se-
ries, so as to estimate the real annual number of rockfalls (RR)
as follows:

RRt ¼ NGDt=CIPt (2)

where NGDt represents the number of GD dated to year t and
where CIPt is the conditional probability impact computed for
year t. In addition, based on our systematic inventory, we also
used the CIP to optimize our sampling strategy. Accordingly,

trees located in the upper part of the slope represent the first
barrier to falling blocks; these were sampled preferentially,
whereas those trees located in the direct fall line of other trees
were ignored systematically as they would be protected by
their neighbours.

Dendrogeomorphic analysis and corrected number
of impacts

An increment core (max. 40 × 0.5 cm) was sampled for each se-
lected tree at the lateral edges of each visible scar, at the con-
tact with the overgrowing callus tissue (Sachs, 1991;
Larson, 1994). In addition, based on observed bounce heights
– which usually remain <2m in the plot – three additional in-
crement cores were systematically extracted, in the fall line di-
rection, at heights of 0.5, 1.0, and 1.5m, so as to increase the
probability of retrieving evidence on old, completely healed
impacts (Trappmann et al., 2013). Following Stoffel
et al. (2005), (1) abrupt suppression of tree growth indicating
decapitation or branch loss, (2) eccentric growth related to
the formation of reaction wood following stem tilting, and (3)
abrupt growth release (suggesting that neighbouring trees were
eliminated and the surviving trees benefitted from improved
growth conditions such as enhanced access to light, water,
and nutrients) were used as additional evidence of past rockfall
impacts.

Analysis of meteorological data

The precise detection of meteorological triggers of rockfall from
dendrogeomorphic reconstructions has so far been hampered
by the annual resolution of tree-ring series as it precluded

FIGURE 2. Geometrical conditions used for the assessment of the CIP adapted from Moya et al. (2010) and Favillier et al. (2017b). (a) Computation
of the CIP from the geometric analysis of the spatial distribution of trees at the plot scale. (b) Computation of the impact circle: 1, tree stem; 2, circle of
impact; 3, projection of the circles of impact on the downslope boundary of the analysis cell; 4, rock of a given diameter, denoted Ø; 5, trajectory of
the falling rock; 6, rockfall impact. L1–L4 are the width of the projection of the circles of impact on the downslope boundary of the plot analysis. Lplot is
the width of the analysis cell. [Colour figure can be viewed at wileyonlinelibrary.com]
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correlation with hourly and/or daily meteorological records. To
account for the complexity and diversity of meteorological trig-
gers, correlations between reconstructed rockfall activity and
meteorological series averaged over resolutions comprised be-
tween 1 and 36 (∼1 year) consecutive 10-day periods. At our
study site, meteorological time series were obtained from the
SAFRAN reanalysis datasets reaching back to the year 1958.
The SAFRAN analysis system combines in-situ meteorological
observations with synoptic-scale meteorological fields to pro-
vide continuous time series of meteorological variables at
hourly resolution and for elevation steps of 300m within areas
referred to as massifs (‘Devoluy’ in the case of this study), as-
sumed to be horizontally homogeneous (Durand
et al., 2009a). Delonca et al. (2014) and D’Amato
et al. (2016) have recently synthesized physical processes asso-
ciated with meteorological parameters susceptible to trigger
rockfall. In calcareous regions, these authors listed the follow-
ing processes amongst the most frequently cited triggers of
rockfall: (1) rainfall duration and intensities that increase pres-
sure in rock joints, (2) freeze–thaw cycles through wedging
and loss of cohesion, and (3) sunshine affecting thermal
stresses, thereby propagating cracks. On this basis, and consid-
ering typical timeframes operating on these triggers, 10-day
to annual series (i.e. 360 days; or 36, 10-day series) of (1) pre-
cipitation sums, (2) number of rainfall events >10 and
20mmday�1, (3) minimum, (4) mean, and (5) maximum air
temperatures, (6) variations thereof, (7) the absolute number
of freeze–thaw cycles (defined as the number of days in which
Tmax > 0 °C and Tmin < 0 °C), as well as (8) minimum temper-
atures (�3 and �5 °C) and (9) daily variations of temperatures
(+6 and +10 °C) have been extracted from the SAFRAN data-
base for the period 1958–2017. Relationships between rockfall
activity and meteorological parameters were assessed with a
four-step procedure. In a first step (1), Pearson correlation coef-
ficients were calculated between reconstructed rockfall activity
and variables (1–9) for periods ranging from 1 to 36 consecu-
tive 10-day periods. All datasets were transformed to z-scores
summarizing anomalies below or above average, over the pe-
riod 1958–2017, before correlation analyses were performed.
The statistical significance of results was tested with a
one-tailed t-test at a significance level α = 0.05. In a second
step (2), up to 10 variables – those most strongly correlated with
rockfall activity at a significance level α = 0.05 –were extracted
for each meteorological parameter. Correlation matrices com-
puted for each parameter were used to select the variables in-
cluded in the multiple regression procedure (3), while limiting
the inclusion of highly collinear variables. We developed a
stepwise regression procedure to determine which combina-
tion of independent variables affect rockfall activity in the stud-
ied area. Starting from an initial null model with no covariates
and then comparing the explanatory power of incrementally
larger and smaller models, this procedure combines forward se-
lection and backward elimination of variables using the Akaike
information criterion (AIC) as a metric to compare the relative
quality of the different models. Forward selection tests all the
variables retained at step 2, one by one, and includes them in
the final selection if they are statistically significant based on
the p value of the t-statistics, whereas backward elimination
starts with all candidate variables and tests them one by one
for statistical significance, deleting those that are not significant
on the basis of the p value of the t-statistics. Model performance
was evaluated with several indicators, such as the AIC and the
adjusted-R2 determination coefficient. The variance inflation
factor (VIF), representing the quotient of the variance in a
model with multiple terms by the variance of a model with
one term alone, was used to quantify the severity of
multicollinearity between predictor variables included in the

model. Finally (4), based on z-score transformed reconstruc-
tions, we differentiated three levels of rockfall activity classified
as low (<�1 z-score), medium (1> z-score>�1) and high (>1
z-score). We used one-way analysis of variance (ANOVA) to
determine the significance of differences between mean values
of meteorological factors included in the multiple regression
model. Snedecor’s F-distribution was used to compare meteo-
rological factor averages for the different levels of rockfall activ-
ity and within the same group.

Results

Selection of sampled trees

In the field, 30 deposited blocks with non-weathered surfaces
and lacking moss or lichen cover were measured to determine
characteristic block sizes involved in rockfall activity. Based on
this inventory, a median block diameter (∅) of 30 cm has been
defined for the calculation of the CIP. On the basis of this me-
dian block diameter, data on stem DBH, as well as on the spa-
tial position of each tree within the plot, we obtain a maximum
CIP of 0.88 for 2018 based on the analysis of 179 trees. In other
words, this means that as little as 179 trees – out of the 1479
mapped inside the plot – will intercept 91% of all rockfall tra-
jectories at the site. All these trees (with a mean DBH of 24 ±
9.6 cm) were sampled to characterize past rockfall activity at
Valdrôme. The 672 increment cores that we extracted at DBH
indicate that trees were on average 106 ± 13 years old. The
oldest tree was dated back to 1891, whereas the youngest tree
reached sampling height in 1967. The distribution of tree ages
and the fairly limited standard deviation can be explained with
the installation of the protection forest, described in historical
archives, at the turn of the 20th century.

Reconstruction of rockfall activity

The sampled cores allowed identification of 532 and 434 GD
in the tree-ring series for the periods 1890–2017 and 1958–
2017, respectively (Table 1). The most common GD was in
the form of abrupt growth suppression (GS, 66% of all GD). In-
juries (31.4%) represent another common response of P. nigra
to rockfall impacts. By contrast, growth releases (GR) and the
onset of compression wood (CW) formation were identified in
only 13 (2.4% of the GDs for the period 1890–2017) and 1 tree
(<1%, 1958–2017), respectively. The oldest GD identified in
the tree-ring series was dated to 1905. GD are more frequent af-
ter 1930 and nearly every year exhibited GD in at least a small
number of trees.

Based on these GD series, two reconstructions of past rock-
fall activity have been computed. The first reconstruction
(called R1) only includes GS recorded in tree-ring series
(Figures 3a and b). On average, the annual number of GS
reached 4.1 over the period 1890–2017. The largest numbers
of GS are observed in 1948 (38 GDs), 1949 (18), 2001 (18),

Table 1. Overview of growth distrubances found in the tree-ring
series

GD type No. Percentage

Growth suppression (GS) 351 66.0
Injury 167 31.4
Growth release (GR) 13 2.4
Compression wood (CW) 1 0.2
Total 532 100.0
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2003 (36), and 2007 (15). For the period 1930–2017, charac-
terized by continuous rockfall activity, the decadal frequency
of GS is largest between 2000 and 2009 (10.7 events year�1),
whereas the smallest frequency is computed between 1930
and 1939 (1.5 events year�1). At the multidecadal scale, no
clear trend could be identified in the GS series. The second re-
construction included only GD other than GS. As a conse-
quence, 354 GS were excluded from the second
reconstruction (called R2) (Figures 3a and b). According to this
restricted dataset, 1.38 events occurred each year over the pe-
riod 1890–2017, and a clear trend exists in the reconstruction
as decadal frequencies increase from 0.6 events year�1 in
1930–1939 to 3.2 events year�1 in 2010–2017. Since 1958
(i.e. the beginning of meteorological series), 2.34 events were,
on average, retrieved each year from the tree-ring series. The
decades 1960–1969 (1.4 events year�1) and 2000–2009 (1.6
events year�1) are characterized by the lowest frequencies of
impact. By contrast, rockfall activity increased to 2.8
events year�1 between 1975 and 2000. Maximum annual fre-
quencies of impacts were recorded in 1960 (6 injuries), 1977
(5), 1981 (5), 1984 (5), 1995 (5), and 2002 (6). Conversely, no
injuries could be retrieved with dendrogeomorphic analyses
for 1958–9, 1967, 1971, 1988, 2001, 2003, and 2005. Interest-
ingly as well, reconstructions R1 and R2 are not significantly
correlated (r =0.08, p > 0.05) between each other over the pe-
riod 1958–2017, and injuries were missing completely in sev-
eral of the years characterized by a large number of GS
(1949, 1988, 2001, and 2003).

Estimation of missed events using the CIP approach

Three diameter classes dominate among the P. nigra trees found
within the plot, namely<8, 8–18, and>18 cm. As most trees at

the site were planted at the turn of the 20th century, one may
assume that differences in diameters result from differences in
local conditions such as competition, soil, or rockfall activity.
As a consequence, three diameter-age regression models were
developed for the P. nigra trees at Valdrôme as a function of di-
ameter, as given by the following equations:

Aget ¼ �0:0049 Dtð Þ2 þ 1:37 Dtð Þ þ 7:78 diam > 18 cm;ð
n ¼ 14; r2 ¼ 0:87; p < 0:001

�

(3)

Aget ¼ �0:0102 Dtð Þ2 þ 1:95 Dtð Þ þ 12:05 diam 8–18 cm;ð
n ¼ 24; r2 ¼ 0:81; p < 0:001

�
(4)

Aget ¼ �0:0729 Dtð Þ2 þ 4:75 Dtð Þ þ 6:93 diam < 8 cm;ð
n ¼ 14; r2 ¼ 0:93; p < 0:001

�

(5)

where Aget represents the estimated age for each tree (t), andDt

represents the diameter of tree t. Based on these models and for
a mean block diameter of 30 cm, the CIP exceeded the 0.5
threshold – proposed by Trappmann et al. (2013) based on em-
pirical considerations – for reliable reconstructions in 1924
(0.52). For the period 1958–2017 covered by the meteorologi-
cal series, the CIP increased continuously from 0.85 to 0.88.
We adjusted both rockfall reconstructions (R1, R2) according
to Equation (2), so as to account for missing events: in total,
51 and 24 rockfall events were missed over the period 1958–
2017 in R1 and R2, respectively. After the CIP correction, the
largest number of potential events are observed in 1988 (14),

FIGURE 3. Reconstruction R1 (a, b; based on growth suppression, upper panel) and R2 (c, d; based on other growth disturbances, lower panel),
expressed as the manual corrected number of impacts per year (a, c) and as z-scores computed over the 1958–2017 periods (b, d). [Colour figure
can be viewed at wileyonlinelibrary.com]
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2003 (41), 2007 (17) in R1, and in 1960 (7), 1987 (7), 2002 (7)
in R2 (Figure 3c). After transformation into z-scores (Figures 3c
and d), 5 years (1988, 1997, 2001, 2003, 2007) were found
with high rockfall activity in R1. In the case of R2, 9 (1959,
1961, 1967, 1971, 1978, 1988, 2001, 2003, 2005) and 13
(1960, 1970, 1975, 1977, 1981, 1984, 1987, 1994, 1995,
1999, 2002, 2016, 2017) years were classified with low and
high rockfall activity, respectively. Interestingly, 1997, 2001,
and especially 2003 – all pointing to extremely frequent GS
in R1 – are characterized by a nearly complete absence of inju-
ries in R2.

Correlations between rockfall activity and
meteorological co-variables

Over the period 1958–2017 covered by meteorological re-
cords, correlations between rockfalls as reconstructed in R1
and 10-day to annual variables are synthesized in Figure 4.
Weak r values (r > 0.38, p < 0.001) were computed between

GS records and precipitation totals for the time window of
November 11–20 in the year preceding the rockfall event
(n � 1) (Figure 4a). Comparable correlations were retrieved be-
tween R1 and the number of very heavy (RR20, p> 20mm) pre-
cipitation events during early autumn of year n � 1 (Figures 4b
and c). Similarly, R1 is only positively (r =0.46, 0.43, p < 0.01)
correlated with mean and maximum temperatures over early
July (i.e. July 1–10; Figures 4d and e). Significant correlations
were detected neither with minimal temperatures, temperature
variations, or freeze–thaw cycle series, nor with meteorological
records aggregated over more than 10 days. Similarly, we were
unable to observe a unique pattern during the extreme years of
1988, 1997, 2001, 2003, or 2007 during which above-average
frequencies were observed in the occurrence of GS (Figure 5):
above-average precipitations were observed in 1988 (Figure 5a)
and 2001 (Figure 5e), whereas dry conditions prevailed in
spring and summer 2003 (Figure 5g). Similarly, the heatwave
of spring and summer 2003 is clearly visible in Figure 5h,
whereas negative temperature anomalies were observed during
the growing season of 1997 (Figure 5d).

FIGURE 4. Correlations between R1 (reconstruction including only GS) and metereological covariables computed over 1 to 36 consecutive 10-day
periods. [Colour figure can be viewed at wileyonlinelibrary.com]
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Interestingly, the correlation matrices differ largely as soon as
GS are removed from the reconstructions. With respect to pre-
cipitation totals, reconstruction R2 is positively and signifi-
cantly (p < 0.01) correlated with precipitation totals during
the growing season (n), computed from 10 (September 11–20)
to 150 days (centred on July 1–15) (Figure 6a). The highest cor-
relation coefficient (r =0.49, p < 0.001) is computed between
R2 and precipitation totals (1958–2017) over a 30-day window
centred on September 1–10. Comparable patterns are observed
between rockfall activity in R2 and the number of summer rain-
fall events >10mm (RR10, Figure 6b) and >20mm (RR20,
Figure 6c). The number of rainfall events >10mm (r =0.43,

p <0.001) and >20mm (r =0.46, p < 0.001) computed over
30 days centred on September 1–10 are the parameter that is
most highly correlated with R2. Lower, yet still significant, cor-
relations are computed between R2 and rainfall intensities
(RR10, RR20) over longer time periods (24–36 consecutive
10-day series). With regard to temperature, minimum tempera-
tures and temperature variations appear as the most robust
drivers of rockfall activity in reconstruction R2 (Figures 6d
and e). Negative correlations (with r values ranging between
�0.4 and �0.46, p < 0.01) have been computed between R2
and minimum temperatures over 100 and 200days, centred
on June 1–10 in the first and July 21–30 in the latter case;

FIGURE 5. Correlation between R1, precipitation (left panel) and temperature (right panel) anomalies (z-scores) observed in 1988 (a, b), 1997 (c, d),
2001 (e, f), 2003 (g, h), and 2007 (i, j). These years are characterized by extremely large numbers of growth suppressions detected in R1. [Colour figure
can be viewed at wileyonlinelibrary.com]
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whereby correlations suggest reduced rockfall activity during
warm conditions in early spring to late summer (Figure 6d).
Similarly, increasing temperature variations during autumn
and early winter (n � 1) are synchronous, with an increase in
impacts recorded in the tree-ring series during the subsequent
growing season (Figure 6e). By contrast, no significant correla-
tion was found between rockfall activity, maximum tempera-
tures, or the number of freeze–thaw cycles irrespective of (1)
the thresholds considered for frost events and (2) the number
of 10-day periods included in the analysis.
Meteorological data which significantly correlated with R2

were then taken into consideration as independent variables
during the multiple regression analyses. To limit the number
of variables and potentially high multicollinearity in the model,
potential regressors were selected using five correlation matri-
ces, one for each meteorological parameter, computed for the
variables showing the strongest correlations with rockfall activ-
ity (Figures 7a–e). In total, 10 variables (given in red in Figures 7
and 8) were retained, namely precipitation totals over 60 and

110days centred around July 21–30 and August 21–30, the
number of rainfall events >10mm computed over 70 and
350 consecutive days centred around August 11–20 and March
21–30, the number of rainfall events >20mm for 60 (August
21–30) and 140days (July 11–20), the minimum temperatures
computed for 30 and 150days centred around August 1–10
and July 11–20, as well as temperature variations computed
over 30 (April 21–30) and 90 days (November, n �1, 11–20).

On the basis of a stepwise selection procedure, four variables
were retained in the more parsimonious model that minimizes
the AIC with regression coefficients of 0.27, 0.22, �0.14, and
0.26, respectively, for daily summer precipitation (computed
over 60 days centred on August 21–30), the annual number of
rainfall events >10mm (350 days, March 21–30), minimum
temperatures (30 days, August 1–10), as well as temperature
variations (90 days, November, n � 1, 11–20). Each variable
is significant at p < 0.05. The VIFs, ranging between 1.02 for
temperature variations and 1.3 for precipitation totals, show
the absence of redundancy between predictor variables. The

FIGURE 6. Correlations between R2 (reconstruction including only scars on compression wood) and meteorological covariables computed over 1
to 36 consecutive 10-day periods. [Colour figure can be viewed at wileyonlinelibrary.com]
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model built on the basis of these variables explains 41% of the
variance of rockfall activity, whereas the overall coefficient for
predicted versus observed variance equals r =0.65 (Figures 10a
and b). Boxplots in Figures 9a–d show the distribution of the
meteorological variables included in the multiple regression
model in relation to the different classes of rockfall activity.
ANOVA shows significant differences (p < 0.05) between clas-
ses for summer daily precipitations (computed over 60 days
centred around August) and the annual number of rainfall
events >10mmday�1 (350 days, March 21–30) (Figures 9a
and b). Differences are not significant for minimum summer
and fall temperatures (Figures 9c and d).

Discussion

Novelty of the rockfall reconstruction approach

Over the last decades, several approaches have been used in
mountain regions to document the timing, frequency, and mag-
nitude of rockfall events and to identify potential triggers of
rockfall. In the source areas of rockfall, devices have been used
to detect weathering such as extensometers or crackmeters

(Matsuoka, 2019; Weber et al., 2019), as well as microseismic
or acoustic sensors (Amitrano et al., 2012) combined with
micro-meteorological monitoring (Matsuoka, 2019). Similarly,
rockfall frequency and failure have been estimated with traps
(Sass, 2005), terrestrial laser scans (Rabatel et al., 2008;
D’Amato et al., 2016), or remote digital time-lapse camera sys-
tems (Kellerer-Pirklbauer and Rieckh, 2016). Yet, and although
these studies have clear merits in exploring rockfall initiation
and triggers in great detail (Matsuoka, 2019), rockfall monitor-
ing rarely exceeds a few years at single sites (Weber
et al., 2019), thus precluding detetion of triggers, medium- to
long-term drivers, triggers, or thresholds involved in rockfall
processes and/or changes thereof. On forested slopes, the anal-
ysis of GDs in tree-ring series (Stoffel et al., 2005) has been used
repeatedly to provide long-term, seasonally to annually re-
solved and – at least in theory – continuous records of past
rockfall activity. Yet, so far, with the exception of Perret
et al. (2006), Šilhán et al. (2011), or Zielonka and Wrońska-
Wałach (2019), these proxy reconstructions have not yet inves-
tigated potential meteorological triggers of process activity. In
addition, the latter studies did not – or only partly – account
for non-stationarities in reconstructions related to (1) the con-
tinuous reduction in the number, diameter, and age (Šilhán

FIGURE 7. Correlation matrices computed between the precipitation totals (a), the number of summer rainfall events >10mm (b) and >20mm (c),
minimal temperature (d) and temperature variations (e) using data from R2. Parameters given in red have later been included in the multiple regression
model. [Colour figure can be viewed at wileyonlinelibrary.com]
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et al., 2013) of trees impacted by rockfall as one goes back in
time, (2) the decline in the number of potentially recordable
GDs, (3) the complex detection of old, overhealed scars be-
coming virtually invisible on the stem surface (Trappmann
and Stoffel, 2015), as well as (4) potential interferences be-
tween exogenous factors (e.g. climatic driver of tree growth, in-
sect outbreaks affecting tree health) and rockfall activity.
Indeed, Favillier et al. (2017b) evidenced that interferences be-
tween geomorphic process activity, ecological signals, and cli-
matic conditions can leave similar signals in the tree-ring
records, and that particular care needs to be taken when it
comes to the separation of signals from noise. In particular,
their study underlined the critical role of prolonged phases of
growth suppression (GS). These signals have frequently been
attributed to snow avalanche (or rockfall) activity, but were in
fact induced by climatic extremes in the form of cold summers
and/or prolonged droughts, thereby leading to a sustained de-
crease of radial growth (Battipaglia et al., 2009; Lévesque
et al., 2013; George et al., 2015). To minimize these biases
and assess the robustness of our reconstruction, we (1) selected

trees in a protection forest planted at the turn of the 20th cen-
tury so as to limit trends in rockfall activity related to a decreas-
ing number of trees available for reconstruction. As a
consequence, sample depth increased only slightly from 145
trees in 1918 to 179 trees in 2017 and from 175 to 179 trees be-
tween 1958 and 2017 (for which we also have meteorological
records); (2) mapped all trees within the plot to optimize the se-
lection of sampled trees and accurately estimate the evolution
of the coefficient of interception over time (this
high-resolution mapping allowed quantification of a limited
evolution of the CIP as well as of the reliability of our recon-
struction; we find that the selected trees theoretically intercept
between 87 and 91% of all rockfall activity between 1958
and 2017); and (3) carefully analysed the influence of GD by
creating two reconstructions including GS (R1) or only CW
and injuries (R2) of the anomalies recorded in the tree-ring se-
ries. In the case of R2, we specifically excluded growth sup-
pressions (GS) for reasons stated earlier. The complete
absence of any statistically significant relationships between
R1 and R2 (the latter includes only CW and injuries) suggests

FIGURE 8. Correlations between R3 and the 10 meteorological variables retained in the multiple linear regression. [Colour figure can be viewed at
wileyonlinelibrary.com]
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that the two reconstructions portray different signals (and
noise).

Isolation of rockfall signals in tree-ring series

A vast majority of past rockfall reconstructions included growth
suppressions considered as indicators of decapitation or branch
loss caused by rockfall impacts (Šilhán et al., 2011; Stoffel
et al., 2011; Franco-Ramos et al., 2017), realized with Pinus
trees, a species that is known for its sensitivity to droughts (We-
ber et al., 2007; Gruber et al., 2010). To date, and with the ex-
ception of excluding larch budmoth years and related GS as
possible rockfall events (Stoffel et al., 2005; Schneuwly and

Stoffel, 2008a,b; Trappmann et al., 2014; Morel et al., 2015),
no study has examined potential interferences between the
geomorphic signal (related to rockfall) and other exogeneous
factors such as insect outbreaks and/or climatic extremes (e.g.
cold temperatures, drought) that are likely to cause GS (Favillier
et al., 2017a). Here, the absence of a clear synchronicity be-
tween R1 and R2 pleads for the existence of different drivers
of growth in trees. The comparison of recorded GD in recon-
struction R1 – mostly GS – with meteorological series from
the SAFRAN database failed to identify parameters considered
as being most relevant in terms of driving rockfall dynamics
(Luckman, 1976; Ishikawa et al., 2004; Matsuoka, 2008) (i.e.
temperatures [minimal, mean, maximal, variations], freeze–
thaw cycles or precipitation [totals and intensities]). Given the

FIGURE 9. Boxplot of meteorological variables included in the multiple regression model [summer precipitations (a), number of rainfall events
>10mm (b), summer minimum temperatures (c), and autumn temperature variations (d)] relative to years with low (<�1 z-score), medium (1> z-
score>�1), and high (>1 z-score) rockfall activity. [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 10. Relation between rockfall activity, summer precipitations, and the number of rainfall events (a); observed annual number of rockfalls vs
rockfall activity predicted by the multiple regression model (b). [Colour figure can be viewed at wileyonlinelibrary.com]
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sensitivity of P. nigra to drought, especially in Mediterranean
environments (Martin-Benito et al., 2013), one can hypothesize
that dry conditions could explain the high frequency of GS ob-
served during, for example, the 2003 heatwave (Figures 5g and
h), in 1949 (Sanson and Pardé, 1950), and 1997 (Figures 5c and
d). By contrast, above-average precipitation totals during the
growing season in 1988 (Figure 5a), 2007 (Figure 5i), and espe-
cially 2001 (Figure 5e) do not allow us to validate the drought
hypothesis further. Interestingly, the latter years – but also
2003 – coincide with years during which pine processionary
moth (Thaumetopoea pityocampa) outbreaks have been re-
corded in the Southern French Alps (Bouhot-Delduc, 2005;
Robinet et al., 2014; Li et al., 2015). As defoliation caused by
caterpillars can cause a significant decrease in P. nigra radial
growth over several years (Roques, 2015), we cannot exclude
that the series of narrow rings observed in 2001, 2003, and
2007 could indeed be the result of moth outbreaks. In any case,
however, and given (1) these potential interferences, (2) the dif-
ficulty of extracting a clear signal from R1, and (3) the absence
of a correlation between R1 and R2 (where only GD that are
clearly related to rockfall activity were included; i.e. injuries
and compression wood), we encourage future studies to con-
sider GS records very carefully before possibly including them
in dendrogeomorphic reconstructions of rockfall activity.

Meteorological drivers of rockfall activity at
Valdrôme

The comparison between R2 and meteorological parameters
from the SAFRAN database demonstrates that precipitation to-
tals and intense rainfall events were the main drivers of rockfall
activity at Valdrôme over the period 1958–2017. At the same
time, correlation matrices failed to identify the influence of
freeze–thaw cycles and temperature variations on rockfall activ-
ity. In detail, our multiple regression model – designed to limit
redundant variables – suggests that rockfall frequency at the site
increases with above-average summer precipitation and intense
rainfall, as these events probably raise water pressure in rock
joints or can lead to the lubrification of joints (Matsuoka, 2019).
Results obtained for the Valdrôme site are thus in line with those
obtained by D’Amato et al. (2016) using LiDAR data from the
calcareous Chartreuse Massif, located 90 km north of Valdrôme.
In their study, D’Amato et al. (2016) reported that rockfall activ-
ity increased by a factor of 26 when mean rainfall intensity
exceeded 5mmh�1. Similarly, Delonca et al. (2014) showed
that, on the basis of historical inventories, 15mm of cumulative
rainfall over 3 days doubled the probability of a rockfall occur-
ring at their study site in Burgundy (France). In the CanadianCor-
dillera, Macciotta et al. (2015) revealed that over the period
1985–2013, a vast majority of rockfalls recorded by patrol cars,
train crews, and maintenance crews along a railway section
were driven by 3-day antecedent precipitation. Finally, our re-
sults are also consistent with tree-ring reconstructions from the
Tatra Mountains, where cumulative precipitation in September
andOctober (n� 1) andMarch (n) were themain drivers of rock-
fall activity between 1950 and 2014 (Zielonka and Wrońska-
Wałach, 2019). Our results, by contrast, differ from
dendrogeomorphic reconstructions realized by Perret
et al. (2006) and Šilhán et al. (2011) who could not evidence
any unequivocal positive or negative correlations between rock-
fall rates and precipitation in the Flysch Carpathians and the
Swiss Prealps. By contrast, no relation was found between re-
construction R2 and freeze–thaw cycles, although these have
undoubtedly been demonstrated as a key driver of rockfall in a
large body of monitoring literature (Matsuoka and Sakai, 1999;

Frayssines and Hantz, 2006; D’Amato et al., 2016;
Matsuoka, 2019). Our analysis does not therefore differ fully
from existing tree-ring reconstructions (1) reporting only weak,
albeit significant positive correlations between reconstructed
rockfall activity and numbers of days with temperature transi-
tions around freezing (Šilhán et al., 2011; Zielonka and
Wrońska-Wałach, 2019) or (2) attributing increasing decadal
rockfall frequencies derived from tree-ring series during warm
20th-century winters to a more frequent occurrence of freeze–
thaw cycles that would have helpedweathering in a rock cliff lo-
cated at 1250m a.s.l. (Perret et al., 2006). Finally, and despite
the high resolution of the meteorological dataset and the strin-
gency of our reconstruction procedure, our multiple regression
model can only account for 41% of the variance observed in
rockfall activity. In other words, about 60% of the interannual
rockfall variations are not explained by meteorological vari-
ables. This value is comparable to that reported by Perret
et al. (2006) (r2 = 0.43 for temperatures over the 20th century).
It exceeds the correlations obtained by Šilhán et al. (2011) be-
tween rockfall rates and different monthly, seasonal, and annual
precipitation totals and the number of days during which tem-
perature passed the zero-degree curtain (r =0.3; 1931–2008).
By contrast, the multiple linear regression model proposed by
Zielonka and Wrońska-Wałach (2019) includes cumulative
rainfall in March, June, July, September, and October, as well
as average temperature in January and May, and explains 53%
of rockfall variance. Multiple causes have been discussed to ex-
plain the limited correlations obtained between rockfall recon-
structions and meteorological co-variables. One reason
certainly resides (1) in the quality of tree-ring reconstructions
that can represent ‘real’ rockfall activity only partly at best and
more generally still suffer from limitations in capturing process
activity fully (Stoffel andCorona, 2014). In addition, (2)microcli-
matic variations and effects related to microtopography of cliffs
and their impact on rockfall activity (Matsuoka and Sakai, 1999;
Schneuwly and Stoffel, 2008b;Matsuoka, 2019) will not be cov-
ered fully by the meteorological datasets and the geomorphic
approaches used in this study. Furthermore, (3) elevation differ-
ences between the meteorological stations and the rockwalls
(Perret et al., 2006; Zielonka and Wrońska-Wałach, 2019) can-
not obviously be excluded at Valdrôme. By contrast, the impacts
of earthquake shaking, susceptible to result in abundant
co-seismic rockfall activity close to the epicentre location
(≈15 km, for a magnitude M = 5–7; Stoffel et al., 2019), cannot
be completely ruled out but its effect on rockfall at Valdrôme is
probably very limited as the region is considered to have very
low seismicity according to information provided by FrenchNa-
tional Territory (map available at https://www.georisques.gouv.
fr/articles/zonage-sismique-de-la-france; accessed 3 December
2019).

Conclusions

Over the last two decades, several dendrogeomorphic studies
have reconstructed rockfall activity in mountainous regions
worldwide. Paradoxically, reconstructed rockfall activity has
only rarely been compared with climatic data to identify poten-
tial meteorological triggers of process activity. In this paper, we
used highly resolved mapping of a protection forest planted at
the turn of the 20th century which allowed minimizing poten-
tial biases and precisely quantifying uncertainties related to de-
creasing sample size back in time. In methodological terms, we
demonstrate that the inclusion of growth suppression as a sig-
nal of past rockfall activity is not recommended in Pinus sp.
trees as it will result in very limited synchronicity between re-
constructions developed in all GDs (R1) and those where GS
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events are excluded (R2). Likewise, we were unable to find a
clear meteorological trigger in R1, which calls for the inclusion
of injures and compression wood only in future
dendrogeomorphic studies focusing on pine trees. Relation-
ships between reconstruction R2 and meteorological variables
computed over 10 to 360 consecutive days enabled identifica-
tion of summer precipitation totals and annual number of rain-
fall events >10mm as the main drivers of rockfall activity at
Valdrôme. Despite the stringency of the procedure developed
here and the high spatio-temporal resolution of the SAFRAN
database, the correlation between rockfall activity and meteo-
rological records remains comparable to those reported in pre-
vious tree-ring reconstructions. We explain this limited
correlation by the multiplicity of factors susceptible to trigger
rockfall events. In that sense, we plead for more systematic
coupling between dendrogeomorphic studies and rockfall as
well as microclimatic monitoring of sites in the future.
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