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Functional inequalities for perturbed measures with

applications to log-concave measures and to some Bayesian problems

One can also introduce the L 1 Poincaré constant C C (µ) of µ is the best constant such that, for all smooth f , µ(|f -µ(f )|) ≤ C C (µ) µ(|∇f |) . Replacing µ(f ) by m µ (f ) any µ median of f defines another constant, the Cheeger constant

C ′ C (µ) which satisfies 1 2 C C ≤ C ′ C ≤ C C .
It is well known [START_REF] Ledoux | From concentration to isoperimetry: semigroup proofs[END_REF] that L 1 and L 2 Poincaré constants are related by the following

C P (µ) ≤ 4 (C ′ C ) 2 (µ) ≤ 4 C 2 C (µ) . (1.3)
The Cheeger constant is connected to the isoperimetric profile of µ, see Ledoux [START_REF] Ledoux | Spectral gap, logarithmic Sobolev constant, and geometric bounds[END_REF].

The initial goal of this work is to study the transference of these inequalities to perturbed measures. Namely, let µ F = Z -1 F e -F µ (1.4) be a new probability measure. The question is: what can be said for the Poincaré or the log-Sobolev constant of µ F in terms of the one of µ and the properties of F ? The question includes explicit controls, not only the finiteness of the related constants.

This question is of course not new and some results have been obtained for a long time. We shall only recall results with explicit controls on the constants. The most famous is certainly the following general result of Holley and Stroock (see for example [START_REF] Bakry | Analysis and Geometry of Markov diffusion operators[END_REF]) Theorem 1.1. If F is bounded, then C P (µ F ) ≤ e OscF C P (µ), and C LS (µ F ) ≤ e OscF C LS (µ).

Other results, where the constants are not easy to trace, have been obtained in [START_REF] Aida | Logarithmic Sobolev inequalities and spectral gaps: perturbation theory[END_REF] (also see [START_REF] Cattiaux | A pathwise approach of some classical inequalities[END_REF] section 7). The result reads as follows: if µ satisfies a log-Sobolev inequality, and e |∇F | 2 belongs to all the L p (µ) for p < +∞, then µ F also satisfies a log-Sobolev inequality. In particular the result holds true if F is Lipschitz. We shall revisit this result in subsection 2.2. For the Poincaré inequality, some general results have been obtained in [START_REF] Gong | Spectral gap of positive operators and applications[END_REF] (see e.g. [START_REF] Cattiaux | A pathwise approach of some classical inequalities[END_REF] proposition 4.4 for a simplified formulation).

Most of the other known results assume some convexity property. We shall say that µ is log-concave if V is a convex function defined on some convex subset U . Since V can be infinite, this definition contains in particular the uniform measure on a convex body. If V is strongly convex, i.e. for all x ∈ R n , u , Hess V (x) u ≥ ρ |u| 2 , where ., . denotes the euclidean scalar product and Hess V (x) the Hessian of V computed at point x, a consequence of Brascamp-Lieb inequality ( [START_REF] Brascamp | On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation[END_REF]) is the inequality .5) This relation was extended to more general situations and is often called the Bakry-Emery criterion or the curvature-dimension criterion CD(ρ, ∞) (see [START_REF] Bakry | Analysis and Geometry of Markov diffusion operators[END_REF] for a complete description of curvature-dimension criteria). Some improvements for variable curvature bounds are contained in [START_REF] Cattiaux | Self-improvement of the Bary-Emery criterion for Poincaré inequalities and Wasserstein contraction using variable curvature bounds[END_REF]. Recall that the Bakry-Emery approach allows to show that in the strongly convex situation C LS (µ) ≤ 2/ρ .

C P (µ) ≤ 1/ρ . ( 1 
(1.6)

Combining these results with the Holley-Stroock perturbation result shows that one can relax the strong convexity assumption in a bounded subset (i.e. assume strong convexity at infinity only). That C P (µ) < +∞ for general log-concave measures was first shown in 1999 by S. Bobkov in [START_REF] Bobkov | Isoperimetric and analytic inequalities for log-concave probability measures[END_REF]. Another proof was given in [START_REF] Bakry | A simple proof of the Poincaré inequality for a large class of probability measures[END_REF] using Lyapunov functions, as introduced in [START_REF] Bakry | Rate of convergence for ergodic continuous Markov processes : Lyapunov versus Poincaré[END_REF].

Once one knows that C P (µ) is finite, a particularly important problem is to get some explicit estimates. A celebrated conjecture due to Kannan, Lovász and Simonovits (KLS for short) is that there exists a universal constant C such that

σ 2 (µ) ≤ C P (µ) ≤ C σ 2 (µ) (1.7)
where σ 2 (µ) denotes the largest eigenvalue of the Covariance matrix Cov i,j (µ) = Cov µ (x i , x j ) and µ is log-concave. The left hand side is immediate. Since, a lot of works have been devoted to this conjecture, satisfied in some special cases. We refer to the book [START_REF] Alonso-Gutierrez | Approaching the Kannan-Lovasz-Simonovits and variance conjectures[END_REF] for references before 2015, and to [START_REF] Cattiaux | On the Poincaré constant of log-concave measures[END_REF] for more information on the Poincaré constant of log-concave measures. Up to very recently the best general known result was

C P (µ) ≤ C n 1 2 σ 2 (µ) (1.8)
as a consequence of the results by Lee and Vempala ([32]). It has been very recently announced (see [START_REF] Chen | An almost constant lower bound of the isoperimetric coefficient in the KLS conjecture[END_REF] Theorem 1) a drastically better bound namely the existence of an universal constant C such that C P (µ) ≤ e C √ ln(n) ln(1+ln(n)) σ 2 (µ) .

(1.9) The dimension dependence of such results is what is important. Recall that for n = 1 one knows that C ≤ 12 according to Bobkov's result (see [START_REF] Bobkov | Isoperimetric and analytic inequalities for log-concave probability measures[END_REF] corollary 4.3).

In this framework, complementary perturbation results have been shown

Theorem 1.2.

(1) (Miclo, see lemma 2.1 in Bardet et al [START_REF] Bardet | Functional inequalities for gaussian convolutions of compactly supported measures: explicit bounds and dimension dependence[END_REF]) If HessV ≥ ρ Id for some ρ > 0 and F is L-Lipschitz then

C P (µ F ) ≤ 2 ρ e 4 √ 2n/π L 2 ρ 2 .
(2) (see [START_REF] Cattiaux | Semi log-concave Markov diffusions[END_REF] example (3) section 7.1) With the same assumptions as in [START_REF] Aida | Logarithmic Sobolev inequalities and spectral gaps: perturbation theory[END_REF],

C P (µ F ) ≤ 1 2 2L ρ + 8 ρ 2 e L 2 /2ρ . (3) (Barthe-Milman [9] Theorem 2.8) If µ F is log-concave and µ F (e -F > K µ(e -F )) ≤ 1 8 then C P (µ F ) ≤ C 2 (1 + ln K) 2 C P (µ) . Here C is a universal constant.
The final result (3) is the most general one obtained by transference in the log-concave situation. [START_REF] Barthe | Transference principles for log-sobolev and spectral-gap with applications to conservative spin systems[END_REF] contains a lot of other results in this direction, [START_REF] Cattiaux | On the Poincaré constant of log-concave measures[END_REF] contains alternative, simpler but worse results. Notice that (3) is wrongly recalled in [START_REF] Cattiaux | On the Poincaré constant of log-concave measures[END_REF] where a square is missing. The remarkable property of (3) or [START_REF] Alonso-Gutierrez | Approaching the Kannan-Lovasz-Simonovits and variance conjectures[END_REF] is that the bound is dimension free (but actually dimension is hidden either in the Lipschitz constant or in the choice of K in most of the generic examples). One can find various other perturbation results in [START_REF] Bakry | Perturbations of functional inequalities using growth conditions[END_REF] relying on growth conditions, and usually stronger inequalities to get weaker ones.

In [START_REF] Cattiaux | On the Poincaré constant of log-concave measures[END_REF] we have studied several properties of the Poincaré constant for log-concave measures in particular the transference of these inequalities using absolute continuity, distance, mollification. This study was based on the fact that weak forms of the Poincaré inequality imply the usual form. A similar result was first stated by E. Milman ([34]) and the section 9.2 in [START_REF] Cattiaux | On the Poincaré constant of log-concave measures[END_REF] is devoted to extensions of E. Milman's results. Actually, in subsection 9.3.1 of [START_REF] Cattiaux | On the Poincaré constant of log-concave measures[END_REF] devoted to the transference via absolute continuity we missed the point. As explained in [START_REF] Barthe | Transference principles for log-sobolev and spectral-gap with applications to conservative spin systems[END_REF] the right way to obtain good results is to use the concentration properties of the initial measure (see the proof of Theorem 2.7 in [START_REF] Barthe | Transference principles for log-sobolev and spectral-gap with applications to conservative spin systems[END_REF]). The main (only) default in [START_REF] Milman | On the role of convexity in isoperimetry, spectral-gap and concentration[END_REF][START_REF] Barthe | Transference principles for log-sobolev and spectral-gap with applications to conservative spin systems[END_REF] is that these papers obtain results up to universal constants that are difficult to trace. Thanks to the weak Poincaré inequalities used in [START_REF] Cattiaux | On the Poincaré constant of log-concave measures[END_REF], it is possible to obtain explicit bounds for these universal constants, sometimes up to a small loss. Why are we so interested in numerical bounds ?

The motivation of this note came from a statistical question. Indeed, log-concave distributions recently deserve attention in Statistics, see e.g. the survey [START_REF] Saumard | Log-concavity and strong log-concavity: a review[END_REF]. Our starting point was a question asked to us by S. Gadat on the work [START_REF] Dalalyan | Sparse regression learning by aggregation and Langevin Monte-Carlo[END_REF] by Dalalyan and Tsybakov on sparse regression learning, we shall recall in more details in section 5. The question should be formulated as follows. Let

µ F = Z -1 F e -F µ (1.10) 
be a new probability measure. Assume that µ is log-concave and that F is convex (logconcave perturbation of a log-concave measure). Is it possible to control C P (µ F ) by C P (µ) at least up to an universal multiplicative constant ? Since in a sense µ F is "more" log-concave than µ, such a statement seems plausible, at least when the "arg-infimum" of F coincindes with the one of µ.

A first partial answer was obtained by F. Barthe and B. Klartag in [START_REF] Barthe | Spectral gaps, symmetries and log-concave perturbations[END_REF] Theorem 1:

Theorem 1.3. For n ≥ 2, choose V (x) = n i=1 |x i | p for some 1 ≤ p ≤ 2,
and assume that F is an even convex function then

C P (µ F ) ≤ C (ln(n)) 2-p p C P (µ) ,
where C is some universal constant.

Of course here C P (µ) does not depend on the dimension since µ is a product measure and

C P (µ 1 ⊗ ... ⊗ µ k ) ≤ max j=1,...,k C P (µ j ) .
Unfortunately this result does not apply to sparse regression as in [START_REF] Dalalyan | Sparse regression learning by aggregation and Langevin Monte-Carlo[END_REF], where F is not even. We will thus first study perturbation for log-concave measures in section 3 and then see how it can be applied to the aforementioned statistical question. For the latter explicit numerical bounds are of key interest.

We will now describe the contents of the present paper.

In the next section we describe general perturbation results both for the Poincaré and the log-Sobolev constants. The naive method we are using does not seem to have been explored with the exception of some results for log-Sobolev contained in [START_REF] Aida | Logarithmic Sobolev inequalities and spectral gaps: perturbation theory[END_REF][START_REF] Gong | Spectral gap of positive operators and applications[END_REF][START_REF] Cattiaux | Hypercontractivity for perturbed diffusion semigroups[END_REF]. The results can be summarized as follows: for a not too big Lipschitz perturbation F , µ F one may explicitly compare C P (µ F ) and C P (µ), the same for the log-Sobolev constants. If F is C 2 one can replace the Lipschitz norm by a bound for AF -1 2 |∇F | 2 . In subsection 2.3 we give a surprisingly simple application to mollified measures, extending part of the results in [START_REF] Bardet | Functional inequalities for gaussian convolutions of compactly supported measures: explicit bounds and dimension dependence[END_REF].

In section 3 we show how to improve these results when µ F is log-concave. We first study how to get explicit controls in the results obtained by Barthe and Milman [9] using concentration, by plugging our explicit results of [START_REF] Cattiaux | On the Poincaré constant of log-concave measures[END_REF]. We then transpose the results of the first section. For short, if in general one needs to control the uniform norm of ∇F , in the log-concave case it is enough to control its L 2 norm. As an immediate consequence, we obtain in subsection 4.1, explicit controls for the preconstants in results by Bobkov [START_REF] Bobkov | Isoperimetric and analytic inequalities for log-concave probability measures[END_REF]. The idea of proof is to consider µ(dx) = e -V (x) dx as a perturbation ν F of ν(dx) = e -V (x)-1 2 ρ|x| 2 dx that satisfies Bakry-Emery criterion. Actually the constants we are obtaining here are worse than the known ones, but the methodology will be used in the sequel. In subsection 4.2 we replace the gaussian perturbation |x| 2 by i |x i | p for p > 2. Using another result obtained in [START_REF] Barthe | Spectral gaps, symmetries and log-concave perturbations[END_REF] for unconditional measures, we recover the control C ln 2 (n) of the Poincaré constant of unconditional log-concave measures first obtained by Klartag ([28]) we already recovered in [START_REF] Cattiaux | On the Poincaré constant of log-concave measures[END_REF]. The advantage of our method is that it furnishes an explicit bound for the constant C.

The final section is devoted to the application to two statistical models: linear regression, following [START_REF] Dalalyan | Sparse regression learning by aggregation and Langevin Monte-Carlo[END_REF] and identification as in [START_REF] Gadat | On the cost of bayesian posterior mean strategy for log-concave models[END_REF]. In the linear regression case we give explicit controls for the rate of convergence of the Langevin Monte-Carlo algorithm proposed in [START_REF] Dalalyan | Sparse regression learning by aggregation and Langevin Monte-Carlo[END_REF], that are much better than the ones suggested therein.

2. Smooth perturbations in general.

Poincaré inequalities.

We shall follow a direct perturbation approach, as the one of [START_REF] Cattiaux | Hypercontractivity for perturbed diffusion semigroups[END_REF] section 4 used for the log-Sobolev constant. Since we shall use a similar but slightly different approach in the next sections we first isolate the starting point of the proof. For a smooth f and a constant a we may write

Var µ F (f ) ≤ µ F ((f -a) 2 ) = µ -1 (e -F ) µ ((f -a)e -1 2 F ) 2 .
We choose

a = µ f e -1 2 F µ e -1 2 F
so that the function (f -a) e -1 2 F is µ centered. One can thus use the Poincaré inequality for µ in order to get, for all a and all ε > 0,

µ F ((f -a) 2 ) ≤ C P (µ) |∇f - 1 2 (f -a) ∇F | 2 dµ F . (2.1)
One deduces, for all ε > 0,

µ F ((f -a) 2 ) ≤ C P (µ) (1 + ε -1 ) µ F (|∇f | 2 ) + 1 + ε 4 µ F ((f -a) 2 |∇F | 2 ) . (2.2) 
We thus may state Theorem 2.1. If F is L-Lipschitz on the support of µ and if there exists ǫ > 0 such that

s := 1 4 (1 + ǫ) C P (µ) L 2 < 1, then C P (µ F ) ≤ (1 + ǫ -1 )C P (µ) 1 -s .
Proof. Let a be as before. If F is L-Lipschitz we deduce from (2.2),

µ F ((f -a) 2 ) ≤ (1 + ε -1 ) C P (µ) µ F (|∇f | 2 ) + 1 + ε 4 C P (µ) L 2 µ F ((f -a) 2 ) , so that Var µ F (f ) ≤ µ F ((f -a) 2 ) ≤ (1 + ε -1 )C P (µ) 1 -1 4 (1 + ε) C P (µ) L 2 µ F (|∇f | 2 ) as soon as ∃ ε > 0 such that 1 4 (1 + ε) C P (µ) L 2 < 1.
This theorem is quite sharp. Indeed recall [START_REF] Bakry | Analysis and Geometry of Markov diffusion operators[END_REF]Prop. 4.4.2]: for every 1-Lipshitz function f and s < 4/C P (µ), one has µ(e sf ) < ∞. So in a sense our Lipschitz perturbation is nearly the largest one preserving that µ F is well defined.

Similarly for the Cheeger constant we may state

Proposition 2.2. If F is L-Lipschitz on the support of µ and C C (µ) L < 1, C ′ C (µ F ) ≤ C C (µ) 1 -C C (µ) L . Proof. First, for all a, µ F (|f -m µ F (f )|) ≤ µ F (|f -a|) = µ -1 (e -F ) µ |(f -a)e -F |
so that choosing this time a = µ f e -F µ (e -F ) we get the result for the Cheeger constant by using

µ F (|f -a|) ≤ C C (µ) (µ F (|∇f |) + µ F (|f -a| |∇F |)) ≤ C C (µ) µ F (|∇f |) + C C (µ) L µ F (|f -a|) .
The proof of these two statement is so simple that we cannot believe that the result is not known. In fact, the only comparable result we found, using seemingly more intricate techniques, is in [1, Th. 2.7] but with roughly a factor 16 in our favor and an explicit Poincaré constant.

What is remarkable is that we may even allow more general condition than F to be L-Lipschitz however assuming more regularity for F . It requires to be careful when µ is compactly supported.

Theorem 2.3. a) If V is of C 1 class and F is of C 2 class
and satisfies for some ε > 0

C P (µ) sup x AF - 1 2 |∇F | 2 + (x) ≤ 2(1 -ε) ,
where u + = max(u, 0), then

C P (µ F ) ≤ C P (µ) ε . b) Assume that U := {V < +∞} is an open subset with a smooth boundary ∂U and that V is of C 1 class in U . Let F be of C 2 class
and such that ∂ n F ≥ 0 on ∂U where ∂ n denotes the normal derivative pointing outward. If F satisfies for some ε > 0

C P (µ) sup x∈U AF - 1 2 |∇F | 2 + (x) ≤ 2(1 -ε) ,
where u + = max(u, 0), then

C P (µ F ) ≤ C P (µ) ε .
Proof. a) If one allows F to be more regular, one can replace (2.2) by another inequality. Indeed starting with (2.1) we have

µ F ((f -a) 2 ) ≤ C P (µ) |∇f - 1 2 (f -a)∇F | 2 dµ F ≤ C P (µ) µ F (|∇f | 2 ) - 1 2 µ F (∇(f -a) 2 . ∇F ) + 1 4 µ F ((f -a) 2 |∇F | 2 ) ≤ C P (µ) µ F (|∇f | 2 ) + 1 2 C P (µ) µ F (f -a) 2 A F F + 1 2 |∇F | 2 (2.3)
where

A F = A -∇F.∇ = ∆ -∇V.∇ -∇F.∇. Finally µ F ((f -a) 2 ) ≤ C P (µ) µ F (|∇f | 2 ) + 1 2 C P (µ) µ F (f -a) 2 A F - 1 2 |∇F | 2 . (2.4) b)
We have to start again with (2.1) where integration holds in U . This yields

µ F (f -a) 2 ) ≤ C P (µ) U |∇f - 1 2 (f -a)∇F | 2 dµ F (2.5) ≤ C P (µ) µ F (|∇f | 2 ) - 1 2 µ F ( ∇(f -a) 2 , ∇F ) + 1 4 µ F ((f -a) 2 |∇F | 2 ) .
To control the second term we have to use Green's formula to integrate by parts

µ F ( ∇(f -a) 2 , ∇F ) = -µ F ((f -a) 2 AF ) + µ ∂ F ((f -a) 2 ∂ n F ) (2.6)
where A = ∆ -∇V.∇, µ ∂ F denotes the surface measure on ∂U and ∂ n denotes the normal derivative pointing outward. The end of the proof is then similar.

Example 2.4. Let us describe a very simple case which illustrates the difference between Th.2.1 and Th.2.3. Let µ = 1 2 e -|x| dµ for which C P (µ) = 4, and consider F (x) = ρ|x| which is |ρ|-Lipschitz. An application of Th.2.1 shows that µ F still satisfies a Poincaré inequality if |ρ| < 1 thereas Th.2.1 implies that µ F satsfies a Poincaré inequality as soon as ρ > -1 which is optimal in this case.

♦ Example 2.5. For ρ ∈ R + consider µ ρ (dx) = Z -1 ρ e -V (x)-ρ 2 |x| 2 dx , i.e. F (x) = ρ 2 |x| 2
which is not Lipschitzian. We thus have

(AF - 1 2 |∇F | 2 )(x) = ρ n -x.∇V (x) - 1 2 ρ |x| 2 . Hence if x.∇V ≥ -K -K ′ |x| 2 , AF -1 2 |∇F | 2 ≤ ρ(n + K) + (K ′ -ρ/2)|x| 2 so that C P (µ ρ ) ≤ C P (µ) 1-ε as soon as ρ ≤ 2(1-ε) C P (µ) (n+K)
and ρ > K ′ . Thus a (very) small gaussian perturbation of a measure satisfying some Poincaré inequality is still satisfying some Poincaré inequality. Though natural, we do not know any other way to prove such a result. ♦

This result can be compared with the one in [START_REF] Gong | Spectral gap of positive operators and applications[END_REF] where µ is assumed to satisfy a log-Sobolev inequality. Actually, one can almost recover Gong-Wu result. Indeed, in (2.2) and (2.4), the final step requires to control a term in the form

µ F ((f -a) 2 G) .
According to the variational definition of relative entropy we have, for α > 0,

µ F ((f -a) 2 G) ≤ 1 α Ent µ F ((f -a) 2 ) + 1 α µ F ((f -a) 2 ) ln µ F (e αG ) . (2.7) 
Replacing F by F + ln(µ(e -F )) we may assume for simplicity that µ(e -F ) = 1. Defining

g = e -F/2 (f -a) we have µ(g 2 ) = µ F ((f -a) 2 ). Hence for all θ > 0, Ent µ F ((f -a) 2 ) = Ent µ (g 2 ) + µ(g 2 F ) ≤ C LS (µ) µ(|∇g| 2 ) + µ(g 2 F ) (2.8) ≤ C LS (µ) (1 + θ -1 ) µ F (|∇f | 2 ) + C LS (µ) 1 + θ 4 µ F ((f -a) 2 |∇F | 2 ) + µ F ((f -a) 2 F ) , if we follow the proof of Theorem 2.1, or Ent µ F ((f -a) 2 ) ≤ C LS (µ) µ F (|∇f | 2 ) + C LS (µ) µ F (f -a) 2 [AF - 1 2 |∇F | 2 ] + µ F ((f -a) 2 F )
(2.9) if we follow the proof of Theorem 2.3. Using again (2.7) we have obtained [START_REF] Aida | Logarithmic Sobolev inequalities and spectral gaps: perturbation theory[END_REF] if for some positive s and t,

1 s + 1 + θ 4t C LS (µ) := D 1 ≤ 1 then Ent µ F ((f -a) 2 ) ≤ 1 1 -D 1 C LS (µ) 1 + θ µ F (|∇f | 2 )+ + 1 1 -D 1 µ F ((f -a) 2 ) 1 s ln µ F (e sF ) + (1 + θ)C LS (µ) 4t ln µ F (e t|∇F | 2 ) .
(2) if for some positive s and t,

1 s + 1 t C LS (µ) := D 2 ≤ 1 then Ent µ F ((f -a) 2 ) ≤ 1 1 -D 2 C LS (µ) µ F (|∇f | 2 )+ + 1 1 -D 2 µ F ((f -a) 2 ) 1 s ln µ F (e sF ) + C LS (µ) t ln µ F e t[AF -1 2 |∇F | 2 ]
.

Finally we have

Proposition 2.6. We suupose here that µ satisfies a logarithmic Sobolev inequality and thus that C LS (µ)is finite. (i) Assume that for some positive s and t,

1 s + 1 + θ 4t C LS (µ) := D 1 ≤ 1 (2.10)
Assume in addition that there exist α > 0, ε > 0 and θ > 0 such that

T ′ 1 := (1 + ε)C P (µ) 4α T 1 < 1
where

T 1 := ln µ F (e α|∇F | 2 ) + 1 1 -D 1 1 s ln µ F (e sF ) + ln(µ(e -F )) + (1 + θ)C LS (µ) 4t ln µ F (e t|∇F | 2 ) .
Then,

C P (µ F ) ≤ 1 1 -T ′ 1 C P (µ) (1 + ε -1 ) + (1 + θ -1 )(1 + ε) 4α C LS (µ) .
(ii) Assume ome positive s and t,

1 s + 1 t C LS (µ) := D 2 ≤ 1 (2.11)
Assume in addition that there exists α > 0 such that

T ′ 2 := C P (µ) 2α T 2 < 1
where

T 2 := ln µ F (e α[AF -1 2 |∇F | 2 ] )+ 1 1 -D 2 1 s ln µ F (e sF ) + ln(µ(e -F )) + C LS (µ) t ln µ F e t[AF -1 2 |∇F | 2 ]
.

Then

C P (µ F ) ≤ 1 1 -T ′ 2 C P (µ) 1 + C LS (µ) α .
Of course such a result is difficult to apply, but the method will be useful to get a perturbation result for the log-Sobolev constant. Part of the result has been described in [START_REF] Cattiaux | Hypercontractivity for perturbed diffusion semigroups[END_REF]. Note however that as µ satisfies a logarithmic Sobolev inequality then one has Gaussian integrability properties, so that at least for every s < 1/C LS (µ)

e s|x| 2 dµ < ∞
and thus if for some positive a, b sufficiently small, one has |F |, |∇F | 2 < a + b|x| 2 , T 1 is then finite and can be made explicit.

Log-Sobolev inequality.

We can now similarly look at the log-Sobolev constant Theorem 2.7. Assume that F is L-Lipschitz on the support of µ and that µ satisfies a log-Sobolev inequality with constant C LS (µ). Also assume for simplicity that µ(e -F ) = 1.

(1) If sup x∈supp(µ) F (x) = M , then for all θ > 0,

C LS (µ F ) ≤ (1 + θ -1 ) C LS (µ) + C P (µ F ) 1 + θ 4 L 2 C LS (µ) + M + 2 .
(2) For all β > 0, for all θ > 0,

C LS (µ F ) ≤ (β + 1)(1 + θ -1 ) β C LS (µ) + C P (µ F ) (2 + µ(F )) + L 2 C P (µ F ) C LS (µ) (1 + θ)(1 + β) 4β + β 2 2 .
If in addition the condition in Theorem 2.1 is satisfied for some ε > 0 we may replace C P (µ F ) by the bound obtained in Theorem 2.1.

Remark that the first stement does not enter the framework of Holley-Stroock's theorem as only a one sided bound is assumed on F .

Proof. Let f be smooth and such that µ

F (f 2 ) = 1. Defining g = e -F/2 f we have µ(g 2 ) = 1. It follows for all θ > 0, Ent µ F (f 2 ) = µ F (f 2 ln(f 2 )) = µ(g 2 ln(g 2 )) + µ(g 2 F ) ≤ C LS (µ) µ(|∇g| 2 ) + µ(g 2 F ) (2.12) ≤ C LS (µ) (1 + θ -1 ) µ F (|∇f | 2 ) + C LS (µ) 1 + θ 4 µ F (f 2 |∇F | 2 ) + µ F (f 2 F ) .
In the first case, we can bound the sum of the last two terms by

C LS (µ) 1 + θ 4 L 2 + M µ F (f 2 )
and apply the Poincaré inequality for µ F provided µ F (f ) = 0. To conclude it is then enough to recall Rothaus lemma (Lemma 5.14 in [START_REF] Bakry | Analysis and Geometry of Markov diffusion operators[END_REF]),

Ent ν (f 2 ) ≤ Ent ν ((f -ν(f )) 2 ) + 2 Var ν (f ) .
If F is not bounded above we can use the variational definition of relative entropy as before:

µ F (f 2 F ) ≤ 1 α Ent µ F (f 2 ) + 1 α µ F (f 2 ) ln(µ F (e αF ))
.

Gathering all the previous bounds we have obtained, provided α > 1,

Ent µ F (f 2 ) ≤ α α -1 C LS (µ) (1 + θ -1 ) µ F (|∇f | 2 ) + C µ F (f 2 ) (2.13) with C = C LS (µ) 1 + θ 4 L 2 + 1 α ln(µ F (e αF ))
.

We may then argue as before using Rothaus lemma again. The bound

µ F (e αF ) = µ(e (α-1)F ) ≤ e (α-1)µ(F )+(C LS (µ) L 2 (α-1) 2 /2)
is known as the Herbst argument (see e.g. [START_REF] Bakry | Analysis and Geometry of Markov diffusion operators[END_REF] Proposition 5.4.1).

As before we may replace the Lipschitz assumption by an integrability condition yielding the next result whose proof, similar to the previous one, is omitted Theorem 2.8. Suppose that µ satisfies a logarithmic Sobolev inequality with constant C LS (µ) and that µ(e -F ) = 1. Assume that there exist α > 1 and β, θ > 0 such that

µ F (e αF ) < ∞, µ F (e β|∇F | 2 ) < ∞ and C LS (µ) 1 + θ 4β + 1 α := δ < 1 then µ F also satisfies a logarithmic Sobolev inequality with constant C LS (µ F ) equal to 1 1 -δ C LS (µ)(1 + θ -1 ) + C P (µ F ) 2 + C LS (µ) 1 + θ 4β log µ F (e β|∇F | 2 ) + 1 α log µ F (e αF ) .
The previous Theorem is a version of the one obtained in [START_REF] Aida | Logarithmic Sobolev inequalities and spectral gaps: perturbation theory[END_REF] as recalled in the introduction.

Finally, if F is more regular we may replace (2.12) by the following

Ent µ F (f 2 ) ≤ C LS (µ)µ(|∇f | 2 ) + 1 2 C LS (µ) µ F f 2 [AF - 1 2 |∇F | 2 ] + µ F (f 2 F ) .
Arguing as before we thus obtain Theorem 2.9. Suppose that µ satisfies a logarithmic Sobolev inequality with constant C LS (µ) and that V is C 1 . Assume that there exist α > 1 and β > 0 such that

µ F (e αF ) < ∞, µ F (e β[AF -1 2 |∇F | 2 ] ) < ∞ and C LS (µ) 1 2β + 1 α := δ < 1 then µ F also satisfies a logarithmic Sobolev inequality with constant C LS (µ F ) equal to 1 1 -δ C LS (µ) + C P (µ F ) 2 + C LS (µ) 1 2β log µ F (e β[AF -1 2 |∇F | 2 ] ) + 1 α log µ F (e αF ) .
If 

F is C 2 , e β[AF -1 2 |∇F | 2 ]
is bounded for all β > 0, so that the condition in the previous theorem reduces to the integrability of e αF for some α > 1. The most stringent condition is thus the one in theorem 2.3 ensuring the finiteness of the Poincaré constant. ♦

Application to mollified measures.

Let ν be a given probability measure (non necessarily absolutely continuous) and define ν σ as the convolution ν σ = ν * γ σ where γ σ denotes the centered gaussian distribution with covariance matrix σ 2 Id. In other words ν σ is the probability distribution of X + σG where X is a random variable with distribution ν and G is a standard gaussian variable. A natural question is to know when ν σ satisfies a Poincaré or a log-Sobolev inequality and to get some controls on the corresponding constants. Notice that ν is not assumed to satisfy itself such an inequality. When ν has compact support, included in the euclidean ball B(0, R), this question has been partly studied in [START_REF] Zimmermann | Logarithmic Sobolev inequalities for mollified compactly supported measures[END_REF], and the results therein extended in [START_REF] Bardet | Functional inequalities for gaussian convolutions of compactly supported measures: explicit bounds and dimension dependence[END_REF]. [START_REF] Zimmermann | Logarithmic Sobolev inequalities for mollified compactly supported measures[END_REF] is using the Lyapunov function method of [START_REF] Cattiaux | A note on Talagrand's transportation inequality and logarithmic Sobolev inequality[END_REF], while [START_REF] Bardet | Functional inequalities for gaussian convolutions of compactly supported measures: explicit bounds and dimension dependence[END_REF] is partly using the Bakry-Emery criterion. Indeed since for σ > 0, ν σ (dx) = e -V σ (x) dx for some smooth V σ , with

V σ (x) = -ln e -|x-y| 2 2σ 2 (2πσ 2 ) -n/2 ν(dy) .
A simple calculation (see [START_REF] Bardet | Functional inequalities for gaussian convolutions of compactly supported measures: explicit bounds and dimension dependence[END_REF] p.438) shows that

HessV σ ≥ 1 σ 2 - R 2 σ 4 Id , (2.14) 
so that C LS (ν σ ) ≤ 2σ 4 σ 2 -R 2 as soon as σ > R (it seems that the factor 2 is lacking in [START_REF] Bardet | Functional inequalities for gaussian convolutions of compactly supported measures: explicit bounds and dimension dependence[END_REF]). The small variance case is more delicate and impose to use other arguments. Nevertheless it is not difficult using a variance decomposition to prove that the following is always true:

C P (ν σ ) ≤ σ 2 e 4R 2 /σ 2 .
If V σ is not necessarily strongly convex, the Hessian remains bounded from below. Using deep results by E. Milman ([35]) in the spirit of the ones we will recall in the next section, it is shown in Theorem 4.3 of [START_REF] Bardet | Functional inequalities for gaussian convolutions of compactly supported measures: explicit bounds and dimension dependence[END_REF] that ν σ is still satisfying a log-Sobolev inequality that does not depend on the dimension n provided σ > R/ √ 2, but this time the log-Sobolev constant is not explicit.

We will improve the latter result and furnish an explicit constant by directly using our perturbation results. To this end we simply write

ν σ (dx) = Z -1 e -F (x) γ σ (dx) with F (x) = V σ (x) - |x| 2 2σ 2 .
(2.15)

We have

∇F (x) = x -y σ 2 h(x, y) ν(dy) - x σ 2 = - y σ 2 h(x, y) ν(dy) (2.16) 
where

h(x, y) = e -|x-y| 2 2σ 2 e -|x-z| 2 2σ 2 ν(dz)
.

Hence 

|∇F (x)| ≤ 1 σ 2 |y| h(x, y) ν(dy) ≤ R σ 2 . ( 2 
s := 1 + ε 4 R 2 σ 2 < 1 it holds C P (ν σ ) ≤ 1 + ε -1 1 -s σ 2 .
Similarly for all θ and β positive,

C LS (ν σ ) ≤ 2(β + 1)(1 + θ -1 ) β + 5 1 + ε -1 1 -s σ 2 + 2 1 + ε -1 1 -s (1 + θ)(1 + β) 4β + β 2 2 R 2 .
Notice that this result covers the range σ > R/2 which is larger than the one in [START_REF] Bardet | Functional inequalities for gaussian convolutions of compactly supported measures: explicit bounds and dimension dependence[END_REF]. Here we have used µ(F ) ≤ F (0) + L µ(|x|) in order to simplify the (already intricate) bound for the log-Sobolev constant. Using the elementary general C P (µ * ν) ≤ C P (µ) + C P (ν), one has

C P (ν σ ) ≤ C P (ν σ 0 ) + (σ -σ 0 ) 2
, yielding the correct asymptotic behaviour.

The previous proof can easily be extended to more general situations replacing γ σ by some more general µ(dx) = e -H(x) dx, provided HessH is bounded, yielding Theorem 2.12. Let ν be any probability measure whose support is included in B(0, R).

Define ν H = ν * µ where µ(dx) = e -H(x) dx is a probability measure such that

sup x |HessH(x)| = K < +∞ .
Then if

s := 1 + ε 4 K 2 R 2 C P (µ) < 1 it holds C P (ν H ) ≤ 1 + ε -1 1 -s C P (µ) .
Proof. Following the notations of the previous proof we have

∇F (x) = ∇H(x -y) h(x, y) ν(dy) -∇H(x) = (∇H(x -y) -∇H(x)) h(x, y) ν(dy) with h(x, y) = e -H(x-y) e -H(x-z) ν(dz)
.

It remains to use

|∇H(x -y) -∇H(x)| ≤ K |y| ,
and to use Theorem 2.1.

Corollary 2.13. Let X be a random variable supported by B(0, R) and Y a random variable with distribution µ(dx) = e -H(x) dx such that sup x |HessH(x)| = K < +∞. For σ ∈ R + define X σ = X + σY and denote by ν σH the distribution of X σ . Then if

s := 1 + ε 4 K 2 R 2 C P (µ) /σ 2 < 1 it holds C P (ν H ) ≤ 1 + ε -1 1 -s C P (µ) σ 2 .
Proof. It is enough to remark that the probability density of σZ is proportional to e -H(x/σ) so that |∇F | ≤ KR σ 2 and to remember that C P (σY ) = σ 2 C P (Y ). Remark 2.14. One can ask about what happens when ∇H is bounded, for instance if µ(dx) = Z -1 e -σ|x| dx in R. The proofs above furnish |∇F | ≤ 2/σ for all R and all σ so that the condition on s reads s := (1 + ε) C P (µ) < 1 which is impossible since C P (µ) = 4. This is another argument showing that our perturbation result is close to be optimal. ♦ 3. Perturbation with log-concavity.

We will now give some new results relating the Poincaré constant of both measures µ and µ F when at least one of them is log-concave.

For log-concave distributions it is often better to use the Cheeger constant instead of the Poincaré constant. Recall the following Proposition 3.1. Recall that in all cases

C P (µ) ≤ 4 (C ′ C ) 2 (µ) ≤ 4 C 2 C (µ).
If in addition µ is log-concave the following converse inequality is satisfied :

C ′ C (µ) ≤ C C (µ) ≤ 16 π C P (µ) .
The first inequality is contained in [START_REF] Bobkov | Isoperimetric and analytic inequalities for log-concave probability measures[END_REF], while the second one is shown in [START_REF] Cattiaux | On the Poincaré constant of log-concave measures[END_REF] proposition 9.2.11. With the slightly worse constant 6 instead of 16 π the result is due to Ledoux in [START_REF] Ledoux | Spectral gap, logarithmic Sobolev constant, and geometric bounds[END_REF]. Finally a remarkable property of log-concave measures, we shall intensively use in the sequel, is that a very weak form of the Poincaré (or Cheeger) inequality is enough to imply the true one. For simplicity we recall here the two main results we obtained in [START_REF] Cattiaux | On the Poincaré constant of log-concave measures[END_REF] (Theorem 9.2.7 and Theorem 9.2.14), improving on the beautiful seminal result by E. Milman ([34]) Theorem 3.2. Let ν be a log-concave probability measure.

(1) Assume that there exists some 0 ≤ s < 1/2 and some β(s) such that for any Lipschitz function f it holds

ν(|f -m ν (f )|) ≤ β(s) |∇f | ∞ +s Osc(f ) . Then C ′ C (ν) ≤ 4β(s) π ( 1 2 -s) 2 .
(2) Assume that there exists some 0 ≤ s < 1/6 and some β(s) such that for any Lipschitz function f it holds

Var ν (f ) ≤ β(s) ν(|∇f | 2 ) + s Osc 2 (f ) . Then C ′ C (ν) ≤ 4 β(s) ln 2 1 -6s .
In both cases recall that C P (ν) ≤ 4(C ′ C (ν)) 2 .

3.1.

From Holley-Stroock to Barthe-Milman.

We start by mimiking the proof of Holley-Stroock perturbation result. Let f be a bounded Lipschitz function. Of course in the definition of µ F we may always replace e -F by e -(F -min F ) provided F is bounded from below. Hence, for simplicity we may first assume that F ≥ 0 so that e -F ≤ 1 is in all the L p (µ). Then :

µ F (|f -µ F (f )|) ≤ 2 µ F (|f -m µ F (f )|) ≤ 2 µ F (|f -µ(f )|) ≤ 2 µ |f -µ(f )| e -F µ(e -F ) ≤ 2 µ(e -F ) µ 1/2 (|f -µ(f )| 2 ) µ 1/2 (e -2F ) ≤ 2 µ 1/2 (e -2F ) µ(e -F ) C 1/2 P (µ) µ 1/2 (|∇f | 2 ) ≤ 2 µ 1/2 (e -2F ) µ(e -F ) C 1/2 P (µ) |∇f | ∞ .
If F is not bounded from below, just using a cut-off we obtain the same result, with a possibly infinite right hand side. Using Theorem 3.2 (1), we can thus conclude

Proposition 3.3. If µ F is log-concave then C ′ C (µ F ) ≤ 32 π µ 1/2 e -2F µ (e -F ) C 1/2 P (µ) so that C P (µ F ) ≤ 4 × 32 2 π 2 µ e -2F µ 2 (e -F ) C P (µ) .
If interesting in comparison with Holley-Stroock the previous result is far from optimal. As shown in Theorem 2.7 of [START_REF] Barthe | Transference principles for log-sobolev and spectral-gap with applications to conservative spin systems[END_REF], there exists an universal constant c such that

C P (µ F ) ≤ c 1 + ln µ 1 2 e -2F µ (e -F ) 2 C P (µ) .
We shall recover this result and furnish a numerical bound for c. To this end first recall Definition 3.4. The concentration profile of a probability measure ν denoted by α ν , is defined as

α ν (r) := sup 1 -ν(A + B(0, r)) ; ν(A) ≥ 1 2 , r > 0 ,
where B(y, r) denotes the euclidean ball centered at y with radius r.

The following is shown in [START_REF] Cattiaux | On the Poincaré constant of log-concave measures[END_REF] Corollary 9.2.10 Proposition 3.5. For any log-concave probability measure ν,

C ′ C (ν) ≤ inf 0<s< 1 4 16 α -1 ν (s) π (1 -4s) 2 and C P (ν) ≤ inf 0<s< 1 4 32 α -1 ν (s) π (1 -4s) 2 2 .
Actually a better result, namely

C ′ C (ν) ≤ α -1 ν (s) 1 -2s
that holds for all s < 1 2 was shown by E. Milman in Theorem 2.1 of [START_REF] Milman | Isoperimetric bounds on convex manifolds[END_REF], when ν is the uniform measure on a convex body. The results extends presumably to any log-concave measure, but the proof of this result lies on deep geometric results (like the Heintze-Karcher theorem) while ours is elementary. Now recall the statement of Proposition 2.2 in [START_REF] Barthe | Transference principles for log-sobolev and spectral-gap with applications to conservative spin systems[END_REF], in a simplified form: if

M = µ 1 2 (e -2F ) µ(e -F ) , then α µ F ≤ 2M α 1/2 µ (r/2
) . We may use this result together with proposition 3.5 to deduce corollary 9.3.2 in [START_REF] Cattiaux | On the Poincaré constant of log-concave measures[END_REF] Corollary 3.6.

If µ F is log-concave, denoting M = µ 1 2 (e -2F ) µ(e -F ) , C ′ C (µ F ) ≤ inf 0<s< 1 4 32 α -1 µ ((s/2M ) 2 ) π(1 -4s) 2 .
Finally, as shown by Gromov and V. Milman, the concentration profile of a measure with a finite Poincaré constant is exponentially decaying. One more time it is not as easy to find an explicit version of Gromov-Milman's result. We found two of them in the literature: the first one in [START_REF] Troyanov | Concentration et inégalité de Poincaré[END_REF] Théorème 25 (in french) and Proposition 11

α µ (r) ≤ 16 e - r √ 2 C P (µ) ,
the second one in [START_REF] Berestycki | Concentration of measure[END_REF] Theorem 2:

α µ (r) ≤ e - r 3 √ C P (µ) .
We shall use the first one due to the lower constant and obtain

Theorem 3.7. If µ F is log-concave, denoting M = µ 1 2 (e -2F )
µ(e -F ) , for all 0 < s < 1 4 ,

C P (µ F ) ≤ C (1 -4s) 4 (3 ln 2 + ln(1/s) + ln M ) 2 C P (µ)
where the constant

C satisfies C ≤ 64 √ 2 π 2 . Remark 3.8. Of course M ≥ 1.
In order to get a presumably more tractable bound, first remark that adding a constant to F does not change M so that we may always assume that min F = 0. It thus follows µ(e -2F ) ≤ µ(e -F ). According to Jensen's inequality we also have µ(e -F ) ≥ e -µ(F ) so that finally

M ≤ e 1 2 µ(F ) . Finally C P (µ F ) ≤ (C 1 + C 2 µ 2 (F )) C P (µ) for some explicit constants C 1 and C 2 . ♦ Example 3.9. Gaussian perturbation. For ρ ∈ R + consider µ ρ (dx) = Z -1 ρ e -V (x) -1 2 ρ |x| 2 dx , i.e. F (x) = ρ 2 |x| 2 .
If V is convex (hence µ ρ log-concave), we deduce from the previous theorem and Bakry-Emery criterion that,

C P (µ ρ ) ≤ min 1 ρ ; C 1 + C 2 ln 2 µ 1 2 (e -ρ |x| 2 ) µ(e -ρ |x| 2 /2 ) C P (µ) ,
for some explicit universal constants C 1 and C 2 . This indicates that we can find a bound for the Poincaré constant of µ ρ that does not depend on ρ. We shall try to get some explicit result.

First according to remark 3.8, the ln 2 can be bounded up to some universal constant by µ 2 (ρ |x| 2 ) so that if µ is isotropic i.e. is centered with a covariance matrix equal to identity, we obtain a bound in ρ 2 n 2 . Optimizing in ρ, we see that the worst case is for x) dx is log-concave and isotropic, then for all ρ ≥ 0, and

ρ ∼ n -2 3 C -1 3 P (µ) yielding Proposition 3.10. If µ(dx) = Z -1 e -V (
µ ρ (dx) = Z -1 ρ e -V (x) -1 2 ρ |x| 2 dx, C P (µ ρ ) ≤ C n 2/3 C 1 3 P (µ) , for some universal constant C.
This result looks disappointing. A direct approach via the KLS inequality obtained by Chen will presumably give a better dimensional bound provided we are able to get a good bound for the covariance matrix of the perturbed measure. When V is even we can directly estimate the covariance matrix of µ ρ as in Theorem 18 in [START_REF] Barthe | Spectral gaps, symmetries and log-concave perturbations[END_REF]. ♦

Smooth perturbations.

Using the specific properties of log-concave measures we can state a first result Theorem 3.11. If µ F is log-concave we have for ε > 0,

C P (µ F ) ≤ 64 ln(2) (1 + ε -1 ) C P (µ) (1 -6s) 2 provided 1 + ε 4 C P (µ) µ F (|∇F | 2 ) := s < 1 6 .
In particular this bound is available as soon as F is L-Lipschitz with L 2 < 2/(3 (1+ε) C P (µ)), but this condition is worse than the one in theorem 2.1.

Proof. We deduce from (2.2)

Var µ F (f ) ≤ (1 + ε -1 ) C P (µ) µ F (|∇f | 2 ) + 1 + ε 4 C P (µ) Osc 2 (f ) µ F (|∇F | 2 ) . (3.1) 
So that, if µ F is log-concave, using Theorem 3.2 (2) we get the result.

We may similarly modify the proof of proposition 2.2 to similarly get a Cheeger inequality.

Theorem 3.12. If µ F is log-concave we have

C ′ C (µ F ) ≤ 16 C C (µ) π(1 -2s) 2 provided C C (µ) µ F (|∇F |) := s < 1 2 .
In particular if µ is also log-concave we have

C P (µ F ) ≤ 256 × 64 π 4 C P (µ) (1 -2s) 4 ,
for s as before.

At the level of Cheeger inequality, we found no other comparable perturbation result despite, once again, the very simple argument involved here.

Starting with (2.4) we also have

Var µ F (f ) ≤ µ F ((f -a) 2 ) ≤ C P (µ)µ F (|∇f | 2 ) + 1 2 C P (µ) Osc 2 (f ) µ F ([AF - 1 2 |∇F | 2 ] + )
so that we obtain an improvement of Theorem 2.3

Theorem 3.13. If V is C 1 , µ F is log-concave, F is of C 2 class and satisfies C P (µ) µ F ([AF - 1 2 |∇F | 2 ] + ) := s < 1 3 then C P (µ F ) ≤ 64 ln(2) (1 -3s) 2 C P (µ) .
Remark 3.14. As in the previous section it is interesting to extend the result to compactly supported log-concave measures. We will thus assume that the set U = {V < +∞} is convex with a smooth boundary and that V is C 1 in U . Then the conclusion of the previous Theorem is still available provided in addition ∂ n F ≥ 0 on ∂U . ♦ Remark 3.15. Assume that V is C 2 on R n and satisfies u, Hess V (x)u ≥ ρ|u| 2 for all u and x in R n . Let U be an open convex subset given by U = {W < 1} where W is a smooth (say

C 2 ) convex function. Consider µ(dx) = Z -1 e -V (x) 1 W (x)≤1 dx .
It turns out that once again C P (µ) ≤ 1/ρ . To prove this result one can use the Γ 2 theory of Bakry-Emery, but one has to carefully define the algebra A (see section 1.16 in [START_REF] Bakry | Analysis and Geometry of Markov diffusion operators[END_REF]). The devil is in this definition when looking at reflected semi-groups. We prefer to give an elementary proof of what we claimed. Define H(x) = (W (x) -1) 4 1 W (x)≥1 . H is smooth and

∂ 2 ij H(x) = 4(W (x) -1) 2 (W -1) ∂ 2 ij W + 3 ∂ i W ∂ j W 1 W (x)≥1 so that u, Hess H (x)u = 4(W (x) -1) 2 (W -1) u, Hess W (x)u + 3 u, ∇W 2 1 W (x)≥1 ≥ 0 . If we consider µ ε (dx) = Z -1 ε e -V (x)-1 ε H(x)
dx , µ ε satisfies the Bakry-Emery criterion so that C P (µ ε ) ≤ 1/ρ. It remains to let ε go to 0 and to pass to the limit in (1.1) by using Lebesgue convergence theorem. ♦

Let us finish by proving the same type of result at the level of Brascamp-Lieb inequality.

Let us consider dµ = e -V dx with Hess(V ) > 0 in the sense of positive definite matrix, the celebrated Brascamp-Lieb inequality is then Var µ (f ) ≤ (∇f ) t Hess(V ) -1 ∇f dµ.

We will see that we can easily have some perturbation result, leading to some modified Brascamp-Lieb inequality.

Theorem 3.16. Let us consider dµ = e -V dx with Hess(V ) > 0 in the sense of positive definite matrix and suppose that there exists ǫ such that

1 4 (1 + ǫ) (∇F ) t Hess(V ) -1 ∇F ∞ < 1 then Var µ F (f ) ≤ (1 + ǫ -1 ) 1 -1 4 (1 + ǫ) (∇F ) t Hess(V ) -1 ∇F ∞ ∇f t Hess(V ) -1 ∇f dµ .
In particular if µ F is log-concave then

C P (µ F ) ≤ 64 (1 + ǫ -1 ) ln(2) 1 -1 4 (1 + ǫ) (∇F ) t Hess(V ) -1 ∇F ∞ Hess(V ) -1 HS dµ
where . HS denotes the Hilbert-Schmidt norm.

4.1. Some consequences using gaussian perturbation.

As an immediate application, for ρ ∈ R + consider

ν(dx) = Z -1 ρ e -V (x) -1 2 ρ |x| 2 dx. If we denote F (x) = - 1 2 ρ |x| 2
we have with the previous notations

µ(dx) = ν F (dx) .
If V is convex, ν satisfies the Bakry-Emery criterion and accordingly C P (ν) ≤ 1/ρ. We shall use the results in the previous subsection, starting with Theorem 3.11 with ε = 1 for simplicity. Hence 1 2

C P (ν) ν F (|∇F | 2 ) ≤ 1 2ρ ρ 2 µ(|x| 2 ) .
In order to apply Theorem 3.11 we thus need s = 1 2 ρ µ(|x| 2 ) ≤ 1/6. We have thus obtained, choosing ρ small enough

C P (µ) ≤ 128 ln(2) 1 2s(1 -6s) 2 µ(|x| 2 ) .
The optimal choice of s is 1/18 and of course we may always center µ without changing the Poincaré constant.

Corollary 4.1. Let µ be a log-concave measure. Then

C P (µ) ≤ 32 × 81 ln(2) µ(|x -µ(x)| 2 ) .
This result is well known and according to [START_REF] Alonso-Gutierrez | Approaching the Kannan-Lovasz-Simonovits and variance conjectures[END_REF] p.11 is contained in [START_REF] Kannan | Isoperimetric problems for convex bodies and a localization lemma[END_REF] with a much better pre-constant 4 (also see [START_REF] Bobkov | Isoperimetric and analytic inequalities for log-concave probability measures[END_REF] (1.8) with a non explicit constant). Applying Theorem 3.2 it is easily seen (see (9.2.13) in [START_REF] Cattiaux | On the Poincaré constant of log-concave measures[END_REF]) that

C ′ C (µ) ≤ 16 π µ(|x -m µ (x)|) ≤ 16 π µ(|x -µ(x)|) . (4.1) 
If we replace Theorem 3.11 by Theorem 3.12 we obtain using our perturbation method the worse 

C ′ C (µ) ≤ 100 √ 10 π 2 µ(|x -µ(x)|) .
A = ∆ -∇V.∇ -ρ x.∇ so that AF - 1 2 |∇F | 2 = -ρn + ρ x.∇V (x) + 1 2 ρ 2 |x| 2 , (4.3) 
and

C P (µ) ≤ 64 ln(2) (1 -3s) 2 ρ as soon as µ -ρn + ρ x.∇V (x) + 1 2 ρ 2 |x| 2 + ≤ ρ 3 .
Though the result looks stronger than the previous ones we did nod succeed in really exploring some interesting consequences, in terms of dimensional controls of the Poincaré inequality. ♦ 4.2. Using product Subbotin (exponential power) perturbations.

Here we shall use the idea of the previous subsection replacing the gaussian measure by the tensor product of Subbotin distributions and the Bakry-Emery criterion by results of Barthe-Klartag. For p ≥ 1 and λ > 0 consider

ν(dx) = Z -1 e -V (x)-λ p n i=1 |x i | p dx ,
where we assume that V is a convex function. Let X be a random variable with distribution ν, then λX has distribution

ν(λ, dx) = Z -1 λ e -V (x/λ)-n i=1 |x i | p dx ,
and the dilation property for the Poincaré constant gives

C P (ν) = λ -2 C P (ν(λ, .)) .
As before, if we denote

F (x) = -λ p n i=1 |x i | p
we have µ(dx) = ν F (dx) .

We thus have

|∇F | 2 (x) ≤ λ 2p p 2 n i=1 |x i | 2(p-1) , (4.4) 
so that

µ(|∇F | 2 ) = ν F (|∇F | 2 ) ≤ λ 2p p 2 µ n i=1 |x i | 2(p-1) . (4.5) 
Choosing for simplicity ε = 1 and s = 1/12 in Theorem 3.11 we thus have to choose (if this choice is possible)

λ 2(p-1) p 2 C P (ν(λ, .)) µ n i=1 |x i | 2(p-1) = 1 6 . (4.6) 
Notice that we may always use an upper bound for C P (ν(λ, .)) furnishing a lower bound for λ and an upper bound for C P (µ).

For which p's do we obtain interesting results ?

One cannot expect that (4.6) can be satisfied for p = 1, since the left hand side is of size n.

If p = 1 we obtain, provided (4.6) is satisfied,

C P (µ) ≤ C 6 1 p-1 p 2 p-1 µ 1 p-1 n i=1 |x i | 2(p-1) C p p-1 P (ν(λ, .)) , (4.7) 
with C = 512 ln(2).

In particular if V is even, we may apply Theorem 1.3 (since C P (ν(λ, .)) can be bounded independently of λ) and get for 1 < p < 2,

C P (µ) ≤ C 6 1 p-1 p 2 p-1 µ 1 p-1 n i=1 |x i | 2(p-1) (ln(n)) 2-p p-1 , (4.8) 
for some universal C. Compared with (4.1), this result for p = 3 2 is however bad w.r.t. the dimension. Looking at (4.8) it seems interesting to get an analogue of Theorem 1.3 i.e. a bound for C P (ν(λ, .)) that does not depend on λ but for p > 2. Indeed, if V is even, µ(x) = 0 and for 2 < p,

µ(|x i | 2(p-1) ) ≤ Γ(2p + 1) 2 p-1 µ p-1 (|x i | 2 ) ≤ (p -1) 2(p-1) µ p-1 (|x i | 2 ) (4.9)
according to [START_REF] Guédon | Analytical and probabilistic methods in the geometry of convex bodies[END_REF] corollary 5.7 and remark 5.8 (also see in [START_REF] Lata | On some problems concerning log-concave random vectors[END_REF] the discussion after definition 2). In particular we obtain, provided (4.6) i.e.

λ 2 = 1 6p 2 C P (ν(λ, .)) n 1 p-1 1 (p -1) 2 σ 2 (µ) (4.10)
is satisfied, for p > 2,

C P (µ) ≤ C 6 1 p-1 p 2 p-1 (p -1) 2 n 1 p-1 C p p-1 P (ν(λ, .)) σ 2 (µ) , (4.11) 
with C = 512 ln(2). This time if p is of order ln(n) we will get an interesting result, provided C P (ν(λ, .)) is controlled by some not too bad constant (possibly dependeing on n).

Unfortunately, [START_REF] Barthe | Spectral gaps, symmetries and log-concave perturbations[END_REF] contains an example (see subsection 3.4) where C p p-1 P (ν(λ, .)) behaves like n p-2 p-1 , but for a measure µ which is highly non isotropic.

Nevertheless if we assume in addition that µ is unconditional (i.e V (x 1 , ..., x n ) = V (|x 1 |, ..., |x n |) for all x so that V (./λ) is also unconditional), it follows from Theorem 17 in [START_REF] Barthe | Spectral gaps, symmetries and log-concave perturbations[END_REF] A better result is obtained by combining [START_REF] Bonnefont | A note on spectral gap and weighted Poincaré inequalities for some one-dimensional diffusions[END_REF] Theorem 2.1 and the dilation property of Poincaré constants yielding

C P (S p ) ≤ p 1-2/p 2(1 + p) 1-2/p .
Hence in the unconditional case,

C P (µ) ≤ C 6 1 p-1 p 2 2 1 p-1 (p -1) 2 n 1 p-1 p p-2 p-1 (1 + p) p-2 p-1 σ 2 (µ) ≤ 4C 3 1 p-1 (p -1) 2 n 1 p-1 σ 2 (µ) , (4.13) 
with C = 512 ln(2). Here we used p 2/(p-1) ≤ 4 for p ≥ 2. It remains to optimize in p, the optimal value being p -1 = ln(3n)/2 (which is larger than 1 for n ≥ 2. This result is not new, and is due to Klartag in [START_REF] Klartag | A Berry-Esseen type inequality for convex bodies with an unconditional basis[END_REF] with a non explicit constant. Another proof (still with a difficult to trace constant) is contained in [START_REF] Cattiaux | On the Poincaré constant of log-concave measures[END_REF]. The constant here is explicit (but certainly far to be sharp), but the most interesting fact is that this result can be obtained via Subbotin perturbation.

Remark 4.6. Notice that the choice p -1 = ln(3n)/2 gives λ ∼ C/ln(n) for n large enough, according to (4.10).

In second place C p (S p ) is uniformly bounded in p (S p weakly converges to the uniform distribution on [-1, 1] as p goes to infinity). One can thus be tempted to use another product measure based on a one dimensional log concave family such that the Poincaré constant goes to 0 as p goes to infinity. We did not succeed in following this direction. ♦ Remark 4.7. We have only introduced ν(λ, dx) in order to directly connect the previous proof to Barthe and Klartag results. We should of course directly estimate the Poincaré constant of ν. ♦

5.

Application to some problems in Bayesian statistics.

Sparse linear regression.

In [START_REF] Dalalyan | Sparse regression learning by aggregation and Langevin Monte-Carlo[END_REF] the authors proposed a Bayesian strategy for the liner regression model

Y i = X i , λ * + ξ i (5.1)
where λ * and each X i belong to R M , ξ i are i.i.d. scalar noises and i = 1, ..., n. n is thus the size of a sample while M is the dimension of the predictor. Given a collection of design points X i the exponentially weighted aggregate estimator of λ * is given by λn

(X) = λ πn,β (dλ) (5.2) where πn,β (dλ) = C exp -(1/β) n i=1 |Y i -X i , λ | 2 π(dλ) (5.3)
is the posterior probability distribution associated to the prior π(dλ) = e -W (λ) dλ and the temperature β. Here and in all what follows C is a normalizing constant that can change from line to line.

In their Theorem 2 they obtain in particular an explicit bound for the L 2 error, when the prior is (almost) chosen as

π(dλ) = C M j=1 e -α |λ j | (τ 2 + λ 2 j ) 2 1 M j=1 |λ j |≤R dλ = e -W (λ) dλ, (5.4) 
for some positive α and R. This choice is motivated by dimensional reasons when M ≫ n and λ * is sparse.

In order to compute λn , they propose to use the ergodic theorem applied to the Langevin diffusion process

dL t = √ 2 dB t -∇W (L t )dt - 2 β ( X i , L t -Y i )dt (5.5)
where B . is a standard R M valued Brownian motion, i.e. the L 1 convergence of 1 t t 0 L s ds to the desired λn as t → +∞. The 1 M j=1 |λ j |≤R is no more considered here, and thus denote

ν n,β (dλ) = C exp -(1/β) n i=1 |Y i -X i , λ | 2 - n i=1 log(τ 2 + λ 2 i M j=1 e -α |λ j | dλ. (5.6) 
Remark that ν n,β is not logconcave. To justify some rate of convergence they call upon the Meyn-Tweedie theory (see e.g. [START_REF] Meyn | Stability of markovian processes III: Foster-Lyapunov criteria for continuous-time processes[END_REF]) of Foster-Lyapunov functions. Notice that using instead 1 t 2t t L s ds the bound (8) in [START_REF] Dalalyan | Sparse regression learning by aggregation and Langevin Monte-Carlo[END_REF] becomes C θ t for some θ < 1. If the arguments give an exponential rate θ t for some θ < 1 of convergence in their proposition 1, they are far to provide us with a bound for -ln(θ). The reason is that constants are very difficult to trace with this theory. In several papers, [START_REF] Bakry | A simple proof of the Poincaré inequality for a large class of probability measures[END_REF][START_REF] Cattiaux | Poincaré inequalities and hitting times[END_REF][START_REF] Cattiaux | Hitting times, functional inequalities, Lyapunov conditions and uniform ergodicity[END_REF], we have established the links between the Poincaré inequality and the existence of Lyapunov functions, including their relationship with hitting times. One can find explicit bounds in these papers. A quick look to the explicit bounds in [START_REF] Cattiaux | Poincaré inequalities and hitting times[END_REF] show that it furnishes a rate of convergence that heavily depend on M , assumed to be big, on β assumed to be big too, and the observations. Since ν n,β is reversible for the Langevin diffusion, and satisfies a Poincaré inequality, L t itself converges to λn in L 2 (ν n,β ) at an exponential rate given by e -t/C P (ν n,β ) . There is no need of Cesaro average. Our goal is thus to get some interesting bounds for C P (ν n,β ). To this end we may use two methods. In what follows Z is a normalizing constant that may change from line to line. Depending on whether the logarithmic factor ln(M ) is necessary in Theorem 1.3 or not will yield a result that does not depend on the dimension.

As said before the situation considered here is M ≫ n. Another approach to compute C P (µ) will thus be to use Theorem 3.3 instead of Theorem 1.3. The discussion will thus be very similar to the one in Example 3.9. Of course because the quadratic form n i=1 X i , λ 2 is very degenerate on R M it is impossible to use Bakry-Emery criterion. Since our goal is not to rewrite [START_REF] Dalalyan | Sparse regression learning by aggregation and Langevin Monte-Carlo[END_REF] but to see how one can control the rate of convergence of the Langevin dynamics, we will assume for simplicity that the X i 's are an orthogonal family. So, after an orthogonal transform, we may write In addition the Poincaré constant of η n is less than the one of e -V dλ. We may thus argue as in Example 3.9 when α = 1, and then use the dilation property of the Poincaré inequality to conclude that for all β and X, C P (µ) ≤ C n 2/3 α 2 , for some universal constant C. We can now follow what we did previously to get 

Parameter identification.

We shall briefly indicate another problem, parameter identification via a Bayesian approach as studied in the recent [START_REF] Gadat | On the cost of bayesian posterior mean strategy for log-concave models[END_REF]. Given a convex function U : R q × R d → R one considers the family of probability densities f θ (x) := f (x, θ) = Z -1 θ e -U (x,θ) on R q . Given the observation of a sample X = (X 1 , ..., X n ) of i.i.d. random vectors with density f θ * , one wants to estimate the unknown parameter θ * , here again using a Bayesian procedure. For a prior distribution density π 0 (θ), the posterior density is thus

π n (θ) = π 0 (θ) n i=1 f θ (X i ) , (5.7) 
and the natural bayesian estimator of θ * is once again given by θn = θ π n (θ) dθ .

(5.8)

It is shown in [START_REF] Gadat | On the cost of bayesian posterior mean strategy for log-concave models[END_REF] that under mild assumptions this estimator is consistent and a bound for the L p error is given, provided there exists a constant C U P such that C P (f θ (x) dx) ≤ C U P for all θ ∈ support(π 0 ) , (5.9)

An important case where this assumption is satisfied is the location problem, i.e. when U (x, θ) = V (x -θ) for some convex function V , and of course q = d.

Here again the authors propose to use a Langevin Monte Carlo procedure to compute θn , and as in the previous subsection the problem is now to estimate the Poincaré constant of the measure π n (θ) dθ. The situation is of course much simpler here if one chooses π 0 as a strictly log-concave log concave distribution since we obtain a bound that only depends on the curvature of π 0 . The case of a general log-concave measure π 0 is studied in [START_REF] Gadat | On the cost of bayesian posterior mean strategy for log-concave models[END_REF].

Remark 4 . 2 .Corollary 4 . 3 .

 4243 In what precedes we may replace F (x) = -1 2 ρ |x| 2 by F (x) = -ρ H(x) with HessH(x) ≥ Id, without changing anything. Hence for example Corollary 4.1 can be generalized in: If µ is log-concave, for all C 2 function H satisfying HessH(x) ≥ Id, it holds C P (µ) ≤ 32 × 81 ln(2) µ(|∇H| 2 ) .

Remark 4 . 4 .

 44 What happens if instead we try to use Theorem 3.13. With the notations of the previous subsection it holds

Proposition 4 . 5 .

 45 For n ≥ 2, any unconditional log-concave probability measure µ satisfiesC P (µ) ≤ C ln 2 (3n)) σ 2 (µ)with C = 512 e 2 ln(2).

1 Theorem 5 . 1 .

 151 First, we may write ν n,β = µ F withµ(dλ) = Z -1 exp -(1/β) 2 + λ 2 i )where X = (X j 1 , ..., X j n ) . But according to Barthe and Klartag result Theorem 1.3, the tensorisation property and the quadratic behaviour of the Poincaré with respect to dilation we haveC P (µ) ≤ C ln 2 (M ) 1 α 2 , for some universal constant. Since F is L-Lipschitz withThere exist two universal positive constants c and C such that, provided ln(M ) β α sup j=1,...,M | Y, Xj | + βτ ≤ c then C P (ν n,β ) ≤ C β sup j=1,...,M | Y, Xj | + βτ .

|X i | 2 λ 2 ie|X i | 2 λ 2 i

 22 µ(dλ) = Z -1 exp -(1/β) n i=1 |X i | 2 λ 2 i e -V (λ) dλwhere e -V (λ) dλ an orthogonal change of M j=1 e -α |λ j | dλ, hence shares the same Poincaré constant. Since the Poincaré constant of the symmetric exponential isotropic distribution in dimension 1, hence the one of the tensor product of such distributions, is equal to 4, the dilation scaling yields C P (e -V (λ) dλ) = 4/α 2 . Of course we may consider, when M ≥ n,η n (dλ 1 , ..., dλ n ) = e -V (λ) dλ n+1 ...dλ M dλ 1 ..dλ n which is a new log-concave distribution according to Prekopa-Leindler theorem. It is still isotropic up to a dilation of scale α and exp -(1/β) n i=1 -V (λ) dλ = exp -(1/β) n i=1 η n (dλ 1 , ..., dλ n ) .

Theorem 5 . 2 .

 52 There exist two universal positive constants c and C such that, provided n 1/3 β α sup j=1,...,M | Y, Xj | + βτ ≤ c then C P (ν n,β ) ≤ C β sup j=1,...,M | Y, Xj | + βτ .

  in addition the condition in Theorem 2.3 is satisfied for some ε > 0 we may replace C P (µ F ) by the bound obtained in Theorem 2.3. Remark 2.10. Notice that if AF -1 2 |∇F | 2 is non-positive at infinity (which is often the case in concrete examples), and

  that C P (ν(λ, dx)) ≤ C P (S p (dx 1 ))

	for all λ, where			
	S p (dx 1 ) =	1 z p	e -|x 1 | p .
	According to Bobkov's one dimensional result ([11] Corollary 4.3),
	C P (S p ) ≤ 12 Var Sp (x) = 12	Γ(3/p) Γ(1/p)	.	(4.12)
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Proof. We follow the idea already developed for the Poincaré inequality.

for which we choose

so that we may apply Brascamp-Lieb inequality for µ.

We then use our growth condition to conclude.

and we can conclude by using Theorem 3.2 [START_REF] Alonso-Gutierrez | Approaching the Kannan-Lovasz-Simonovits and variance conjectures[END_REF].

Of course it is illusory to expect a Brascamp-Lieb inequality for µ F as Hess(V + F ) is not necessarily positive. However it may be useful for concentration inequalities, indeed, reproducing the proof of the exponential integrability for Poincaré inequality due to Bobkov-Ledoux, see [START_REF] Bakry | Analysis and Geometry of Markov diffusion operators[END_REF], under the assumptions of the previous theorem, if f is such that

This thus implies exponential concentration for µ F for some particular class of functions.

4.

Coming back: from the perturbed measure to the initial one.

Any probability measure µ(dx) = e -V (x) dx can be seen as a perturbation of a perturbed measure, namely µ(dx) = Z -1 e F (x) µ F (dx). In some cases the measure µ F is simpler to study, so that one can expect some results for the initial one using our perturbation method.
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