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Constructive exact controls for semi-linear wave equations1

Arthur Bottois Jérôme Lemoine Arnaud Münch∗
2

May 14, 20213

Abstract4

The exact distributed controllability of the semilinear wave equation ∂tty − ∆y + g(y) = f 1ω5

posed over multi-dimensional and bounded domains, assuming that g ∈ C1(R) satisfies the growth6

condition lim sup|r|→∞ g(r)/(|r| ln1/2 |r|) = 0 has been obtained by Fu, Yong and Zhang in 2007. The7

proof based on a non constructive Leray-Schauder fixed point theorem makes use of precise estimates8

of the observability constant for a linearized wave equation. Assuming that g′ does not grow faster9

than β ln1/2 |r| at infinity for β > 0 small enough and that g′ is uniformly Hölder continuous on R10

with exponent s ∈ (0, 1], we design a constructive proof yielding an explicit sequence converging to11

a controlled solution for the semilinear equation, at least with order 1 + s after a finite number of12

iterations. Numerical experiments in the two dimensional case illustrate the results.13

AMS Classifications: 35L71, 49M15, 93E24.14

Keywords: Semilinear wave equation, exact controllability, least-squares approach.15

1 Introduction16

Let Ω be a bounded domain of Rd, d ∈ {2, 3} with C1,1 boundary and ω ⊂⊂ Ω be a non empty open17

set. Let T > 0 and denote QT := Ω × (0, T ), qT := ω × (0, T ) and ΣT := ∂Ω × (0, T ). We consider the18

semilinear wave equation19 
∂tty −∆y + g(y) = f1ω, in QT ,

y = 0, on ΣT ,

(y(·, 0), ∂ty(·, 0)) = (u0, u1), in Ω,

(1)

where (u0, u1) ∈ V := H1
0 (Ω)×L2(Ω) is the initial state of y and f ∈ L2(qT ) is a control function. Here and20

throughout the paper, g : R→ R is a function of class C1 such that |g(r)| ≤ C(1+ |r|) ln(2+ |r|) for every21

r ∈ R and some C > 0. Then, (1) has a unique global weak solution in C([0, T ];H1
0 (Ω))∩C1([0, T ];L2(Ω))22

(see [4, 6]).23

The exact controllability for (1) in time T is formulated as follows: for any (u0, u1), (z0, z1) ∈ V , find24

a control function f ∈ L2(qT ) such that the weak solution of (1) satisfies (y(·, T ), ∂ty(·, T )) = (z0, z1).25

Assuming a growth condition on the nonlinearity g at infinity, this problem has been solved in [17].26

Theorem 1. [17] For any x0 ∈ Rd\Ω, let Γ0 = {x ∈ ∂Ω, (x − x0) · ν(x) > 0} and, for any ε > 0,27

Oε(Γ0) = {y ∈ Rd | |y − x| ≤ ε forx ∈ Γ0}. Assume28

(H0) T > 2 maxx∈Ω |x− x0| and ω ⊆ Oε(Γ0) ∩ Ω for some ε > 0.29

If g satisfies30
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(H1) lim sup|r|→∞
|g(r)|

|r| ln1/2 |r| = 01

then (1) is exactly controllable in time T .2

This result improves [28] where a stronger condition of the support ω is made, namely that ω is a3

neighborhood of ∂Ω and that T > diam(Ω\ω). In Theorem 1, Γ0 is the usual star-shaped part of the4

whole boundary of Ω introduced in [29].5

A special case of Theorem 1 is when g is globally Lipschitz continuous, which gives the main result of6

[38], later generalized to an abstract setting in [22] using a global version of the inverse function theorem7

and improved in [36] for control domains ω satisfying the classical multiplier method of Lions [29].8

Theorem 1 extends to the multi-dimensional case the result of [39] devoted to the one dimensional9

case under the condition lim sup|r|→∞
|g(r)|
|r| ln2 |r| = 0, relaxed later on in [4], following [13], and in [30]. The10

exact controllability for subcritical nonlinearities is obtained in [11] assuming the sign condition rg(r) ≥ 011

for every r ∈ R. This latter assumption has been weakened in [20] to an asymptotic sign condition leading12

to a semi-global controllability result in the sense that the final data (z0, z1) is prescribed in a precise13

subset of V . In this respect, we also mention in the one dimensional case [10] where a positive boundary14

controllability result is proved for a steady-state initial and final data specific class of initial and final15

data and for T large enough by a quasi-static deformation approach.16

The proof given in [17, 28] is based on a fixed point argument introduced in [37, 39] that reduces17

the exact controllability problem to the obtention of suitable a priori estimates for the linearized wave18

equation with a potential (see Proposition 6 in appendix A). More precisely, it is shown that the operator19

K : L∞(0, T ;Ld(Ω)) → L∞(0, T ;Ld(Ω)) where yξ := K(ξ) is a controlled solution through the control20

function fξ of the linear boundary value problem21 
∂ttyξ −∆yξ + yξ ĝ(ξ) = −g(0) + fξ1ω, in QT ,

yξ = 0, on ΣT ,

(yξ(·, 0), ∂tyξ(·, 0)) = (u0, u1), in Ω,

ĝ(r) :=


g(r)− g(0)

r
r 6= 0,

g′(0) r = 0

, (2)

satisfying (yξ(·, T ), yξ,t(·, T )) = (z0, z1) has a fixed point. The control fξ is chosen in [28] as the one of22

minimal L2(qT )-norm. The existence of a fixed point for the compact operator K is obtained by using23

the Leray-Schauder’s degree theorem. Precisely, it is shown under the growth assumption (H1) that24

there exists a constant M = M(‖u0, u1‖V , ‖z0, z1‖V ) such that K maps the ball BL∞(0,T ;Ld(Ω))(0,M)25

into itself.26

The main goal of this article is to design an algorithm providing an explicit sequence (fk)k∈N that27

converges strongly to an exact control for (1). A first idea that comes to mind is to consider the Picard28

iterations (yk)k∈N associated with the operator K defined by yk+1 = K(yk), k ≥ 0 initialized with any29

element y0 ∈ L∞(0, T ;Ld(Ω)). The resulting sequence of controls (fk)k∈N is then so that fk+1 ∈ L2(qT )30

is the control of minimal L2(qT ) norm for yk+1 solution of31 
∂ttyk+1 −∆yk+1 + yk+1 ĝ(yk) = −g(0) + fk+11ω, in QT ,

yk+1 = 0, on ΣT ,

(yk+1(·, 0), ∂tyk+1(·, 0)) = (y0, y1), in Ω.

(3)

Such a strategy usually fails since the operator K is in general not contracting, even if g is globally32

Lipschitz. We refer to [16] providing numerical evidence of the lack of convergence in parabolic cases (see33

also Remark 6 in appendix A). A second idea is to use a Newton type method in order to find a zero of34

the C1 mapping F̃ : Y 7→W defined by35

F̃ (y, f) :=

(
∂tty −∆y + g(y)− f1ω, y(· , 0)− u0, ∂ty(· , 0)− u1, y(· , T )− z0, ∂ty(· , T )− z1

)
(4)
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for some appropriates Hilbert spaces Y and W (see further): given (y0, f0) in Y , the sequence (yk, fk)k∈N1

is defined iteratively by (yk+1, fk+1) = (yk, fk)− (Yk, Fk) where Fk is a control for Yk solution of2 
∂ttYk −∆Yk + g′(yk)Yk = Fk 1ω + ∂ttyk −∆yk + g(yk)− fk1ω, in QT ,

Yk = 0, on ΣT ,

Yk(·, 0) = u0 − yk(·, 0), ∂tYk(·, 0) = u1 − ∂tyk(·, 0) in Ω

(5)

such that Yk(·, T ) = −yk(·, T ) and ∂tYk(·, T ) = −∂tyk(·, T ) in Ω. This linearization makes appear an3

operator KN , so that yk+1 = KN (yk) involving the first derivative of g. However, as it is well known,4

such a sequence may fail to converge if the initial guess (y0, f0) is not close enough to a zero of F (see5

[16] where divergence is observed numerically for large data).6

The controllability of nonlinear partial differential equations has attracted a large number of works7

in the last decades (see the monography [9] and references therein). However, as far as we know, few8

are concerned with the approximation of exact controls for nonlinear partial differential equations, and9

the construction of convergent control approximations for controllable nonlinear equations remains a10

challenge.11

In this article, given any initial data (u0, u1) ∈ V , we design an algorithm providing a sequence12

(yk, fk)k∈N converging to a controlled pair for (1), under assumptions on g that are slightly stronger13

than the one done in Theorem 1. Moreover, after a finite number of iterations, the convergence is super-14

linear. This is done by introducing a quadratic functional measuring how much a pair (y, f) ∈ Y is close15

to a controlled solution for (1) and then by determining a particular minimizing sequence enjoying the16

announced property. A natural example of an error (or least-squares) functional is given by Ẽ(y, f) :=17

1
2‖F̃ (y, f)‖2W to be minimized over Y . Exact controllability for (1) is reflected by the fact that the global18

minimum of the nonnegative functional Ẽ is zero, over all pairs (y, f) ∈ Y solutions of (1). In the line19

of recent works on the Navier-Stokes system (see [25, 26]), we determine, using an appropriate descent20

direction, a minimizing sequence (yk, fk)k∈N converging to a zero of the quadratic functional.21

The paper is organized as follows. In Section 2, we define the (nonconvex) least-squares functional E22

and the corresponding (nonconvex) optimization problem (6). We show that E is Gateaux-differentiable23

and that any critical point (y, f) for E such that g′(y) ∈ L∞(0, T ;Ld(Ω)) is also a zero of E. This is done24

by introducing an adequate descent direction (Y 1, F 1) for E at any (y, f) for which E′(y, f) · (Y 1, F 1) is25

proportional to E(y, f). This instrumental fact compensates the failure of convexity of E and is at the26

base of the global convergence properties of the least-squares algorithm. The design of this algorithm27

is done by determining a minimizing sequence based on (Y 1, F 1), which is proved to converge to a28

controlled pair for the semilinear wave equation (1), in our main result (Theorem 2), under appropriate29

assumptions on g. Moreover, we prove that, after a finite number of iterations, the convergence is super-30

linear. Theorem 2 is proved in Section 3. We give in Section 4 several comments and mention notably31

that our least-squares approach coincides with the damped Newton method applied to a mapping similar32

to F̃ . Section 5 then illustrates the result with some numerical experiments in the two dimensional33

case and Section 6 provides some conclusion. In Appendix A, we recall some a priori estimates for the34

linearized wave equation with potential in L∞(0, T ;Ld(Ω)) and source term in L2(QT ) and we show that35

the operator K is contracting if ‖ĝ′‖L∞(R) is small enough.36

As far as we know, the method introduced and analyzed in this work is the first one providing an37

explicit, algorithmic construction of exact controls for semilinear wave equations with non Lipschitz38

nonlinearity and defined over multi-dimensional bounded domains. It extends the one-dimensional study39

addressed in [34]. For parabolic equations with Lipschitz nonlinearity, we mention [23]. These works40

devoted to controllability problems takes their roots in earlier works, namely [25, 26], concerned with the41

approximation of solution of Navier-Stokes type problem, through least-square methods: they refine the42

analysis performed in [27, 32] inspired from the seminal contribution [2].43
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Notations. Throughout, we denote by ‖ · ‖∞ the usual norm in L∞(R), by (·, ·)X the scalar product of1

X (if X is a Hilbert space) and by 〈·, ·〉X,Y the duality product between X and Y . The notation ‖ · ‖2,qT2

stands for ‖ · ‖L2(qT ) and ‖ · ‖p for ‖ · ‖Lp(QT ), p ∈ N?.3

Given any s ∈ [0, 1], we introduce for any g ∈ C1(R) the following hypothesis :4

(Hs) [g′]s := sup a,b∈R
a 6=b

|g′(a)−g′(b)|
|a−b|s < +∞5

meaning that g′ is uniformly Hölder continuous with exponent s. For s = 0, by extension, we set6

[g′]0 := 2‖g′‖∞. In particular, g satisfies (H0) if and only if g ∈ C1(R) and g′ ∈ L∞(R), and g satisfies7

(H1) if and only if g′ is Lipschitz continuous (in this case, g′ is almost everywhere differentiable and8

g′′ ∈ L∞(R), and we have [g′]s ≤ ‖g′′‖∞).9

We also denote by C a positive constant depending only on Ω and T that may vary from lines to lines.10

In the rest of the paper, we assume that the open set ω and the time T satisfy (H0).11

2 The least-squares functional and its properties12

2.1 The least-squares problem13

We define the Hilbert space H14

H =

{
(y, f) ∈ L2(QT )× L2(qT ), y ∈ C([0, T ];H1

0 (Ω)) ∩ C1([0, T ];L2(Ω)) | ∂tty −∆y ∈ L2(QT )

}
endowed with the scalar product15

((y, f), (y, f))H = (y, y)2 +
(
(y(·, 0), ∂ty(·, 0)),(y(·, 0), ∂ty(·, 0))

)
V

+ (∂tty −∆y, ∂tty −∆y)2 + (f, f)2,qT

and the norm ‖(y, f)‖H :=
√

((y, f), (y, f))H.16

Remark 1. We highlight that, endowed with the norm ‖(y, ∂ty)‖L∞(0,T ;V ) := ‖y‖L∞(0,T ;H1
0 (Ω))+‖∂ty‖L∞(0,T ;L2(Ω)),

C([0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω)) is a Banach space and H ↪→

(
C([0, T ];H1

0 (Ω)) ∩ C1([0, T ];L2(Ω))
)
×

L2(qT ) continuously. Indeed, if (y, f) ∈ H, we easily deduce from [29, Lemme 3.6 p. 39] that

‖(y, ∂ty)‖L∞(0,T ;V ) ≤ C(‖∂tty −∆y‖L2(QT ) + ‖(y(·, 0), ∂ty(·, 0))‖V )

from which we deduce that ‖(y, ∂ty)‖L∞(0,T ;V ) + ‖f‖L2(qT ) ≤ C‖(y, f)‖H.17

Let (u0, u1), (z1, z1) ∈ V . We define the nonempty subspaces of H18

A =

{
(y, f) ∈ H | (y(·, 0), ∂ty(·, 0)) = (u0, u1), (y(·, T ), ∂ty(·, T )) = (z0, z1)

}
,

A0 =

{
(y, f) ∈ H | (y(·, 0), ∂ty(·, 0)) = (0, 0), (y(·, T ), ∂ty(·, T )) = (0, 0)

}
.

Remark that (0, 0) ∈ A0 while A contains the controlled pairs for the linear wave equation.19

We consider the following non convex extremal problem :20

inf
(y,f)∈A

E(y, f), E(y, f) :=
1

2

∥∥∂tty −∆y + g(y)− f 1ω
∥∥2

2
(6)

justifying the least-squares terminology we have used. Remark that we can write A = (y, f) +A0 for any21

element (y, f) ∈ A. The problem is therefore equivalent to the minimization of E(y + y, f + f) over A022

for any (y, f) ∈ A.23

The functional E is well-defined in A. Precisely,24
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Lemma 1. There exists a positive constant C > 0 such that E(y, f) ≤ C(1+‖(y, f)‖3H) for any (y, f) ∈ A.1

Proof. A priori estimate for the linear wave equation reads as

‖(y, ∂ty)‖2L∞(0,T ;V ) ≤ C
(
‖∂tty −∆y‖22 + ‖(u0, u1)‖2V

)
for any y such that (y, f) ∈ A. Using that |g(r)| ≤ C(1 + |r|) log(2 + |r|) for every r ∈ R and some C > 0,

we infer that

‖g(y)‖22 ≤ C2

∫
QT

(
(1 + |y|) log(2 + |y|)

)2

≤ C2

∫
QT

(1 + |y|)3 ≤ C2(|QT |3 + ‖y‖3L3(QT ))

≤ C2
(
|QT |3 + ‖y‖3L∞(0,T ;H1

0 (Ω))

)
for which we get E(y, f) ≤ C

(
‖∂tty −∆y‖22 + ‖f‖22,qT + |QT |3 + ‖y‖3L∞(0,T ;H1

0 (Ω))

)
leading to the result.2

3

Within the hypotheses of Theorem 1, the infimum of the functional of E is zero and is reached by4

at least one pair (y, f) ∈ A, solution of (1) and satisfying (y(·, T ), ∂ty(·, T )) = (z0, z1). Conversely,5

any pair (y, f) ∈ A for which E(y, f) vanishes is solution of (1). In this sense, the functional E is an6

error functional which measures the deviation of (y, f) from being a solution of the underlying nonlinear7

equation. A practical way of taking a functional to its minimum is through the use of gradient descent8

directions. In doing so, the presence of local minima is always something that may dramatically spoil9

the whole scheme. The unique structural property that discards this possibility is the convexity of the10

functional E. However, for nonlinear equation like (1), one cannot expect this property to hold for the11

functional E. Nevertheless, we are going to construct a minimizing sequence which always converges to12

a zero of E.13

In order to construct such minimizing sequence, we formally look, for any (y, f) ∈ A, for a pair14

(Y 1, F 1) ∈ A0 solution of the following formulation15 
∂ttY

1 −∆Y 1 + g′(y) · Y 1 = F 11ω +
(
∂tty −∆y + g(y)− f 1ω

)
, in QT ,

Y 1 = 0, on ΣT ,

(Y 1(·, 0), ∂tY
1(·, 0)) = (0, 0), in Ω.

(7)

Since (Y 1, F 1) belongs to A0, F 1 is a null control for Y 1. Among the controls of this linear equation,16

we select the control of minimal L2(qT ) norm. In the sequel, we shall call the corresponding solution17

(Y 1, F 1) ∈ A0 the solution of minimal control norm. We have the following property.18

Proposition 1. For any (y, f) ∈ A, there exists a pair (Y 1, F 1) ∈ A0 solution of (7). Moreover, the19

pair (Y 1, F 1) of minimal control norm satisfies the following estimates :20

‖(Y 1, ∂tY
1)‖L∞(0,T ;V ) + ‖F 1‖2,qT ≤ Ce

C‖g′(y)‖2
L∞(0,T ;Ld(Ω))

√
E(y, f), (8)

and21

‖(Y 1, F 1)‖H ≤ C
(
1 + ‖g′(y)‖L∞(0,T ;L3(Ω))

)
e
C‖g′(y)‖2

L∞(0,T ;Ld(Ω))

√
E(y, f) (9)

for some positive constant C > 0.22

Proof. The first estimate is a consequence of Proposition 7 using the equality ‖∂tty−∆y+g(y)−f 1ω‖2 =23 √
2E(y, f). The second one follows from24

‖(Y 1, F 1)‖H ≤ ‖∂ttY 1 −∆Y 1‖2 + ‖Y 1‖2 + ‖F 1‖2,qT + ‖Y 1(·, 0), ∂tY
1(·, 0)‖V

≤ ‖Y 1‖2 + ‖g′(y)Y 1‖2 + 2‖F 1‖2,qT +
√

2
√
E(y, f)

≤ C
(
1 + ‖g′(y)‖L∞(0,T ;L3(Ω))

)
e
C‖g′(y)‖2

L∞(0,T ;Ld(Ω))

√
E(y, f)

5



using that

‖g′(y)Y 1‖22 ≤
∫ T

0

‖g′(y)‖2L3(Ω)‖Y
1‖2L6(Ω)

≤ T‖g′(y)‖2L∞(0,T ;L3(Ω))‖Y
1‖2L∞(0,T ;L6(Ω))

≤ C‖g′(y)‖2L∞(0,T ;L3(Ω))‖Y
1‖2L∞(0,T ;H1

0 (Ω)).

1

2.2 Main properties of the functional E2

The interest of the pair (Y 1, F 1) ∈ A0 lies in the following result.3

Proposition 2. Assume that g satisfies (Hs) for some s ∈ [0, 1]. Let (y, f) ∈ A and let (Y 1, F 1) ∈ A04

be a solution of (7). Then the derivative of E at the point (y, f) ∈ A along the direction (Y 1, F 1) satisfies5

E′(y, f) · (Y 1, F 1) = 2E(y, f). (10)

Proof. We preliminary check that for all (Y, F ) ∈ A0 the functional E is differentiable at the point

(y, f) ∈ A along the direction (Y, F ) ∈ A0. For any λ ∈ R, simple computations lead to the equality

E(y + λY, f + λF ) = E(y, f) + λE′(y, f) · (Y, F ) + h((y, f), λ(Y, F ))

with6

E′(y, f) · (Y, F ) :=
(
∂tty −∆y + g(y)− f 1ω, ∂ttY −∆y + g′(y)Y − F 1ω

)
2

(11)

and

h((y, f), λ(Y, F )) :=
λ2

2

(
∂ttY −∆Y + g′(y)Y − F 1ω, ∂ttY −∆Y + g′(y)Y − F 1ω

)
2

+ λ
(
∂ttY −∆Y + g′(y)Y − F 1ω, l(y, λY )

)
2

+
(
∂tty −∆y + g(y)− f 1ω, l(y, λY )

)
+

1

2
(l(y, λY ), l(y, λY ))

where l(y, λY ) := g(y + λY ) − g(y) − λg′(y)Y . The application (Y, F ) → E′(y, f) · (Y, F ) is linear and7

continuous from A0 to R as it satisfies8

|E′(y, f) · (Y, F )| ≤ ‖∂tty −∆y + g(y)− f 1ω‖2‖∂ttY −∆Y + g′(y)Y − F 1ω‖2

≤
√

2E(y, f)

(
‖(∂ttY −∆Y )‖2 + ‖g′(y)‖L∞(0,T ;L3(Ω))‖Y 1‖L∞(0,T ;H1

0 (Ω)) + ‖F‖2,qT
)

≤
√

2E(y, f) max
(
1, ‖g′(y)‖L∞(0,T ;L3(Ω))

)
‖(Y, F )‖H.

(12)

Similarly, for all λ ∈ R?,∣∣∣∣ 1λh((y, f), λ(Y, F ))

∣∣∣∣ ≤ |λ|2 ‖∂ttY −∆Y + g′(y)Y − F 1ω‖22

+

(
|λ|‖∂ttY −∆Y + g′(y)Y − F 1ω‖2 +

√
2E(y, f) +

1

2
‖l(y, λY )‖2

)
1

|λ|
‖l(y, λY )‖2.

For any (x, y) ∈ R2 and λ ∈ R, we then write g(x+ λy)− g(x) =
∫ λ

0
yg′(x+ ξy)dξ leading to

|g(x+ λy)− g(x)− λg′(x)y| ≤ |
∫ λ

0

|y||g′(x+ ξy)− g′(x)|dξ|

≤ |
∫ λ

0

|y|1+s|ξ|s |g
′(x+ ξy)− g′(x)|

|ξy|s
dξ| ≤ [g′]s|y|1+s |λ|1+s

1 + s
.
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It follows that

|l(y, λY )| = |g(y + λY )− g(y)− λg′(y)Y | ≤ [g′]s
|λ|1+s

1 + s
|Y |1+s

and1

1

|λ|
∥∥l(y, λY )

∥∥
2
≤ [g′]s

|λ|s

1 + s

∥∥|Y |1+s
∥∥

2
. (13)

But
∥∥|Y |1+s

∥∥2

2
= ‖Y ‖2(s+1)

2(s+1) ≤ C‖Y ‖2(s+1)
L∞(0,T ;L4(Ω)). Consequently, for s > 0, | 1λ |‖l(y, λY )‖2 → 0 as λ→ 0

and |h((y, f), λ(Y, F ))| = o(λ). In the case s = 0 leading to g′ ∈ L∞(R), the result follows from the

Lebesgue dominated convergence theorem: we have∣∣∣ 1
λ
l(y, λY )

∣∣∣ =
∣∣∣g(y + λY )− g(y)

λ
− g′(y)Y

∣∣∣ ≤ 2‖g′‖∞|Y |, a.e. in QT

and
∣∣ 1
λ l(y, λY )

∣∣ =
∣∣ g(y+λY )−g(y)

λ − g′(y)Y
∣∣ → 0 as λ → 0 a.e. in QT . It follows that | 1λ |‖l(y, λY )‖2 → 02

as λ → 0 as well. We deduce that the functional E is differentiable at the point (y, f) ∈ A along the3

direction (Y, F ) ∈ A0.4

Eventually, the equality (10) follows from the definition of the pair (Y 1, F 1) given in (7).5

Remark that from the equality (11), the derivative E′(y, f) is independent of (Y, F ). We can then6

define the norm ‖E′(y, f)‖A′0 := sup(Y,F )∈A0\{0}
E′(y,f)·(Y,F )
‖(Y,F )‖H associated with A′0, the topological dual of7

A0.8

Combining the equality (10) and the inequality (8), we deduce the following estimate of E(y, f) in9

term of the norm of E′(y, f).10

Proposition 3. For any (y, f) ∈ A, the following inequalities hold true:11

1√
2 max

(
1, ‖g′(y)‖L∞(0,T ;L3(Ω))

)‖E′(y, f)‖A′0 ≤
√
E(y, f)

≤ 1√
2
C

(
1 + ‖g′(y)‖L∞(0,T ;L3(Ω))

)
e
C‖g′(y)‖2

L∞(0,T ;Ld(Ω))‖E′(y, f)‖A′0
(14)

where C is the positive constant from Proposition 1.12

Proof. (10) rewrites E(y, f) = 1
2E
′(y, f) · (Y 1, F 1) where (Y 1, F 1) ∈ A0 is solution of (7) and therefore,

with (9)

E(y, f) ≤ 1

2
‖E′(y, f)‖A′0‖(Y

1, F 1)‖A0

≤ 1

2
C
(
1 + ‖g′(y)‖L∞(0,T ;L3(Ω))

)
e
C‖g′(y)‖2

L∞(0,T ;Ld(Ω))‖E′(y, f)‖A′0
√
E(y, f).

On the other hand, for all (Y, F ) ∈ A0, the inequality (12), i.e.

|E′(y, f) · (Y, F )| ≤
√

2E(y, f) max
(
1, ‖g′(y)‖L∞(0,T ;L3(Ω))

)
‖(Y, F )‖A0

leads to the left inequality.13

Consequently, any critical point (y, f) ∈ A of E (i.e., E′(y, f) vanishes) such that ‖g′(y)‖L∞(0,T ;L3(Ω))14

is finite is a zero for E, a pair solution of the controllability problem. In other words, any sequence15

(yk, fk)k>0 satisfying ‖E′(yk, fk)‖A′0 → 0 as k → ∞ and for which ‖g′(yk)‖L∞(0,T ;L3(Ω)) is uniformly16

bounded is such that E(yk, fk)→ 0 as k →∞. We insist that this property does not imply the convexity17

of the functional E (and a fortiori the strict convexity of E, which actually does not hold here in view of18

the multiple zeros for E) but show that a minimizing sequence for E can not be stuck in a local minimum.19
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On the other hand, the left inequality indicates the functional E is flat around its zero set. As a1

consequence, gradient-based minimizing sequences may achieve a low speed of convergence (we refer to2

[33] and also [27] devoted to the Navier-Stokes equation where this phenomenon is observed).3

4

We end this section with the following estimate.5

Lemma 2. Assume that g satisfies (Hs) for some s ∈ [0, 1]. For any (y, f) ∈ A, let (Y 1, F 1) ∈ A0 be6

defined by (7). For any λ ∈ R the following estimate holds7

E
(
(y, f)− λ(Y 1, F 1)

)
≤ E(y, f)

(
|1− λ|+ |λ|1+s c(y)E(y, f)s/2

)2

(15)

with

c(y) :=
C

(1 + s)
√

2
[g′]sd(y)1+s, d(y) := Ce

C‖g′(y)‖2
L∞(0,T ;Ld(Ω)) .

Proof. Estimate (13) applied with Y = Y 1 reads8

∥∥l(y, λY 1)
∥∥

2
≤ [g′]s

|λ|1+s

1 + s

∥∥|Y 1|1+s
∥∥

2
. (16)

But ‖|Y 1|1+s
∥∥2

2
= ‖Y 1‖2(s+1)

2(s+1) ≤ C‖Y
1‖2(s+1)

L∞(0,T ;H1
0 (Ω))

which together with (8) lead to9

∥∥|Y 1|1+s
∥∥

2
≤ C

(
CeC‖g

′(y)‖
L∞(0,T ;Ld(Ω)

)1+s

E(y, f)
1+s

2 . (17)

Eventually, we write10

2E
(
(y, f)− λ(Y 1, F 1)

)
=

∥∥∥∥(∂tty −∆y + g(y)− f 1ω
)
− λ
(
∂ttY

1 −∆Y 1 + g′(y)Y 1 − F 1ω
)

+ l(y,−λY 1)

∥∥∥∥2

2

=

∥∥∥∥(1− λ)
(
∂tty −∆y + g(y)− f 1ω

)
+ l(y,−λY 1)

∥∥∥∥2

2

≤
(∥∥(1− λ)

(
∂tty −∆y + g(y)− f 1ω

)∥∥
2

+
∥∥l(y,−λY 1)

∥∥
2

)2

≤ 2

(
|1− λ|

√
E(y, f) + [g′]s

|λ|1+s

1 + s

∥∥|Y 1|1+s
∥∥

2

)2

≤ 2

(
|1− λ|

√
E(y, f) + [g′]s

|λ|1+s

1 + s
C

(
CeC‖g

′(y)‖
L∞(0,T ;Ld(Ω)

)1+s

E(y, f)
1+s

2

)2

(18)

and we get the result.11

3 Convergence of a minimizing sequence for E12

We now examine the convergence of an appropriate sequence (yk, fk) ∈ A. In this respect, we observe13

that equality (10) shows that−(Y 1, F 1) given by the solution of (7) is a descent direction for E. Therefore,14

we can define, for any fixed m ≥ 1, a minimizing sequence (yk, fk)k>0 ∈ A as follows:15 
(y0, f0) ∈ A,
(yk+1, fk+1) = (yk, fk)− λk(Y 1

k , F
1
k ), k ∈ N,

λk = argminλ∈[0,m]E
(
(yk, fk)− λ(Y 1

k , F
1
k )
)
,

(19)

8



where (Y 1
k , F

1
k ) ∈ A0 is the solution of minimal control norm of1 
∂ttY

1
k −∆Y 1

k + g′(yk) · Y 1
k = F 1

k 1ω + (∂ttyk −∆yk + g(yk)− fk1ω), in QT ,

Y 1
k = 0, on ΣT ,

(Y 1
k (·, 0), ∂tY

1
k (·, 0)) = (0, 0), in Ω.

(20)

The real number m ≥ 1 is arbitrarily fixed and is introduced in order to keep the sequence (λk)k∈N2

bounded.3

Given any s ∈ [0, 1], we set4

β?(s) :=

√
s

2C(2s+ 1)
(21)

where C > 0, only depending on Ω and T , is the constant appearing in Proposition 7. In this section, we5

prove our main result.6

Theorem 2. Assume that g′ satisfies (Hs) for some s ∈ [0, 1] and7

(H2) There exists α ≥ 0 and β ∈ [0, β?(s)) such that |g′(r)| ≤ α+ β ln1/2(1 + |r|) for every r in R8

if s ∈ (0, 1] and9

(H3)
√

2C‖g′‖∞eC‖g
′‖2∞|Ω|

2/d

< 110

if s = 0.11

Then, for any (y0, f0) ∈ A, the sequence (yk, fk)k∈N defined by (19) strongly converges to a pair12

(y, f) ∈ A satisfying (1) and the condition (y(·, T ), yt(·, T )) = (z0, z1), for all (u0, u1), (z0, z1) ∈ V .13

Moreover, the convergence is at least linear and is at least of order 1+s after a finite number of iterations1.14

Consequently, the algorithm (19) provides a constructive way to approximate a control for the non-15

linear wave equation (19).16

The proof consists in showing that the decreasing sequence (E(yk, fk))k∈N converges to zero. In view of17

(14), this property is related to the uniform property of the observability constant e
C‖g′(yk)‖2

L∞(0,T ;Ld(Ω))18

with respect to k. In order to fix some notations and the main ideas of the proof of Theorem 2, we19

first prove in Section 3.1 the convergence of the sequence (yk, fk)k∈N under the stronger condition that20

g′ ∈ L∞(R), sufficient to ensure the boundedness of the sequence
(
e
C‖g′(yk)‖2

L∞(0,T ;Ld(Ω))
)
k∈N. Then, in21

Section 3.2, we prove Theorem 2 by showing that under the assumption (H2), the sequence (yk, fk)k∈N is22

actually bounded in A. This implies the same property for the real sequence e
C‖g′(yk)‖2

L∞(0,T ;Ld(Ω)) , and23

then the announced convergence.24

3.1 Proof of the convergence under the additionnal assumption g′ ∈ L∞(R)25

We establish in this section the following preliminary result, which coincides with Theorem 2 in the26

simpler case β = 0.27

Proposition 4. Assume that g′ satisfies (Hs) for some s ∈ [0, 1] and that g′ ∈ L∞(R). If s = 0, assume28

moreover (H3). For any (y0, f0) ∈ A, the sequence (yk, fk)k∈N defined by (19) strongly converges to a29

pair (y, f) ∈ A satisfying (1) and the condition (y(·, T ), yt(·, T )) = (z0, z1). Moreover, the convergence is30

at least linear and is at least of order 1 + s after a finite number of iterations.31

Proceeding as in [26, 34], Proposition 4 follows from the following lemma.32

1We recall that a sequence (uk)k∈N of real numbers converges to 0 with order α ≥ 1 if there exists M > 0 such that

|uk+1| ≤ M |uk|α for every k ∈ N. A sequence (vk)k∈N of real numbers converges to 0 at least with order α ≥ 1 if there

exists a sequence (uk)k∈N of nonnegative real numbers converging to 0 with order α ≥ 1 such that |vk| ≤ uk for every

k ∈ N.
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Lemma 3. Under the hypotheses of Proposition 4, for any (y0, f0) ∈ A, there exists a k0 ∈ N such that1

the sequence (E(yk, fk))k≥k0 tends to 0 as k →∞ with at least a rate s+ 1.2

Proof. Since g′ ∈ L∞(R), the nonnegative constant c(yk) in (15) is uniformly bounded w.r.t. k: we3

introduce the real c > 0 as follows4

c(yk) ≤ c :=
C

(1 + s)
√

2
[g′]s

(
CeC‖g

′‖2∞|Ω|
2/d

)1+s

, ∀k ∈ N. (22)

|Ω| denotes the measure of the domain Ω. For any (yk, fk) ∈ A, let us then denote the real function pk
by

pk(λ) := |1− λ|+ λ1+scE(yk, fk)s/2, λ ∈ [0,m].

Lemma 2 with (y, f) = (yk, fk) then allows to write that5 √
E(yk+1, fk+1) = min

λ∈[0,m]

√
E((yk, fk)− λ(Y 1

k , F
1
k )) ≤ pk(λ̃k)

√
E(yk, fk) (23)

with pk(λ̃k) := minλ∈[0,m] pk(λ). Assume first that s > 0. We then easily check that the optimal λ̃k is6

given by7

λ̃k :=


1

(1 + s)1/sc1/s
√
E(yk, fk)

, if (1 + s)1/sc1/s
√
E(yk, fk) ≥ 1,

1, if (1 + s)1/sc1/s
√
E(yk, fk) < 1

leading to8

pk(λ̃k) :=


1− s

(1 + s)
1
s+1

1

c1/s
√
E(yk, fk)

, if (1 + s)1/sc1/s
√
E(yk, fk) ≥ 1,

c E(yk, fk)s/2, if (1 + s)1/sc1/s
√
E(yk, fk) < 1.

(24)

Accordingly, we may distinguish two cases :9

• If (1 + s)1/sc1/s
√
E(y0, f0) < 1, then c1/s

√
E(y0, f0) < 1, and thus c1/s

√
E(yk, fk) < 1 for all k ∈ N

since the sequence (E(yk, fk))k∈N is decreasing. Hence (23) implies that

c1/s
√
E(yk+1, fk+1) ≤

(
c1/s

√
E(yk, fk)

)1+s ∀k ∈ N.

It follows that c1/s
√
E(yk, fk)→ 0 as k →∞ with a rate equal to 1 + s.10

• If (1 + s)1/sc1/s
√
E(y0, f0) ≥ 1 then we check that the set I := {k ∈ N, (1 + s)1/sc1/s

√
E(yk, fk) ≥ 1}11

is a finite subset of N; indeed, for all k ∈ I, (23) implies that12

c1/s
√
E(yk+1, fk+1) ≤

(
1− s

(1 + s)
1
s+1

1

c1/s
√
E(yk, fk)

)
c1/s

√
E(yk, fk) = c1/s

√
E(yk, fk)− s

(1 + s)
1
s+1

(25)

and the strict decrease of the sequence (c1/s
√
E(yk, fk))k∈I . Thus there exists k0 ∈ N such that for all13

k ≥ k0, (1 + s)1/sc1/s
√
E(yk, fk) < 1, that is I is a finite subset of N. Arguing as in the first case, it14

follows that
√
E(yk, fk)→ 0 as k →∞.15

It follows in particular from (24) that the sequence (pk(λ̃k))k∈N decreases as well.16

If now s = 0, then pk(λ) = |1 − λ| + λc with c = [g′]0Ce
C‖g′‖2∞|Ω|

2/d

and (23) with λ̃k = 1 leads to17 √
E(yk+1, fk+1) ≤ c

√
E(yk, fk). The convergence of (E(yk, fk))k∈N to 0 holds if c < 1, i.e. (H3).18

19

Proof. (of Proposition 4) In view of (9), we write(
1 + ‖g′(y)‖L∞(0,T ;L3(Ω))

)
e
C‖g′(y)‖2

L∞(0,T ;Ld(Ω)) ≤ (1 + ‖g′‖∞|Ω|1/3)eC‖g
′‖2∞|Ω|

2/d

≤ e2C‖g′‖2∞|Ω|
2/d
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using that (1 + u)eu
2 ≤ e2u2

for all u ∈ R+. It follows that1

k∑
n=0

|λn|‖(Y 1
n , F

1
n)‖H ≤ mCeC‖g

′‖2∞|Ω|
2/d

k∑
n=0

√
E(yn, fn). (26)

Using that pn(λ̃n) ≤ p0(λ̃0) for all n ≥ 0, we can write for n > 0,2 √
E(yn, fn) ≤ pn−1(λ̃n−1)

√
E(yn−1, fn−1) ≤ p0(λ̃0)

√
E(yn−1, fn−1) ≤ (p0(λ̃0))n

√
E(y0, f0). (27)

Then, using that p0(λ̃0) = minλ∈[0,m] p0(λ) < 1 (since p0(0) = 1 and p′0(0) < 0), we finally obtain the

uniform estimate
k∑

n=0

|λn|‖(Y 1
n , F

1
n)‖H ≤ mCeC‖g

′‖2∞|Ω|
2/d

√
E(y0, f0)

1− p0(λ̃0)

for which we deduce (since H is a complete space) that the serie
∑
n≥0 λn(Y 1

n , F
1
n) converges in A0.3

Writing from (19) that (yk+1, fk+1) = (y0, f0) −
∑k
n=0 λn(Y 1

n , F
1
n), we conclude that (yk, fk) strongly4

converges in A to (y, f) := (y0, f0) +
∑
n≥0 λn(Y 1

n , F
1
n).5

Let us now pass to the limit in (20). We write that ‖g(yk)− g(y)‖L2(QT ) ≤ ‖g′‖∞‖yk − y‖L2(QT ) and6

thus g(yk) → g(y) in L2(QT ). Moreover, (g′(yk))k∈N is a bounded sequence of L2(QT ) since g′ ∈ L∞.7

Then, using that (Y 1
k , F

1
k ) goes to zero as k → ∞ in A0, we pass to the limit in (20) and get that8

(y, f) ∈ A solves9 
∂tty −∆y + g(y) = f1ω, in QT ,

y = 0, on ΣT ,

(y(·, 0), ∂ty(·, 0)) = (y0, y1), in Ω.

(28)

Since the limit (y, f) belongs to A, we have that (y(·, T ), yt(·, T )) = (z0, z1) in Ω. Moreover, for all k > 010

‖(y, f)− (yk, fk)‖H =

∥∥∥∥ ∞∑
p=k+1

λp(Y
1
p , F

1
p )

∥∥∥∥
H
≤ m

∞∑
p=k+1

‖(Y 1
p , F

1
p )‖H

≤ mC

∞∑
p=k+1

√
E(yp, fp) ≤ mC

∞∑
p=k+1

p0(λ̃0)p−k
√
E(yk, fk)

≤ mC
p0(λ̃0)

1− p0(λ̃0)

√
E(yk, fk)

(29)

and conclude from Lemma 3 the convergence of order at least 1 + s after a finite number of iterates.11

Remark 2. In particular, along the sequence (yk, fk)k∈N defined by (19), (29) is a kind of coercivity12

property for the functional E. We emphasize, in view of the non uniqueness of the zeros of E, that an13

estimate (similar to (29)) of the form ‖(y, f) − (y, f)‖H ≤ C
√
E(y, f) does not hold for all (y, f) ∈ A.14

We also insist in the fact the sequence (yk, fk)k∈N and its limits (y, f) are uniquely determined from the15

initialization (y0, f0) ∈ A and from our selection criterion for the control F 1.16

Remark 3. Estimate (26) implies the uniform estimate on the sequence (‖(yk, fk)‖H)k∈N:

‖(yk, fk)‖H ≤ ‖(y0, f0)‖H +mCeC‖g
′‖2∞|Ω|

2/d
k−1∑
n=0

√
E(yn, fn)

≤ ‖(y0, f0)‖H +mCeC‖g
′‖2∞|Ω|

2/d

√
E(y0, f0)

1− p0(λ̃0)
.
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In particular, for s > 0 and the less favorable case for which (1 + s)1/sc1/s
√
E(y0, f0) ≥ 1, we get√

E(y0,f0)

1−p0(λ̃0)
= (1+s)

1
s

+1

s c1/sE(y0, f0), (see (24)) leading to

‖(yk, fk)‖H ≤ ‖(y0, f0)‖H +mCeC‖g
′‖2∞|Ω|

2/d (1 + s)
1
s+1

s
c1/sE(y0, f0),

and then, in view of (22) to the explicit estimate in term of the data1

‖(yk, fk)‖H ≤ ‖(y0, f0)‖H +m
(1 + s)

s

(
C[g′]s√

2

)1/s(
CeC‖g

′‖2∞|Ω|
2/d

) 2s+1
s

E(y0, f0).

The case s = 0 under the hypothesis c < 1 leads to ‖(yk, fk)‖H ≤ ‖(y0, f0)‖H +m
c
√
E(y0,f0)

1−c .2

Remark 4. For s > 0, recalling that the constant c is defined in (22), if (1 + s)1/sc1/s
√
E(y0, f0) ≥ 1,3

inequality (25) implies that4

c1/s
√
E(yk, fk) ≤ c1/s

√
E(y0, f0)− k s

(1 + s)
1
s+1

, ∀k ∈ I.

Hence, the number of iteration k0 to achieve a rate 1 + s is estimated as follows :

k0 =

⌊
(1 + s)

(
c1/s(1 + s)1/s

√
E(y0, f0)

)
− 1

s

⌋
+ 1

where b·c denotes the integer part. As expected, this number increases with
√
E(y0, f0) and ‖g′‖∞. If5

(1 + s)1/sc1/s
√
E(y0, f0) < 1, then k0 = 0. In particular, as s→ 0+, k0 →∞ if c > 1, i.e. if (H3) does6

not hold.7

For s = 0, the inequality
√
E(yk+1, fk+1) ≤ c

√
E(yk, fk) with c < 1 leads to k0 = 0.8

We also have the following convergence result for the optimal sequence (λk)k>0.9

Lemma 4. Assume that g′ satisfies (Hs) for some s ∈ [0, 1] and that g′ ∈ L∞(R). The sequence (λk)k>k0
10

defined in (19) converges to 1 as k →∞ at least with order 1 + s.11

Proof. In view of (18), we have, as long as E(yk, fk) > 0, since λk ∈ [0,m]

(1− λk)2 =
E(yk+1, fk+1)

E(yk, fk)
− 2(1− λk)

((
∂ttyk −∆yk + g(yk)− fk 1ω

)
, l(yk, λkY

1
k )
)

2

E(yk, fk)

−
∥∥l(yk, λkY 1

k )
∥∥2

2

2E(yk)

≤ E(yk+1, fk+1)

E(yk, fk)
− 2(1− λk)

((
∂ttyk −∆yk + g(yk)− fk 1ω

)
, l(yk, λkY

1
k )
)

2

E(yk, fk)

≤ E(yk+1, fk+1)

E(yk, fk)
+ 2
√

2m

√
E(yk, fk)‖l(yk, λkY 1

k )‖L2(QT )

E(yk, fk)

≤ E(yk+1, fk+1)

E(yk, fk)
+ 2
√

2m
‖l(yk, λkY 1

k )‖2√
E(yk, fk)

.

But, from (16) and (17), we have ‖l(yk, λkY 1
k )‖L2(QT ) ≤ cλ1+s

k E(yk, fk)
1+s

2 ≤ cm1+sE(yk, fk)
1+s

2 and

thus

(1− λk)2 ≤ E(yk+1, fk+1)

E(yk, fk)
+ 2
√

2m2+scE(yk, fk)s/2.

Consequently, since E(yk, fk)→ 0 and E(yk+1,fk+1)
E(yk,fk) → 0 at least with order 1+s, we deduce the result.12
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3.2 Proof of Theorem 21

In this section, we relax the condition g′ ∈ L∞(R) and prove Theorem 3.2, for s > 0 under the assumption2

(H2). This assumption implies notably that |g(r)| ≤ C(1 + |r|) ln(2 + |r|) for every r ∈ R, mentioned in3

the introduction to state the well-posedness of (1). The case β = 0 corresponds to the case developed in4

the previous section, i.e. g′ ∈ L∞(R).5

Within this more general framework, the difficulty is to have a uniform control with respect to k of6

the observability constant Ce
C‖g′(yk)‖2

L∞(0,T ;Ld(Ω)) appearing in the estimates for (Y 1
k , F

1
k ), see Proposition7

1. In other terms, we have to show that the sequence (yk, fk)k∈N uniquely defined in (19) is uniformly8

bounded in A, for any (y0, f0) ∈ A.9

We need the following intermediate result.10

Lemma 5. Let C > 0, only depending on Ω and T be the constant appearing in Proposition 7. Assume

that g satisfies the growth condition (H2) and 2Cβ2 ≤ 1. Then for any (y, f) ∈ A,

e
C‖g′(y)‖2

L∞(0,T ;Ld(Ω)) ≤ 2C max(1, e2Cα2

|Ω|2)

(
1 +
‖y‖L∞(0,T ;Lp? (Ω))

|Ω|1/p?
)2Cβ2

for any p? ∈ N? with p? <∞ if d = 2 and p? ≤ 6 if d = 3.11

Proof. We use the following inequality (direct consequence of the inequality (3.8) in [28]):12

e
C‖g′(y)‖2

L∞(0,T ;Ld(Ω)) ≤ C
(

1 + sup
t∈(0,T )

∫
Ω

eC|g
′(y)|2

)
, ∀(y, f) ∈ A. (30)

Writing that |g′(y)|2 ≤ 2
(
α2 + β2 ln(1 + |y|)

)
, we get that

∫
Ω
eC|g

′(y)|2 ≤ e2Cα2 ∫
Ω

(1 + |y|)2Cβ2

.

Assuming 2Cβ2 ≤ p?, Holder inequality leads to

∫
Ω

eC|g
′(y)|2 ≤ e2Cα2

(∫
Ω

(1 + |y|)p
?

) 2Cβ2

p?

|Ω|1−
2Cβ2

p?

≤ e2Cα2

|Ω|
(

1 +
‖y‖Lp?(Ω)

|Ω|1/p?
)2Cβ2

.

It follows, by (30), that for every (y, f) ∈ A,13

e
C‖g′(y)‖2

L∞(0,T ;Ld(Ω)) ≤ C
(

1 + e2Cα2

|Ω|
(

1 +
‖y‖L∞(0,T ;Lp? (Ω))

|Ω|1/p?
)2Cβ2)

≤ C max(1, e2Cα2

|Ω|)
(

1 +

(
1 +
‖y‖L∞(0,T ;Lp? (Ω))

|Ω|1/p?
)2Cβ2)

≤ 22Cβ2

C max(1, e2Cα2

|Ω|)
(

1 +
‖y‖L∞(0,T ;Lp? (Ω))

|Ω|1/p?
)2Cβ2

and the result.14

Lemma 6. Assume that g satisfies the growth condition (H2) and 2Cβ2 ≤ 1. For any (y, f) ∈ A, the15

unique solution (Y 1, F 1) ∈ A0 of (7) satisfies16

‖(Y 1, ∂tY
1)‖L∞(0,T ;V ) + ‖F 1‖2,qT ≤ d(y)

√
E(y, f)

with17

d(y) := C3(α)

(
1 +
‖y‖L∞(0,T ;L1(Ω))

|Ω|

)2Cβ2

, C3(α) := 2C max(1, e2Cα2

|Ω|).

Proof. Lemma 5 with p? = 1 and estimate (8) lead to the result.18
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With these notations, the term c(y) in (15) rewrites as1

c(y) =
C

(1 + s)
√

2
[g′]s d(y)1+s, ∀(y, f) ∈ A, ∀s ∈ (0, 1]. (31)

Proof. (of Theorem 2) If the initialization (y0, f0) ∈ A is such that E(y0, f0) = 0, then the sequence2

(yk, fk)k∈N is constant equal to (y0, f0) and therefore converges. We assume in the sequel that E(y0, f0) >3

0.4

We are going to prove that, for any β < β?(s), there exists a constant M > 0 such that the sequence5

(yk)k∈N defined by (19) enjoys the uniform property6

‖yk‖L∞(0,T ;L1(Ω)) ≤M, ∀k ∈ N. (32)

The convergence of the sequence (yk, fk)k∈N in A will then follow by proceeding as in Section 3.1. Remark7

preliminary that the assumption β < β?(s) implies 2Cβ2 < s
2s+1 ≤ 1 since s ∈ (0, 1].8

Proof of the uniform property (32) for some M large enough- As for n = 0, from any initialization (y0, f0)

chosen in A, it suffices to take M larger than M1 := ‖y0‖L∞(0,T ;L1(Ω)). We then proceed by induction

and assume that, for some n ∈ N, ‖yk‖L∞(0,T ;L1(Ω)) ≤M for all k ≤ n. This implies in particular that,

d(yk) ≤ dM (β) := C3(α)

(
1 +

M

|Ω|

)2Cβ2

, ∀k ≤ n

and then9

c(yk) ≤ cM (β) :=
C

(1 + s)
√

2
[g′]s d

1+s
M (β), ∀k ≤ n. (33)

Then, we write that ‖yn+1‖L∞(0,T ;L1(Ω)) ≤ ‖y0‖L∞(0,T ;L1(Ω)) +
∑n
k=0 λk‖Y 1

k ‖L∞(0,T ;L1(Ω)). But, Lemma10

6 implies that ‖Y 1
k ‖L∞(0,T ;L1(Ω)) ≤ dM (β)

√
E(yk, fk) for all k ≤ n leading to11

‖yn+1‖L∞(0,T ;L1(Ω)) ≤ ‖y0‖L∞(0,T ;L1(Ω)) +mdM (β)

n∑
k=0

√
E(yk, fk). (34)

Moreover, inequality (27) implies that
∑n
k=0

√
E(yk, fk) ≤ 1

1−p0(λ̃0)

√
E(y0, f0) where p0(λ̃0) is given by12

(24) with c = cM (β).13

Now, we take M large enough so that (1 + s)1/sc
1/s
M (β)

√
E(y0, f0) ≥ 1 i.e.14

(
C√

2
[g′]s

)1/s

C3(α)2/s

(
1 +

M

|Ω|

) 4Cβ2

s √
E(y0, f0) ≥ 1. (35)

Such M exists since
√
E(y0, f0) > 0 is independent of M and since the left hand side is of order15

O(M
4Cβ2

s ) with 4Cβ2

s > 0. We denote by M2 the smallest value of M such that (35) hold true.16

Then, from (24), we get that p0(λ̃0) = 1− s

(1+s)
1
s

+1

1

c
1/s
M (β)

√
E(y0,f0)

and therefore

1

1− p0(λ̃0)
=

(1 + s)
1
s+1

s
c
1/s
M (β)

√
E(y0, f0)

so that
∑n
k=0

√
E(yk, fk) ≤ (1+s)

1
s

+1

s c
1/s
M (β)E(y0, f0). It follows from (34) that

‖yn+1‖L∞(0,T ;L1(Ω)) ≤ ‖y0‖L∞(0,T ;L1(Ω)) +mdM (β)
(1 + s)

1
s+1

s
c
1/s
M (β)E(y0, f0).

14



The definition of cM (β) (see (33)) then gives

‖yn+1‖L∞(0,T ;L1(Ω)) ≤‖y0‖L∞(0,T ;L1(Ω))

+
m(1 + s)

s

(
C[g′]s√

2

)1/s(
C3(α)

)1+ 2
s

E(y0, f0)

(
1 +

M

|Ω|

) (2Cβ2)(2s+1)
s

.

Now, we take M > 0 large enough so that the right hand side is bounded by M , i.e.1

‖y0‖L∞(0,T ;L1(Ω)) +
m(1 + s)

s

(
C[g′]s√

2

)1/s(
C3(α)

)1+ 2
s

E(y0, f0)

(
1 +

M

|Ω|

) (2Cβ2)(2s+1)
s

≤M. (36)

Such M exists under the assumption β < β?(s) equivalent to (2Cβ2)(2s+1)
s < 1. We denote by M3 the2

smallest value of M such that (36) holds true. Eventually, taking M := max(M1,M2,M3), we get that3

‖yn+1‖L∞(0,T ;L1(Ω)) ≤M as well. We have then proved by induction the uniform property (32) for some4

M large enough.5

Proof of the convergence of the sequence (yk, fk)k∈N- In view of Lemma 5 with p? = 1, the uniform

property (32) implies that the observability constant Ce
C‖g′(yk)‖2

L∞(0,T ;Ld(Ω)) appearing in the estimates

for (Y 1
k , F

1
k ) (see Proposition 1) is uniformly bounded with respect to the parameter k. As a consequence,

the constant c(yk) appearing in the instrumental estimate (15) is bounded by cM (β) given by (33).

Consequently, the developments of Section 3.1 apply with c = cM (β). Theorem 2 then follows from the

proof of Proposition 4 except for the limit in (20) with respect to k (since g′ is not anymore in L∞(QT )).

Since g ∈ C1(R), a.e in QT there exists 0 ≤ θ(x, t) ≤ 1 such that

|g(yk(x, t))− g(y(x, t))| = |g′(y(x, t) + θ(x, t)yk(x, t))||yk(x, t)− y(x, t)|

≤ (α+ β ln1/2
(
1 + |y(x, t) + θ(x, t)yk(x, t)|

)
)|yk(x, t)− y(x, t)|

≤ (α+ β(|y(x, t)|1/2 + |yk(x, t)|1/2))|yk(x, t)− y(x, t)|

and thus

‖g(yk)− g(y)‖2 ≤
(
α|QT |1/4 + β(‖y‖1/22 + ‖yk‖1/22 )

)
‖yk − y‖4.

Since yk → y in L4(QT ), it follows that g(yk) → g(y) in L2(QT ). Moreover, since (yk)k∈N is a bounded

sequence of L4(QT ), the estimate

‖g′(yk)‖2 ≤ C(α+ β‖yk‖1/22 )‖yk‖4

implies that (g′(yk))k∈N is a bounded sequence of L2(QT ). Then, using that (Y 1
k , F

1
k ) goes to zero as6

k →∞ in A0, we pass to the limit in (20) and get that (y, f) ∈ A solves (28).7

Remark 5. Remark that M := max(M2,M3) since M3 ≥ M1. The constant M2 can be made explicit

since the constraint (35) implies that

(
C[g′]s√

2

)1/s

C3(α)2/s

(
1 +

M

|Ω|

) 4Cβ2

s √
E(y0, f0) ≥ 1.

equivalent to (
1 +

M

|Ω|

)2Cβ2

≥ C3(α)−1
√
E(y0, f0)

−s/2
(
C√

2
[g′]s

)−1/2

.

In particular, M2 is large for small values of
√
E(y0, f0), for any s > 0. On the other hand, the constant8

M3 is no explicit, hence whether M2 > M3 or M3 > M2 depend on the values of
√
E(y0, f0) and9

‖y0‖L∞(0,T ;L1(Ω)). Remark that
√
E(y0, f0) can be large and ‖y0‖L∞(0,T ;L1(Ω)) small, and vice versa.10
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4 Comments1

Asymptotic condition. The asymptotic condition (H2) on g′ is slightly stronger than the asymptotic2

condition (H1) made in [17]: this is due to our linearization of (1) which involves r → g′(r) while the3

linearization (2) in [17] involves r → (g(r) − g(0))/r. There exist cases covered by Theorem 1 in which4

exact controllability for (1) is true but that are not covered by Theorem 2. Note however that the example5

g(r) = a+ br + cr ln1/2(1 + |r|), for any a, b ∈ R and for any c > 0 small enough (which is somehow the6

limit case in Theorem 1) satisfies (H2) as well as (Hs) for any s ∈ [0, 1].7

While Theorem 1 was established in [17] by a nonconstructive Leray-Schauder fixed point argument,8

we obtain here, in turn, a new proof of the exact controllability of semilinear multi-dimensional wave9

equations, which is moreover constructive, with an algorithm that converges unconditionally, at least10

with order 1 + s.11

Minimization functional. Among all possible admissible controlled pair (y, v) ∈ A0, we have selected12

the solution (Y1, F1) of (7) that minimizes the functional J(v) = ‖v‖22,qT . This choice has led to the13

estimate (8) which is one of the key points of the convergence analysis. The analysis remains true when14

one considers the quadratic functional J(y, v) = ‖w1v‖22,qT + ‖w2y‖22 for some positive weight functions15

w1 and w2 (see for instance [7]).16

Link with Newton method. Defining F : A → L2(QT ) by F (y, f) := (∂tty − ∆y + g(y) − f 1ω),17

we have E(y, f) = 1
2‖F (y, f)‖22 and we observe that, for λk = 1, the algorithm (19) coincides with the18

Newton algorithm associated to the mapping F (see (5)). This explains the super-linear convergence19

property in Theorem 2, in particular the quadratic convergence when s = 1. The optimization of the20

parameter λk gives to a global convergence property of the algorithm and leads to the so-called damped21

Newton method applied to F . For this method, global convergence is usually achieved with linear order22

under general assumptions (see for instance [12, Theorem 8.7]). As far as we know, the analysis of damped23

type Newton methods for partial differential equations has deserved very few attention in the literature.24

We mention [25, 35] in the context of fluids mechanics.25

A variant. To simplify, let us take λk = 1, as in the standard Newton method. Then, for each k ∈ N,26

the optimal pair (Y 1
k , F

1
k ) ∈ A0 is such that the element (yk+1, fk+1) minimizes over A the functional27

(z, v) → J(z − yk, v − fk) with J(z, v) := ‖v‖2,qT (control of minimal L2(qT ) norm). Alternatively, we28

may select the pair (Y 1
k , F

1
k ) so that the element (yk+1, fk+1) minimizes the functional (z, v) → J(z, v).29

This leads to the sequence (yk, fk)k∈N defined by30 
∂ttyk+1 −∆yk+1 + g′(yk)yk+1 = fk+11ω + g′(yk)yk − g(yk) in QT ,

yk = 0, on ΣT ,

(yk+1(·, 0), ∂tyk+1(·, 0)) = (u0, u1) in Ω.

(37)

In this case, for every k ∈ N, (yk, fk) is a controlled pair for a linearized wave equation, while, in the case31

of the algorithm (19), (yk, fk) is a sum of controlled pairs (Y 1
j , F

1
j ) for 0 ≤ j ≤ k. This formulation used32

in [16] is different and the convergence analysis (at least in the least-squares setting) does not seem to be33

straightforward because the term g′(yk)yk − g(yk) is not easily bounded with respect to
√
E(yk, fk).34

Initialization with the controlled pair of the linear equation. The number of iterates to achieve

convergence (notably to enter in a super-linear regime) depends on the size of the value E(y0, f0). A

natural example of an initialization (y0, f0) ∈ A is the unique solution of minimal control norm of (1)

with g = 0 (i.e., in the linear case). Under the assumption (H2), this leads to the estimate

E(y0, f0) =
1

2
‖g(y0)‖22 ≤ |g(0)|2|QT |+ 2

∫
QT

|y0|2
(
α2 + β2 ln(1 + |y0|)

)
.
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Local controllability when removing the growth condition (H2). If the real E(y0, f0) is small1

enough, we may remove the growth condition (H2) on g′.2

Proposition 5. Assume g′ satisfies (Hs) for some s ∈ [0, 1]. Let (yk, fk)k>0 be the sequence of A defined3

in (19). There exists a constant C([g′]s) such that if E(y0, f0) ≤ C([g′]s), then (yk, fk)k∈N → (y, f) in4

A where f is a null control for y solution of (1). Moreover, the convergence is at least linear and is at5

least of order 1 + s after a finite number of iterations.6

Proof. In this proof, the notation ‖ · ‖∞,d stands for ‖ · ‖L∞(0,T ;Ld(Ω)). We note D := C
(1+s)

√
2
[g′]s and7

ek := c(yk)E(yk, fk)s/2 with c(y) := Dd(y)1+s and d(y) := CeC‖g
′(y)‖2∞,d . (23) then reads8 √

E(yk+1, fk+1) ≤ min
λ∈[0,m]

(
|1− λ|+ λ1+sek

)√
E(yk, fk). (38)

We write |g′(yk)− g′(yk − λkY 1
k )| ≤ [g′]s|λkY 1

k |s so that

‖g′(yk+1)‖2L∞(0,T ;Ld(Ω)) ≤ ‖g
′(yk)‖2∞,d +

(
[g′]sλ

s
k‖(Y 1

k )s‖∞,d
)2

+ 2‖g′(yk)‖∞,d[g′]sλsk‖(Y 1
k )s‖∞,d

and

eC‖g
′(yk+1)‖2∞,d ≤ eC‖g

′(yk)‖2∞,deC
(

[g′]sλ
s
k‖(Y

1
k )s‖∞,d

)2

e2C‖g′(yk)‖∞,d
(

[g′]sλ
s
k‖(Y

1
k )s‖∞,d

)
leading to

c(yk+1)

c(yk)
≤
(
eC
(

[g′]sλ
s
k‖(Y

1
k )s‖∞,d

)2

e2C‖g′(yk)‖∞,d
(

[g′]sλ
s
k‖(Y

1
k )s‖∞,d

))1+s

.

We infer that ‖(Y 1
k )s‖∞,d = ‖Y 1

k ‖s∞,sd. Moreover, estimate (8) leads to

‖Y 1
k ‖s∞,sd ≤ ds(yk)E(yk, fk)s/2 =

c(yk)
s

1+s

D
s

1+s
E(yk, fk)s/2 ≤ D−

s
1+s c(yk)E(yk, fk)s/2

using that c(yk) ≥ 1 (by increasing the constant C is necessary). Consequently,

eC
(

[g′]sλ
s‖(Y 1

k )s‖∞,d
)2

≤ eC
(

[g′]sλ
sD
− s

1+s ek

)2

:= eC1e
2
k .

Similarly,

‖g′(yk)‖∞,d‖(Y 1
k )s‖∞,d ≤ ‖g′(yk)‖∞,dds(yk)E(yk, fk)s/2

≤ ‖g′(yk)‖∞,d
(
Ce

C‖g′(y)‖2
L∞(0,T ;Ld(Ω))

)s
E(yk, fk)s/2

≤
(
Ce

C‖g′(y)‖2
L∞(0,T ;Ld(Ω))

)s+1

E(yk, fk)s/2 ≤ c(yk)

D
E(yk, fk)s/2 =

ek
D

using that a ≤ CeCa2

for all a ≥ 0 and C > 0 large enough. It follows that

e2C‖g′(yk)‖∞,d
(

[g′]sλ
s
k‖(Y

1
k )s‖∞,d

)
≤ e2C[g′]sλ

s
k
ek
D := eC2ek

and then c(yk+1)
c(yk) ≤ (eC1e

2
k+C2ek)1+s. By multiplying (38) by c(yk+1), we obtain the inequality9

ek+1 ≤ min
λ∈[0,m]

(
|1− λ|+ ekλ

1+s
)

(eC1e
2
k+C2ek)1+s ek.

If 2ek < 1, the minimum is reached for λ = 1 leading ek+1

ek
≤ ek(eC1e

2
k+C2ek)1+s. Consequently, if the ini-10

tial guess (y0, f0) belongs to the set {(y0, f0) ∈ A, e0 < 1/2, e0(eC1e
2
0+C2e0)1+s < 1}, the sequence (ek)k>011

goes to zero as k →∞. Since c(yk) ≥ 1 for all k ∈ N, this implies that the sequence (E(yk, fk))k>0 goes12

to zero as well. Moreover, from (8), we get D‖(Y 1
k , F

1
k )‖H ≤ ek

√
E(yk, fk) and repeating the arguments13

of the proof of Proposition 4, we conclude that the sequence (yk, fk)k>0 converges to a controlled pair14

for (1).15
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These computations does not use the assumption (H2) on the nonlinearity g. However, the smallness1

assumption on e0 requires a smallness assumption on E(y0, f0) (since c(y0) > 1). This is equivalent2

to assume the controllability of (1). Alternatively, in the case g(0) = 0, the smallness assumption on3

E(y0, f0) is achieved as soon as ‖(u0, u1)‖V is small enough. Therefore, the convergence result stated in4

Proposition 5 is equivalent to the local controllability property for (1). Proposition 5 can also be seen5

as a consequence of the usual convergence of the Newton method: when E(y0, f0) is small enough, i.e.,6

when the initialization is close enough to the solution, then λk = 1 for every k ∈ N and we recover the7

standard Newton method.8

Weakening of the condition (Hs). Given any s ∈ [0, 1], we introduce for any g ∈ C1(R) the following9

hypothesis :10

(H
′
s) There exist α, β, γ ∈ R+ such that |g′(a)− g′(b)| ≤ |a− b|s

(
α+ β(|a|γ + |b|γ)

)
, ∀a, b ∈ R11

which coincides with (Hs) if γ = 0 for α + β = [g′]s. If γ ∈ (0, 1) is small enough and related to the

constant β appearing in the growth condition (H2), Theorem 2 still holds if (Hs) is replaced by the

weaker hypothesis (H
′
s). Precisely, if g satisfies (H2) and (H

′
s) for some s ∈ (0, 1], then the sequence

(yk, fk)k∈N defined by (19) fulfills the estimate

E(yk+1, fk+1) ≤ E(yk, fk) min
λ∈[0,m]

(
|1− λ|+ λ1+s c(yk)E(yk, fk)s/2

)2

with c(y) := 1
(1+s)

√
2

((
α+2β‖yk‖γ∞,6γ)+βmγd(y)γE(y0, f0)

γ
2

)
d(y)1+s and d(y) := Ce

C‖g′(y)‖2
L∞(0,T ;Ld(Ω)) .12

Using Lemma 5 with p? = 6γ ≤ 6 and proceeding as in the proof of Theorem 2, one may prove by induction13

that the sequence (‖yk‖L∞(0,T ;L6(Ω)))k∈N is uniformly bounded under the condition γ+(2Cβ2)(1+2s)
s < 114

and then deduce the convergence of the sequence (yk, fk)k∈N.15

5 Numerical illustrations in the two dimensional case16

We illustrate in this section our results of convergence. We provide some practical details of the algorithm17

(19) then discuss some experiments in the two dimensional case performed with the software Freefem++18

[19].19

5.1 Algorithm and Approximation20

We introduce a cut off χ of the form χ(t, x) = χ0(t)χ1(x) where χ0 ∈ C∞0 (0, T ) and χ1 ∈ C∞0 (ω) take21

values in [0, 1] and then consider controls of minimal L2(χ−1/2, qT ) norm with L2(χ−1/2, qT ) := {f :22 ∫
qT
χ−1f2 <∞}. In order to determine linear controls, we employ the method introduced by Glowinski-23

Li-Lions in the seminal work [18] based on the unconstrained minimization of the conjugate functional.24

The algorithm (19) can be expended as follows :25

1. Initialization - we define (y0, f0) ∈ A as the solution of the linear problem26 
∂tty0 −∆y0 = f01ω, in QT ,

y0 = 0, on ΣT ,

(y0(·, 0), ∂ty0(·, 0)) = (u0, u1), in Ω,

(39)

where f0 is the control of minimal L2(χ−1/2, QT ) norm. The control f0 is given by f0 = χϕ0 where27

ϕ0 solves the adjoint problem28 
∂ttϕ−∆ϕ = 0, in QT ,

ϕ = 0, on ΣT ,

(ϕ(·, T ), ∂tϕ(·, T )) = (w0, w1), in Ω,

(40)
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with (w0, w1) ∈H := L2(Ω)×H−1(Ω) the solution of the unconstrained extremal problem

inf
(w0,w1)∈H

J?0 (w0, w1) :=
1

2

∫
qT

χ|ϕ|2− < u0, ∂tϕ(·, 0) >H1
0 (Ω),H−1(Ω) +(u1, ϕ(·, 0))L2(Ω)

+ < z0, w1 >H1
0 (Ω),H−1(Ω) −(z1, w0)L2(Ω).

The resolution of this extremal problem is done using the Fletcher-Reeves conjugate gradient al-1

gorithm initialized with (w0,0, w1,0) = (0, 0). The stopping criterion used is ‖gp‖H ≤ 10−10‖g0‖H2

where gp := (zp(T, ·) − z0, z1 − ∂tzp(T, ·)) denotes the gradient of J?0 at the iteration p and zp the3

solution of (39) with control function χwp where wp solves (40) with initial data (w0,p, w1,p).4

Assume now that (yk, fk)0≤k≤n ∈ A is computed for some n ≥ 0.5

2. Evaluation of the least-squares functional - If
√

2E(yn, fn) ≤ 10−5, then the algorithm stops. The

real E(yn, fn) is defined as E(yn, fn) = 1
2‖cn‖

2
L2(QT ) where cn solves∫

QT

cnc+

∫
QT

∂ttync+∇yn · ∇c+ g(yn)c−
∫
qT

fnc = 0, ∀c ∈ L2(0, T ;H1
0 (Ω)).

3. Descent direction - We compute the controlled pair (Y 1
n , F

1
n) ∈ A06 

∂ttY
1
n −∆Y 1

n +AnY
1
n = F 1

n1ω +Bn in QT ,

Y 1
n = 0 on ΣT ,

(Y 1
n (·, 0), ∂tY

1
n (·, 0)) = (0, 0) in Ω,

(41)

with potential An := g′(yn) and source term Bn := ∂ttyn −∆yn + g(yn)− fn1ω. The control F 1
n of7

minimal L2(χ−1/2, QT ) norm is given by F 1
n = χϕn where ϕn solves the adjoint problem8 

∂ttϕ−∆ϕ+Anϕ = 0, in QT ,

ϕ = 0, on ΣT ,

(ϕ(·, T ), ∂tϕ(·, T )) = (w0, w1), in Ω,

(42)

with (w0, w1) ∈H the solution of the unconstrained extremal problem

inf
(w0,w1)∈H

J?n(w0, w1) :=
1

2

∫
QT

χ|ϕ|2 +

∫
QT

Bnϕ.

The resolution of this extremal problem is done using the Fletcher-Reeves conjugate gradient algo-9

rithm initialized with the minimizer of J?n−1. The stopping criterion used is ‖gp‖H ≤ 10−5 where10

gp := (zp(T, ·),−∂tzp(T, ·)) denotes the gradient at the iteration p and zp the solution of (41) with11

control χwp where wp solves (42) with initial data (w0,p, w1,p).12

4. Optimal descent step and update Compute the optimal step λn minimizer in [0, 1] of λ→ E((yn, fn)−
λ(Y 1

n , F
1
n)) defined by

2E
(
(yn, fn)− λ(Y 1

n , F
1
n)
)

=

∥∥∥∥(1− λ)
(
∂ttyn −∆yn + g(yn)− fn 1ω

)
+ l(yn,−λY 1

n )

∥∥∥∥2

2

with l(y, λY ) := g(y + λY ) − g(y) − λg′(y)Y . This is done with 12 iterations of the trichotomy13

method on the interval [0, 1]. Then, set (yn+1, fn+1) = (yn, fn)− λn(Y 1
n , F

1
n) and return to step 2.14

In the sequel, we denote by k? = min{k |
√

2E(yk, fk) ≤ 10−5} and define the corresponding approxima-

tion of the solution

(y?, f?) = (y0, f0)−
k?∑
k=0

λk(Y 1
k , F

1
k ) ∈ A.
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Then, in order to measure a posteriori the quality of this approximation, we shall compute the relative1

term2

ET :=
‖(y, ∂ty)(·, T ; f?)‖V
‖(y, ∂ty)(·, T ; 0)‖V

,

where y(·, τ, f?) (resp. y(·, τ, 0)) is the solution at time τ of (1) with control equal to f = f? (resp.3

f = 0).4

The introduction of the cut off together with regularity properties on the data (y0, y1) make the5

controlled pairs (y0, f0) and (Y 1
k , F

1
k ) regular as well (we refer to [14]). This allows to give a meaning to6

Bk = ∂ttyk −∆yk + g(yk)− fk1ω as an L2(QT ) function. Moreover, this involves stability properties of7

the standard finite dimensional approximations with respect to the discretization parameters. Precisely,8

we use a time marching method combining the explicit scheme with centered finite differences in time9

and a finite element approximation for the space variable. We use a uniform discretization (ti)i=0,N of10

the time interval [0, T ] and denote by δt = T/N the time discretization parameter. Moreover, we consider11

a family T = {Th, h > 0} of regular triangulations of Ω such that Ω = ∪K∈ThK. The family is indexed12

by h = maxK∈τh |K|. For every time ti, the variable Y 1
k (·, ti), F 1

k (·, ti) are approximated in the space13

Ph = {ph ∈ C(QT ); (ph)|K ∈ P1(K),∀K ∈ Th} where Pk(K) denotes the space of polynomials of degree14

1. We refer to [3] for convergent results in this setting. We also refer to [1, 5, 15, 31].15

5.2 Experiments16

We consider a two-dimensional case for which Ω = (0, 1)2. The controllability time is equal to T = 3

and the control domain ω is depicted on Figure 1. Moreover, for any real constant cg, we consider the

nonlinear function g defined as follows :

g(r) = −cg r ln1/2(2 + |r|), ∀r ∈ R.

We check that g satisfies (Hs) for s = 1 and (H2) for |cg| small enough. Remark that the unfavorable17

situation for which the norm of the uncontrolled corresponding solution grows corresponds to strictly pos-18

itives values of cg. As for the initial and final conditions, we consider (u0, u1) = (100 sin(πx1) sin(πx2), 0)19

in Ω and (z0, z1) = (0, 0) respectively. Moreover, we mainly use a regular triangulation with fineness20

h = 1/64. A time step equal to δt = h/3 is then selected to satisfy the CFL condition arising from the21

explicit scheme with respect to the time variable.22

Table 1 collects some norms from the sequence (yk, fk)k∈N associated with the value cg = 1. The23

convergence of the algorithm is observed after 2 iterations. The optimal steps λk are equal to one so24

that the algorithm (19) coincides with the Newton algorithm (see previous section). Figure 2 depicts25

with respect to the time variable the L2(Ω) norm of the controlled solution y? = yk=2 (red line) to26

be compared with the L2(Ω) norm of the controlled solution yk=0 of the linear equation (blue line)27

(equivalently, the controlled solution corresponding to cg = 0) used to initialize the algorithm. The effect28

of the nonlinearity is reduced as the dynamics of the two controlled solutions are similar. The figure also29

depicts the L2(Ω) norm of the uncontrolled solution (blue dotted line) and displays a periodic behavior.30

Similarly, Figure 3 depicts the L2(χ, qT ) norm of the null control f? = fk=2 (red line) and fk=0 (blue31

line). By construction, these controls vanish at the initial and final time. The corresponding value of32

the relative error ET,h ≈ 1.15× 10−3 indicates a notable reduction of the solution at time T thought the33

action of the control.34

Table 2 and Figures 4 and 5 collect the results obtained for the value cg = 5. The relative error takes35

the value ET = 1.08× 10−3. The convergence is quadratic and is obtained after 4 iterations.36

Table 3 and Figures 6 and 7 collects the results obtained for the value cg = 10. We compute the37

relative error ET = 5.83 × 10−5. The convergence is observed after 4 iterations. As before, the optimal38

steps are very close to one. The main difference with the previous situations for which cg = 1 and39

cg = 5 is the behavior of the uncontrolled solution which grows exponentially with respect to the time40

variable, as shown in Figure 6. As expected, this larger value of cg induces a larger gap between the41
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Figure 1: Control domain ω ⊂ Ω = (0, 1)2 (black part).

]iterate k
√

2E(yk, fk)
‖yk−yk−1‖L2(QT )

‖yk−1‖L2(QT )

‖fk−fk−1‖L2
χ(qT )

‖fk−1‖L2
χ(qT )

‖yk‖L2(QT ) ‖fk‖L2
χ(qT ) λk

0 7.44× 101 – – 38.116 732.22 1

1 8.83× 10−1 1.65× 10−1 3.37× 10−1 37.2 697.423 1

2 7.14× 10−6 2.66× 10−4 9.90× 10−4 37.201 697.615 –

Table 1: cg = 1; Norms of (yk, fk) w.r.t. k defined by the algorithm (19).

Figure 2: cg = 1 – ( ) ‖y2(·, t)‖L2(Ω) ;

( ) ‖y0(·, t)‖L2(Ω) ; ( ) ‖y(·, t; 0)‖L2(Ω).

Figure 3: cg = 1 – ( ) ‖f2(·, t)‖L2
χ(ω) ;

( ) ‖f0(·, t)‖L2
χ(ω).

nonlinear control and the linear one. We observe notably that the nonlinear control f? acts stronger1

from the begining, precisely in order to balance the initial exponential growth of the solution outside2

the subset ω. We also observe that the control reduces the oscillations of the corresponding controlled3

solution (in comparison with the solution of the linear equation). For larger values of cg, we suspect a4

different dynamic between the control yielding to the first values of the optimal step λk far from one (as5

21



]iterate k
√

2E(yk, fk)
‖yk−yk−1‖L2(QT )

‖yk−1‖L2(QT )

‖fk−fk−1‖L2
χ(qT )

‖fk−1‖L2
χ(qT )

‖yk‖L2(QT ) ‖fk‖L2
χ(qT ) λk

0 3.72× 102 – – 38.116 732.22 1

1 4.58× 101 9.01× 10−1 1.07× 100 30.219 665.222 1

2 9.12× 10−1 6.36× 10−2 1.57× 10−1 30.563 734.688 1

3 1.69× 10−4 6.34× 10−4 1.43× 10−3 30.567 734.56 1

4 9.31× 10−11 1.15× 10−7 1.78× 10−7 30.567 734.559 –

Table 2: cg = 5; Norms of (yk, fk) w.r.t. k defined by the algorithm (19).

Figure 4: cg = 5 – ( ) ‖y4(·, t)‖L2(Ω) ;

( ) ‖y0(·, t)‖L2(Ω) ; ( ) ‖y(·, t; 0)‖L2(Ω).

Figure 5: cg = 5 – ( ) ‖f4(·, t)‖L2
χ(ω) ;

( ) ‖f0(·, t)‖L2
χ(ω).

observed in [26] for the resolution of the Navier-Stokes system with large values of the Reynolds number).1

However, for larger values of cg (for instance cg = 20), the exponential growth behavior leads to numerical2

instabilities and overflow in the computation of the controlled pair (Y 1
k , F

1
k ) solution of (41), where the3

potential g′(yk) appears. This leads to the divergence of the conjugate gradient algorithm including for4

very fine discretizations and the non convergence of the least-squares algorithm.5

]iterate k
√

2E(yk, fk)
‖yk−yk−1‖L2(QT )

‖yk−1‖L2(QT )

‖fk−fk−1‖L2
χ(qT )

‖fk−1‖L2
χ(qT )

‖yk‖L2(QT ) ‖fk‖L2
χ(qT ) λk

0 7.44× 102 – – 38.116 732.22 1

1 1.63× 102 1.79× 100 9.30× 10−1 58.691 667.602 1

2 1.62× 100 8.42× 10−2 1.41× 10−1 60.781 642.643 1

3 1.97× 10−3 1.21× 10−3 4.66× 10−3 60.745 643.784 1

4 5.11× 10−10 6.43× 10−7 2.63× 10−6 60.745 643.785 –

Table 3: cg = 10; Norms of (yk, fk) w.r.t. k defined by the algorithm (19).

For negative values of cg leading to rg(r) ≥ 0 for every r, the situation is more favorable from6

a computational viewpoint. Table 4 and Figures 8 and 9 are concerned with the value cg = −20. The7

convergence is observed after 4 iterations and leads to ET = 1.11×10−3. We observe that the uncontrolled8

solution oscillates faster as cg decreases. This leads to an oscillatory dynamic of the optimal control pair9

(y?, f?). We also observe that the norm of the control f? is significantly greater than f0, the initial10

control associated with the linear case.11

Table 5 associated with the value cg = 5 provides a numerical evidence of the convergence of the
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Figure 6: cg = 10 – ( ) ‖y4(·, t)‖L2(Ω) ;

( ) ‖y0(·, t)‖L2(Ω) ; ( ) ‖y(·, t; 0)‖L2(Ω).

Figure 7: cg = 10 – ( ) ‖f4(·, t)‖L2
χ(ω) ;

( ) ‖f0(·, t)‖L2
χ(ω).

]iterate k
√

2E(yk, fk)
‖yk−yk−1‖L2(QT )

‖yk−1‖L2(QT )

‖fk−fk−1‖L2
χ(qT )

‖fk−1‖L2
χ(qT )

‖yk‖L2(QT ) ‖fk‖L2
χ(qT ) λk

0 1.49× 103 – – 38.116 732.22 1

1 2.70× 102 1.36× 100 1.78× 100 41.413 1474.93 0.987

2 1.65× 101 1.64× 10−1 1.65× 10−1 43.041 1537.65 1

3 1.39× 10−2 3.12× 10−3 5.60× 10−3 43.071 1539.62 1

4 2.68× 10−9 1.46× 10−6 4.09× 10−6 43.071 1539.62 –

Table 4: cg = −20; Norms of (yk, fk) w.r.t. k defined by the algorithm (19).

Figure 8: cg = −20 – ( ) ‖y4(·, t)‖L2(Ω) ;

( ) ‖y0(·, t)‖L2(Ω) ; ( ) ‖y(·, t; 0)‖L2(Ω).

Figure 9: cg = −20 – ( ) ‖f4(·, t)‖L2
χ(ω) ;

( ) ‖f0(·, t)‖L2
χ(ω).

approximation (y?h, f
?
h) with respect to the value of h. Actually, in view of the inequality

‖f − fhk ‖ ≤ ‖f − fk‖+ ‖fk − fhk ‖, ∀k ∈ N,∀h > 0

the convergence result stated in Theorem 2 for the sequence (fk)k∈N and the convergence, for any k, of1

the approximation (fhk )h>0 of the linear control fk implies that fhk is a finite dimensional approximation2
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of f a control for (1). We observe that the level of the discretization has no influence on the speed of1

convergence of the least-squares algorithm.2

h n?h ‖y?h‖L2(QT ) ‖f?h‖L2
χ(qT ) ET,h

1/10 4 27.706 786.599 1.02× 10−1

1/20 4 30.155 713.949 3.14× 10−2

1/40 4 30.518 738.217 4.17× 10−3

1/80 4 30.581 735.318 4.88× 10−4

1/100 4 30.588 735.149 2.72× 10−4

1/120 4 30.592 735.052 2.15× 10−4

Table 5: cg = 5 - Norm of (y?h, f
?
h) w.r.t. h.

To end this numerical section, we compare our least-squares approach with two fixed point methods.3

We first consider the method associated with the algorithm (3) mentioned in the introduction. With the4

same data and initialization, Table 6 collects some norms with respect to k for cg = 5. The L2(χ−1/2, qT )5

norm of the control is smaller than the one from the least-squares algorithm (527.226 vs 734.559) but6

leads to a larger L2(QT ) norm of the controlled solution (36.806 vs 30.567). The convergence is linear7

and reached after 9 iterations leading to ET ≈ 1.12× 10−3. Figure 10 displays the time evolution of the8

norms of yk and fk for the final iteration k = 9. We observe that the approximation obtained differs from9

those of Figures 4 and 5. For these data, the sequence converges for |cg| < 15 approximately. For larger10

values, we observe the non-convergence of the method suggesting that the operator K is not contracting11

in general.12

]iterate k
√

2E(yk, fk)
‖yk+1−yk‖L2(QT )

‖yk‖L2(QT )

‖fk+1−fk‖L2
χ(qT )

‖fk‖L2
χ(qT )

‖yk‖L2(QT ) ‖fk‖L2
χ(qT )

0 3.72× 102 1.02× 100 1.33× 100 38.116 732.22

1 4.79× 101 5.85× 10−2 1.73× 10−1 37.945 562.213

2 2.65× 100 3.35× 10−3 1.55× 10−2 36.798 530.787

3 1.54× 10−1 3.05× 10−4 9.84× 10−4 36.812 526.864

4 1.39× 10−2 4.70× 10−5 8.77× 10−5 36.807 527.209

5 2.13× 10−3 9.24× 10−6 1.81× 10−5 36.806 527.221

6 4.20× 10−4 1.88× 10−6 3.93× 10−6 36.806 527.225

7 8.55× 10−5 4.07× 10−7 8.81× 10−7 36.806 527.226

8 1.85× 10−5 8.97× 10−8 1.99× 10−7 36.806 527.226

9 4.08× 10−6 – – 36.806 527.226

Table 6: cg = 5 ; Norms for the sequence defined by the fixed point algorithm (3).

The second fixed point method is associated with the operator Λ : L2(QT ) → L2(QT ) defined as13

follows y = Λ(z) where y is a controlled solution of14 
∂tty −∆y = f1ω − g(z) in QT ,

y = 0 on ΣT ,

(y, ∂ty)(·, 0) = (u0, u1) in Ω

(43)

satisfying (y(·, T ), ∂ty(·, T )) = (z0, z1). f is selected as the control of minimal L2(χ−1/2, QT ) norm. Any15

fixed point of Λ is a controlled solution for (1). Theorem 1 implies the existence of at least one fixed16

point for Λ. The controllability of system (43) allows to define the sequence (yk)k∈N as follows:17 {
y0 ∈ L2(QT ),

yk+1 = Λ(yk), k ≥ 0.
(44)
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Figure 10: Fixed point algorithm (3) ; cg = 5; Left: ‖y9(·, t)‖L2
χ(ω) ( ) and ‖y0(·, t)‖L2

χ(ω) ( ) vs t;

Right: ‖f9(·, t)‖L2
χ(ω) ( ) and ‖f0(·, t)‖L2

χ(ω) ( ) vs t.

With the same data and initialization, Table 7 collects some norms with respect to k for cg = 5. fk1

is the control of minimal L2(χ−1/2, qT ) for yk solution of (43). The L2 norm of the controlled pair is2

greater than the one obtained from the least-squares algorithm. The convergence is significantly lower3

and reached after 39 iterations leading to ET ≈ 1.41× 10−3. The convergence is again linear. Figures 114

depicts the time evolution of the norms of yk and fk for the final iteration k = 39. We check that the5

approximation obtained differs from those of Figures 4 and 5. For these data, the sequence converges for6

|cg| < 7 approximately. For larger values, we observe the non-convergence of the method suggesting that7

the operator Λ is not contracting in general.8

Figure 11: Fixed point algorithm (44) ; cg = 5; Left: ‖y39(·, t)‖L2
χ(ω) ( ) and ‖y0(·, t)‖L2

χ(ω) ( ) vs t;

Right: ‖f39(·, t)‖L2
χ(ω) ( ) and ‖f0(·, t)‖L2

χ(ω) ( ) vs t.

6 Conclusion9

Exact controllability of (1) has been established in [17], under a growth condition on g, by means10

of a Leray-Schauder fixed point argument that is not constructive. In this paper, under a slightly11
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]iterate k
√

2E(yk, fk)
‖yk+1−yk‖L2(QT )

‖yk‖L2(QT )

‖fk+1−fk‖L2
χ(qT )

‖fk‖L2
χ(qT )

‖yk‖L2(QT ) ‖fk‖L2
χ(qT )

0 3.72× 102 8.26× 10−1 1.71× 100 38.116 732.22

1 3.11× 102 3.77× 10−1 7.11× 10−1 48.341 1330.18

2 1.80× 102 1.49× 10−1 3.32× 10−1 46.01 1264.46

3 6.89× 101 6.16× 10−2 1.31× 10−1 44.116 965.409

4 2.70× 101 2.94× 10−2 4.71× 10−2 43.696 879.298

5 1.27× 101 1.64× 10−2 2.22× 10−2 43.66 859.09

6 7.08× 100 9.78× 10−3 1.24× 10−2 43.702 849.733

7 4.24× 100 6.07× 10−3 7.53× 10−3 43.757 844.619

8 2.64× 100 3.85× 10−3 4.71× 10−3 43.804 841.847

9 1.68× 100 2.48× 10−3 3.02× 10−3 43.841 840.273

10 1.08× 100 1.61× 10−3 1.95× 10−3 43.867 839.376

11 7.05× 10−1 1.05× 10−3 1.27× 10−3 43.886 838.853

12 4.62× 10−1 6.90× 10−4 8.36× 10−4 43.899 838.546

13 3.03× 10−1 4.54× 10−4 5.51× 10−4 43.909 838.364

14 2.00× 10−1 3.00× 10−4 3.64× 10−4 43.915 838.256

15 1.32× 10−1 1.98× 10−4 2.41× 10−4 43.919 838.192

16 8.75× 10−2 1.31× 10−4 1.60× 10−4 43.922 838.154

17 5.80× 10−2 8.72× 10−5 1.06× 10−4 43.924 838.131

18 3.85× 10−2 5.80× 10−5 7.09× 10−5 43.926 838.118

19 2.56× 10−2 3.86× 10−5 4.73× 10−5 43.927 838.11

20 1.71× 10−2 2.57× 10−5 3.16× 10−5 43.927 838.105

21 1.14× 10−2 1.72× 10−5 2.11× 10−5 43.928 838.103

22 7.61× 10−3 1.15× 10−5 1.41× 10−5 43.928 838.101

23 5.09× 10−3 7.67× 10−6 9.45× 10−6 43.928 838.1

24 3.40× 10−3 5.13× 10−6 6.33× 10−6 43.928 838.1

25 2.28× 10−3 3.43× 10−6 4.24× 10−6 43.928 838.099

39 8.71× 10−6 – – 43.929 838.099

Table 7: cg = 5; Norms for the sequence defined by the fixed point algorithm (44).

stronger growth condition and under the additional assumption that g′ is uniformly Hölder continuous1

with exponent s ∈ [0, 1], we have designed an explicit algorithm and proved its convergence of a controlled2

solution of (1). Moreover, the convergence is super-linear of order greater than or equal to 1 + s after a3

finite number of iterations. Our approach gives a new and constructive proof of the exact controllability4

of (1). We emphasize that the method is general and may be applied to any other equations or systems5

- not necessarily of hyperbolic nature - for which a precise observability estimate for the linearized6

problem is available: we refer to [23, 24] addressing the case of the heat equation. Among the open7

issues, we mention the extension of this constructive approach to the case of the boundary controllability8

(analyzed for instance [38]). Preliminaries numerical experiments reported are in agreement with the9

theoretical convergence: in particular the rate of convergence is quadratic to be compared with the linear10

rate observed with algorithm derived from simpler linearizations. Eventually, we have observed some11

numerical difficulties when linear controls are approximated using the standard dual method, due to the12

exponential growth of the uncontrolled solution. From this point of view, the method (developed in [7, 8])13

based on the direct resolution of the optimality system (41)-(42) may be more robust with respect to the14

size of the potential. Preliminaries experiments seem promising and will be discussed in a future work.15
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A Appendix: controllability results for the linearized wave equa-1

tion2

We recall in this section some a priori estimates for the linearized wave equation with potential in3

L∞(0, T ;Ld(Ω)) and right hand side in L2(QT ). We first recall the crucial observability type estimate4

proved in [17, Theorem 2.2] (see also [28, Theorem 2.1]).5

Proposition 6. [17] Assume that ω and T satisfy the assumptions of Theorem 1. For any A ∈6

L∞(0, T ;Ld(Ω)), and (φ0, φ1) ∈H := L2(Ω)×H−1(Ω), the weak solution φ of7 
∂ttφ−∆φ+Aφ = 0, in QT ,

φ = 0, on ΣT ,

(φ(·, 0), ∂tφ(·, 0)) = (φ0, φ1), in Ω,

(45)

satisfies the observability inequality ‖φ0, φ1‖H ≤ Ce
C‖A‖2

L∞(0,T ;Ld(Ω))‖φ‖2,qT for some C > 0 only depend-8

ing on Ω and T .9

Classical arguments then lead to following controllability result.10

Proposition 7. [17] Let A ∈ L∞(0, T ;Ld(Ω)), B ∈ L2(QT ) and (z0, z1) ∈ V . Assume that ω and T11

satisfy the assumptions of Theorem 1. There exists a control function u ∈ L2(qT ) such that the weak12

solution of13 
∂ttz −∆z +Az = u1ω +B, in QT ,

z = 0, on ΣT ,

(z(·, 0), ∂tz(·, 0)) = (z0, z1), in Ω,

(46)

satisfies (z(·, T ), zt(·, T )) = (0, 0) in Ω. Moreover, the unique pair (u, z) of minimal control norm satisfies14

‖u‖2,qT + ‖(z, ∂tz)‖L∞(0,T ;V ) ≤ C
(
‖B‖2 + ‖z0, z1‖V

)
e
C‖A‖2

L∞(0,T ;Ld(Ω)) (47)

for some constant C > 0 only depending on Ω and T .15

Let p? ∈ N? such that p? < ∞ if d = 2 and p? < 6 if d = 3. We next discuss some properties of the16

operator K : L∞(0, T ;Lp
?

(Ω)) → L∞(0, T ;Lp
?

(Ω)) defined by K(ξ) = yξ, a null controlled solution of17

the linear boundary value problem (2) with the control fξ of minimal L2(qT ) norm. Proposition 7 with18

B = −g(0) gives19

‖(yξ, ∂tyξ)‖L∞(0,T ;V ) ≤ C
(
‖u0, u1‖V + ‖g(0)‖2

)
e
C‖ĝ(ξ)‖2

L∞(0,T ;Ld(Ω)) (48)

where the function ĝ is defined in (2). We assume that g ∈ C1(R) satisfies the following asymptotic20

condition (slightly weaker than (H1)): there exists a β small enough such that lim sup|r|→∞
|g(r)|

|r| ln1/2 |r| ≤ β,21

i.e.22

(H′1) There exist α ≥ 0 and β ≥ 0 small enough such that |g(r)| ≤ α + β(1 + |r|)) ln1/2(1 + |r|) for23

every r in R.24

This implies that ĝ satisfies |ĝ(r)| ≤ α + β ln1/2(1 + |r|) for every r ∈ R and some constant α > 0.25

This also implies that ĝ(ξ) ∈ L∞(0, T ;Ld(Ω)) for any ξ ∈ L∞(0, T ;Lp
?

(Ω)). Assuming 2Cβ
2 ≤ 1 and26

proceeding as in the proof of Lemma 5, we get27

e
C‖ĝ(ξ)‖2

L∞(0,T ;Ld(Ω)) ≤ C1

(
1 +
‖ξ‖L∞(0,T ;Lp? (Ω))

|Ω|1/p?
)2Cβ

2

, ∀ξ ∈ L∞(0, T ;Lp
?

(Ω))

27



for some C1 = C1(α). Using (48), we then infer that

‖yξ‖L∞(0,T ;Lp? (Ω)) ≤ C
(
‖u0, u1‖V + ‖g(0)‖2

)
C1

(
1 +
‖ξ‖L∞(0,T ;Lp? (Ω))

|Ω|1/p?
)2Cβ

2

, ∀ξ ∈ L∞(0, T ;Lp
?

(Ω)).

Taking β small enough so that 2Cβ
2
< 1, we conclude that there existsM > 0 such that ‖ξ‖L∞(0,T ;Lp? (Ω)) ≤1

M implies ‖K(ξ)‖L∞(0,T ;Lp? (Ω)) ≤ M . This is the argument (introduced in [39] for the one dimensional2

case and) implicitly used in [28] to prove the controllability of (1). Note that, in contrast to β, M depends3

on ‖u0, u1‖V (and increases with ‖u0, u1‖V ).4

The following result gives an estimate of the difference of two controlled solutions.5

Lemma 7. Let A ∈ L∞(0, T ;Ld(Ω)), a ∈ L∞(0, T ;Ld+ε(Ω)) for any ε > 0, B ∈ L2(QT ) and (u0, u1) ∈6

V . Let u and v be the null controls of minimal L2(qT ) norm for y and z respectively weak solutions of7 
∂tty −∆y +Ay = u1ω +B in QT ,

y = 0 on ΣT ,

(y(·, 0), ∂ty(·, 0)) = (u0, u1) in Ω,

(49)

and8 
∂ttz −∆z + (A+ a)z = v1ω +B in QT ,

z = 0 on ΣT ,

(z(·, 0), ∂tz(·, 0)) = (u0, u1) in Ω.

(50)

Then,

‖y − z‖L∞(0,T ;H1
0 (Ω)) ≤ C‖a‖L∞(0,T ;Ld+ε(Ω))

(
‖B‖2 + ‖u0, u1‖V

)
e
C‖A+a‖2

L∞(0,T ;Ld(Ω))e
C‖A‖2

L∞(0,T ;Ld(Ω))

for some constant C > 0 only depending on Ω and T .9

Proof. The controls of minimal L2(qT ) norm for y and z are given by u = φ1ω and v = φa1ω where φ

and φa respectively solve the adjoint equations
∂ttφ−∆φ+Aφ = 0 in QT ,

φ = 0 on ΣT ,

(φ(·, 0), ∂tφ(·, 0)) = (φ0, φ1) in Ω,

,


∂ttφa −∆φa + (A+ a)φa = 0 in QT ,

φa = 0 on ΣT ,

(φa(·, 0), ∂tφa(·, 0)) = (φa,0, φa,1) in Ω,

for some appropriate (φ0, φ1), (φa,0, φa,1) ∈H. In particular, φ, φa ∈ C([0, T ];L2(Ω))∩C1([0, T ];H−1(Ω)).10

Hence Z := z − y solves11 
∂ttZ −∆Z + (A+ a)Z = Φ1ω − ay in QT ,

Z = 0 on ΣT ,

(Z(·, 0), ∂tZ(·, 0)) = (0, 0) in Ω,

(51)

and Φ := φa − φ solves12 
∂ttΦ−∆Φ + (A+ a)Φ = −aφ in QT ,

Φ = 0 on ΣT ,

(Φ(·, 0), ∂tΦ(·, 0)) = (φa,0 − φ0, φa,1 − φ1) in Ω.

In particular (since a ∈ L∞(0, T ;Ld+ε(Ω)) and φ ∈ L∞(0, T ;L2(Ω))), we get that aφ ∈ L∞(0, T ;H−1(Ω))13

and therefore (Φ,Φt) ∈ C([0, T ];H), see [21, Theorem 2.3]. We decompose Φ := Ψ + ψ where Ψ and ψ14

solve respectively15 
∂ttΨ−∆Ψ + (A+ a)Ψ = 0 in QT ,

Ψ = 0 on ΣT ,

(Ψ(·, 0), ∂tΨ(·, 0)) = (φa,0 − φ0, φa,1 − φ1) in Ω,

,


∂ttψ −∆ψ + (A+ a)ψ = −aφ in QT ,

ψ = 0 on ΣT ,

ψ(·, 0), ∂tψ(·, 0)) = (0, 0) in Ω,
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and we deduce that Ψ1ω is the control of minimal L2(qT ) norm for Z solution of1 
∂ttZ −∆Z + (A+ a)Z = Ψ1ω +

(
ψ1ω − ay

)
in QT ,

Z = 0 on ΣT ,

(Z(·, 0), ∂tZ(·, 0)) = (0, 0) in Ω.

Proposition 7 implies that2

‖Ψ‖2,qT + ‖(Z, ∂tZ)‖L∞(0,T ;V ) ≤ C‖ψ1ω − ay‖2e
C‖A+a‖2

L∞(0,T ;Ld(Ω)) .

Moreover, [28, Lemma 2.4] applied to ψ leads to

‖(ψ, ∂tψ)‖L∞(0,T ;H) ≤ ‖aϕ‖L∞(0,T ;H−1(Ω))e
C‖A+a‖

L∞(0,T ;Ld(Ω))

and ‖ψ‖L2(qT ) ≤ C‖a‖L∞(0,T ;Ld+ε(Ω))‖φ‖2e
C‖A+a‖2

L∞(0,T ;Ld(Ω)) . But, using again [28, Lemma 2.4], we infer

that ‖φ‖2 ≤ C‖φ0, φ1‖HeC‖A‖L∞(0,T ;Ld(Ω)) while [28, Theorem 2.1] gives ‖φ0, φ1‖H ≤ Ce
C‖A‖2

L∞(0,T ;Ld(Ω))‖φ‖2,qT .

Since u = φ1ω, we obtain ‖φ‖2 ≤ C2e
C‖A‖2

L∞(0,T ;Ld(Ω))‖u‖2,qT e
C‖A‖

L∞(0,T ;Ld(Ω)) and then

‖ψ‖L2(qT ) ≤ C‖a‖L∞(0,T ;Ld+ε(Ω))e
C‖A‖2

L∞(0,T ;Ld(Ω))e
C‖A+a‖2

L∞(0,T ;Ld(Ω))‖u‖2,qT

from which we deduce that

‖Z‖L∞(0,T ;H1
0 (Ω)) ≤ C

(
‖ψ‖2,qT + ‖a‖L∞(0,T ;Ld+ε(Ω))‖y‖2

)
e
C‖A+a‖2

L∞(0,T ;Ld(Ω))

≤ C‖a‖L∞(0,T ;Ld+ε(Ω))

(
‖B‖2 + ‖u0, u1‖V

)
e
C‖A+a‖2

L∞(0,T ;Ld(Ω))e
C‖A‖2

L∞(0,T ;Ld(Ω))

leading to the result.3

This result allows to establish the following property for the operator K.4

Lemma 8. Under the assumptions done in Theorem 1, let M = M(‖u0, u1‖V , β) be such that K maps5

BL∞(0,T ;Ld+ε(Ω))(0,M) into itself and assume that ĝ′ ∈ L∞(R). For any ξi ∈ BL∞(0,T ;Ld+ε(Ω))(0,M),6

i = 1, 2, there exists c(M) > 0 such that7

‖K(ξ2)−K(ξ1)‖L∞(0,T ;H1
0 (Ω)) ≤ c(M)‖ĝ′‖∞‖ξ2 − ξ1‖L∞(0,T ;Ld+ε(Ω)).

Proof. For any ξi ∈ BL∞(0,T ;Lp? (Ω))(0,M), i = 1, 2, let yξi = K(ξi) be the null controlled solution of8 
∂ttyξi −∆yξi + yξi ĝ(ξi) = −g(0) + fξi1ω in QT ,

yξi = 0 on ΣT ,

(yξi(·, 0), ∂tyξi(·, 0)) = (u0, u1) in Ω,

with the control fξi1ω of minimal L2(qT ) norm. We observe that yξ2 is solution of9 
∂ttyξ2 −∆yξ2 + yξ2 ĝ(ξ1) + yξ2(ĝ(ξ2)− ĝ(ξ1)) = −g(0) + fξ21ω in QT ,

yξ2 = 0 on ΣT ,

(yξ2(·, 0), ∂tyξ2(·, 0)) = (u0, u1) in Ω.

It follows from Lemma 7 applied with B = −g(0), A = ĝ(ξ1), a = ĝ(ξ2)− ĝ(ξ1), that10

‖yξ2 − yξ1‖L∞(0,T ;H1
0 (Ω)) ≤ A(ξ1, ξ2)‖ĝ(ξ2)− ĝ(ξ1)‖L∞(0,T ;Ld+ε(Ω)) (52)

where the positive constant

A(ξ1, ξ2) := C

(
‖g(0)‖2 + ‖u0, u1‖V

)
e
C‖ĝ(ξ1)‖2

L∞(0,T ;Ld(Ω))e
C‖ĝ(ξ2)‖2

L∞(0,T ;Ld(Ω))

is bounded by some c(M) > 0 for every ξi ∈ BL∞(0,T ;Ld+ε(Ω))(0,M). The result follows from (52).11
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Remark 6. By Lemma 8, if ‖ĝ′‖∞ < 1/c(M) then the operator K : L∞(0, T ;Ld+ε(Ω))→ L∞(0, T ;Ld+ε(Ω))1

is contracting. Note however that the bound depends on the norm ‖u0, u1‖V of the initial data to be con-2

trolled.3
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Fac. Sci. Toulouse Math. (5), 2(1):21–51, 1980.20
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