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Abstract: Fast and accurate quantification of gas fluxes emitted by volcanoes is essential for the risk
mitigation of explosive eruption, and for the fundamental understanding of shallow eruptive processes.
Sulphur dioxide (SO2), in particular, is a reliable indicator to predict upcoming eruptions, and its
systemic characterization allows the rapid assessment of sudden changes in eruptive dynamics. In this
regard, infrared (IR) hyperspectral imaging is a promising new technology for accurately measure SO2

fluxes day and night at a frame rate down to 1 image per second. The thermal infrared region is not
very sensitive to particle scattering, which is an asset for the study of volcanic plume. A ground based
infrared hyperspectral imager was deployed during the IMAGETNA campaign in 2015 and provided
high spectral resolution images of the Mount Etna (Sicily, Italy) plume from the North East Crater
(NEC), mainly. The LongWave InfraRed (LWIR) hyperspectral imager, hereafter name Hyper-Cam,
ranges between 850–1300 cm−1 (7.7–11.8 µm). The LATMOS (Laboratoire Atmosphères Milieux
Observations Spatiales) Atmospheric Retrieval Algorithm (LARA), which is used to retrieve the slant
column densities (SCD) of SO2, is a robust and a complete radiative transfer model, well adapted
to the inversion of ground-based remote measurements. However, the calculation time to process
the raw data and retrieve the infrared spectra, which is about seven days for the retrieval of one
image of SO2 SCD, remains too high to infer near real-time (NRT) SO2 emission fluxes. A spectral
image classification methodology based on two parameters extracting spectral features in the O3

and SO2 emission bands was developed to create a library. The relevance is evaluated in detail
through tests. From data acquisition to the generation of SO2 SCD images, this method requires only
~40 s per image, which opens the possibility to infer NRT estimation of SO2 emission fluxes from IR
hyperspectral imager measurements.

Keywords: volcanic plume; SO2 emission flux; passive degassing; remote sensing; spectra image
classification; hyperspectral; infrared
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1. Introduction

More than 500 million people live within the potential exposure range of a volcano [1]. Monitoring
volcanoes is then essential and involves different types of measurements, such as volcanic degassing,
seismicity, and ground deformation detection [2]. Volatiles, in particular, are a crucial component of
volcanic systems. The explosivity of an eruption depends, in large part, on the amount and composition
of gas contained in the erupted magma. For that reason, measurements of volcanic degassing have
been one of the most widely used methods in volcanic monitoring networks for more than 40 years.
The shallow exsolution depth of SO2, compared to carbon dioxide (CO2), makes it a good indicator
of the presence of a magmatic body near the surface, and, therefore, provides a tool to forecast
eruptions. Fluctuations in degassing levels may reflect changes in the magma supply rate and help
inform a short-term forecast of on-going eruptions [3–8]. Moreover, the composition of volcanic gases
offers insight into physical processes occurring at depth [9,10]. In addition to the risks induced by
volcanic eruptions, monitoring the volcanoes degassing emissions in the atmosphere is important for
an environmental impact and a hazardous effect on human health. After H2O and CO2, sulfur dioxide
is the main volcanic gas emitted by volcanoes. It is widely monitored due to its low background
atmospheric abundance. The impact of SO2 emission on atmospheric chemistry and the estimation of
the global budget of SO2 in the atmosphere induced by volcanoes are part of climate and environmental
monitoring as well as public health prevention [11]. The oxidation of SO2 leads to the formation
of sulfur aerosols responsible for acid rain [12], problems on vegetation growth close to volcanoes,
and cause asthma or respiratory problems to humans [13,14].

Mount Etna mean SO2 flux is equivalent, for example, to the total anthropogenic SO2 emissions
from France [12]. It is the largest active volcano in Europe and the world’s strongest permanent
contributor of volcanic volatiles to the atmosphere [15], which makes it one of the most monitored
volcanoes of the planet [2]. The accurate characterization of its gas emission fluxes is, hence, the purpose
of many studies.

Volcanic gas emissions are mostly monitored by satellites as well as by ground-based instruments.
The satellite-based instruments remotely measuring SO2 use different channels and absorption
bands such as OMI (Ozone Monitoring Instrument) [16,17] and TROPOMI (Tropospheric Monitoring
Instrument) [18,19] in the ultraviolet (UV), MODIS (Moderate-Resolution Imaging Spectroradiometer),
SEVIRI (Spinning Enhanced Visible and Infrared Imager) [20,21], IASI (Infrared Atmospheric Sounding
Interferometer), and AIRS (Atmospheric InfraRed Sounder) [22,23] in the infrared (IR). Ground-based
monitoring is performed remotely using ultraviolet (UV) cameras [24], mini-DOAS (Differential
Optical Absorption Spectroscopy) instruments [25,26], and IR cameras [27]. The NOVAC (Network for
Observation of Volcanic and Atmospheric Change) project with the deployment of fully automated
mini-DOAS systems used in a scanning mode has permit to get the first real-time determinations of
SO2 flux in a monitoring system [28]. This system allows the monitoring of nearly 20 volcanoes around
the world [29]. In 2004, the FLAME (FLux Automatic MEasurements) network was developed and
installed by the Istituto Nazionale Geofisica e Vulcanologia (INGV) (Catania, Sicily) on Mount Etna
flanks with nine UV scanning spectrometers to automatically get SO2 fluxes in real-time and with a
high frequency [30]. The network collects data daily during the daytime with a complete scan every
~5 min [31]. The SO2 flux emissions of the different vents of Mount Etna from the FLAME network
reveals shifts in the activity of each vent approaching an eruptive episode [5,32].

Ground-based hyperspectral infrared imaging systems of volcanic degassing offer high spatial,
spectral, and temporal resolution measurements [33,34]. Such imagers can provide continuous day
and night measurements, which is likely the most important advantage over UV imagers, but also
essential to monitor volcanoes located in high latitude regions during the wintertime. Commercial
hyperspectral IR imagers are still an expensive technology, which may be more attractive in the near
future with the increase of possible applications and the development of studies and algorithms
aiming at exploiting all the capacities of such instruments. Nevertheless, some recent advances on
the development of uncooled detector technology allow the use of cheap thermal infrared imagers to
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quantify hazardous gases. Wright et al. (2013) presented the characteristics of a thermal hyperspectral
imager with ~30 spectral bands in the 8–14 µm wavelength region [35].

Hyperspectral imaging is an interesting and powerful tool in a wide range of applications
such as agriculture, forestry, and environmental management [36], geological exploitation and
mineralogy, urban planning, and disaster prediction, military and defense [37], but also remote
sensing of volcanic plume for gas emissions monitoring. The vast amount of data comprised in the
spectra of the images obtained with this kind of instrument makes it heavy to process and induce
to set up a methodology for classifying the pixels of an image to get the most information of the
spectral signature in near real-time. Different deep-learning methods exist, including supervised
or unsupervised, parametric or non-parametric ones. Paoletti et al. (2019) reviewed the different
popular models and architectures used for the classification of remotely sensed hyperspectral spectral
images [38]. To achieve a successful classification of the image pixels, many factors and steps are
involved, starting with the determination of a suitable classification system, selection of training
samples, image preprocessing, feature extraction, selection of suitable classification approaches,
post-classification processing, and accuracy assessment [39].

When pixels of images are spectra like in this study, the goal of image pixels classification is to
identify different patterns in spectra with an automated methodology in order to extract information
from data and create a set of reference spectra. Many classification approaches have been developed
depending on the domain of application. For example, Van Damme et al. (2017) present a version of a
neural-network-based algorithm developed to retrieve in near real-time the ammonia columns from
the satellite observations from the hyperspectral imager IASI [40].

A methodology to analyze the large amount of data produced by such technology is necessary to
respond to the need of NRT knowledge of volcanic gas emission fluxes.

In this paper, we present a spectral image classification methodology for infrared hyperspectral
images from Mount Etna volcanic plume. The objective is to achieve a fast and accurate retrieval of
volcanic plume in order to get the SO2 emission flux in NRT, which is essential for early warning and
mitigation of volcanic risk.

In the next section, we describe the dataset from the IMAGETNA field campaign and the LARA
model (LATMOS (Laboratoire Atmosphères Milieux Observations Spatiales) Atmospheric Retrieval
Algorithm) used to retrieve the data, and we present the method. More detailed information about the
IMAGETNA and LARA model are presented in Huret et al. 2019 [34]. Then, we bring step-by-step the
pixels classification methodology that we applied to our dataset. The results of the classification and
the flux estimations are presented in Section 3 and discussed in Section 4. The last section is dedicated
to the conclusions and perspective of this study.

2. Materials and Methods

2.1. Overview of the Data

The IMAGETNA campaign was held from 21–26 June 2015 from the Pizzi De Neri Volcano
observatory on the North side of Mount Etna at 2850 m altitude and at ~2 km from the plume. One of
the purposes of the field campaign was to make remote observations of the plume of Mount Etna
using the infrared imager Hyper-Cam developed by Telops company, during a quiescent stage of its
activity. The first days of the campaign were dedicated to instrumentation deployment and basic tests.
The weather during the campaign was very good, with mainly cloudless skies, allowing us to carry
out a large number of measurements in good conditions.

The Hyper-Cam is a passive infrared hyperspectral imaging system with a spectral range of
840–1300 cm−1 (7.7–11 µm). This camera combines a high spatial resolution with images containing
up to 320 × 256 pixels, a maximum field of view of 6.4◦ × 5.1◦, and spectral resolutions from
0.25 to 150 cm−1. Considering the geographical arrangement of the campaign and the parameterization
of the hyperspectral imager in relation to the Etna plume, the surface of each pixel is 7.84 m2
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(i.e., 2.8 × 2.8 m). The Hyper-Cam is radiometrically calibrated using two blackbodies with different
temperatures with a spectral radiometric accuracy of 0.5 K at a blackbody temperature of 30 ◦C [41].
Each measured image has three dimensions: two spatial dimensions and one spectral dimension.

As shown in Figure 1a, Mount Etna has several active craters pointed out with red arrows: the two
central craters (Bocca Nuova (BN) and Voragine (V)), the North East crater (NEC), and the South
East craters (SEC), which is the one created most recently [42]. To get the maximum thermal contrast
between the plume and the background, the measurements were done early in the morning starting
at around 8:00 UTC. Considering the direction of the plume propagation and the location of the
observatory where the measurements have been done, the plume captured by the Hyper-Cam imager
during the field campaign is mainly related to the North East Crater (NEC) of Mount Etna. An example
of projection of the contours of the acquired images is superimposed on Figure 1b. This projected
image corresponds to an image of [320 × 64] pixels.
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Figure 1. (a) Map of Mount Etna area (© Google Maps) showing the location of the four different
craters with red arrows: Bocca Nuova (BN), Voragine (V), North East crater (NEC), South East crater
(SEC), and the location of the Pizzi De Neri observatory with a red triangle. (b) Picture taken from the
measurement platform of the Pizzi De Neri observatory during the IMAGETNA campaign with an
example of the Hyper-Cam projected image, represented by a black dashed rectangle, and the hand
estimated location of the four craters (SEC, NEC, BN, and V) pointed out with red arrows.

A trade-off is necessary between the high spectral and spatial resolutions and the temporal
resolution to capture the dynamism of the measured scene. Table 1 presents the main characteristics
of the three sequences reported in this study such as spectral resolution, from 2 to 4 cm−1, and the
acquisition time, from ~1.3 to ~4.6 s, resulting from the trade-off made for each sequence. All the images
have 20,480 pixels (i.e., 320 × 64 pixels). The field of view includes part of the ground, the plume,
and the clear sky. The dataset is composed of ~900 images representing over 18 million of pixels and
~35 min of measurements.
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Table 1. Characteristics of the selected measurement sequences from the IMAGETNA Campaign.

# Date
Time

Spectral Resolution
(cm−1)

Image Acquisition
Time Number of Images Total Number of Pixels Sequence Duration Broadband IR Image

A

23-06-2015
08:12:45

–
08:22:22
(UTC *)

2 4.595 s 120 2.46 × 10−6 9′37′′
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The three sequences, to investigate SO2 emissions fluxes, have been selected among the other
sequences because of their cloud-free conditions but also because they have a common measurement
geometry with an unchanged location and distance of the camera with respect to the plume. Moreover,
the meteorological conditions are close in term of temperature and wind direction, which is roughly
horizontal southeasterly. With such similarities, we can extract information from the data by developing
data processing to the three cases. The acquisition times are of the order of a few seconds, allowing us
to finely capture the dynamics of the plume and, hence, the SO2 emission flux.

2.2. Retrieval Model: LARA

The data retrieval of SO2 slant column densities has been performed with the LATMOS
Atmospheric Retrieval Algorithm (LARA). LARA is a radiative transfer model associated with
a minimization algorithm of the Levenberg-Marquardt type [43], which has been developed and
adapted, in the last decade [44,45], to both nadir and limb geometries, and to balloon, satellite,
or ground-based experiments [46–48]. It takes into account the geometry of the plume, the thickness
and the altitude, and different chemical species, H2O, CO2, O3, CH4, NO2, and SO2. The radiative
transfer is calculated in each pixel with a profile along the line of sight divided in more than 40 layers
from the instrument altitude of 2.85 km up to the top of the atmosphere at 100 km. The model also
considers the contribution of particles in the IR spectra as well as the water vapor continuum [49].
Huret et al. 2019 [34] present the different tests to configure the model and results of the SO2 slant
column densities (SCD) retrievals. The sensitivity of the retrieval to the parameters of the geometry of
the plume, such as the plume altitude, its thickness, and the additional temperature with respect to
ambient temperature, highlighted a low influence of those parameters on the SO2 SCD in the dilute part
of the plume. That study demonstrated that LARA is a robust and well adapted model to ground-based
remote sensing of volcanic plume measurements.

The main downside of LARA is the calculation time to retrieve each image pixel-by-pixel.
For example, the retrieval of an image of [320 × 64] pixels with 60 spectral points in the SO2 spectral
band requires one week of calculation on the computers of AERIS data center (www.aeris-data.fr) to be
able to image the SO2 slant column densities. This method is very expensive in term of calculation time
and cannot be applied to process all other sequences from the IMAGETNA campaign. To make the
most of the capabilities of this kind of IR hyperspectral imager and to reach quasi real-time estimation
of the SO2 flux, developing a methodology to significantly reduce the calculation time of SO2 SCD
retrieval is crucial.

Five images of one of the sequences measured on 26 June 2015 have been previously processed
pixel-by-pixel using the LARA model for the study presented in Huret et al. 2019 [34]. Already
retrieved images of SO2 SCD (ppm m) can easily be converted into mass of SO2 per surface unit (g m−2)
using Equation (1).

SO2
(
g.m−2

)
=

SO2 (ppm.m) × MSO2

VMair

× 10−3 (1)

with the molar mass of SO2 MSO2 = 64.06 g mol−1 and the molar volume of air VMair = 33.2 L mol−1

with a pressure of 692 hPa and a temperature of 276 K at Mount Etna altitude of 3300 m from Trapani
meteorological sounding data performed on the days of the campaign. Figure 2 presents an example
of the SO2 mass per surface unit obtained in g m−2 in the range of 0.02 to 30 g m−2 for the image
of 26 June 2015 at 08:25:44 UTC. As previously mentioned in Section 2.1, each pixel has a surface of
7.84 m2. Hence, the image used as an example contains a total mass of SO2 of ~560 kg.

www.aeris-data.fr
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retrieved pixel-by-pixel with the LARA model. The grey arrow indicates the NEC location.

2.3. Massive Retrieval Methodology

The objective here is to define the architecture of a network, based on characteristic features
in the brightness temperature (BT) spectra, from which information leading to fast and accurate
determination of the SO2 SCD in each pixel can be extracted.

2.3.1. Hyper-Cam Spectral Band Analysis

The spectral range of the Hyper-Cam encompasses in particular the O3 and the SO2 emission
bands at (1000–1100) cm−1 and (1100–1200) cm−1, respectively, as shown in Figure 3a. The emission
line intensities of O3, SO2, and H2O extracted from the GEISA (Gestion et Etude des Informations
Spectroscopiques Atmosphériques) spectroscopic database and simulated with a GEISA graphical tool
(https://geisa.aeris-data.fr/), with an average spectral resolution greater than 0.2 cm−1, are presented
in Figure 3a,b. Figure 3a shows well-defined spectral emission regions for O3 and SO2, which are
independent from each other and can, therefore, provide specific information from either spectral
window. The signal due to O3 emission lines can be considered as two continuous well identified
branches. The SO2 emission line intensities are less intense, with two flatted wings. H2O has several
emission lines in the SO2 spectral range [1100–1200] cm−1 (see Figure 3b), which contribute to the
signal. Since the water vapor column is retrieved simultaneously to SO2, H2O emission lines are then
well fitted. Aerosols and droplets are parameterized and considered as a first-order modelling with
a spectral dependency of the plume optical thickness (see Huret et al. 2019 for more details) [34].
Figure 3c presents different examples of BT spectra extracted from the images of the third sequence of
26 June 2015 (sequence B in Table 1). The presence of O3, SO2, and H2O is recognizable with more
or less intensity in those example spectra depending on the part of the image they are related to.
The spectral signatures in those images denote the ground in green, the sky without plume in red,
the plume with different levels of dilution (in orange and blue), with more or less water vapor, droplets,
and aerosols. The brightness temperature is the temperature a black body would have if it has the
same radiance as the one measured by Hyper-Cam.

https://geisa.aeris-data.fr/
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Figure 3. Emission line intensities of (a) O3 in blue, SO2 in orange, and (b) of H2O in purple simulated
with the GEISA graphical tool between 850 and 1300 cm−1. (c) Examples of spectra from 26 June 2015
dataset with: ground spectra in green, dense plume spectra in blue, diluted plume spectra in orange,
and clear sky spectra in red. The grey dashed boxes identify the spectral bands 1 and 2 chosen for the
image classification.
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2.3.2. O3 Emission Region: Spectral “Band 1”

The first spectral band considered here is situated in the range of 1000–1100 cm−1 characteristic of
O3. Different examples of BT spectra from the measurements on 26 June 2015 with a spectral resolution
of 2 cm−1 are given on Figure 3c. We can easily identify the ozone emission region, defined as Band 1,
thanks to its typical rovibrational branches in the clear sky, the diluted plume, and the less diluted
plume pixels, corresponding respectively to red, orange, and blue spectra. The ozone band in the
clear sky is strong and characteristic of stratospheric ozone. The less diluted and opaque the plume is,
the flatter the ozone branches are. As for the green spectra corresponding to ground pixels, the ozone
is not relevant. Hence, the spectra are flat with an average BT value of 300 K. By calculating the
integrated BT values in Band 1, we extract a spectral feature, identifying if we have a ground, a clear
sky, or a plume pixel spectrum. The lowest values correspond to a clean atmosphere (i.e., plume free
atmosphere), ~22,950 K cm−1 for red spectra in Figure 3c, and the highest values to a very opaque plume
or even ground pixel, ~26,450 and ~29,950 K cm−1 for blue and green spectra in Figure 3c, respectively.

2.3.3. SO2 Emission Region: Spectral “Band 2”

The second spectral band considered here is in the range of 1100–1200 cm−1, which is the SO2

spectral band. Inside Band 2 in Figure 3c, we can see that the clear sky BT is the lowest with an average
value of 200 K. A bump shape of the spectra in the diluted and less diluted pixels (orange and blue
spectra, respectively) highlights the presence of SO2 in the plume and the few more intense peaks
are significant of the water vapor emission lines. The BT in the SO2 spectral region increases along
with the increase of SO2 concentration inside the plume. By calculating the mean BT values in Band 2,
we extract another spectral feature from the data, which is characteristic of the SO2 concentration in
the spectra. For the images of the IMAGETNA campaign previously presented in Table 1, the plume
mean BT varies between 200 and 300 K in the clear sky and ground, respectively.

The architecture of the classification network is composed of two layers. The first layer categorizes
the pixels with regard to their main characteristic, which is either a ground, plume, or clear sky pixel
using Band 1. An index IO3 corresponding to the integrated value of the BT in the O3 spectral region
is attributed to each spectrum. Then, the second layer gives information about the concentration in
SO2. The second index, ISO2 , attributed to each spectrum corresponds to the mean BT in the SO2

spectral region. Each spectral feature is extracted and classified following the mapping function
Y = f

(
IO3 , ISO2

)
, which assigns a vector label to each pixel.

2.4. SO2 Emission Flux Estimation

In this section, we present the chosen method to determine the Etna plume transport speed by
analyzing the images and then the most adapted method used to estimate the SO2 emission flux with
regard to our campaign configuration.

2.4.1. Plume Transport Speed

A key parameter to estimate the SO2 emission flux is the plume transport speed. Such data
has not been measured during the remote measurement campaign. Each sequence contains a few
hundred images, corresponding to a few minutes of measurement. Following the method explained in
Aiuppa et al. (2015) [50], it is possible to determine an average transport speed after determining its
vertical and horizontal components using the reconstructed images of SO2 SCD (or mass of SO2 per
surface unit). Two cross sections are fixed vertically, separated by a distance dv and two horizontally
separated by a distance dh, corresponding to the number of pixels between the cross sections multiplied
by the length of a pixel. By calculating the mean SO2 SCD along the cross sections, we obtain two
time-series, one vertically and one horizontally tracking the evolution over time of SO2 SCD in the
plume. The cross correlation of both time-series let us determine the time shift ts, which represents the
time necessary for the plume passing through the first vertical (or horizontal) cross section to reach the



Remote Sens. 2020, 12, 4107 10 of 21

second cross section. The appropriate time shift is the one giving the best cross-correlation coefficient
between the two time-series. A representation of the cross sections is presented in Figure 4a.
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Figure 4. (a) A schematic representation of the scene with two vertical cross sections in blue separated
by a distance dh and two horizontal cross sections in red separated by a distance dv to determine,
respectively, the horizontal and vertical contribution of plume transport speed, and the box fixed
close to the emission source for the SO2 emission flux estimation in yellow, (b) the time-series of the
mean SO2 slant column densities (SCD) of the two horizontal cross sections for the first 200 images of
sequence B, and (c) the time-series of the mean SO2 SCD of the two vertical cross sections for the first
200 images of sequence B.

Figure 4b,c present the SO2 mean SCD values evolutions along 200 images of sequence B, for the
vertical cross sections separated by a distance dv corresponding to 5 pixels (i.e., ~14 m) and the horizontal
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cross sections separated by a distance dh corresponding to 20 pixels (i.e., ~56 m), to characterize the
plume transport speed. The plume transport speed v in m s−1 is then calculated by following
Equation (2).

v =
(√

d2
h + d2

v

)
/ts (2)

2.4.2. Box Method for the Emission Flux Estimation

Different methods to derive the SO2 emission flux from the SO2 slant column densities (or mass of
SO2) exist such as a traverse method, delta-M method, box method, or an inverse modelling method [51].
Most methods are adapted to satellite or airborne measurements of volcanic plumes. Instantaneous
SO2 mass loading measurements from remote instruments represent the budget between emitted and
lost SO2. Therefore, when calculating gas fluxes, the SO2 loss has to be taken into account. The loss is
mainly due to SO2 oxidation into sulfuric acid droplets and SO2 volume dilution, making its detection
below a given threshold impossible. The rate of gas loss is related to the meteorological conditions
and its inclusion may depend on the measurement settings. In our case, measurements were carried
very close to the source vent by using high temporal and spatial resolutions, and located to altitudes
larger than 3 km above sea level, close to the free troposphere. These conditions of acquisition allow us
to neglect the SO2 loss factor [52]. One of the simplest and most adapted method to derive the first
estimation of the emission flux of SO2 is the box method. It consists in defining a box, as presented with
the yellow box in Figure 4a, calculating the total mass of SO2 in the box and then multiplying it by the
plume age. The plume age is the time the plume needs to cross the box. It is obtained by multiplying
the box length with the average plume transport speed v. In order to lower the uncertainties of the SO2

emission flux estimation, the fixed box is placed as close as possible to the emission source.

3. Results

3.1. Training Dataset

The spectral image classification methodology was conducted using five images of the third
sequence recorded on 26 June 2015. Those images have been retrieved pixel-by-pixel with the LARA
model for a previous study presented in Huret et al. (2019) [34]. They are used here as a training
dataset composed of 102,400 spectra. Different ranges of values assigned to the two indexes were tested
to determine the best compromise between the number of classes obtained, which means the number
of different patterns of spectra, and the range size limit to keep as much information as possible by
classifying the images.

3.1.1. Interval Width for IO3 Index

Four ranges of values for the integrated BT values have been tested: 10, 50, 100, and 500 K cm−1.
The main results obtained for each tested value with a fixed value of 1 K for the range of mean BT in
the spectral Band 2 is presented in Table 2. The only IO3 range value showing a significant difference is
500 K cm−1 with only ~26% of the pixels with less than 10% of relative standard deviation for plume
pixels against ~48% for ranges of 10, 50, and 100 K cm−1.
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Table 2. Main results for the tested ranges of values of IO3 indexes.

Tested Ranges
(K cm−1)

Percent of Plume Pixels/Classes
with Relative Standard

Deviation on SO2 SCD < 10%

Number of Classes with a
Relative Standard Deviation on

SO2 SCD < 10%

10 47.7/35.1 629

50 47.1/29.7 133

100 48/30.6 78

500 25.9/20.4 21

3.1.2. Interval Width for ISO2 Index

Three ranges of values for the mean BT have been tested: 1, 5, and 10 K. The main results obtained
for each value with a fixed range value of 100 K cm−1 for the integrated values in the spectral Band
1 are presented in Table 3. The tested range values for the mean BT, attributed to ISO2 , only gives
satisfying results for the range value of 1 K. The ranges of 5 and 10 K induce an important loss of pixels
in classes with less than 10% of a relative difference in the SO2 standard deviation in classes.

Table 3. Main results for the tested ranges for values of ISO2 indexes.

Tested Ranges
(K)

Percent of Plume Pixels/Classes
with Relative Standard

Deviation on SO2 SCD < 10%

Number of Classes with Relative
Standard Deviation on SO2 SCD < 10%

1 48/30.6 78

5 14.1/21.7 18

10 6.3/14.5 9

The chosen spectral image classification configuration with the best compromise is a range of
100 K cm−1, between two values of integrated BT for IO3 , and a range of 1 K, between two values of
mean BT for ISO2 .

3.1.3. Class Weight Distribution

Figure 5a,b represent the weight attributed to each index IO3 and ISO2 , respectively. The different
bumps in the distributions highlight three main features from the images, which we can call clusters.
The first cluster (1) corresponds to the clear sky pixels with IO3 index < 25 and ISO2 index < 30, which is
equivalent to an integrated value of the BT below 23,500 K cm−1 and a mean BT below 230 K. The second
cluster (2) encompasses the plume pixels with IO3 indexes in the range of 25 to 75 and ISO2 indexes in
the range of 30 to 90, equivalent to integrated BT values in the range of [23,500:28,500] K cm−1 and
mean BT in the range of [230:290] K. Then, the third cluster (3) collects the ground pixels with IO3

index > 75 and ISO2 index > 90, equivalent to an integrated BT greater than 28,500 K cm−1 and a mean
BT above 290 K. The distribution of the number of pixels for each ISO2 is wider in the plume cluster
than the distribution of pixels for IO3 . The pixels have a thinner distribution along ISO2 indexes with a
total number of pixels around 3000 for the higher peaks while the higher peak of the total number of
pixels along IO3 reaches 4000. The diversity of ISO2 values for one IO3 is greater when considering the
plume part of the image. This highlights the added value of the ISO2 indexes to get information about
SO2 SCD from data using the two layers classification methodology.
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Figure 5. (a) Total number of pixels according to each IO3 index value and (b) total number of pixels
according to each ISO2 index value with three parts of each distribution separated by green dashed lines.
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three clusters: (1) clear sky, (2) plume, and (3) ground.

The 2D distribution of the number of pixels in each class (see Figure 5c) has a very linear shape.
However, the third dimension corresponding to the weight of each class, let us find the three main
features from the images with lighter blue contours. Most of the pixels are situated in the cluster
related to the plume.

As presented in Huret et al. (2019) [34], the retrieval of SO2 SCD must respect two threshold
values to be considered of good quality: a normalized χ2 < 10 and an error on the retrieved scaling
factor on the SO2 SCD calculated by the LARA model that must be lower than 10%. Taking into account
those threshold values, the SO2 SCD corresponding to each pair of (IO3 , ISO2 ) is calculated by taking the
average value in each class of the SO2 SCD obtained with the pixel-by-pixel method for the training
dataset. Around 50% of the classes corresponding to the plume part have a relative standard deviation
of <10% and ~90% have a relative standard deviation of <15%. Some classes only contain a couple of
pixels from the five images. To ensure that a class corresponds to a sufficiently characteristic spectral
pattern of the plume, we consider that each class must contain at least 0.01% of the total number of
plume pixels from the dataset. Hence, the classes from the training dataset must contain at least seven
pixels. After applying this criterion, we have 195 remaining classes corresponding to ~68,000 pixels
(99.7% of the plume pixels). In the end, 66% of the pixels from the training dataset are used to create a
library to reconstruct images of SO2 SCD (ppm m) or SO2 mass per surface unit (g m−2) for the other
sequences of Table 1. The other 34% corresponds to clear sky pixels, earth surface pixels, and plume
pixels with LARA retrieval parameters above threshold values.

3.1.4. Analysis of the Classification Accuracy

A way to evaluate the accuracy of the classification using the five images of the training dataset is
to see how correlated are the SO2 SCD values from the pixel-by-pixel retrieval and the SO2 SCD from the
library created thanks to the classification, as shown in Figure 6. As presented in Huret et al. 2019 [34],
the parameters used to define the Etna plume captured with Hyper-Cam (altitude, thickness, and an
additional temperature with regard to ambient temperature) can have a significant impact on the SO2

SCD retrieval close to the crater. Hence, for the interpretation of the results, we applied the same
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procedure and separated the five images of the training dataset in two parts, “diluted plume part”
and “dense plume part”, along the same vertical line. The first order regression of the correlation
points of the diluted plume part, in red, gives a slope of 0.97 following Equation (3).

SO2SCD library = 0.97× SO2SCD pixel by pixel + 88.9 (3)
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Figure 6. Example of correlation between the SO2 SCD of the plume pixels of the training dataset
of 26 June 2015 from the pixel-by-pixel method with the reconstructed values using the classification
library. The black points are from the “diluted part of the plume” and the blue point are from the
“dense part of the plume”. The first order regression of the “diluted part of the plume” is in red with a
slope of 0.97 and a determination coefficient of 0.94.

The correlation of the diluted plume part points is compact. When SO2 SCD values exceed
7000 ppm m, we observe a wider range of SO2 SCD values from the pixel-by-pixel retrieval attributed
to one class. The correlation points over 7000 ppm m extending over a wider range of values represent
only 2.7% of the plume pixels of the training dataset.

The results obtained with the training dataset composed of five images are, thus, very satisfying.
The library created with the 195 plume classes was applied to retrieve the images of the other sequences.

3.2. Tested Dataset

We apply the method to the 900 images of the three sequences previously presented in Table 1.
Those sequences have been captured with similar instrument orientation as the plume of Mount Etna
was transported in the same direction over the days of the campaign. Each image has ground pixels
situated at the bottom right part of the images, clear sky pixels at the upper right part of the images,
and the rest being plume pixels. All the sequences are classified independently, and each pixel is
labeled with its corresponding IO3 and ISO2 indexes. As mentioned in Section 2.2, the classes with less
than 0.01% of the total number of plume pixels from the sequences are excluded. Moreover, since our
interest is in plume pixels, we only consider classes corresponding to IO3 indexes with BT integral
values in the range of [23,500:28,500] K cm−1.

Table 4 sums up the characteristics of the classification of the three tested datasets such as the
time to classify an image, the proportion of patterns necessary to reconstruct the SO2 SCD images,
and those who are not listed in the library. The time necessary to classify a sequence depends on three
elements: the size of the image (i.e., number of pixels), the number of images in the dataset, and the
spectral resolution. The retrieval is in the order of ~15 s for an image with a spectral resolution of
4 cm−1 and in the order of ~35 s for an image with a spectral resolution of 2 cm−1. In comparison
with the pixel-by-pixel method, which demands a week of calculation for an image of sequence
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B, the classification and retrieval using the library only takes ~34 s to retrieve an image from that
same sequence.

Table 4. Main characteristics of the classification of the tested sequences.

Sequence
#

Classification Time
(s/Image)

Number of Classes:
In the Plume/Out of

Plume Library

Percent of Pixels from Plume
Out of the Library

A 36.7 560/109 22.5

B 33.8 687/156 20.6

C 15.3 754/99 15.0

Even though Mount Etna was in a quiescent stage of activity (i.e., not in eruption) and the plume
was transported in the same direction, the training dataset represents only a part of the variety of the
SO2 spectral patterns of the Etna NEC plume. The library created allows the massive retrieval of three
sequences with only 15% to ~22% of unlisted plume pixels patterns, distributed in the whole sequence.
One image example from each of the three datasets is presented in Figure 7 with the missing pixels
colored in blue. As can be seen in Figure 7a, the sequence A has higher values of mass of SO2 per
surface unit in the range of ~2.5–35 g m−2 in comparison with sequence B and C with values ranging
from ~1–20 g m−2. The example images from sequences A and B suggest that most of the missing
pixels are close to the emission source. Nevertheless, the unlisted pixels of each sequence are not only
limited to the denser part of the plume. If we look at those pixels in more detail, 70% of the missing
pixels of sequence A, 92% from the one of sequence B, and 29% from the unlisted ones of sequence C,
are in the denser part of the plume (i.e., IO3 indexes > 50).
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3.3. SO2 Emission Flux

The three tested datasets have more than 80% of their plume pixels included in the library, which is
enough to estimate the SO2 emission flux.

Over the few minutes of measurement, the vertical contribution of the plume transport speed was
null or negligible with cross correlation coefficients of determination from 0.83 to 0.89. The vertical
cross correlations indicate that the Etna plume propagated horizontally with a plume transport speed
going from ~5.8 m s−1 (sequence A) to ~6.6 m s−1 (sequences B and C). Mount Etna was in a passive
degassing period and the sequences recorded lasted a few minutes. Based on the cross-correlation
calculation results, the plume transport speed remained uniform and was considered constant.

The boxes are fixed with a horizontal length corresponding to 50 pixels (~140 m) and a vertical
length corresponding to the 64 vertical pixels (~179 m) of each of the three sequences and are placed
close to the ground part of the image. The time evolution of the SO2 emission flux of the three
sequences is presented in Figure 8 and the average results from the three datasets are presented in
Table 5. The position and the small size of the boxes, ~25.2 km2, allow us to capture the heterogeneity of
the concentration of SO2 coming out of the crater. The variability of the SO2 emission flux is important,
with values going from single to double within seconds, especially for the sequences A and B. Short
videos showing the dynamism of the plume for the three sequences are available in the additional
material of this paper (externally hosted Supplementary Materials Files 1–3).
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Figure 8. Time evolution of the SO2 emission flux estimation of the three sequence (A in blue, B in
black, and C in red) and corresponding error-bars.

Table 5. Average plume transport speed, average mass of SO2 per surface unit, and average SO2

emission flux over the sequences with a corresponding standard deviation (1σ).

#
Plume Transport Speed Average Mass of SO2

Per Surface Unit Average SO2 Emission Flux

(m s−1) (g m−2) (kg s−1) (t day−1)

A 5.83 10.54 ± 7.76 10.87 ± 2.61 938.84 ± 225.25
B 6.66 5.34 ± 4.53 6.13 ± 1.41 529.79 ± 122.13
C 6.62 4.56 ± 2.93 4.95 ± 0.98 427.51 ± 85.15

4. Discussion

The number of patterns of the training dataset is small in comparison to the diversity of Mount
Etna behaviors [2]. Nevertheless, we managed to retrieve the SO2 SCD of three sequences from the
IMAGETNA campaign.
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The estimation of the NEC SO2 emission flux shows how variable the emissions are in the scale of a
few seconds. Most of the SO2 emission fluxes from Mount Etna in the literature are values averaged over
hours or days. Aiuppa et al. (2008) [53] estimated the flux of SO2 from the NEC to be around 352 t day−1

with an error around 20% during a passive degassing state of Mount Etna in July 2007 using routine
DOAS traverse measurements. La Spina et al. 2010 [54] obtained SO2 flux from 270 to 1000 t day−1

with a standard error of 30% using a ground-based lightweight open-path Fourier transform infrared
spectrometry in active mode with a portable infrared lamp. Gliß et al. (2018) [55] presented an average
estimation, from 15 min of ground-based UV camera measurements on 16 September 2015, of the NEC
SO2 emission flux of ~8 kg s−1 (equivalent to ~690 t day−1). In Prata and Bernardo (2014), the obtained
SO2 emission flux is in the range of 10–20 kg s−1 (equivalent to ~860–1730 t day−1) along a period of
7 h of measurement in September 2003 with data acquired every 4–6 min using the multifilter thermal
infrared camera system Cyclops [27]. Our results are in the range of values obtained in the literature.
Nevertheless, our estimation of the North East Crater SO2 emission flux are only partial estimations
since the plume of Mount Etna was trimmed by the field of view of the Hyper-Cam imager, capturing
only a part of the total plume of the NEC, which, moreover, would be the gas emission of only one of
the four main craters of Mount Etna.

Oppenheimer et al. (2006) presented SO2 column amounts from ground-based UV spectrometer
measurements with a scattered skylight as a UV source, ranging from 0.5 to 3 g m−2 for measurements
within La Voragine summit crater, which was the strongest gas sources at the moment of the
measurements, and values up to 2 g m−2 for measurements of the plume of Etna from a location at
~2 km from the craters [56]. The SO2 emission flux also measured by UV spectroscopy on that day
was ~11 kg s−1 (equivalent to ~950 t day−1). The SO2 column amount from our three datasets are a bit
higher with average values ranging from 4.5 to 10.5 g m−2.

One of the main sources of uncertainties is related to the estimation of the plume transport speed.
The error on the retrieval of SO2 SCD also impact the estimation of the SO2 emission flux. For the
training dataset, the average error is ~5.8%. The uncertainties of the SO2 emission flux estimation are
mostly related to the plume transport speed determination and the averaging of the SO2 slant column
densities calculated in each class outcoming from the training dataset classification. The error on the
plume transport speed is directly linked to the estimation error on the distance from the instrument to
the plume that was determined visually with the relief. We consider this error as being ~10%, so that
the average error on the estimate of the SO2 emission flux is ~16% for the presented datasets. It is in
the range or even lower than the uncertainties on SO2 emission flux of similar studies like the one
from Gabrieli et al. on Kïlauea volcano in Hawaii with less than 25% of error mainly induced by the
determination of wind velocities [57].

5. Conclusions

In this paper, we have presented a spectral classification methodology of the Hyper-Cam
images pixels from the IMAGETNA campaign. The network architecture is composed of two
layers corresponding to two features extracted from the spectral bands of O3 and SO2. One feature
characterizing the opacity of the plume and the second one characterizing the concentration in
SO2. The accuracy of the classification results was evaluated in correlation with the results of the
time-consuming pixel-by-pixel retrieval, giving a first order regression slope of 0.97 and a very good
determination coefficient of 0.94 in the diluted part of the training dataset. This method allows a
fast and accurate reconstruction of SO2 slant column density images of three sequences from the
IMAGETNA campaign. Each image is processed in less than 40 s instead of 7 days with a pixel-by-pixel
retrieval methodology.

The plume transport speed was determined by calculating the cross correlation between time
series of mean SO2 slant column densities along two horizontal and two vertical cross sections. The SO2

emission flux relative of the North East Crater from Mount Etna was estimated using the “box method”
and the results ranged from ~5 to 11 kg s−1 (~430–940 t day−1) with an error of ~16%.
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A way to improve the developed methodology would be to include neighborhood pixels
information. The results presented here were performed on sequences of a few minutes with similar
weather conditions, plume level of activity, and measurement characteristics. In the future, it would
be interesting to test this image pixels classification method on datasets with other characteristics to
enrich the training dataset and develop a fast procedure to enlarge the library, and, thus, retrieve
the missing features. A wider field of view or a different geometrical configuration of measurement,
making it possible to capture the entire Etna plume, would also allow comparisons to be made with
other methods of spectra retrieval and estimation of the SO2 emission flux.

The use of a hyperspectral infrared imager, with an acquisition time of images of a few s, associated
with the classification and retrieval time of the spectra of an image lower than a min, would allow
the monitoring of the evolution of SO2 emission flux in near-real-time at a high frequency. All of this
would contribute to help prevent any hazards coming from active volcanoes but also strengthen the
attractiveness and interest of this technology for volcanic gas emissions monitoring.
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