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Abstract Time series classification using phase-independent subsequences called
shapelets is one of the best approaches in the state of the art. This approach is
especially characterized by its interpretable property and its fast prediction time.
However, given a dataset of n time series of length at most m, learning shapelets
requires a computation time of O(n2m4) which is too high for practical datasets.
In this paper, we exploit the fact that shapelets are shared by the members of the
same class to propose the SAST (Scalable and Accurate Subsequence Transform)
algorithm which is interpretable, accurate and more faster than the actual state
of the art shapelet algorithm. The experiments we conducted on the UCR archive
datasets shown that SAST is more accurate than the state of the art Shapelet
Transform algorithm on many datasets, while being significantly more scalable.

Keywords Time series · Classification · Shapelet · Scalability · Interpretability

1 Introduction

The world is surrounded today with data that change with time, these data are
called time series and are exploited in many domains such as physic, chemistry,
finance, medicine and industry. Many tasks can be performed on time series data
and one of them is the classification task. Time series classification is a task that
consists of learning a function able to classify objects represented as time series.
This task has been successfully performed in astronomy in order to classify galaxies
and stars (Moss, 2018; Möller and de Boissière, 2020), in smart appliances in order
to identify faults (Gupta et al., 2020), in medicine for rapid pathogen identification
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(Papagiannopoulou et al., 2019), in satellite image analysis (Sanchez et al., 2019)
and in many other applications.

Nowadays, there are many accurate methods for the classification of time se-
ries (Bagnall et al., 2017). Depending of the feature used for classification, these
methods are grouped in six categories (Hills et al., 2014):

– whole series: these methods use the whole series as feature. The main idea is to
define a similarity distance (Euclidean distance, Dynamic Time Warping and
its variants, Time Warped Edit Distance, etc) between time series and then use
the nearest neighbor algorithm for classification. The Fast Ensemble of Elastic
Distance or FastEE (Tan et al., 2020) is an ensemble method that combines
different similarity distances.

– interval : the discriminative features are localized at some specific intervals
on the time series, and are computed using some aggregate functions (mean,
median, max, etc). A supervised classifier is then trained on the computed
features. Time Series Forest or TSF (Deng et al., 2013) is to our knowledge
the most popular and the state of the art algorithm in this category. Recently,
the Supervised Time Series Forest or STSF has been proposed (Cabello et al.,
2020). It uses a supervised approach to learn the best intervals.

– shapelet : shapelet-based methods (Ye and Keogh, 2009; Rakthanmanon and
Keogh, 2013; Hills et al., 2014) use phase independent patterns (subsequences)
as features. These subsequences are shared by members of the same class and
are called shapelets. An instance is classified regarding the shapelets it contains.

– dictionary : these methods are used when the classes have the same discrimi-
native patterns, however at different frequencies for each class. Generally, the
time series are converted to sequences of symbols before extracting patterns
also called words. The Bag of Symbolic-Fourier Approximation Symbols or
simply BOSS (Schäfer, 2015) and its variants the Contract BOSS (Middle-
hurst et al., 2019) and the Spatial BOSS (Large et al., 2019) are some state of
the art algorithms in this category. Another state of the art is the Word Ex-
trAction for time SEries cLassification or WEASEL (Schäfer and Leser, 2017)
algorithm. Recently, BOSS and WEASEL have been used in the early time
series classification framework called TEASER (Schäfer and Leser, 2020).

– spectral : these methods work in the frequency domain and are able to extract
features that are very hard to find in the time domain. Some popular techniques
used here are power spectrum and auto correlation function (ACF) (Corduas
and Piccolo, 2008; Bagnall and Janacek, 2014; Flynn et al., 2019).

– hybrid : these are methods that work on different features at the same time in
order to take advantage of each type of feature. The most famous model in
this category is HIVE-COTE (Lines et al., 2018) which is composed of 5 com-
ponents, each focusing on one type of features (whole series, interval, shapelet,
dictionary or spectral) and is an ensemble of classifiers. TS-CHIEF (Shifaz
et al., 2020) is a tree-based hybrid method that uses all the previous features
except shapelet. A recent method is ROCKET (Dempster et al., 2020) which
uses randomly generated convolutional kernels in order to extract different
types of features.

Recently, deep learning has shown its effectiveness in many tasks, including
time series classification (Fawaz et al., 2019). Some state of the art deep learning
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models for time series classification are Resnet (Wang et al., 2017) and Inception-
Time (Fawaz et al., 2020).

In this paper, we put our focus on shapelet based methods. This class of al-
gorithms is very interesting because they are accurate, robust to noise and in-
terpretable (Ye and Keogh, 2009). The interpretability of a shapelet method is
obtained by visualizing the subsequences that trigger the class label of a given
instance. Since the introduction of time series classification using shapelets, one
of the most important limitation of the developed algorithms is their time com-
plexity. In fact, the state of the art time complexity of shapelet based methods
is n2m4 where n is the number of time series in the dataset and m is the length
of the longest time series. This high time complexity is due to the large number
of shapelet candidates that need to be evaluated in order to find the top best
shapelets.

A human brain is able to recognize a lot of variations of an object after see-
ing a single variation. For instance, we are able to recognize any model of car
after seeing one of them, we can recognize many species of dog if we have ever
seen a dog. This ability is called core object recognition (DiCarlo et al., 2012).
Inspired by this amazing behavior of our brain, we claim that a shapelet model
should be able to recognize any variation of a shapelet if it knows one or a few
number of its variations. Simply defined, a shapelet is a pattern that is shared
by the time series that belong to the same class. Therefore, any single instance
of a class should contain all the shapelet candidates for that class. Guided by
this observation, we propose the Scalable and Accurate Subsequence Transform
(SAST) algorithm, a time series classification algorithm that is accurate, scalable
and whose predictions are interpretable. Existing shapelet based methods use the
whole dataset to generate shapelet candidates, then use information gain to select
the top best shapelets before doing the classification using a supervised classifier.
SAST proceeds differently by using only a single instance per class in order to
generate shapelet candidates. Furthermore, shapelet candidates are not assessed
beforehand of classification. The supervised classifier automatically identified the
top best shapelets during its training phase. The key points of our contribution
are the following:

– We propose a new design of shapelet based classification of time series. The
proposed design allows us to build a scalable and accurate shapelet method
for the classification of time series. In particular, our method took 1 second to
classify the Chinatown dataset with an accuracy of 96%, while the state of the
art shapelet based algorithm (Shapelet Transform Classifier) took 51 seconds
and achieved an accuracy of 97% on the same computer.

– We give a public implementation of our model that is compatible with the well
known scikit-learn machine learning library. This allows anyone to easily use
our model on its own data, and also to reproduce our experiments.

The rest of this paper is organized as follows: we start by setting the background
and present related work in Section 2. In Section 3 we describe our proposed
method SAST and the idea behind. Our experiments are described in Section 4,
Section 5 summarizes this work and presents future steps.
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2 Background and related work

The building blocks of shapelet based methods for time series classification are
subsequence, similarity measure and of course the notion of shapelet. So, we start
by defining these terms.

Definition 1 (Time series) A sequence of n real values recorded in time. n is
the length of the time series

T = (t1, t2, ..., tn) (1)

A time series can be decomposed in subsequences of different lengths.

Definition 2 (Subsequence or pattern) Given a time series T of length n, a
subsequence (also called pattern) S of length l is a sequence of l consecutive values
of T starting at time step j.

S = (s1, s2, ..., sl) = (tj , tj+1, ..., tj+l−1) (2)

Two subsequences are said similar if the distance between them is less than a
predefined threshold. Euclidean distance and Dynamic Time Warping (DTW) are
the most used similarity distance in time series classification (Bagnall et al., 2017).
For shapelet based methods, Euclidean distance is preferred in the literature (Ye
and Keogh, 2009; Bagnall et al., 2017) and we also use it in this work. However,
any distance can be used to compute the similarity between subsequences.

A time series is similar to a pattern if there is a subsequence of that time series
that is similar to the pattern. Formally, the similarity between a time series T of
length m and a subsequence S of length l is defined as follows:

dist(T, S) = min
∀R∈Wl

({
l∑

i=1

(ri − si)
2}) (3)

In the previous equation, Wl is the set of all subsequences of length l contained
in the time series T . The patterns S and R are put on the same scale before
the distance computation using a normalization technique. Beware that we are
not using the Euclidean distance, but the square of the Euclidean distance. As a
matter of fact, the square root can be seen as a change of the similarity’s scale.

Among all the patterns contained in a time series dataset, some can be used
as discriminative features in order to find the class label of an unseen time series.
These patterns are called shapelets. Shapelet has been introduced as a primitive
for time series classification by Ye and Keogh (2009). The authors proposed a
shapelet based decision tree in which each node is a subsequence and the time
series arriving at a node are split in two groups such that one group contains data
that are similar to the subsequence at that node, and the other group is the set
of data that are not similar to the subsequence. Fig. 1 illustrates a node in the
proposed decision tree.

The subsequence used at a node of the tree is chosen such that the information
gain (IG) is maximized (Ye and Keogh, 2009; Hills et al., 2014).
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Fig. 1: An illustration of a node in a shapelet decision tree for a binary time series
classification

Definition 3 (Shapelet) Given a dataset D = {(T1, c1), (T2, c2), ..., (Tn, cn)} of
time series with their class labels ci taken from a finite set of classes C, a shapelet
S? is a subsequence that maximizes the information gain

S? = argmax
S∈W

IG(D,S) (4)

In Eq. 4, W is the set of all subsequences in the dataset. For a time series of
length m, there are m− l + 1 subsequences of length l and m(m+1)

2 subsequences
in total for a single time series. Since any subsequence in the dataset is a shapelet
candidate, and there are about O(nm2) subsequences, evaluating them is very
time consuming. Because of that, the time complexity of the shapelet decision
tree algorithm is n2m4. Hence, the method does not scale well.

Many works have been proposed in order to improve the scalability, but at
the cost of accuracy and possibly interpretability. Fast shapelet (Rakthanmanon
and Keogh, 2013) reduces the time complexity to O(nm2) by using a symbolic
representation of time series. Symbolic representations have the benefit of reducing
the time series length. Other authors proposed to reduce the space of shapelet
candidates by randomly pick a fraction of subsequences to be evaluated (Renard
et al., 2015; Wistuba et al., 2015; Karlsson et al., 2016).

The state of the art algorithm for shapelet based classification of time series
is the Shapelet Transform (STC) algorithm (Hills et al., 2014; Bostrom and Bag-
nall, 2015). This algorithm designs shapelet based classification as a three steps
process. The first step is the selection of the top k shapelets. The second step is
the shapelet transformation where each time series in the dataset is replaced by
a vector of its distances to each of the selected shapelets. The final step consists
of training a supervised classifier on the transformed dataset. Although the time
complexity of this algorithm is still n2m4, it is the shapelet based algorithm that
obtains the best classification accuracy (Bagnall et al., 2017). Early abandon tech-
niques and shapelet candidates pruning have also been used in order to reduce the
running time of shapelet based algorithms (Ye and Keogh, 2009; Rakthanmanon
and Keogh, 2013; Hills et al., 2014).

STC is not the most accurate time series classification algorithm in the liter-
ature, there exists other models that are more accurate, but they are less inter-
pretable. The current state of the art methods for time series classification are
HIVE-COTE (Lines et al., 2018), TS-CHIEF (Shifaz et al., 2020) and ROCKET
(Dempster et al., 2020). The time complexity of HIVE-COTE is bounded by the
complexity of its shapelet component, that is n2m4. Therefore decreasing the com-
putation time of the shapelet component will make HIVE-COTE more efficient
in terms of running time. TS-CHIEF is a forest of trees in which a time series
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follows a branch if it is closer to the reference time series (there is one reference
time series for each class) associated with that branch than to the reference time
series of other branches. TS-CHIEF does not use shapelet features because of the
time complexity needed for their computation. ROCKET is the most scalable state
of the art method, it is based on random convolutional kernels that are used to
transform the dataset. ROCKET results are not easily interpretable because the
kernels used are short, independent and not sample from the dataset.

ROCKET is architecturally similar to SAST, our proposal described in the
next section. However the way both models work is different in two folds: firstly,
the subsequences (convolutional kernels in ROCKET) are the subsequences of
some reference time series randomly chosen from the dataset, and hence they are
dependent and have variable lengths. Secondly, SAST does not use the convolution
operator as similarity measure, but the Euclidean distance. These properties of
SAST are the reasons of its scalability and interpretability. SAST is a scalable and
accurate alternative to STC. It can be used to reduce the computation time of
shapelet module in HIVE-COTE, and can be integrated to TS-CHIEF at the cost
of little computation time. We believe that adding shapelet features in TS-CHIEF
could increase its accuracy.

3 SAST: Scalable and Accurate Subsequence Transform

In time series classification, a shapelet is ideally a pattern that is shared by every
instances of the same class, and that instances of other classes do not have, they are
called discriminative patterns or subsequences. The number of patterns in a dataset
of n time series of length m is O(nm2), and state of the art shapelet algorithms
must evaluate each of them by computing their information gain. Reducing this
number will make shapelet models faster to train. In this section we propose a way
to reduce the number of shapelet candidates. Then we show that there is no need
to select the top best shapelets beforehand. Finally we present a novel method for
shapelet based time series classification.

3.1 Reducing the number of shapelet candidates

Human brain effortlessly performs core object recognition, the ability to recognize
objects despite substantial appearance variation (DiCarlo et al., 2012). This gives
human the capability to recognize a vast number of objects that have the same
name just by seeing a few of them. Heeger (2002-2014) used Fig. 2 in his lecture
notes on Perception to illustrate the notion of invariance in recognition. This
figure shows different ducks. Some are in water while others are not, some ducks
are photographs and other are drawings. Despite all this variability, a human brain
that has already seen a duck is able to recognize that each object on this figure is
a duck.

A shapelet is a pattern, a shape that is “common” to time series that have
the same class label. By “common”, we do not mean that these time series have
exactly that shapelet, but they have a pattern that is very similar to the shapelet.
Any pattern that is similar to a shapelet can be considered as a variation of that
shapelet. Therefore, we introduce the core shapelet recognition task, which goal
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Fig. 2: Illustration of invariance in recognition.

is to recognize any variation of a shapelet by just seeing one or very few number
of its variations. We argue that time series classification based on shapelets is a
core shapelet recognition task and that it should be solved using very few shapelet
candidates than it has been done since the introduction of shapelets by Ye and
Keogh (2009). Hence, instead of generating shapelet candidates from the whole
dataset, we propose to use only one or a few number of instances per class. In
this way, the learning algorithm must focus on one (or a few number) variation of
each shapelet candidate to classify a time series. We acknowledge that the more
variations the model learns, the more accurate the model will be. However this can
also cause the model to overfit, especially when the training data is not enough
representative of the testing data.

In Fig. 3, we have three randomly selected instances of the Chinatown dataset
from the UEA & UCR archive (Anthony Bagnall and Keogh, 2018). This dataset
has two classes of data. The left example is from class 1 and the second example
(in the middle) is from class 2. It is easy to observe that the instance from class
1 starts by a deep valley, while the instance of class 2 does not. One reason that
can be considered in order to classify the instance on the right in class 2 is that
it does not start by a valley. Hence, observing only one instance per class can be
enough to discover discriminative patterns and successfully perform classification
of new instances.

Fig. 3: Three randomly selected instances from the Chinatown dataset. The in-
stance on the right is probably from class 2 since it does not start with a valley
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Fig. 4 shows 4 randomly selected instances for each class. Instances of the same
class are superposed in order to expose global patterns. The figure emphasizes the
previous observation that class 1 contains instances that start by a deep valley
while class 2 are instances that are more flat at the beginning.

Fig. 4: Some randomly selected instances from the Chinatown dataset. The in-
stance on the right is definitely from class 2

Based on this observation, we propose the following theorem:

Theorem 1 Let D = {(T1, c1), (T2, c2), ..., (Tn, cn)} be a dataset of time series.
Let Dc be any subset of D that contains at most k (k ≥ 1) instances from each
class. If classes in D can be distinguished using shapelets, then for any shapelet
shp of D, there exists a time series in Dc that is similar to shp.

Proof Let’s assume that classes in D are distinguishable using shapelets and that
there exists a shapelet shp for the dataset D that is not similar to any time series
in the set Dc. Since Dc contains at least a time series of each class in D, any
shapelet for the dataset D must be similar to at least one time series in Dc. It
follows from there that assuming shp to be a shapelet is wrong. Therefore the
theorem is true.

From the previous theorem, any shapelet shp of D is always similar to a pattern
in Dc. Therefore, a shapelet algorithm that generated shapelet candidates from Dc

can achieve the same accuracy as if D was used. We run the shapelet transform
algorithm (STC) (Hills et al., 2014) on the Chinatown dataset and plotted the
top 5 shapelets that have been selected for each class in Fig. 5. The shapelets
on the first row clearly identify the valley at the beginning of time series in class
1. Although they are coming from different time series, they are very similar in
shape. Likewise, the shapelets on the last row identify the flat starting of instances
in class 2. Generating shapelet candidates from the whole dataset makes STC learn
different variations of the same patterns.

Applying theorem 1 in the STC algorithm reduces the number of shapelet
candidates from O(nm2) to O(ckm2), where c is the number of classes in the
dataset. In particular, with k = 1, the modified STC model took about 10 seconds
to classify the Chinatown dataset with an accuracy of 96% (average over five runs),
while the original STC algorithm took 72 seconds and gave an accuracy of 97% on
the same computer. Therefore, the modified STC algorithm is about 7 times faster
and achieves almost the same accuracy as the original algorithm. The extracted



Scalable and Accurate Subsequence Transform 9

Fig. 5: Top 5 shapelets extracted for each class of the Chinatown dataset by the
shapelet transform algorithm.

shapelets are shown in Fig. 6. Different variations of the same shapelet are not
learnt anymore. For this dataset, exactly one shapelet has been selected for each
class. We assessed how the value of k affects the STC’s accuracy and computation
time for different datasets and the results are given in Appendix B.

Fig. 6: Shapelets extracted by STC on the Chinatown dataset using a single ran-
domly selected instance per class to generate shapelet candidates.

3.2 Identify shapelets using feature importance analysis

When time series classification using shapelets was introduced, shapelets were
learnt while building a decision tree (Ye and Keogh, 2009). Later, shapelet trans-
form (STC) (Hills et al., 2014) has been proposed to allow the use of any super-
vised classifier. The algorithm proceeds by finding the top best shapelets, then
transforms the dataset using the found shapelets and finally trains a classifier on
the transform dataset (Hills et al., 2014; Bostrom and Bagnall, 2015; Karlsson
et al., 2016). Therefore, there are three main steps: feature extraction where best
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shapelets are selected, dataset transformation where each time series is replaced
by a vector of its distance to the selected shapelets and finally training where a
classifier is trained on the transformed dataset.

We propose to remove the feature extraction step and use every shapelet can-
didates to transform the dataset. After training the classifier on the transformed
dataset, a post hoc method for model explanation can be used to find the most
important features. The importance of a feature represents how much that feature
is correlated to the target variable (Dash and Liu, 1997; Molnar, 2020).

Theorem 2 Let D = {(T1, c1), (T2, c2), ..., (Tn, cn)} be a dataset of time series,
and S the set of all subsequences in D. Let Df = {(x1, c1), (x2, c2), ..., (xn, cn)} be
a dataset such that xi = [xi:1, xi:2, ..., xi:|S|], where xi:j = dist(Ti, Sj). If the jth

feature is an important feature given by the analysis of feature importance for the
dataset Df , then Sj is a shapelet for the dataset D.

Proof Let’s suppose the jth feature is an important feature, and that Sj is not
a shapelet for the dataset. By definition 3, not being a shapelet means that the
information gain of Sj is not high enough, and whether a time series T is similar or
not to Sj does not give any clue about the class of T . Therefore, knowing dist(T, Sj)
doesn’t help to classify T . In other words, the jth feature is not correlated to the
target variable. Hence, it cannot be an important feature. This proves the theorem.

The importance of a feature in a tree based algorithm determines how much it
reduces the variance of the data compared to the parent node (Dash and Liu, 1997;
Molnar, 2020). This corresponds exactly to the definition of a shapelet (see Def.
3). In a linear model, the absolute value of the weight of an important feature will
be greater than the one of a less important feature (Molnar, 2020). Classifiers such
as decision trees and linear models are said to be inherently interpretable since
a post hoc analysis is not required to interpret their predictions. More generally,
when a classifier is fitted, a post hoc explainer can be used to find most important
features (Murdoch et al., 2019) in order to interpret predictions. Two examples
of these post hoc explainers are LIME (Ribeiro et al., 2016) and SmoothGrad
(Smilkov et al., 2017) for saliency maps. More methods can be found in the review
of Samek et al. (2020). Hence, selecting shapelets beforehand of classification using
information gain can be skipped, since the classifier can automatically learn the
top best shapelets during its training iterations.

3.3 Time series classification with SAST

Time series classification with SAST (Scalable and Acurate Subsequence Trans-
form) is designed with respect to Proposition 1 and Proposition 2. A visual view
of the the method is shown in Fig 7. There are two main blocks:

– The classification block: this block is actually the SAST algorithm and begins
with the random selection of reference time series from which subsequences are
then generated. Thereafter, the dataset is transformed by replacing each time
series with a vector of its distances to each subsequence. Finally a supervised
classifier (illustrated here by a decision tree) is trained on the transformed
dataset.
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– The interpretability block: The role of this block is to explain the SAST algo-
rithm by identifying shapelet candidates associated with the most important
features learnt by the classifier. For inherently interpretable classifiers such as
decision trees, the importance of each feature is computed while fitting the
classifier. For other classifiers, eventually not inherently interpretable, an ex-
isting post hoc explainer such as LIME (Ribeiro et al., 2016) can be used to
find the importance of each feature.

Fig. 7: Visual view of the SAST method

A pseudo code of the SAST algorithm is given by Algorithm 1. SAST takes
as input the time series dataset D, the number k of instances to randomly select
from each class in order to create the shapelet candidates, the list of lengths to
use to generate shapelet candidates, and finally the supervised classifier C that is
going to be trained on the transformed dataset.

Algorithm 1: ScalableAndAccurateSubsequenceTransform

Input: D = {(T1, c1), (T2, c2), ..., (Tn, cn)}, k: the number of instances to use per
class, length list: the list of subsequence lengths, C: the classifier to use

1 begin
/* randomly select k instances per class from the dataset */

2 Dc ← randomlySelectInstancesPerClass(D, k)
/* generate every patterns of length in length list from Dc */

3 S ← generateShapeletCandidates(Dc, length list)
/* transformed the dataset using every patterns in S */

4 Df ← ∅
5 for i← 1 to n do
6 xi ← []
7 for j ← 1 to |S| do
8 xi[j]← dist(Ti, Sj)
9 end

10 Df ← Df ∪ {(xi, ci)}
11 end

/* train the classifier on the transformed dataset */
12 clf ← trainClassifier(C,Df )
13 return (clf , S) ; // the trained classifier and the shapelet candidates

14 end
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SAST starts by randomly select k instances per class from the dataset (line
2). By default, k is set to one. We call the selected instances reference time series.
The next step is the generation of every subsequences of length in length list from
the reference time series (line 3). The dataset transformation is performed from
line 4 to 11. Here, the similarity between each time series in the dataset and each
shapelet candidate is computed. The classifier taken as input is then trained on
the transformed dataset (line 12). The algorithm returns the trained classifier, the
shapelet candidates that have been generated.

After the training is done, the class labels of a test dataset can be predicted
in two steps: firstly the dataset is transformed using the shapelet candidates that
have been generated during training, and finally the trained classifier is used to
predict the class labels of the transformed test dataset.

3.4 SAST time complexity

Each step of the SAST algorithm runs in a finite amount of time, therefore the algo-
rithm always terminates. Selecting k reference time series is done in O(c) time com-
plexity, c is the number of classes in the dataset. There are m−l+1 subsequences of
length l in a time series of length m. The total number of subsequences for a time
series is m(m+1)

2 . Since there are kc reference time series in a dataset with c classes,

generating all shapelet candidates is done in O(kcm2). The transformation step re-
quires O(nm2) distance computations, each of which requires O(l) (l is the length
of the subsequence) point wise operations. As the maximum subsequence length is
m, the time complexity of the transformation step is O(nm3). Therefore, to total
time complexity of SAST is O(c) + O(kcm2) + O(nm3) + O(classifier), where
O(classifier) is the time complicity of the classifier used. The overall asymptotic
time complexity of the SAST algorithm is therefore O(nm3)+O(classifier). SAST
is much faster than the state of the art shapelet transform algorithm (Hills et al.,
2014) whose time complexity is O(n2m4) + O(classifier),

3.5 Ensemble of SAST models

SAST accuracy is highly dependent on the randomly selected reference series. If
a reference time series is noisy or not representative of its class, then it could be
difficult for SAST to learn best shapelets for the dataset. Furthermore, the random
selection of reference time series could lead to a variance in performance. We use
Bagging (Breiman, 1996) to leverage these possible issues and we call the obtained
model SASTEnsemble (or SASTEN in reduced form). SASTEN is obtained by
ensembling r SAST models. Each individual model in the ensemble uses randomly
selected reference time series and may also have different parameters, especially
parameter controlling the length of shapelet candidates (that is length list in Algo.
1). The final prediction is obtained by averaging the predictions of every SAST
models in the ensemble.
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4 Experiments

We have implemented SAST and SASTEN in Python. Our implementation is
based on the scikit-learn machine learning library (Pedregosa et al., 2011). We
have also followed scikit-learn design principles so that our models are compatible
with any scikit-learn pipeline. We have used the implementation of STC (Shapelet
Transform Classifier) from the sktime library (Löning et al., 2019). The source
code of our experiments with the results are publicly available here 1.

In all our experiments, the number of reference time series per class (that is the
parameter k in Algo. 1) is one; however we use different values of this parameter
on some datasets in Appendix C. We use two classifiers available in scikit-learn:

– Random Forest (RF): all features are evaluated at each node to find the best
split and a split is selected if the impurity decreases by about 0.05. These prop-
erties are ensured by the parameters max features and min impurity decrease
respectively.

– Ridge Classifier with LOO: this is the ridge classifier with built-in Leave-One-
Out cross validation. The cross validation is used to select the best regulariza-
tion parameter between 10 log spaced values ranging from −3 to 3.

Table 1 describes the models that we use in our experiments. We compare our
models especially to the shapelet transform algorithm STC (Hills et al., 2014),
which is to our knowledge the state of the art shapelet based method. We also
compare SAST to other state of the art algorithms that are not necessarily based
on shapelet: ROCKET (Dempster et al., 2020), HIVE-COTE (Lines et al., 2018),
Catch22 (Lubba et al., 2019) and BOSS (Schäfer, 2015). The results of these
models are taken from the UEA & UCR repository (Anthony Bagnall and Keogh,
2018).

Name classifier length list Description
SAST-RF Random Forest {3, 4, ..,m} SAST model using RF classifier
SAST-Ridge Ridge classifier {3, 4, ..,m} SAST model using Ridge classifier

with LOO
SAST-Ridge-A Random Forest {9, 13, 15}, {7, 11, 15},

{7, 9, 15} or {9, 11, 15}
Approximated SAST-Ridge, that is
a SAST-Ridge which considers only
some subsequence lengths

SASTEN-Ridge Ridge classifier - Ensemble of 3 SAST-Ridge
SASTEN-Ridge-A Ridge classifier - Ensemble of 3 Approximated SAST-

Ridge with length list {3, 4, .., 9},
{10, 11, ..., 16}, and {17, 18, ..., 23} re-
spectively

Table 1: List of models used in our experiments

We experiment using 39 randomly selected datasets from the UEA & UCR
repository (Anthony Bagnall and Keogh, 2018). The datasets in the repository
are different in terms of series length, number of series, number of classes and
application domain. Each dataset is already split into train and test sets. There
are 128 datasets on the repository, but we are limited by the computation power

1 https://github.com/frankl1/sast/tree/master
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and the time constrain on our computing clusters. However, we plan to extend our
experiments on the remaining datasets in near future.

4.1 Accuracy

Fig. 9 shows a pairwise comparison of SAST-Ridge to other models. The first
thing to note is that SAST-Ridge is generally more accurate than SAST-RF on our
datasets (Fig. 9a). This is why we use SAST-Ridge as the pivot in our comparison.

We tried several length list for the approximated SAST model, and we are
presenting here only the four that achieved the best accuracy on our datasets.
The critical difference diagram between these four models is given in Fig. 8.
There is no significant difference between the models, however the model us-
ing length list = {7, 11, 15} is the best of all. When not clearly precised in the
rest of this paper, SAST-Ridge-A is the approximated SAST-Ridge model with
length list = {7, 11, 15}.

Fig. 8: Critical difference diagram between approximated SAST models

4.1.1 Comparison to STC

In this part, we start by assessing the performance of SAST, SASTEN and their
approximated variants before comparing our models to STC.

The approximated SAST-Ridge is less accurate than SAST-Ridge in general
(Fig. 9b). However it is important to note that the approximated model wins on 9
datasets. Therefore, knowing a prior about possible shapelet lengths can be used
to train the model faster and without losing accuracy. Furthermore, ensembling
approximated SAST models, each one focusing on different shapelet lengths is
a possible way to improve accuracy while decreasing the computation time. In
fact, SASTEN-Ridge-A is more accurate than SAST-Ridge on 20 datasets and
less accurate on 18 (Fig. 9c).

Fig. 9d reveals that ensembling SAST-Ridge models improves accuracy on
almost every dataset. But the improvement is slight, because even though the
reference time series are chosen randomly, SAST-Ridge has very low variance in
accuracy over multiple runs.

The critical difference diagram between SAST models is shown in Fig. 10.
SASTEN-Ridge is the best of all, follows by SASTEN-Ridge-A which is not signif-
icantly less accurate. SAST-Ridge is the third best model and is not significantly
worse than SASTEN-Ridge-A, but is considerably less accurate than SASTEN-
Ridge. SAST-Ridge-A and SAST-RF are significantly less accurate.
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(a) SAST-Ridge (25 wins) vs SAST-RF
(12 wins), 2 draws

(b) SAST-Ridge (29 wins) vs SAST-Ridge-
A (9 wins), 1 draw

(c) SAST-Ridge (18 wins) vs SASTEN-
Ridge-A (20 wins), 1 draw

(d) SAST-Ridge (4 wins) vs SASTEN (33
wins), 2 draws

(e) SAST-Ridge (12 wins) vs STC (26
wins), 1 draw

(f) SASTEN-Ridge (18 wins) vs STC (18
wins), 1 draw

Fig. 9: Pairwise comparison of models’ accuracies

STC, the state of the art shapelet method to our knowledge is more accurate
on more datasets than our model SAST-Ridge (Fig. 9e). SAST-Ridge is better on
12 datasets, worse on 26 and there is one draw. The difference in accuracy is not
too large between both models. However, Fig. 9f shows that SASTEN-Ridge, the
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Fig. 10: Critical difference diagram between SAST models

ensemble of 3 SAST-Ridge is as accurate as STC with 18 wins each and a draw.
Elsewhere, as shown in Appendix C, using more reference time series will improve
the accuracy of our models.

4.1.2 Comparison to others

In Fig. 11, we compare SASTEN-Ridge to the state of the art models Catch22,
BOSS, ROCKET and HIVE-COTE.

SASTEN-Ridge largely outperforms Catch22 and BOSS. Fig. 11c shows the
accuracy of BOSS and SASTEN-Ridge. Our model wins on 21 datasets, loses on
16 datasets and there are 2 draws. Furthermore, our model largely outperforms
BOSS on the SmoothSpace dataset. In fact, SASTEN-Ridge achieves an accuracy
of 93% whereas BOSS achieves only 39%. SASTEN-Ridge is also more accurate
than Catch22 with 30 wins versus 9 losses (Fig. 11d).

To the best of our knowledge ROCKET and HIVE-COTE are the most ac-
curate time series classifiers. Although our model uses only shapelet features, it
manages to outperform ROCKET and HIVE-COTE on some datasets (Fig. 11b
and 11a)

The critical difference diagram in Fig. 12 shows how our models are ranked
regarding five state of the art time series classifiers, including STC, the model
which we want to improve scalability. The cliques on the figure are:

– SASTEN-Ridge-A, SAST-Ridge, BOSS, Catch22
– SASTEN-Ridge-A, SAST-Ridge, BOSS, STC
– SASTEN-Ridge-A, SAST-Ridge, HIVE-COTE, ROCKET
– SASTEN-Ridge-A, SASTEN-Ridge, BOSS, Catch22
– SASTEN-Ridge-A, SASTEN-Ridge, BOSS, STC
– SASTEN-Ridge-A, SASTEN-Ridge, HIVE-COTE, ROCKET

Hence, in average SASTEN-Ridge-A is better than BOSS and Catch22. In ad-
dition, SASTEN-Ridge is considerably more accurate than Catch22. HIVE-COTE
and ROCKET are not significantly better than our ensemble model SASTEN-
Ridge nor SASTEN-Ridge-A. The most important thing here is that none of our
models is significantly less accurate than STC. Particularly, SASTEN-Ridge and
STC are ranked almost the same. However, we show in Section 4.2 that our models
are much more scalable than STC.
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(a) SASTEN-Ridge (4 wins) vs ROCKET
(33 wins), 2 draws

(b) SASTEN-Ridge (7 wins) vs HIVE-
COTE (30 wins), 2 draws

(c) SASTEN-Ridge (21 wins) vs BOSS (16
wins), 2 draws

(d) SASTEN-Ridge (30 wins) vs Catch22
(9 wins), no draw

Fig. 11: SASTEN-Ridge-A vs state of the art time series classifiers

Fig. 12: Critical difference diagram SASTEN-Ridge-A vs state of the art

4.2 Scalability

The scalability of SAST is assessed regarding two criteria: the time series length
and the number of time series in the training set. In this experiment, SAST with
Ridge classifier is used, and we removed the word Ridge from models’ names.
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(a) Regarding time series length (b) Regarding the number of time series

Fig. 13: Running time (in second) of each model

4.2.1 Time series length

Here we use the dataset HouseTwenty from the UCR repository (Anthony Bagnall
and Keogh, 2018). It is a binary dataset of electricity usage in houses. The training
set has 34 time series and of length 3000 each. We vary the series length starting
at 32 and only the first time steps up to the current length are used to train our
models. The running time of each model is given in Fig. 13a.

For each of the four models, the training time increases with the length of
time series in the dataset. However, SAST models are much more scalable than
STC, and SASTEN-A is the most scalable of all, since it uses a fixed number of
shapelet candidates whatever the length of time series. For SASTEN-A, increasing
the length of the time series only increases the computation time of the similarity
between time series and shapelet candidates. More specifically, STC takes about
1 hour and 40 minutes to train on a dataset of 34 time series of length 64, while
SAST, SASTEN and SASTEN-A take about 13 seconds, 27 seconds and 8 seconds
respectively. For the same number of time series but now of length 256, STC
takes a bit more than a day, while SAST, SASTEN and SASTEN-A take about 14
minutes, 26 minutes and 2 minute respectively. Therefore, even our slowest method
SASTEN is 55 times faster than STC. SASTEN-A and SAST are respectively 1440
times and 102 times faster than STC.

4.2.2 Training set size

The Chinatown dataset is used here. It is a binary dataset with time series of length
24. There are 20 instances in the training set and we use random oversampling
to create bigger versions of this dataset. Fig. 13b shows the running time of each
models.

The training time of each model increases near linearly with the number of
time series in the dataset. STC’s training time starts higher and increases much
faster compared to other models. This is not surprising since the training time
of shapelet methods is extremely related to the number of shapelet candidates,
and the number of shapelet candidates in STC increases with the number of time
series while the number of shapelet candidates in a SAST model increases with
the number of classes. More precisely, STC takes about 12 minutes on a dataset



Scalable and Accurate Subsequence Transform 19

of 64 time series of length 24, while SAST takes only 2 seconds, SASTEN requires
10 seconds and SASTEN-A needs about 6 seconds. For a dataset with 1024 time
series of length 24, SASTEN, SAST and SASTEN-A are respectively about 5000
times, 8000 times and 9000 faster than STC.

4.3 Interpretability

The predictions of a SAST model trained on a dataset are explained by identifying
the shapelets that have been learnt for that dataset. This is done using feature
importance analysis (see Proposition 2). Each feature is related to a shapelet can-
didate extracted from a time series whose class label is known. Shapelet candidates
related to the most important features are the top best shapelets. We say that any
shapelet candidate is from the class of the time series from which it has been ex-
tracted. Therefore, the class label of a time series can be interpreted by looking at
the class labels of the shapelet candidates to which it is the most similar. Let us
interpret the predictions of SAST-RF and SAST-Ridge trained on the Chinatown
dataset. Although feature importance are computed differently for both models,
we show that their predictions are interpretable in the same manner.

Fig. 14 and 15 show the top 5 best shapelets plotted on the reference time series
for the Chinatown dataset with respect to SAST-Ridge and SAST-RF respectively.
The top rows of the figures are the reference time series selected from class 1, while
the second rows are the reference time series selected from class 2. A perfect match
between a shapelet candidate and a reference time series means that the shapelet
has been extracted from that reference time series. Hence, the top 5 best shapelets
learnt by SAST-Ridge are from class 1. The second of the top 5 best shapelets
learnt by SAST-RF is from class 1, while the four others are from class 2.

Fig. 14: Top 5 shapelets learnt by SAST-Ridge on Chinatown.

In order to predict the class label of a test time series, SAST identifies the
most important features similar to the time series. In other words, SAST checks
if the time series contains subsequences that are similar to the most important
features. Fig. 16 shows the matches between the top 5 most important features
learnt by SAST-Ridge and two randomly selected test time series. We can note that
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Fig. 15: Top 5 shapelets learnt by SAST-RF on Chinatown.

the model correctly predicts the class labels. Since the top 5 shapelets learnt by
SAST-Ridge are from class 1, there are near perfect matches with the test instance
from class 1 (see Fig. 16 top). A near perfect match between a subsequence and
shapelet candidate means that the subsequence is a variation of that shapelet
candidate. No good match is found with the test instance from class 2 (see Fig. 16
bottom). Therefore, we have an explanation of why the first instance is predicted
as coming from class 1, while the second one is predicted as coming from class 2.

The same analysis is shown for SAST-RF in Fig. 17. Like SAST-Ridge, SAST-
RF also predicted the class labels correctly. The first test time series has a near
perfect match with the second top best shapelet candidate (see Fig. 17 top) which
is a shapelet candidate of class 1. The other top best shapelet candidates, which
are all from class 2 do not match with the first time series. This explains why
the predicted class label for the first time series is class 1 and not class 2. The
first, third, fourth and fifth top best shapelet candidates, which are all from class
2 have near perfect matches with the second time series, while the second top best
shapelet candidate, which is from class 1 does not match (see Fig. 17 bottom).
Hence, we can interpret why the class label of the second instance is predicted as
class 2 and not class 1.

Therefore, we experimentally proved in this Section that SAST-RF and SAST-
Ridge automatically learn to put more attention on the subsequences that are
shapelets for the considered dataset. More generally a SAST model automatically
learns to put more attention on shapelet candidates that are shapelets during
its training. It also automatically learns to put less attention on the shapelet
candidates that are not shapelets. We also note that the top best shapelets learnt
by SAST-Ridge and SAST-RF on the Chinatown dataset are the same as the one
selected by STC (see Fig. 5).

5 Conclusion

In this work, we shown that the number of shapelet candidates in a shapelet
algorithm can be reduced considerably without losing accuracy. We also shown
that it is not always necessary to learn shapelets beforehand of classification. We
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Fig. 16: Explanation of SAST-Ridge predictions on two random test instances

Fig. 17: Explanation of SAST-RF predictions on two test instances

introduced the Scalable and Accurate Subsequence Transform (SAST) algorithm
which is interpretable, accurate and a more scalable alternative to the Shapelet
Transform algorithm. Our experiments revealed that a good trade-off between
accuracy and scalability can be found by ensembling different SAST models, each
one focusing on different shapelet candidates.

We plan to do many improvements on the SAST algorithm in the future.
Particularly, we will speed up the distance computation by using lower bounding
and early abandon techniques. Then we will prune similar subsequences in order
to further reduce the number of shapelet candidates.

Although we focused on time series classification in this paper, we hope that
the same idea can be used in the near future to increase the scalability of shapelet-
based time series clustering, especially when a high time complexity distance like
FOTS (Siyou et al., 2020) is used.

Acknowledgements This work is funded by the french Ministry of Higher Education, Re-
search and Innovation. Thank to the UEA & UCR Time Series Classification Repository which
provides the datasets used for our experiments.
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A Accuracies of our models on the 39 datasets

Table 2 gives the accuracy of each of our models on every datasets.

Table 2: Accuracy’s means on 39 datasets

SAST-RF SAST-Ridge SASTEN-Ridge-A SAST-Ridge-A SASTEN-Ridge STC

BME 0.89 0.87 0.98 0.63 0.88 0.93
CBF 0.96 0.98 0.99 0.91 0.98 0.97
Chinatown 0.97 0.96 0.97 0.95 0.97 0.97
ChlorineConcentration 0.57 0.75 0.75 0.72 0.78 0.74
Crop 0.04 0.73 0.74 0.68 0.75 0.74
DistalPhalanxOutlineAgeGroup 0.73 0.76 0.78 0.76 0.78 0.77
DistalPhalanxOutlineCorrect 0.71 0.74 0.72 0.73 0.74 0.77
DistalPhalanxTW 0.68 0.67 0.68 0.66 0.69 0.69
ECG200 0.82 0.84 0.85 0.78 0.87 0.84
ECG5000 0.93 0.94 0.94 0.93 0.94 0.94
ECGFiveDays 1.00 1.00 0.89 0.81 1.00 1.00
ElectricDevices 0.51 0.62 0.65 0.61 0.64 0.73
FaceAll 0.70 0.78 0.80 0.77 0.78 0.75
FacesUCR 0.77 0.95 0.89 0.85 0.96 0.92
GunPoint 0.97 0.97 0.95 0.84 0.98 0.99
GunPointAgeSpan 0.95 0.97 0.96 0.90 0.98 0.98
GunPointMaleVersusFemale 0.96 0.99 0.97 0.91 0.99 0.98
GunPointOldVersusYoung 0.94 0.96 0.94 0.90 0.98 0.97
ItalyPowerDemand 0.90 0.96 0.96 0.95 0.96 0.96
MedicalImages 0.53 0.68 0.67 0.61 0.71 0.70
MiddlePhalanxOutlineAgeGroup 0.60 0.53 0.63 0.63 0.54 0.58
MiddlePhalanxOutlineCorrect 0.64 0.83 0.83 0.73 0.85 0.80
MiddlePhalanxTW 0.56 0.56 0.57 0.56 0.55 0.58
MoteStrain 0.92 0.85 0.89 0.88 0.86 0.95
PhalangesOutlinesCorrect 0.67 0.78 0.75 0.74 0.80 0.82
Plane 1.00 1.00 1.00 1.00 1.00 1.00
PowerCons 0.87 0.91 0.82 0.77 0.92 0.96
ProximalPhalanxOutlineAgeGroup 0.84 0.85 0.86 0.86 0.85 0.85
ProximalPhalanxOutlineCorrect 0.82 0.87 0.87 0.84 0.87 0.91
ProximalPhalanxTW 0.80 0.78 0.80 0.80 0.79 0.79
SmoothSubspace 0.84 0.91 0.92 0.87 0.93 0.93
SonyAIBORobotSurface1 0.87 0.76 0.84 0.84 0.75 0.75
SonyAIBORobotSurface2 0.90 0.85 0.91 0.90 0.86 0.94
SwedishLeaf 0.85 0.88 0.91 0.85 0.90 0.93
SyntheticControl 0.98 0.98 0.97 0.85 0.99 1.00
TwoLeadECG 0.96 0.96 1.00 0.98 0.99 1.00
TwoPatterns 0.93 0.99 0.93 0.74 0.99 0.99
UMD 0.97 0.97 0.88 0.79 0.98 0.94
Wafer 1.00 1.00 1.00 1.00 1.00 1.00

B STC-k reference time series

In this appendix, we show the performance of STC-k, a STC algorithm in which only k reference
time series per class are used to generate shapelet candidates. The accuracy of STC-k for
different datasets is shown in Fig. 18. The training time on the same computer is shown
in Fig. 19. STC generates shapelet candidates from the whole dataset, it is equivalent to
STC-all. The accuracy of STC-all on each dataset is taken from the UEA & UCR repository
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(Anthony Bagnall and Keogh, 2018). Elsewhere, we don’t have the running time of STC-all,
but it is certainly larger than the running time of any other STC-k, where k 6= all.

Fig. 18: STC-k’s accuracy for k ∈ {1, 2, 5, 9, all}

Fig. 19: STC-k’s training time for k ∈ {1, 2, 5, 9}

We can see that increasing the number of reference time series hardly makes the model
more accurate on our datasets. In contrary, the computation time considerably increases when
the number of reference time series increases.

C Varying the number of reference time series in SAST

This appendix shows how the number of reference time series k influences SAST accuracy.
Given the computation time required by SAST when k is high, we don’t have the results on
all our 39 datasets. We consider k = 2, k = 5 and k = 9 and use SAST-RF. Fig. 20 shows the
obtained accuracy and Fig. 22 shows the training time on the same computer. On the plots,
SAST-k is used to reference a SAST model that uses k reference time series.

Using more reference time series generally increases SAST accuracy as confirmed by the
critical difference in Fig. 21. As expected, Fig. 22 shows that SAST training time increases
with the number of reference time series. Therefore, given a particular dataset and operational
constraints, the number of time series should be tuned in consequence.



24 Michael F. MBOUOPDA, Engelbert MEPHU NGUIFO

Fig. 20: SAST-RF’s accuracy with different number of reference time series

Fig. 21: Critical difference diagram between different SAST-k models.

Fig. 22: SAST-RF training time (in second) for different number of reference time
series

D Scalability of SAST, SASTEN and SASTEN-A regarding the
training set size

This appendix shows in Fig. 23 a zoom on SAST, SASTEN and SASTEN-A methods consid-
ered in Fig. 13b showing the scalability test result regarding the number of time series in the
dataset. We can now clearly see that SASTEN is slower than SAST and SASTEN-A whatever
the number of time series in the dataset.
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Fig. 23: Running time in seconds of SAST, SASTEN and SASTEN-A regarding
the number of time series
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