N

N

Scalable and Accurate Subsequence Transform
Michael F Mbouopda e, Engelbert Mephu

» To cite this version:

Michael F Mbouopda e, Engelbert Mephu. Scalable and Accurate Subsequence Transform. Pattern
Recognition, 2023, 147, pp.1-18. 10.1016/j.patcog.2023.110121 . hal-03087686v3

HAL Id: hal-03087686
https://uca.hal.science/hal-03087686v3

Submitted on 21 Nov 2023

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License


https://uca.hal.science/hal-03087686v3
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Scalable and Accurate Subsequence Transform for Time Series
Classification

Michael Franklin MBOUOPDA™*, Engelbert MEPHU NGUIFO*

University Clermont Auvergne, Clermont Auvergne INP, CNRS, ENSMSE, LIMOS, F-63000, Clermont-Ferrand, France

ARTICLE INFO ABSTRACT

Time series classification using phase-independent subsequences called shapelets is one of the
best approaches in the state of the art. This approach is especially characterized by its inter-
pretable property and its fast prediction time. However, given a dataset of n time series of length
at most m, learning shapelets requires a computation time of O(n*m®*) which is too high for
Classification practical datasets. In this paper, we exploit the fact that shapelets are shared by the members

of the same class to propose the SAST (Scalable and Accurate Subsequence Transform) algo-

Keywords:

Time series

Shapelet rithm which has a time complexity of O(nm3). SAST is accurate, interpretable and does not
Scalability learn redun.dant shapelets. The experiments we conducted on the UCR archivg datasets showed

that SAST is more accurate than the state of the art Shapelet Transform algorithm while being
Interpretability significantly more scalable.

1. Introduction

The world is surrounded today by data that change through time. Such data are used to model the dynamic of one or
multiple variables and are called time series. They are exploited in many domains such as physics, chemistry, finance,
medicine, and industry. Many tasks can be performed on time series data and one of them is the classification task.
Time series classification (TSC) is a task that consists of learning a function able to classify objects represented as time
series. This task has been successfully performed in astronomy in order to classify galaxies and stars (Moss, 2018),
in smart appliances in order to identify faults (Gupta, Gupta, Biswas and Dutta, 2020), in medicine for rapid pathogen
identification (Papagiannopoulou, Parchen and Waegeman, 2019), in satellite image analysis (Sanchez, Serrurier and
Ortner, 2019) and in many other applications.

There are many methods for the classification of time series. Regarding the feature used for classification, these
methods are grouped into seven categories: whole series, interval, shapelet, dictionary, spectral, hybrid, and deep
learning. In this paper, we put our focus on shapelet based methods. This class of algorithms is very interesting

because they are accurate, robust to noise and interpretable (Ye and Keogh, 2009). In particular, the shapelet transform
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algorithm is proved to be among the most effective when tested on the UEA & UCR archive (Bagnall, Lines, Bostrom,
Large and Keogh, 2017). They have also proved to be effective in clustering (Siyou Fotso, Mephu Nguifo and Vaslin,
2020), showing how useful shapelets are. The interpretability of a shapelet method is obtained by visualizing the
subsequences that trigger the class label of a given instance. Since the introduction of TSC using shapelets, one of the
major limitations of the developed algorithms is their time complexity. In fact, the state of the art time complexity of
shapelet based methods is n>m* where n is the number of time series in the dataset and m is the length of the longest
time series. This high time complexity is due to the large number of shapelet candidates that need to be evaluated in
order to find the top best shapelets.

A human brain is able to recognize a lot of variations of an object after seeing a single variant. For instance, we
are able to recognize any model of car after seeing one of them, we can recognize many species of dog if we have
ever seen a dog. This ability is called core object recognition (DiCarlo, Zoccolan and Rust, 2012). Inspired by this
amazing behavior of our brain, we claim that a shapelet model should be able to recognize any variant of a shapelet if
it knows one or a few number of its variants. Simply defined, a shapelet is a pattern that is shared by the time series
that belong to the same class. Therefore, any single instance of a class should contain all the shapelet candidates or
at least a variant of each shapelet candidate for that class. Guided by this observation, we propose the Scalable and
Accurate Subsequence Transform (SAST) algorithm, a TSC algorithm that is accurate, scalable and whose predictions
are interpretable.

Existing shapelet based methods use the whole dataset to generate shapelet candidates, then use information gain to
select the top best shapelets before doing the classification using a supervised classifier. We claim that it is not necessary
to generate the shapelet candidates from the whole dataset, only one or few instances per class is enough. We also
claim that pruning shapelet candidates without taking into account the classifier can lead to inaccurate classification.
We propose the SAST model to support our claims ; it uses only a single instance per class in order to generate shapelet
candidates. Furthermore, shapelet candidates are not assessed beforehand of classification. The supervised classifier
automatically identifies the top best shapelets during its training phase. The key points of our contribution are the

following:

e We introduce the core shapelet recognition task which aims to recognize any variant of a shapelet from one or
few variants of that shapelet. We claim that TSC by shapelets is a core shapelet recognition task and therefore

the size of the shapelet space is considerably reduced without losing crucial information.

e We propose the SAST method, which successfully performs the core shapelet recognition task in order to accu-
rately classify time series. SAST is also more scalable than the state of the art shapelet methods. In particular,

SAST took 1 second to classify the Chinatown dataset with an accuracy of 96%, while the state of the art shapelet
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based algorithm STC took 51 seconds and achieved an accuracy of 97% on the same computer. Furthermore

our proposed method can successfully classify some datasets on which STC fails.

e We give an open source implementation of our model that is compatible with the well known scikit-learn machine
learning library. This allows anyone to easily use our model on its own data, and to reproduce our experiments.

The code is available here https://github.com/frankll/sast

The rest of this paper is organized as follows: we start by setting the background and present related works in
Section 2. In Section 3 we describe our proposed method SAST, which is inspired by the core object recognition
capability of human brain. In Section 4, we assess SAST on various datasets and compare it to state of the art shapelet

and non-shapelet based methods. Section 5 summarizes this work and presents future direction.

2. Background and related works

In this section, we start by presenting the background notions required to follow this work and then we continue

by presenting the related works.

2.1. Background
Definition 1 (Time series). A sequence of n real values recorded in time. In this definition, n is the length of the time

series

T = (tl’t2’ ...,tn), Vlﬁiﬁnti (S R (l)

A time series can be decomposed into subsequences of different lengths.

Definition 2 (Subsequence or pattern). Given a time series T of length n, a subsequence (also called pattern) S of

length | is a sequence of | consecutive values of T starting at time step j.

S:(Sl’sb""sl):(tj’tj+1""’tj+l—1) (2)

Two subsequences are said similar if the distance between them is less than a predefined threshold. Euclidean
distance and Dynamic Time Warping (DTW) are the most used similarity distance in TSC (Bagnall et al., 2017). For
shapelet based methods, Euclidean distance is preferred in the literature (Ye and Keogh, 2009; Bagnall et al., 2017)
and we also use it in this work. However, any distance can be used to compute the similarity between subsequences.

A time series is similar to a pattern if there is a subsequence of that time series that is similar to the pattern.
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Definition 3 (Similarity). The similarity between a time series T of length m and a subsequence S of length | is defined

as follows:
l
dist(T,S) = min ({ Z(r,- — sl-)2 1), with W, being the set of all subsequences of length | in T 3)
VReW; &

The patterns .S and R are put on the same scale before the distance computation using a normalization technique.
Beware that we are not using the Euclidean distance, but the square of the Euclidean distance. As a matter of fact, the
square root can be seen as a change of the similarity scale and therefore does not change the similarity.

Among all the patterns contained in a time series

dataset, some can be used as discriminative features

Does the time series contains

. . a subsequence similar to the

in order to find the class label of an unseen time se- I 1 ;apucl ? o M
//\/v_-——' - s -

ries. These patterns are called shapelets. Shapelets have ~~— - <res —
P e T TR —

been introduced as primitives for TSC by Ye and Keogh
(2009). The authors proposed a shapelet based decision Figure 1: An illustration of a node in a shapelet decision
tree for a binary TSC

tree in which each node is a subsequence and the time

series arriving at a node are split into two groups such that one group contains data that are similar to the subsequence

at that node, and the other group is the set of data that are not similar to the subsequence. Figure 1 illustrates a node in

the proposed decision tree. The blue time series contain the subsequence in the node (i.e they are similar to the subse-

quence at the node), so they follow the branch labeled with yes. The red time series does not contain the subsequence

in the node (i.e they are not similar to the subsequence at the node), therefore they follow the branch labeled with no.
Training a shapelet based decision tree consists of learning the best subsequence (i.e shapelet) to use at each node,

and for each shapelet the best similarity threshold. This training is done in a top-down approach as in a classical

decision tree using the information gain (IG) at each node to find the best split (Ye and Keogh, 2009).

Definition 4 (Shapelet). Given a dataset D = {(T},c;),(T5,¢5), ..., (T, c,)} of time series with their class labels c;

taken from a finite set of classes C, a shapelet S* is a subsequence that maximizes the information gain

S* = argmax IG(D, S), with W being the set of all subsequences in D. “)
Sew

Definition 5 (Information gain (IG)). Let D be a time series dataset and S a shapelet. Let Dy = {T € D | dist(T, S) <
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e}and D ={T € D | dist(T, S) > €}, then

D, | | Dl > .
H(D;)— ——H(Dy) |, with H(D) = — p.logp, 5)
D[ T pp TR ;C s

160.9)= g, (00~

H(-) is the entropy, p, is the probability of having the class c in the dataset D, C is the set of classes in D, and S P is

the set of possible split points.

For a time series of length m, there are m—/+1 subsequences of length / and subsequences in total for a single

m(m+1)
2
time series. Since any subsequence in the dataset is a shapelet candidate, and there are about O(nm?) subsequences,
evaluating them is very time consuming. Because of that, the time complexity of the shapelet decision tree algorithm
is n2m* (Ye and Keogh, 2009). Hence, the method does not scale well with the number of time series and moreover

with the length of the time series. The goal of this work is to improve the scalability of shapelet-based classification

without sacrificing accuracy or interpretability.

2.2. Time series features for classification
Depending on the features used for classification, TSC methods have been grouped into six categories (Hills, Lines,

Baranauskas, Mapp and Bagnall, 2014):

e whole series: these methods use the whole series as feature. The main idea is to define a similarity distance
(Euclidean distance, Dynamic Time Warping and its variants, Time Warped Edit Distance, etc) between time
series and then use the nearest neighbor algorithm for classification. The Fast Ensemble of Elastic Distance or

FastEE (Tan, Petitjean and Webb, 2020) is an ensemble method that combines different similarity distances.

e interval: the discriminative features are localized at some specific intervals on the time series, and are computed
using some aggregate functions (mean, median, max, etc). A supervised classifier is then trained on the computed
features. Time Series Forest or TSF (Deng, Runger, Tuv and Vladimir, 2013) is to our knowledge the most
popular algorithm in this category. TSF has inspired the development of more accurate and efficient methods,
namely the Canonical Interval Forest or CIF (Middlehurst, Large and Bagnall, 2020) and the Supervised Time
Series Forest or STSF (Cabello, Naghizade, Qi and Kulik, 2020). CIF extends the aggregate functions used in
TSF with the catch22 (Lubba, Sethi, Knaute, Schultz, Fulcher and Jones, 2019) features and random sampling.

STSF uses a supervised approach to examine only a set of sub-series in the original time series.

e shapelet: shapelet-based methods use phase independent patterns (subsequences) as features. These subse-
quences are shared by members of the same class and are called shapelets. An instance is classified regarding

the shapelets it contains. The first proposed method in this category is the Shapelet Decision Tree (Ye and
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Keogh, 2009). Later, Fast Shapelet or FS (Rakthanmanon and Keogh, 2013) has been proposed to improve the
time complexity of the Shapelet Decision Tree while keeping almost the same accuracy. Unlike Shapelet Deci-
sion Tree, Shapelet Transform Classifier or STC (Hills et al., 2014) separates the shapelet learning phase from
the classification phase, allowing the usage of any supervised classifier and a significant accuracy improvement.
ELIS++ (Zhang, Wang, Fang, Wang and Wang, 2021) is a recent shapelet method that uses data augmentation
and logistic regression to optimize shapelets. ELIS++ is an improvement of a former method named LS or

Learning time series Shapelets (Grabocka, Schilling, Wistuba and Schmidt-Thieme, 2014).

e dictionary: these methods are used when the classes have the same discriminative patterns, however at different
frequencies for each class. Generally, the time series are converted to sequences of symbols before extracting
patterns also called words. The Bag of Symbolic-Fourier Approximation Symbols or simply BOSS (Schifer,
2015) and its variants the Contract BOSS (Middlehurst, Vickers and Bagnall, 2019) and the Spatial BOSS (Large,
Bagnall, Malinowski and Tavenard, 2019) are some state of the art algorithms in this category. Another state of

the art is the Word ExtrAction for time SEries cLassification or WEASEL (Schifer and Leser, 2017) algorithm.

e spectral: these methods work in the frequency domain and are able to extract features that are very hard to find
in the time domain. Some popular techniques used here are power spectrum and auto correlation function (ACF)

(Bagnall and Janacek, 2014; Flynn, Large and Bagnall, 2019).

e hybrid: these are methods that work on different features at the same time in order to take advantage of each type
of feature. The most famous model in this category is HIVE-COTE (Lines, Taylor and Bagnall, 2018) which is
composed of 5 components, each focusing on one type of features (whole series, interval, shapelet, dictionary
or spectral) and is an ensemble of classifiers. TS-CHIEF (Shifaz, Pelletier, Petitjean and Webb, 2020) is a tree-
based hybrid method that uses all the previous features except shapelet features. A recent method is ROCKET
(Dempster, Petitjean and Webb, 2020) which uses randomly generated convolutional kernels in order to extract

different types of features.

Recently, deep learning has shown its effectiveness in many tasks, including TSC (Fawaz, Forestier, Weber, Idoumghar
and Muller, 2019). Deep learning methods can learn different type of features and can be very accurate if there are
enough data for training and computing power. The main limitation of these methods is that they are black box methods
and therefore are difficult to explain. In fact, explanation by methods such saliency maps and class activation maps
is generally unreliable and inaccurate for time series predictions (Ismail, Gunady, Corrada Bravo and Feizi, 2020)

. Some state of the art deep learning models for TSC are Resnet (Wang, Yan and Oates, 2017) and InceptionTime

(Fawaz, Lucas, Forestier, Pelletier, Schmidt, Weber, Webb, Idoumghar, Muller and Petitjean, 2020).
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2.3. Related works

Many works have been proposed in order to improve the scalability of shapelet-based TSC, but at the cost of accu-
racy and possibly interpretability. Fast Shapelet or FS (Rakthanmanon and Keogh, 2013) reduces the time complexity
to O(nm?) by using a symbolic representation of time series. Symbolic representations have the benefit of reducing the
time series length and hence the number of shapelet candidates. Other authors proposed to reduce the space of shapelet
candidates by randomly picking a fraction of subsequences to be evaluated (Renard, Rifqi, Erray and Detyniecki, 2015;
Wistuba, Grabocka and Schmidt-Thieme, 2015). Although these methods can find competitive shapelets, they are less
accurate in general.

The state of the art algorithm for shapelet based classification of time series is the Shapelet Transform Classifier
(STC) algorithm proposed by Hills et al. (2014) and speed up later by Bostrom and Bagnall (2015). This algorithm
designs shapelet-based classification as a three step process. The first step is the selection of the top k shapelets, this
is equivalent to learning a bag of shapelets to represent the time series. The second step is the shapelet transformation
where each time series in the dataset is replaced by a vector of its distances to each of the selected shapelets. The
final step consists of training a supervised classifier on the transformed dataset. Although the time complexity of this
algorithm is still n2m?, it is the shapelet based algorithm that obtains the best classification accuracy on the UEA &
UCR archive (Bagnall et al., 2017).

Although shapelets are defined as subsequences selected from the considered time series, other approaches pro-
posed to learn shapelets through an optimization process. The first of these approaches is Learning Shapelet or LS
(Grabocka et al., 2014) which starts with randomly initialized shapelets and uses logistic regression to adjust them
iteratively with the goal of maximizing the classification accuracy. This allows the learning of shapelets that are not
present in the training time series. However, the shapes of the learned shapelets are unpredictable and can be difficult
to interpret. The time required by this method to be accurate depends on the initialization step and the optimization
algorithm used. Unlike LS which initializes shapelets randomly, ELIS++ (Zhang et al., 2021), an improvement of
ELIS (Fang, Wang and Wang, 2018) initializes shapelets by the subsequences contained in the training time series.
Then Bayesian optimization is used to set the hyperparameters automatically. Furthermore, ELIS++ uses data aug-
mentation in order to converge on small datasets. ELIS++ is more accurate and converges faster than LS. ELIS++ is
tight to logistic regression and optimizing the hyperparameters is challenging. In this work our focus is on the classical
shapelet algorithm, in which the shapelets are not learned but are selected from the training time series. This guaran-
tees interpretability and there is almost no hyperparameter to tune. Furthermore, the STC capabilities are unlimited
since it can be coupled with any supervised classifier.

When tested on the UCR archive (Anthony Bagnall and Keogh, 2018), STC is the most accurate TSC method

that uses a single type of features. However, many methods have combined different types of features and ensemble
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techniques in order to achieve the highest accuracy. The current most accurate TSC methods in the state of the art
are HIVE-COTE (Lines et al., 2018), TS-CHIEF (Shifaz et al., 2020) and ROCKET (Dempster et al., 2020). The
time complexity of HIVE-COTE is bounded by the complexity of its shapelet component, that is n>m*. Therefore
decreasing the computation time of the shapelet component will make HIVE-COTE more efficient in terms of running
time. TS-CHIEEF is a forest of trees in which a time series follows a branch if it is closer to the reference time series
(there is one reference time series for each class) associated with that branch than to the reference time series of other
branches. TS-CHIEF does not use shapelet features because of the time complexity needed for their computation.
ROCKET is the most scalable state of the art method, it is based on random convolutional kernels that are used to
transform the dataset. ROCKET results are not easily interpretable because the kernels used are short, independent
and not sampled from the dataset.

SAST, our proposal described in the next section is architecturally similar to ROCKET, however, the way both
models work is different in two folds: firstly, the subsequences used in SAST (similar to convolutional kernels in
ROCKET) are those of some reference time series randomly chosen from the dataset, and hence they are dependent and
have variable lengths. Secondly, SAST does not use the convolution operator as similarity measure, but the Euclidean
distance. These properties of SAST are the reasons of its scalability and interpretability. SAST is a scalable and
accurate alternative to STC. It can be used to reduce the computation time of the shapelet module in HIVE-COTE, and
can be integrated to TS-CHIEF at the cost of little computation time overhead. Adding shapelet features in TS-CHIEF

would increase its classification performance.

3. SAST: Scalable and Accurate Subsequence Transform

In TSC, a shapelet is ideally a pattern that is shared by every instance of the same class, and that instances of
other classes do not have, they are called discriminative patterns or subsequences. The number of patterns in a dataset
of n time series of length m is O(nm?), and state of the art shapelet algorithms evaluate each of them by computing
their information gain for a set of similarity thresholds before keeping the patterns and their corresponding similarity
thresholds that give the highest information gain. Reducing the number of patterns to be assessed will make shapelet
models faster to train. In this section we propose a way to reduce the number of shapelet candidates. Then we show
that there is no need to select the top best shapelets beforehand. Finally, we present a novel method for shapelet based

TSC.

3.1. Reducing the number of shapelet candidates
Human brain effortlessly performs core object recognition, the ability to recognize objects despite substantial

appearance variations (DiCarlo et al., 2012). This gives human the capability to recognize a vast number of objects
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that have the same name just by seeing a few of them. Heeger (2002-2014) used Figure 2 in his lecture notes on
Perception to illustrate the notion of invariance in recognition. This figure shows different ducks. Some are in water
while others are not, some ducks are photographs and others are drawings. Furthermore, the ducks have different
sizes, colors, etc. Despite all these variabilities, a human brain that has already seen a duck is able to recognize that
each object on this figure is a duck. This ability of human brain is what computer vision is aiming at. Although, this
illustration is about image recognition, the idea is transferable to TSC based on shapelet by building algorithms that
are able to recognize any variant of a shapelet by comparing it to one or a few numbers of its variants.

A shapelet is a pattern that is similar to time series from the same
class. Any pattern that is similar to a shapelet can be considered a
variant of that shapelet. Therefore, we introduce the core shapelet
recognition task, whose goal is to recognize any variant of a shapelet
by just seeing one or very few numbers of its variants. This task could
be used as a preprocessing step which extracts features (i.e shapelets)

for a downstream time series analysis task such as classification. We

argue that TSC based on shapelets must incorporate a core shapelet

Figure 2: Illustration of invariance in recogni-

recognition task and that it must be solved using fewer shapelet can- p
ion.

didates than it has been done since the introduction of shapelets by

Ye and Keogh (2009). Hence, instead of generating shapelet candidates from the whole dataset, we propose to use
only one or a few number of instances per class. In fact, the members of a class should contain common patterns or at
least different variants of the same pattern. In this way, the learning algorithm must focus on one (or a few number)
variant of each shapelet candidate to learn how to classify a time series. We acknowledge that the more variants the
model learns from, the more accurate the model would be. However, this can also cause the model to overfit, especially
when the training data is not representative of the testing data. There are known situations where the core shapelet
recognition task cannot be solved: /) The most obvious one is when no shapelet is present in the dataset, meaning that
any shapelet approach would fail. 2) The second one is when the shapelets representing a class are not all present in
each individual time series of the class, but are distributed over several instances.

In Figure 3, we have three randomly selected instances of the Chinatown dataset (containing two classes) from the
UEA & UCR archive (Anthony Bagnall and Keogh, 2018). The left example is from class 1 and the second example
(in the middle) is from class 2. It is easy to observe that the instance from class 1 starts by a deep valley, while the
instance of class 2 does not. One reason that can be considered in order to classify the instance on the right in class
2 is that it does not start by a valley. Hence, we claim that observing only one instance per class could be enough to

discover discriminative patterns and successfully perform classification of new instances. Figure 3 is of course not
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Class: 1 Class: 2 Class: ?

B = Figure 3: Three randomly selected instances
0s from the Chinatown dataset. The instance
00 N on the right is probably from class 2 since
) ) it does not start with a valley

Class: 1 Class: 2 Class: ?

. Figure 4: Some randomly selected instances
from the Chinatown dataset. The instance on
the right is definitely from class 2

enough to support our claim. However, the extensive experiment described in Section 4 and the obtained results give
clear evidence supporting our claim.

Figure 4 shows 4 randomly selected instances for each class. Instances of the same class are superposed in order to
expose global patterns. The figure emphasizes the previous observation that class 1 contains instances that start with
a deep valley while class 2 are instances that are more flat at the beginning.

Based on this observation, we propose the following statement:

Proposition 1. Let D = {(T},c;), (T, ¢c3),...,(T,,c,)} be a dataset of time series. Let D, be any subset of D that
contains at most k (k > 1) instances from each class. If classes in D can be distinguished using shapelets, then for

any shapelet shp of D, there is a time series in D, that is similar to shp.

Proof. Let us assume that classes in D are distinguishable using shapelets and that there is a shapelet shp for the
dataset D that is not similar to any time series in the set D,. Since D, contains at least a time series of each class in
D, any shapelet for the dataset D must be similar to at least one time series in D,. It follows from there that assuming

shp to be a shapelet is wrong. Therefore the statement is true. O

Let us explain the expression “distinguishable using shapelet”, we use it to characterize datasets on which shapelet-
based methods are known to be accurate. According to Bagnall et al. (2017), these datasets include electric device,
ECQG, sensor and simulated time series datasets. To the best of our knowledge, there is no way to know if a shapelet-
based method would be suitable or not on a dataset without applying the method. This emphasizes the importance of
improving the scalability of shapelet-based algorithms.

From the previous proposition, any shapelet shp of D is always similar to a pattern in D,. Therefore, a shapelet
algorithm that generated shapelet candidates from D, can achieve the same accuracy as if D was used. We run the
shapelet transform algorithm (STC) (Hills et al., 2014) on the Chinatown dataset and plotted the top-5 shapelets that

have been selected for each class in Figure 5. The shapelets on the first row clearly identify the valley at the beginning
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of time series in class 1. Although they are coming from different time series, they are very similar in shape. Likewise,
the shapelets on the last row identify the flat starting of instances in class 2. Generating shapelet candidates from the
whole dataset makes STC learns different variants of the same patterns. The variations are in terms of starting position,
length and shape.

By applying proposition 1 in

Time series: 15, class: 1 Time series: 0, class: 1 Time series: 5, class: 1 Time series: 1, class: 1 Time series: 18, class: 1
= 15

the STC algorithm, we intro- 15 "

15

10

duce STC-k, a variation of the o

STC algorithm that uses at most o J 1o

[} 10 20 0 n 0

k time series from each class Time series: 11, class: 2 Timeseries:2.cless:2  _ Time series 4, cess: 2

to generate the shapelet candi-  * e 2

dates. Hence, for a dataset with s 05 &

¢ classes, the number of shapelet

Figure 5: Top-5 shapelets extracted for each class of the Chinatown dataset by the
shapelet transform algorithm.

candidates to be evaluated in
STC-k is O(ckm?) unlike STC in
which O(nm?) need to be evaluated. Algorithm 1 is an outline of the STC-k algorithm. The only difference with STC
is that the size of the shapelet space can be controlled by the parameter k. For a more detailed description of the

algorithm, the reader should refer to the original paper of STC (Hills et al., 2014).

Algorithm 1: ShapeletTransformK

Input: D: dataset, k: nb of instances per class, C: classifier, length_list: subsequence lengths, min_ig: min
IG

1 begin

2 D, < randomlySelectInstances PerClass(D, k)

3 S « generateShapeletCandidates(D,,length_list)

4 S « extractShapelet(S, D, min_ig)

5 Df ¢

6 fori — 1tondo

7 x; <[]

8 for j < 1to|S|do

9 | x;lj] < dis(T;, S))

10 end

11 Df<—DfU{(x,~,ci)}

12 end

13 clf < trainClassifier(C, D)

14 return (clf, S) ; // the trained classifier and the shapelet candidates
15 end

By default, the length_list parameter is the set {3, 4, ..., m}, where m is the length of the time series in the dataset.

min_ig is set to 0.05. In practice, two other parameters are used in STC: the maximum number of shapelets to keep
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per class and the time contract. The number of shapelets to keep per class is by default set to 200. The time contract
is the maximum time allocated to the algorithm to search shapelets on the given dataset. Middlehurst et al. (2020)
stated that in one hour of searching per dataset, the result is not significantly worse than the full search. Following
the implementation of STC in the sktime library (Loning, Bagnall, Ganesh, Kazakov, Lines and Kiraly, 2019), our
implementation of Algorithm 1 handles the time contract and the maximum number of shapelets to keep per class.
We use the Chinatown dataset from the UCR archive (Anthony Bagnall and Keogh, 2018) as a toy dataset to assess
STC-1 (that is STC-k with k = 1). STC-1 took about 10 seconds to classify the Chinatown dataset with an accuracy
of 96% (average over five runs), while the original STC algorithm took 51 seconds and gave an accuracy of 97% on
the same computer. Therefore, the STC-1 algorithm is about 5 times faster and achieves almost the same accuracy as
the original algorithm. The extracted shapelets are shown in Figure 6. Different variants of the same shapelet are not
learned anymore. For this dataset, exactly one shapelet has been selected for each class. As we will show in Section 4,

STC-k is significantly less accurate that STC, even when k is equal to 75% of the number of time series in each class.

3.2. Identify shapelets using feature importance analysis
When TSC using shapelets was introduced, shapelets
were learned while building a decision tree (Ye and Time series: 9, class: 1 Time series: 3, class: 2

15
Keogh, 2009). Later, shapelet transform (STC) (Hills i

et al., 2014) has been proposed to allow the use of any . 05
0.0 0o
supervised classifier. The algorithm proceeds by find- o
E =05
ing the top best shapelets, then transforms the dataset  -1.0 \J 10
0 10 20 0 bt 20

using the found shapelets and finally trains a classifier

on the transformed dataset (Hills et al., 2014; Bostrom  Figure 6: Shapelets extracted by STC on the Chinatown
dataset using a single randomly selected instance per class

and Bagnall, 2015; Karlsson, Papapetrou and Bostrom, to generate shapelet candidates.

2016). Therefore, there are three main steps: feature extraction where best shapelets are selected, dataset transforma-
tion where each time series is replaced by a vector of its distance to the selected shapelets and finally training where a
classifier is trained on the transformed dataset.

We propose to remove the feature extraction step and use every shapelet candidate to transform the dataset. After
training the classifier on the transformed dataset, a post hoc method for model explanation can be used to find the most
important features. The importance of a feature represents how much that feature is correlated to the target variable
(Dash and Liu, 1997; Molnar, 2022). The importance of a feature in a tree based algorithm determines how much it
reduces the variance of the data compared to the parent node (Dash and Liu, 1997; Molnar, 2022). This corresponds

exactly to the definition of a shapelet (see Definition 4). In a linear model, the absolute value of the weight of an
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important feature will be greater than the one of a less important feature (Molnar, 2022). Classifiers such as decision
trees and linear models are said to be inherently interpretable since a post hoc analysis is not required to interpret their
predictions. More generally, when a classifier is fitted, a post hoc explainer can be used to find the most important
features (Murdoch, Singh, Kumbier, Abbasi-Asl and Yu, 2019) in order to interpret predictions. Two examples of
these post hoc explainers are LIME (Ribeiro, Singh and Guestrin, 2016) and SmoothGrad (Smilkov, Thorat, Kim,
Viégas and Wattenberg, 2017) for saliency maps. More methods can be found in the review of Samek, Montavon,
Lapuschkin, Anders and Miiller (2020). Hence, selecting shapelets beforehand of classification using information gain
can be skipped, since the classifier can automatically learn the top best shapelets during its training iterations and

feature analysis can be used after training to get the learned shapelets.

Proposition 2. Let D = {(T}, cy), (13, ¢c5), ..., (T, c,)} be a dataset of time series, and S the set of all subsequences in
D. Let Dy = {(x1, ¢1), (X2, ), ..., (X ¢,)) } be a dataset such that x; = [X;.1, X;.9, ..., X;. 5], where x;.; = dist(T;, S)).
If the j™" feature is an important feature given by the analysis of feature importance for the dataset D 1 then S; is a

shapelet for the dataset D.

Proof. Let us suppose the j# feature is an important feature, and that .S ; is not a shapelet for the dataset. By definition
4, not being a shapelet means that the information gain of .S is not high enough, and whether a time series 7 is similar
or not to S; does not give any clue about the class of T'. Therefore, knowing dist(T',.S;) doesn’t help to classify T'.
In other words, the j# feature is not correlated to the target variable. Hence, it cannot be an important feature. This

proves the statement. O

3.3. Time series classification with SAST
TSC with SAST (Scalable and Acurate Subsequence Transform) is designed with respect to Proposition 1 and

Proposition 2. A visual view of the the method is shown in Figure 7. There are two main blocks:

e The classification block: this block is actually the SAST algorithm and begins with the random selection of
reference time series from which subsequences are then generated. Thereafter, the dataset is transformed by
replacing each time series with a vector of its distances to each subsequence. Finally a supervised classifier

(illustrated here by a decision tree) is trained on the transformed dataset.

o The interpretability block: The role of this block is to explain the SAST algorithm by identifying shapelet
candidates associated with the most important features learned by the classifier. For inherently interpretable
classifiers such as decision trees, the importance of each feature is computed while fitting the classifier. For
other classifiers, eventually not inherently interpretable, an existing post hoc explainer such as LIME (Ribeiro

et al., 2016) can be used to find the importance of each feature.
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Figure 7: Overview of the SAST method

A pseudo code of the SAST algorithm is given by Algorithm 2. SAST takes as input the time series dataset D,
the number k of instances to randomly select from each class in order to create the shapelet candidates, the list of
lengths to use to generate shapelet candidates, and finally the supervised classifier C that is going to be trained on the

transformed dataset.

Algorithm 2: ScalableAndAccurateSubsequenceTransform

Input: D, k: nb of instances per class, length_list: subsequence lengths, C: classifier
1 begin

2 D, < randomlySelectInstancesPerClass(D, k)

3 S « generateShapeletCandidates(D,,length_list)
4 Df <0

5 fori « 1tondo

6 x; <[l

7 for j < 1to |S]|do

8 | XLl < dis(T;. S))

9 end

10 Dy« DyuU{(x;¢c)}
11 end
12 clf « trainClassifier(C, Df)
13 return (clf, S); // the trained classifier and the shapelet candidates
14 end

SAST starts by randomly sampling k instances per class from the dataset (line 2). By default, k is set to one.
We call the selected instances reference time series. The next step is the generation of all subsequences of length in
length_list from the reference time series (line 3). The dataset transformation is performed from line 4 to 11. Here,
the similarity between each time series in the dataset and each shapelet candidate is computed. The classifier taken as
input is then trained on the transformed dataset (line 12). The algorithm returns the trained classifier and the shapelet
candidates that have been generated. After the training is done, the class labels of a test dataset can be predicted in
two steps: firstly the dataset is transformed using the shapelet candidates that have been generated during training, and

finally the trained classifier is used to predict the class labels of the transformed test dataset.
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Since the number of time series in the dataset and the number of subsequences in a time series are limited, Al-
gorithm 2 always terminates. According to Proposition 2, the returned classifier should have learned to classify time

series regarding features that are related shapelets.

3.4. SAST time complexity

Each step of the SAST algorithm runs in a finite amount of time, therefore the algorithm always terminates. Se-
lecting k reference time series is done in O(c) time complexity, c is the number of classes in the dataset. There are
m — | + 1 subsequences of length / in a time series of length m. The total number of subsequences for a time series is
@. Since there are kc reference time series in a dataset with c classes, generating all shapelet candidates is done in
O(kem?). The transformation step requires O(nm?) distance computations, each of which requires O(/) (I is the length
of the subsequence) point wise operations. As the maximum subsequence length is m, the time complexity of the trans-
formation step is O(nm>). Therefore, the total time complexity of SAST is O(c) + O(kcm?) + O(nm>) + O(classi f ier),
where O(classi fier) is the time complexity of the classifier used. The overall asymptotic time complexity of the
SAST algorithm is therefore O(nm?) + O(classi fier). SAST is much faster than the state of the art shapelet transform

algorithm (STC) (Hills et al., 2014) whose time complexity is O(n*m*) + O(classi fier).

3.5. Ensemble of SAST models

SAST accuracy is highly dependent on the randomly selected reference series. If a reference time series is noisy
or not representative of its class, then it could be difficult for SAST to learn the best shapelets for the dataset. Fur-
thermore, the random selection of reference time series could lead to a variance in performance. We use Bagging
(Breiman, 1996) to leverage these possible issues and we call the obtained model SASTEnsemble (or SASTEN in
reduced form). SASTEN is obtained by ensembling » SAST models. Each individual model in the ensemble uses
randomly selected reference time series and may also have different parameters, especially the parameters controlling
the length of shapelet candidates (that is length_list in Algorithm 2). The final prediction is obtained by averaging the
predictions of every SAST model in the ensemble. The time complexity of SASTEN is r times the time complexity of
SAST if run sequentially. But this can be reduced using parallelization. SASTEN uses r times more memory than a

regular SAST.

4. Experiments

We have implemented STC-k, SAST and SASTEN in Python. Our implementation is based on the scikit-learn
machine learning library (Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss,
Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot and Duchesnay, 2011). We have also followed scikit-learn

design principles so that our models are compatible with any scikit-learn pipeline. We have used the implementation of
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STC (Shapelet Transform Classifier) from the sktime library (Loning et al., 2019). The source code of our experiments
and all the results we discuss in this paper are publicly available here .

In all our experiments, the number of reference time series per class (that is the parameter k in Algorithm 2) is
always set to one. The supervised classifier used in STC-k, STC and SAST is the Ridge classifier with Leave-One-Out
(LOO) cross validation. This classifier is available in the scikit-learn library. The LOO cross validation is used to
find the best regularization parameter among 10 log spaced values ranging from —3 to 3 (these values are inspired by
Dempster et al. (2020)). The other parameters are left to their default values and are not fine tuned.

We have also used the Random Forest classifier in SAST. For this classifier all features are evaluated at each node
to find the best split and a split is selected if the impurity decreases by about 0.05, the minimal information gain for a
shapelet like in STC. Although it is generally better to evaluate only a subset of the feature space in Random Forest in
order to reduce the correlation between the trees, we have not followed this guideline in our work because we want the
model to always select the best possible split (that is the best shapelet). However, each tree in the ensemble is trained
on a random subset of the training set. This classifier is also available in the scikit-learn library.

We make use of the Wilcoxon significance test with a p-value of 0.05 to compare our models. We give the result of
this test as a critical difference diagram on which models that are not significantly different from each other are linked
with a bold line. The code used for this test and to draw critical difference diagrams is from Fawaz et al. (2019).

Table 1 describes the models that we use in our experiments.

We experiment using 72 randomly selected datasets from the UEA & UCR repository (Anthony Bagnall and Keogh,
2018). The datasets in the repository are different in terms of series length, number of series, number of classes and
application domain. For each dataset, the repository provides a training set and a test set. Since searching shapelets
for one hour is not significantly worse than the full search on the UEA & UCR archive (Middlehurst et al., 2020), we

used a time contract of one hour for each STC-k models as well as for STC.

4.1. Accuracy
In this subsection, we compare the models in terms of accuracy and we use scatter plots and critical difference
diagrams to summarize the results. However, the exact accuracies of SAST, STC and STC-k, which are the core

models of this work are given in Table 4.

4.1.1. STC-k results
We have evaluated STC-k on 72 datasets with different value of the parameters k. We have considered STC-1,
STC-0.5, STC-0.75 and STC. These models are described in Table 1. Figure 8 shows pairwise comparisons of these

model accuracies on the test set of each dataset.

https://github.com/frankll/sast
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Table 1
List of models used in our experiments
Name classifier length _list Description
STC-1 Ridge classifier | {3,4,..,m} STC-k with k¥ = 1, meaning that

shapelets are selected from a ran-
domly selected time series per class
STC-0.25 Ridge classifier | {3,4,..,m} STC-k that select shapelets from 25%
of time series per each class randomly
selected

STC-0.5 Ridge classifier | {3,4,..,m} STC-k that select shapelets from 50%
of time series per each class randomly
selected

STC-0.75 Ridge classifier | {3,4,..,m} STC-k that select shapelets from 75%
of time series per each class randomly
selected

STC Ridge classifier | {3,4,..,m} STC-k that select shapelets from ev-
ery time series in the dataset

SAST-RF Random Forest | {3,4,..,m} SAST model using Random Forest
classifier

SAST-Ridge Ridge classifier | {3,4,..,m} SAST model using Ridge classifier
with LOO

SAST-Ridge-A Ridge classifier | {9,13,15}, {7,11,15}, | Approximated SAST-Ridge, that is
{7,9,15} or {9,11,15} | a SAST-Ridge which considers only
some subsequence lengths
SASTEN-Ridge Ridge classifier | - Ensemble of 3 SAST-Ridge
SASTEN-Ridge-A | Ridge classifier | - Ensemble of 3 Approximated SAST-
Ridge with length list {3,4,..9},
{10,11,...,16}, and {17, 18, ...,23} re-
spectively

STC is better than any STC-k on almost every dataset. This is because an STC-k model does not search the whole
shapelet space, and therefore the shapelets obtained using the minimum information gain are not good enough to
classify the dataset. The critical difference diagram in Figure 9 shows that STC-0.75 is not significantly more accurate
than STC-0.5, which is significantly more accurate than STC-0.25, which is in turn significantly more accurate than
STC-1. Therefore, STC-k accuracy increases with the value of the parameter k. All STC-k models are considerably
less accurate than STC.

We have observed that STC generally fails at classifying datasets that have few time series in the training set. In
particular, STC failed to find shapelets on the Fungi datasets. This dataset has 18 classes with one instance per class

in the training set. In this particular case, STC is exactly the same as STC-1.

4.1.2. SAST model results

Before comparing SAST to STC, let us see how SAST and ensemble of SAST are compared to each other in terms
of accuracy. Figure 11 shows a pairwise comparison of the SAST based models described in Table 1 on the 39 datasets
marked with a star in Table 4. The first thing to note is that SAST-Ridge is generally more accurate than SAST-RF on

our datasets (Figure 11a). There are many parameters in RF that can be optimized in order to improve SAST-RF, but
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(b) STC (58 wins) vs STC-0.25 (12
wins), 2 draws
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STC0.75
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(d) STC (50 wins) vs STC-0.75 (16
wins), 6 draws

Figure 8: Comparison of STC-k to STC in terms of accuracy

5 4 3 2 1 . o, . .
| . I . s ! . | Figure 9: Critical difference diagram be-
STo s | | e s7G i
STC029 22 252 510075 tween STC and STC-k

we did not perform parameter tuning in this work and we consider SAST-Ridge as the best model for our experiment.

This is why we use SAST-Ridge as the default SAST model. It is important to note that the final results depend on the

ability of the classifier to learn a good decision boundary. So, it should be chosen and fine tuned carefully while taking

into account the required trade-off between explainability and classification performance

We tried several length_list for the approximated SAST model, and we are presenting here only the four that

achieved the best accuracy on our datasets. The critical difference diagram between these four models is given in

Figure 10. There is no significant difference between the models, however, the model using length_list = {7,11,15}

is the best of all. When not clearly precised in the rest of this paper, SAST-Ridge-A is the approximated SAST-Ridge

model with length_list = {7,11,15}.

4
L
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Figure 10: Critical difference diagram be-
tween approximated SAST models

21500 (7 17 15}

{7,915} 26000

24250 (g'11'15}

Mbouopda and Mephu Nguifo: Preprint submitted to Elsevier

Page 18 of 34



Scalable and Accurate Subsequence Transform for TSC

The approximated SAST-Ridge is less accurate than SAST-Ridge in general (Figure 11b). However it is important
to note that the approximated model wins on 9 datasets among 30. Therefore, knowing a prior about possible shapelet
lengths can be used to train the model faster and without losing accuracy. Furthermore, ensembling approximated
SAST models, each one focusing on different shapelet lengths is a possible way to improve accuracy while decreasing
the computation time. In fact, SASTEN-Ridge-A is more accurate than SAST-Ridge on 20 datasets and less accurate

on 18 (Figure 11c).

Accuracy Accuracy

SAST-Ridge-A

0.0 02 04 06 08 10 0.0 02 0.4 06 08 10

SAST-Ridge SAST-Ridge
(a) SAST-Ridge (25 wins) vs SAST-RF (b) SAST-Ridge (29 wins) vs SAST-
(12 wins), 2 draws Ridge-A (9 wins), 1 draw

Accuracy Accuracy
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SASTEN-Ridge-A
SASTEN-Ridge

o
=
=

o
a
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0.0
0.0 02 04 06 08 10 0.0 02 04 06 08 10

SAST-Ridge SAST-Ridge
(c) SAST-Ridge (18 wins) vs SASTEN- (d) SAST-Ridge (4 wins) vs SASTEN-
Ridge-A (20 wins), 1 draw Ridge (33 wins), 2 draws

Figure 11: Pairwise comparison of model accuracies

Figure 11d reveals that ensembling SAST-Ridge models improves accuracy on almost every dataset. But the
improvement is slight as even though the reference time series are chosen randomly, SAST-Ridge has very low variance
in accuracy over multiple runs. We think that this capability comes from the fact that the model uses only one variant
of each shapelet to learn the decision boundaries.

The critical difference diagram between SAST models is shown in Figure 12. SASTEN-Ridge is the best of all,
followed by SASTEN-Ridge-A which is not significantly less accurate. SAST-Ridge is the third best model and is not
significantly worse than SASTEN-Ridge-A, but is considerably less accurate than SASTEN-Ridge. SAST-Ridge-A
and SAST-RF are significantly less accurate.

Although SASTEN-Ridge and SASTEN-Ridge-A are more accurate than SAST-Ridge, we believe that the accuracy
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gain does not worth the computation time overhead required by SASTEN-Ridge or the engineering work required to
find the appropriate length_list to use in SASTEN-Ridge-A. Therefore, in the rest of this paper , we consider only the

SAST-Ridge model and call it SAST for simplicity.

4.1.3. SAST vs STC

We now compare SAST (i.e SAST-Ridge) to STC, the state of the art shapelet method to our knowledge. This
experiment is performed on the same 72 datasets and a pairwise comparison of SAST, STC and STC-1 is shown in
Figure 13. SAST is more accurate than STC on 43 datasets, worse on 27 and there are two draws. STC-1 is more
accurate than SAST on only 5 datasets among 72, although the only difference between these two models is that the
Ridge classifier in SAST is trained using the whole shapelet space while only a subset of the shapelet space is used in
STC-1. STC-1, STC and SAST, respectively achieve an average accuracy of 0.68 + 0.21, 0.79 + 0.20 and 0.84 + 0.12
on the 72 datasets. The standard deviation of STC and STC-1 models is higher due to the zero score obtained on one
dataset (Fungi).

There are datasets on which STC and STC-1 hardly achieve 50% accuracy, while SAST performs significantly
better. This is the case for the datasets Crop, ElectricDevices and Fungi. These datasets contain respectively 24,
7 and 18 classes. It is difficult to find a subsequence in these datasets that is present in one class and not in the
others. A subsequence is generally shared among multiple classes, and therefore is not highly discriminative in terms
of information gain by itself. Subsequences need to be combined in order to differentiate classes, and since all the
subsequences are available in SAST, this combination is automatically learned by the classifier. Elsewhere SAST
achieves 90% accuracy on the dataset Fungi, while STC and STC-1 fail to find any shapelet on it. These results confirm
our thought that pruning shapelet candidates, without taking into account the classifier can lead to very inaccurate
classification.

The critical difference diagram in Figure 14 reveals that SAST is generally more accurate that STC, but the differ-

ence is not highly significant.

4.1.4. SAST vs other shapelet methods
We compare our proposal to Fast Shapelet or FS (Rakthanmanon and Keogh, 2013). We also compare our proposal
to methods that learn shapelets, namely Learning time series Shapelets or LS (Grabocka et al., 2014) and ELIS++

(Zhang et al., 2021). The accuracy of ELIS++, FS and LS are taken from the ELIS++ paper and we considerer the
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Figure 13: Pairwise comparison of SAST, STC and STC-1
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same 35 datasets they used (marked with a plus sign in Table 4). The average accuracies of these models on the 35

datasets are 0.78 + 0.14, 0.81 + 0.14, 0.83 + 0.13 and 0.85 + 0.14 for FS, LS, SAST and ELIS++ respectively.

(a) SAST (12 wins) vs ELIS++ (22 (b) SAST (17 wins) vs LS (16 wins), 2 (c) SAST (30 wins) vs FS (4 wins), 1
wins), 1 draw draws draw

Figure 15: Pairwise comparison of SAST, ELIS++, LS and FS

i P i | Figure 16: Critical difference diagram be-

" g H_|— ELiS-+ tween SAST, LS, FS and ELIS++

Figure 15 shows a pairwise comparison of these methods and the critical different diagram in Figure 16 shows how
significant is each method compared to the others in terms of accuracy. LS, ELIS++ and SAST are not significantly
different in terms of accuracy, however, they outperform FS. It is important to note that L.S and ELIS++ do not select

shapelets from the training set, but learn them through an optimization process. Therefore the shapelet space is un-
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limited, the learned shapelets are unpredictable as well as the time required for convergence. Furthermore, finding the
hyper-parameters and the appropriate shapelet initialization for these models is challenging. Without any optimization,
SAST can achieve accuracies that are not significantly worse than ELIS++ accuracies and that are slightly better that

LS accuracies.

4.1.5. SAST vs other types of methods

We also compare SAST to other state of the art algorithms that are not necessarily based on shapelets, nor on
one type of features. ROCKET (Dempster et al., 2020), HIVE-COTE (Lines et al., 2018) and TS-CHIEF (Shifaz
et al., 2020) are to our knowledge the most accurate methods for TSC. The results of these models are taken from the
UEA & UCR repository (Anthony Bagnall and Keogh, 2018). Among the 72 datasets on which we have SAST re-
sults, ROCKET, HIVE-COTE and TS-CHIEF do not have results for the datasets DodgerLoopDay, DodgerLoopGame,
DodgerLoopWeekend, Fungi and MelbournePedestrian; so we excluded these 5 datasets from this comparison. Else-
where, we believe that the comparison we are doing here is not fair since these methods are not based on only shapelet
features. However, considering the no free lunch theorem (Wolpert and Macready, 1997), SAST could outperform
these models on some datasets and the goal of this experiment is to see how SAST stands w.r.t to these methods that
are based on combination of features.

Although our model uses only shapelet features, it manages to outperform ROCKET on 5 among the 67 with 4
draws (Figure 17a). Elsewhere, SAST respectively outperforms HIVE-COTE and TS-CHIEF on 10 and 9 datasets
among the 67 with 4 and 3 draws. Since SAST can perform better than HIVE-COTE on some datasets, replacing the
shapelet module in HIVE-COTE with a SAST based model could increase HIVE-COTE accuracy and could reduce
its time complexity since the shapelet module is the most time consuming one in HIVE-COTE. When TS-CHIEF
was proposed, their authors decided not to exploit shapelet features because of their computation time. With the core
shapelet recognition task we introduce in this work, we believe that shapelet features could be added in TS-CHIEF at
low cost and that this could increase the accuracy of this model.

The Wilcoxon statistical test failed to reject the null hypothesis with a p-value of 0.05, meaning that these four
models are not significantly different on the considered 67 datasets. In fact, SAST, ROCKET, HIVE-COTE and TS-
CHIEF respectively achieve an average accuracy of 0.84 +0.12,0.88 +£0.11, .88 +0.11 and 0.88 +0.12. These average
scores clearly show that SAST is comparable to ROCKET and HIVE-COTE in terms of accuracy, and in addition
SAST is more interpretable as it is a shapelet based method Ye and Keogh (2009); Bagnall et al. (2017).

4.1.6. Model accuracies per dataset type
The datasets on the UEA & UCR archive are categorized in problem types. Among the 72 datasets we have exper-

imented on, there is 1 electric device problem, 4 ECG problems, 1 High Resolution Melt (HRM) problem, 25 image
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Figure 17: SAST vs SOTA

problems, 9 motion recognition problems, 1 power consumption problem, 16 sensor reading problems, 7 simulated
dataset problems, 6 spectrograph problems and 2 traffic problems.

We would like to see the method that is more appropriate for each problem type. However, the observations should
be taken wisely since the number of datasets per problem type is relatively small to be representative. We compute
these statistics among three groups of methods as in the previous subsections: the first group is SAST, STC-1 and
STC; the second group is SAST, ELIS++, FS and LS; and the last group is SAST, ROCKET, TS-CHIEF and HIVE-
COTE. For each group and for each problem type, the percentage of times each method achieves the highest accuracy
is computed. These statistics are shown as stacked bar plots with problem types on the x-axis and the number of times
the highest accuracy is achieved on the y-axis. Above each bar, the number of datasets in the corresponding problem
type is displayed. Since more than one model can achieve the highest accuracy on the same dataset, summing the
percentage in a bar could be greater than 100% and the value above a bar can be less than the bar height.

Figure 18 shows the percentage of times SAST, STC-1 and STC achieve the highest accuracy per problem type.
STC-1 achieves the highest accuracy on the image dataset MiddlePhalanxOutlineAgeGroup and on the sensor dataset
Earthquake. STC is the only method that achieves the highest accuracies for ECG and Power. Elsewhere STC seems
more appropriate for simulated datasets. SAST tends to be generally the best choice for electric device, HRM, image,
motion recognition, sensor and is always the best for spectrograph problems compared to STC approaches.

When comparing SAST to other shapelet methods (ELIS++, FS and LS), we can see in Figure 19 that SAST
always achieves the highest accuracy on spectrograph problems and is therefore a good choice for this problem type.
Elsewhere it achieves the highest accuracy on more than 25% of image and sensor datasets. ELIS++ is more suitable
for ECG, image, motion, and sensor problem types. LS is a good choice for simulated datasets.

Finally, Figure 20 reveals that ROCKET, TS-CHIEF and HIVE-COTE win on more datasets than SAST, but with
a relatively small difference in accuracy. ROCKET seems to be the most promising method for ECG, motion, sensor,

simulated , spectrograph and traffic datasets, while HIVE-COTE is a good choice for image and power datasets. TS-
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Figure 19: SAST, ELIS++, LS and FS wins per dataset type considering the 35 datasets used in ELIS++ paper.

CHIEEF is a fair option for device.

Although SAST achieves the highest accuracy than ROCKET, HIVE-COTE and TS-CHIEF on some datasets, it
sometimes obtains the same average accuracy as these methods. In fact, Table 2 gives the mean and standard deviation
of each model accuracy per dataset type. We can see that SAST achieves the same average accuracy as the state of the
art methods on spectrograph and is on average relatively closed on many other data types, except device (but there is
only one dataset of that type). This results emphasize the fact that SAST can achieve accuracy equal to or closed to

the state of the art method accuracy while offering easier interpretability.

4.2. Scalability
The scalability of SAST based models and STC is assessed regarding two criteria: the time series length and the

number of time series in the dataset. In this experiment, the time contract is not used for STC, and therefore the full
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Figure 20: SAST, HIVE-COTE, TS-CHIEF and ROCKET percentage of wins per dataset type

Table 2
Average accuracy of each model per problem type

\ | HIVE-COTE ~ ROCKET SAST TS-CHIEF | Number of datasets |

Device 0.75+0.0  0.73+00  0.62+00  0.76 + 0.0 1
ECG 0.95+0.06 0.96+0.05 0.93+007 0.94+0.07 4
Image 0.82+0.12 0.82+0.12 0.78+0.12 0.83+0.12 25
Motion 0.93+0.09 093+0.07 088+0.1 0.93+0.09 9
Power 1.0 + 0.0 094+00 09100  0.99+0.0 1
Sensor 089+0.12 09+011 085+0.14 0.89+0.13 13
Simulated | 0.99+0.02  1.0+0.01 095+004 1.0+0.01 7
Spectro 0.87+0.11 087+0.12 0.87+0.11 0.87+0.11 6
Traffic 098+00 098+0.0 096+00 097+00 1
| Average | 0.88+0.11 0.88+0.11 0.84+0.12 0.88+0.12 | 67 \

search is performed. Elsewhere, the training set is considered as the test set during the test phase. For each model, the

time taken to fit the model on the training set and then predict the test set is recorded.

4.2.1. Time series length

Here we use the dataset HouseTwenty from the UEA & UCR repository (Anthony Bagnall and Keogh, 2018). It
is a binary dataset of electricity usage in houses. The training set has 34 time series and of length 3000 each. We
vary the series length starting at 32 and only the first time steps up to the current length are used to train our models.
More precisely, we consider the HouseTwenty dataset with time series truncated at length 23, 26, 27 and finally 28.
The running time of each model is given in Figure 21a.

For each of the four models, the running time increases with the length of time series in the dataset. However, SAST
models are much more scalable than STC, and SASTEN-A is the most scalable of all, since it uses a fixed number of
shapelet candidates whatever the length of time series. For SASTEN-A, increasing the length of the time series only

increases the computation time of the similarity between time series and shapelet candidates. More specifically, STC
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Figure 21: Running time (in second) of each model

takes about 1 hour and 40 minutes to train on a dataset of 34 time series of length 64, while SAST, SASTEN and
SASTEN-A take about 13 seconds, 27 seconds and 8 seconds respectively. For the same number of time series but
now of length 256, STC takes a bit more than a day, while SAST, SASTEN and SASTEN-A take about 14 minutes,
26 minutes and 2 minutes respectively. Therefore, even our slowest method SASTEN is 55 times faster than STC.

SASTEN-A and SAST are respectively 1440 times and 102 times faster than STC.

4.2.2. Training set size

The Chinatown dataset is used here. It is a binary dataset with time series of length 24. There are 20 instances
in the training set and we use random oversampling to create bigger versions of this dataset. Figure 21b shows the
running time of each model.

The running time of each model increases near linearly with the number of time series in the dataset. STC running
time starts higher and increases much faster compared to other models. This is not surprising since the training time
of shapelet methods is extremely related to the number of shapelet candidates, and the number of shapelet candidates
in STC increases with the number of time series while the number of shapelet candidates in a SAST model increases
with the number of classes. More precisely, STC takes about 12 minutes on a dataset of 64 time series of length 24,
while SAST takes only 2 seconds, SASTEN requires 10 seconds and SASTEN-A needs about 6 seconds. For a dataset
with 1024 time series of length 24, SASTEN, SAST and SASTEN-A are respectively about 5000 times, 8000 times
and 9000 times faster than STC.

4.3. Interpretability
The predictions of a SAST model trained on a dataset are explained by identifying and visualizing the shapelets
that have been learned for that dataset. This is how the explanation of shapelet methods is given in the literature (Ye

and Keogh, 2009; Wang, Emonet, Fromont, Malinowski and Tavenard, 2020). This is done using feature importance
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analysis (see Proposition 2). Each feature is related to a shapelet candidate extracted from a time series whose class
label is known. Shapelet candidates related to the most important features are the top best shapelets. We say that any
shapelet candidate is from the class of the time series from which it has been extracted. Therefore, the class label of a
time series can be interpreted by looking at the class labels of the shapelet candidates to which it is the most similar. Let
us interpret the predictions of SAST-RF and SAST-Ridge trained on the Chinatown dataset. We consider this dataset
because it has only two classes and time series of length 24, it is therefore easy to visualize this dataset. However, what
we are doing here is applicable to any dataset.

Since SAST-RF uses a tree based classifier, information gain is used as feature importance. With SAST-Ridge, the
importance of feature is given by the absolute value of the corresponding learned weight. Although feature importance
is computed differently for both models, we show that their predictions are interpretable in the same manner.

Figures 22 and 23 show the

Ground truth class: 1

top-5 best shapelets plotted on feature: 1 feature: 2 feature: 3 feature: 4 feature: 5

1500

the reference time series for the

1000

Chinatown dataset with respect mi N N \/ N s

[ 5 1 15 20 [ 5 1 15 20 0 5 0 15 20 0 5 0 15 2 0

to SAST-Ridge and SAST-RF re- Ground truth class: 2

feature: 1 feature: 2 feature: 3 feature: 4 feature: 5

spectively. The top rows of the

1000

figures are the reference time se- = \/ \/ \/ \/ ~
il ol ol il

ries selected from class 1, while

the second rows are the reference Figure 22: Top 5 shapelets learned by SAST-Ridge on Chinatown.

time series selected from class 2. A perfect match between a shapelet candidate and a reference time series means that
the shapelet has been extracted from that reference time series. Hence, the top-5 best shapelets learned by SAST-Ridge
are from class 1. The second of the top-5 best shapelets learned by SAST-RF is from class 1, while the four others are
from class 2.

In order to predict the class label of a test time series, SAST identifies the most important features similar to the time
series. In other words, SAST checks if the time series contains subsequences that are similar to the most important
features. Figure 24 shows the matches between the top-5 most important features learned by SAST-Ridge and two
randomly selected test time series. We can note that the model correctly predicts the class labels. Since the top-5
shapelets learned by SAST-Ridge are from class 1, there are near perfect matches with the test instance from class 1
(see Figure 24 top). A near perfect match between a subsequence and shapelet candidate means that the subsequence is
a variant of that shapelet candidate. No good match is found with the test instance from class 2 (see Figure 24 bottom).
Therefore, we have an explanation (i.e the most important features that triggered the predicted class label) of why the

first instance is predicted as coming from class 1, while the second one is predicted as coming from class 2.
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shapelet candidate of class 1.
The other top best shapelet candidates, which are all from class 2 do not match with the first time series. This ex-
plains why the predicted class label for the first time series is class 1 and not class 2. The first, third, fourth and fifth
top best shapelet candidates, which are all from class 2 have near perfect matches with the second time series, while
the second top best shapelet candidate, which is from class 1 does not match (see Figure 25 bottom). Hence, we can
interpret why the class label of the second instance is predicted as class 2 and not class 1.

Therefore, we have proved

Ground truth class: 1, prediction=1

experimentally in this Section feature 1 feature 2 feature 3 feature 0 feature 5
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senery o v

model automatically learns to

put more attention on shapelet Figure 24: Explanation of SAST-Ridge predictions on two random test instances

candidates that are actually shapelets during its training. It also automatically learns to put less attention on the shapelet
candidates that are not shapelets.
We also note that the top best shapelets learned by SAST-Ridge and SAST-RF on the Chinatown dataset are the

same as the ones selected by STC (see Figure 5).

5. Conclusion

In this paper, we have shown that the number of shapelet candidates in a shapelet algorithm can be reduced con-
siderably without losing accuracy. We have also shown that it is not always necessary to learn shapelets beforehand

of classification. We introduced the Scalable and Accurate Subsequence Transform (SAST) algorithm which is in-
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Figure 25: Explanation of SAST-RF predictions on two test instances

terpretable, accurate and a more scalable alternative to the Shapelet Transform algorithm. Furthermore, SAST is
comparable in terms of accuracy to the state of the art methods ROCKET, HIVE-COTE and TS-CHIEF, especially
for the spectrograph dataset type, while offering easier interpretability. Our experiments have revealed that a good
trade-off between accuracy and scalability can be found by ensembling different SAST models, each one focusing on
different shapelet candidates. We have also introduced the core shapelet recognition task which consists of learning
a shapelets model using only few variants of each shapelet candidate. SAST achieves this task accurately and we
hope future shapelet methods will follow the idea presented in this paper. We plan to do many improvements into
the SAST algorithm in the future. Particularly, distance computation could be speed up using lower bounding and
early abandoning techniques. Different variants of the same shapelet can be present in the same time series, therefore
similar subsequences can be pruned in order to further reduce the number of shapelet candidates. Elsewhere, we plan
to replace the shapelet module in HIVE-COTE with a SAST method with the intent of decreasing its computation
time while keeping a high accuracy performance. We are also planing to explore how core shapelet recognition can
be applied in TS-CHIEF in order to take shapelet features into account. In parallel, we will run our experiment on the
remaining datasets on the UEA & UCR archive. Although we focused on TSC in this paper, we hope that the same
idea can be used in the near future to increase the scalability of shapelet-based time series clustering (Siyou Fotso et al.,

2020).

A. Effect of the used classifier on SAST’s accuracy

Throughout this work we have considered Random Forest and Ridge, a linear and a tree-based classifiers. Com-
bining SAST with Ridge significantly achieves the best performance overall (11a). We have chosen these classifiers
because they are known to be “white box”” models, making our approach explainable by-design. Our approach’s accu-
racy and explainability depend on the classifier used. The parameters of the classifier also affect the result. The most

suitable classifier (and its parameters) should be selected regarding the specificities of the application, the desired
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tradeoff between accuracy and explainability, and the computation resource.

In order to make this state-

. Table 3: SAST’s accuracy using different classifiers
ment more explicit, we executed

our method using 5 different | Model Chinatorwn | PenDigits | Smoothsubspace

classifiers (Naive Bayes, Nearest | SAST-KNN | 0.91 +0.06 | 0.93 +0.00 0.91 +0.01
Neighbor, SVM, Random Forest | SAST-NB 0.93+0.02 | 0.94+0.02 0.93pm0.03
and Ridge) on 3 datasets (China- | SAST-SVM | 0.96 +0.00 | 0.95 +0.01 0.95 +0.01
town, PenDigits and Smoothsub- | SAST-Ridge | 0.96 +0.00 | 0.96 + 0.01 0.96 + 0.00
space) which are from different | SAST-RF 0.97 +0.00 | 0.97 +0.00 0.98 + 0.00

types (resp. Traffic, Motion and
Simulated), different size, different time series length and different number of classes. The results listed in the table 3
confirm that using the right classifier has a significant impact on the overall approach. In fact, Nearest Neighbor and

Naive Bayes achieve lower accuracy than the remaining classifiers.

B. Scalability of SAST, SASTEN and SASTEN-A regarding the dataset size

Figure 26 shows a zoom in Figure 21b. We can now clearly see

— SAST
SASTEN
SASTEN-A

-
5}

that SASTEN is slower than SAST and SASTEN-A whatever the

-
5

@

number of time series in the dataset. SASTEN-A running time is

Running time in second
B

quite linear because the shapelet space is constant and only the trans-

formation time increases with the number of series.

Number of series

C. Models performance on each dataset Figure 26: SAST’s Running time

Table 4 gives the average accuracy obtained by each STC-k mod-
els, STC and SAST on each dataset. For each dataset, each model is run 5 times and accuracy mean and standard
deviation on the test set are recorded. The type of each dataset is written in parenthesis after the name. The last row
in the table gives the mean and standard deviation of each method accuracy on the 72 datasets. Datasets marked with
a star are those used for the experiment whose results are presented in Section 4.1.2 and datasets marked with a plus

sign are those used for the experiment whose results are given in Section 4.1.4.
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Table 4: Accuracy of models on 72 UEA & UCR datasets (average over 5 runs). The numbers are rounded at 2

decimals.

STC-1 STC-0.25 STC-0.5 STC-0.75 STC SAST

Adiac (Image) 029+0.06 032+0.03 0.34+0.04 034+0.02 048+0.04 0.68+0.0
ArrowHead+ (Image) 0.63+0.06 0.71+£0.08 0.74+0.03 0.72+0.04 0.75+0.03 0.77 + 0.02
BME* (Simulated) 0.65+0.1 0.68+0.05 086+0.05 095+0.02 0.87+0.03 0.87+0.02
Beef+ (Spectro) 044 +0.05 047+0.09 0.55+0.09 0.65+0.06 0.71+0.09 0.8+ 0.02
BeetleFly+ (Image) 0.74+0.06 0.79+0.09 0.78+0.09 0.77+0.07 0.78 +£0.05 0.8 + 0.03
BirdChicken+ (Image) 076 £0.1 076 0.1 091+0.04 0.83+0.14 086+0.1 0.76+0.1

CBF*+ (Simulated) 0.88+0.09 0.95+0.01 0.96+0.01 096+0.01 0.95+0.01 0.98+ 0.01
Car+ (Sensor) 0.66+0.04 0.75+0.02 0.74+0.02 0.76+0.03 0.77 £0.06 0.88 + 0.01
Chinatown* (Traffic) 091+0.08 095+0.02 0.95+0.03 096+0.01 0.97+0.01 0.96+0.01
ChlorineConcentration® (Sensor) 0.54+0.02 054+001 054+001 056+00 056+00 0.75+0.04
Coffee+ (Spectro) 096+0.03 099+0.02 099+0.03 1.0+0.0 1.0 + 0.0 1.0+ 0.0

CricketX (Motion) 0.38+0.04 0.35+0.03 0.35+0.01 0.38+0.03 0.66+0.02 0.77 + 0.01
CricketY (Motion) 041+0.04 036+0.04 0.35+0.03 042+0.05 0.64+0.02 0.74 +0.01
CricketZ (Motion) 041+0.06 04+006 04+0.03 038+0.03 0.69+0.01 0.77 +0.01
Crop* (Image) 0.08+0.0 008+00 0.08+0.0 008+00 0.08+0.0 0.73+0.0
DiatomSizeReduction+ (Image) 09+0.03 0.87+0.06 091+0.04 0.93+0.02 094+004 097+0.0
DistalPhalanxOutlineAgeGroup*+ (Image) 0.71+£0.02 0.77+0.01 0.76 £0.01 0.77+0.01 0.77 +0.01 0.76 +0.02
DistalPhalanxOutlineCorrect*+ (Image) 0.66 +£0.01 0.68+0.02 0.69+0.01 0.69+0.03 0.71+0.01 0.74 + 0.01
DistalPhalanxTW*+ (Image) 0.67 +0.01 0.68 +0.01 0.68 +0.01 0.68 + 0.01 0.68+ 0.0 0.67+0.02
DodgerLoopDay (Sensor) 043+0.03 047+0.02 0.54+0.02 052+0.04 0.47+0.04 0.61+0.04
DodgerLoopGame (Sensor) 0.61+0.09 0.68+0.11 08+0.02 0.77+0.03 0.81+0.03 0.9+ 0.02
DodgerLoopWeekend (Sensor) 094+005 097+00 096+00 097+0.01 0.97+0.01 0.98+ 0.01
ECG200*+ (ECG) 0.74 +£0.07 0.85+0.02 0.84+0.01 0.85+0.01 0.84+00 0.84+0.03
ECG5000* (ECG) 091+0.01 093+£0.01 093+0.01 093+0.01 094+0.0 0.94+0.0
ECGFiveDays*+ (ECG) 092+0.05 1.0+0.0 1.0 +£ 0.0 1.0+ 0.0 1.0 +£ 0.0 1.0+ 0.0

Earthquakes+ (Sensor) 075+00 0.75+0.0 0.75+00 0.75+0.0 0.75+0.0 0.68+0.04
ElectricDevices* (Device) 0.32+0.04 032+0.07 0.31+0.05 034+0.05 0.32+0.03 0.62=+0.01
FaceAll* (Image) 043 +0.04 046+0.03 044+0.04 047x0.03 0.74+0.01 0.78 +0.01
FaceFour+ (Image) 096+0.06 095+0.03 096+0.06 099+0.01 099+0.01 1.0+ 0.01
FacesUCR* (Image) 0.71 £0.04 0.88+0.01 0.92+0.01 093+0.01 094+00 0.95+0.0
FiftyWords (Image) 0.33+0.06 0.29+0.03 0.31+0.02 031+0.03 0.59+0.01 0.77 +0.0
FreezerRegularTrain (Sensor) 095+0.09 097+0.03 096+0.03 096+0.03 097+0.01 0.98 + 0.01
FreezerSmallTrain (Sensor) 093+0.1 091+0.13 0.86+0.17 0.87+0.08 0.93+0.03 0.73+0.01
Fungi (HRM) 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.9+ 0.0

GunPoint*+ (Motion) 0.79+0.05 094+0.06 097 +0.02 096+0.03 0.97 +0.02 0.97 + 0.02
GunPointAgeSpan* (Motion) 0.84+0.03 096+001 097+00 098+0.0 097+00 097+0.0

Continued on next page
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Table 4: Accuracy of models on 72 UEA & UCR datasets (average over 5 runs). The numbers are rounded at 2
decimals.

STC-1 STC-0.25 STC-0.5 STC-0.75 STC SAST

GunPointMaleVersusFemale* (Motion) 0.89+0.05 097+0.01 0.97+0.01 098+0.01 097+0.01 0.99 +0.01
GunPointOldVersus Young* (Motion) 0.75+0.03 093+0.02 0.95+0.01 0.96+0.01 0.95+0.01 0.96 + 0.02
Ham+ (Spectro) 0.62+0.06 0.72+0.02 0.72+0.04 0.7+001 07+0.02 0.71+0.03
Herring+ (Image) 0.59+£0.07 0.57+0.04 0.58+0.02 0.57+0.06 0.62+0.03 0.6+0.04
InsectWingbeatSound (Sensor) 0.53+0.02 056+0.01 0.56+0.01 054+0.01 0.62+0.0 0.56+0.01
ItalyPowerDemand*+ (Sensor) 091+0.06 096+00 096+0.01 096+00 0.96+0.0 0.96=+0.01
Meat (Spectro) 0.63+0.1 0.84+0.04 0.77+0.02 0.87+0.03 0.87+0.06 0.92 + 0.02
Medicallmages* (Image) 0.54+0.02 059+0.03 0.56+0.01 0.58+0.02 0.66+0.01 0.68 + 0.01
MelbournePedestrian (Traffic) 03+004 03+£007 03x+0.03 0.28+001 0.72+0.02 0.87+0.0
MiddlePhalanxOutlineAgeGroup*+ (Image) | 0.62 +0.02 0.6+0.01 0.6+0.02 0.61+0.02 0.61+0.02 0.53+0.02
MiddlePhalanxOutlineCorrect*+ (Image) 0.57+00 0.65+0.05 0.66+0.04 0.62+0.04 0.65+0.06 0.83+0.01
MiddlePhalanxTW#*+ (Image) 0.57+0.02 0.58+0.02 0.56+0.01 0.58+0.01 0.59+0.02 0.56+0.02
MoteStrain*+ (Sensor) 0.8+0.06 0.79+0.05 085+0.02 0.87+0.02 0.89+0.01 0.85+0.03
PhalangesOutlinesCorrect* (Image) 0.64+001 064+001 064+00 0.64+0.0 0.65+0.01 0.78+0.01
Plane*+ (Sensor) 097 +0.02 0.99+0.0 1.0 +£ 0.0 1.0+ 0.0 1.0 +£ 0.0 1.0+ 0.0

PowerCons* (Power) 0.76 £0.03 093+0.02 092+0.02 093+0.02 0.94+0.02 091+0.02
ProximalPhalanxOutlineAgeGroup*+ (Image) | 0.85+0.01 0.85+0.01 0.86+0.01 0.85+0.01 0.86+0.01 0.85+0.0
ProximalPhalanxOutlineCorrect* (Image) 0.71+£0.03 0.76+£0.03 0.75+0.04 0.76 £0.01 0.82+0.02 0.87 &+ 0.01
ProximalPhalanxTW*+ (Image) 0.77+0.02 0.78 +0.01 0.78+0.01 0.78+ 0.0 0.77 +£0.01 0.78 + 0.01
ShapeletSim+ (Simulated) 0.82+0.15 092+0.06 098+0.01 098+0.02 1.0+£00 0.96+0.01
SmoothSubspace* (Simulated) 0.68+0.05 091+0.01 094+0.01 0.95+0.01 0.95+0.01 091+0.02
SonyAIBORobotSurfacel*+ (Sensor) 0.7+0.14 0.82+0.03 0.81+0.02 0.78+0.05 0.79+0.04 0.76+0.05
SonyAIBORobotSurface2*+ (Sensor) 0.75+0.05 0.84+0.03 0.86+0.05 0.83+0.03 0.88+0.01 0.85+0.04
Strawberry (Spectro) 0.75+0.05 0.81+0.02 0.82+0.03 0.83+0.02 0.91+0.03 0.97 + 0.01
SwedishLeaf* (Image) 0.58+0.05 0.61+0.02 0.59+0.07 0.6+0.09 0.83+0.02 0.88+0.02
Symbols+ (Image) 091+0.05 0.63+0.07 093+0.02 093+0.01 095+0.01 0.95+0.0
SyntheticControl*+ (Simulated) 0.87+0.02 097+0.01 097+0.01 097+0.01 098+0.0 0.98+ 0.0
ToeSegmentation1+ (Motion) 0.88+0.04 091+002 094+001 095+0.0 095+0.0 0.88+0.04
ToeSegmentation2+ (Motion) 0.84 +0.08 0.9+0.04 0.87+0.02 0.89+0.02 0.88+0.03 0.88+0.03
Trace (Sensor) 094 +0.07 099+0.01 1.0+0.0 1.0+0.0 099+00 1.0+0.0

TwoLeadECG*+ (ECG) 093+0.04 095+0.02 098+0.03 0.99+0.01 0.98+0.01 0.96=+0.03
TwoPatterns* (Simulated) 0.56 +0.07 0.61+£0.05 0.64+0.07 0.64+0.03 0.81+0.03 0.99 + 0.0
UMD* (Simulated) 0.83+0.07 093+0.03 0.97+0.03 096+0.03 0.98 +0.01 0.98 + 0.01
Wafer* (Sensor) 099+001 1.0+£00 1.0+0.01 1.0+0.0 1.0 +£ 0.0 1.0+ 0.0

Wine+ (Spectro) 0.54+0.06 0.71+0.1 0.72+0.07 0.8+0.04 0.8x0.06 0.85=+0.06
WordSynonyms (Image) 04+001 045+0.02 047+0.02 044+0.01 056+0.01 0.7+0.01

Continued on next page
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Table 4: Accuracy of models on 72 UEA & UCR datasets (average over 5 runs). The numbers are rounded at 2
decimals.

\ \ STC-1  STC-025  STC-0.5  STC-0.75 STC SAST \

\ Average \ 068+022 073+024 074+024 0754024 079+02 0.84+0.13 \
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