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Visual Completion Of 3D Object Shapes From A Single View For
Robotic Tasks

Mohamed Tahoun1,2, Carlos M. Mateo2 Juan-Antonio Corrales-Ramón2,
Omar Tahri1, Youcef Mezouar2 and Pablo Gil3

Abstract— The goal of this paper is to predict 3D object
shape to improve the visual perception of robots in grasping
and manipulation tasks. The planning of image-based robotic
manipulation tasks depends on the recognition of the object’s
shape. Mostly, the manipulator robots usually use a camera
with configuration eye-in-hand. This fact limits the calculation
of the grip on the visible part of the object. In this paper, we
present a 3D Deep Convolutional Neural Network to predict the
hidden parts of objects from a single-view and to accomplish
recovering the complete shape of them. We have tested our
proposal with both previously seen objects and novel objects
from a well-known dataset.

I. INTRODUCTION

Knowing the complete 3D geometry of an object is
indispensable for the physical interaction between the robots
and the outside world such as object recognition, grasping,
and object manipulation. In this work, we aim to tackle the
problem of occlusion in grasping and manipulation tasks
through predicting the complete 3D shape from a single 2.5D
depth view. If the shape of the object was known, robots
could get some ideas of what actions to consider like path
planning and generating stable grasps. For this objective, we
designed and trained a 3D convolutional neural network to
do the shape reconstruction. This is a very challenging task
because different 3D models can be obtained from the same
single view. Therefore, our solution should have the ability
of generalization.

We trained the model on a real depth map of handheld
objects from YCB dataset [1]. These depth maps were
segmented and voxelized to fit inside an occupancy grid to
be the input of the CNN model. Also, the target 3D shape
is voxelized to fit inside an occupancy grid of the same
resolution to be compared with the predicted output. Figure
1 shows the runtime pipeline of the reconstruction operation.

The contributions of this work include: 1) A novel CNN
architecture for 3D shape completion from a single arbitrary
depth view; 2) An end-to-end trainable deep learning model
with real depth views of multiple household objects.
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2 Université Clermont Auvergne, CNRS, SIGMA Cler-
mont, Institut Pascal, F-63000 ClermontFerrand, France.
cmateoagul, juan-antonio.corrales-ramon,
youcef.mezouar@sigma-clermont.fr

3 AUROVA Lab, Department of Physics, Systems Engineering and Signal
Theory, University of Alicante, 03690, Spain. pablo.gil@ua.es

Segmentaion
&

Voxelization

2.5D Input 
Voxel Grid

3D-CNN 
Model

3D Estimated
Voxel Grid

Depth MapRGB of the View

RGBD Camera

Fig. 1: Pipeline of reconstruction operation

The rest of the paper is structured as follows. Section
II addresses the related works. Section III describes the
proposed method based on CNN for reconstruction objects.
The pipeline for processing the input data, the dataset, and
the training methodology as well as the used evaluation
metric are described in section IV. Followed by a discussion
on the reconstruction results for both seen and novel objects
in section V. Finally, we commented on the conclusions and
future works in section VI.

II. RELATED WORKS

3D shape completion from depth maps or partial scans
has been studied widely in robotics, computer vision, and
computer graphics. There exist many researches on shape
reconstruction from an incomplete point cloud. A detailed
survey can be found in [2]. Traditional completion methods
commonly use interpolation techniques to predict the under-
lying 3D structure, such as plane fitting [3] or Poisson surface
estimation [4]. However, these methods are only suitable to
refine reconstructed surfaces by filling holes and gaps on
visible parts, but not the whole surface including occluded
faces. In the past, several works focused on completing
shapes were presented, for example, through shapes structure
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Fig. 2: CNN model architecture

and regularities [5] and based on the learning of shape priors
[6] .

Instead, this paper addresses the problem of shape pre-
diction using a Deep Learning scheme to avoid a recon-
struction process. Recently, Han et al. presented in [7]
a detailed survey on 3D object reconstruction based on
learning methods, where the authors highlight the fact that
the most representative methods are based on a volumetric
representation of surfaces, instead of meshes or point clouds.

In previous works such as [8] and [9], the authors used
furniture objects as input, which are not realistic in robotic
manipulation tasks, due to the object’s size. Yang et al.
[8] and Dai et al. [10] proposed complex models based
on Generative Adversarial Network (GAN) to recover the
occluded regions. In both works, an encoder-decoder model
was used as the generator architecture with up to ten convo-
lutional layers. In the proposed method, we used a lighter
network which is important when the robot manipulator
have to be adapted to work in scenarios with new objects.
Additionally, our method takes a volumetric representation as
it has been done in [8] but with less resolution requirements.
Specifically, Wu et al. [9] presented a model to transfer the
learning from synthetic data 2.5D to real objects. To do this,
they trained their method with chairs representations on the
Pascal 3d+ dataset. Unlike our work, they trained from a
combination of depth map, normal vectors and silhoutte,
instead of a volumetric representation as we did from YCB
dataset [1]. Also, another method presented in [11] used a
model based on autoencoder with two encoders and one
decoder. RGB image and silhouette were used as input
to each encoder and outputting several 2.5D surfaces that
are needed to be aligned and fused. Conversely, we are
outputting directly one complete 3D shape. Here, we propose
a simpler model based on 3D CNN for manipulation of
household objects. It is able to learn from real data as well
as it requires less parametric adjustments. Similarly, Varley
et al. [12] trained their 3D CNN model for object completion
but using synthesized depth maps, which are free of noise.
Whereas, our model is trained on real data to augment the
learning generalization.

III. THE PROPOSED APPROACH

In this work, we present an approach to reconstruct the
object surface from a single view obtained from an RGBD

camera. In particular, we use a surface-based partial repre-
sentation of 3D object shape to predict its whole shape. To do
this, we use an approach based on deep learning techniques.

More specifically, we have implemented a 3D-CNN (3
Dimensional Convolutional Neural Network) which takes as
input a 2.5D surface (depth map) observed from a viewpoint
and generates as output a 3D predicted surface. Our model
is shown in Fig. 2. Both, the input denoted as I and the
output denoted as O, are voxel grids of a resolution 403. This
resolution was empirically selected to get a good prediction
with low memory requirements. In a grid, the occupied voxel
contains 1 while the empty one contains 0. I represents
the occupied voxels of the 2.5D view while O registers the
occupied voxels of the prediction for the complete 3D object.

The proposed model consists of three 3D convolutional
layers, each of which has a bank of 4x4x4 filters with strides
of 1x1x1, then a Batch Normalization (BN), followed by a
ReLU activation function and, a Max Pooling Layer which
has 2x2x2 filters and strides of 2x2x2. The number of output
channels for the max pooling layer starts with 64, doubling
at each subsequent layer and ends up with 256. Followed by
a three Fully Connected (FC) layers with a ReLU activation
except for the last layer in which is used a sigmoid function
as activation to restrict the output to be in this range (0,
1). Between the last convolutional layer and the first FC, we
need to adapt the data. For that, we have used a Flatten layer
to convert the multi-dimensionality of the output provided by
the convolutional into a 1D.

IV. METHODOLOGY

A. Dataset

We employed the YCB dataset [1], which contains a wide
variety of objects in size and shape that create the used
dataset. Our dataset consists of 38 objects, where 63% of
the objects were used for both training and validation and,
the rest for testing (14 objects). This way, we assured that
the testing objects were not previously seen by our CNN
model during the training and validation process. Fig. 3 and
Fig. 4 show the representation of the training and the testing
subsets, respectively.

Yale dataset provides 600 partial views of each object with
5 cameras (120 views for each camera) as described in [13],
each of them consists of an RGB image, a depth map, a
camera calibration parameters, the object point cloud and a



Fig. 3: Sample of training objects (big can, bowl, apple, small
Lego, timer, plate, wide cup, banana, sugar box, power drill,
large clamp, mustard bottle)

mask to filter the object from the scene. We did not use the
RGB in this work, while our Ground-Truth is the object point
cloud.

We manually selected only 68 views for each object to
make sure they were quite different, and they did not provide
similar information for the training model. So, redundancies
of the closest views have been avoided. Therefore, each
training object is composed of 15 views acquired from four
cameras plus 8 views from the overhead camera.

B. Pre-processing training data

As shown in Fig.2, the input of the model should be a
403 3D voxel grid as explained in section III. So, we need
to pre-process the depth map of each input view to obtain the
3D voxel grid of the occluded view. To do this, we follow
the next steps.

First of all, we have to filter the input depth map of the
scene to obtain the cluster which represents the object. Object
depth maps have different reference frames because they
were captured from five different cameras in five different
locations. In this case, we used the calibration information
for each camera, which was supplied in the dataset, to change
the reference frame from the camera to a point on the table.
In this way, we accomplished that all object views have the
same reference frame to obtain a partial point cloud V . Also,
it is the same reference frame used by the whole point cloud
supplied in the dataset, which is used as Ground-Truth, C.

Second, the partial cloud V is filtered to eliminate noisy
points because we are dealing with real depth information.
Then, we used a down-sampling filter of a size equal to
0.002m on C to get a better performance in the matching
process with V . As the filter size is increased, more details
will be lost, inversely, decreasing it will be computationally
expensive during the matching process. Later, we compared
C and V by applying a distance filter which allows a
difference of 0.005m between both clouds.

Finally, we got the occupied voxels in the volumetric
grid VC (403) which comprises the merged cloud C. We
normalized the merged point cloud inside the occupancy grid

Fig. 4: Samples of testing objects (small can, peach, short
box, big Lego, pitcher base, squared rounded can, small cup,
chips can, toy drill, tennis ball, lemon, Rubik’s cube)

VC , by calculating the maximum x̄max and the minimum
number of steps x̄min in each dimension. As well as the step
value N based on the grid dimension, applying the following
equations:

N =
max (x̄max − x̄min)

40
(1)

nx̄ =

⌊
x̄max − x̄min

N

⌋
(2)

where x̄ = (x, y, z), are the 3D coordinates of the point
cloud, while x̄max and x̄min the maximum and minimum in
each coordinate.

Once, we got the occupied voxels of the C, we fit V inside
the volumetric grid VV with the same VC voxels size. Figure
1 provides an example of the input and the output voxel grids.

TABLE I: Different CNN Models

Channels Kernel size Padding BN
CNN 1 64x64x64 4x4x4 valid True
CNN 2 16x32x64x128 4x4x4 valid True
CNN 3 16x32x64 4x4x4 valid True
CNN 4 64x128x256 4x4x4 valid True
CNN 5 64x128x256 4x4x4 same True
CNN 6 64x128x256 5x4x3 valid True
CNN 7 64x128x256 4x4x4 same False

C. Training and tuning

In order to demonstrate the performance of our model in
reconstruction tasks, we have tested different configurations
for the proposed CNN model as specified in table I. During
the configuration phase, we fixed the number of epochs to
20, the batch size to 16, and the learning rate to 5e−5.
We selected these parameters after several trials of different
learning rates, batch sizes, and epochs. In figure 5, we found
that the best learning rate for our model should be between
1e−5 and 1e−4.

Then, we started to test each model shown in Table I and
get the average of the Mean Squared Error (MSE) on the
testing objects for each model as shown in Figure 6. From



Fig. 5: Different learning rates vs. Loss

this comparison, we found that the best model which has the
least MSE is model CNN 5 in Table I. We used BN between
the CNN layers to normalize the inputs of each layer, where
the input from prior layers could be changed after the weights
update. In addition, using BN accelerate the training process
because it helps the model to train in fewer epochs.

In Fig. 7, we present the achieved loss rate during training
and validation steps for the problem of learning to reconstruct
surfaces via generating voxels with the best configuration.
We used the binary cross-entropy error loss function:

Cost = E(ȳ, z̄) = −(ȳ log(z̄) + (1− ȳ) log(1− z̄)) (3)

where ȳ ∈ Rm is the flattened version of VC ∈ Rn3

after
applying a mapping function f : V → ȳ. Similarly, z̄ is the
flattened version of the predicted occupancy grid VP . Hence,
we have that m = 64000 elements of the flattened 1D vector
and n = 40 voxels in each dimension. While, each value yi
of ȳ can be {0, 1}, and the values of zi of z̄ are real numbers
bounded in (0, 1). The cost function boosts the output to
tends to be either 1 for the occupied goal voxels and 0 for
the empty ones. The chosen optimizer was Adam [14] with
the default hyper-parameters (β1 = 0.9, β2 = 0.999, ε =
10−8), and the learning rate was set to 5e−5. Additionally,
we used he normal initializer [15] to initialize the model
kernel weights.

After several tests (Fig. 6), we set the number of epochs to
10 according to the loss function shown in (Fig. 7) to avoid

Fig. 6: Comparison of the MSE obtained varying the param-
eters of our model with the parameters from Table I

Fig. 7: The training and validation loss for the best config-
uration of parameters shown in Table I

overfitting problems, and the batch size to 16. During the
training process, we applied k-fold cross validation which
improves the Monte-Carlo estimation in relation to solely
perform the tests with a single random partition. Therefore,
our training dataset was consequently divided into mutually
exclusive sub-sets, using each view from an object only in
one partition. In this way, the views of the same object
cannot be repeated in both sub-sets, training, and validation.
Although, the observed objects during training were always
seen from different viewpoints. For each fold, we used one of
the partitions for validation (20% of the samples) and the rest
for training (80%). Both training and validation processes
were repeated for k = 5 times, using different partitions
of our dataset. Later, the average result and its standard
deviation are provided.

D. Evaluation metrics

We have used the Mean Squared Error (MSE) metric to
evaluate the performance of our proposal. MSE basically
measures the average squared error of our predictions. This
calculates the square difference between the predictions and
the target, then computes the average of these values for each
voxel as follows,

MSE =
1

m

m∑
i=1

(yi − zi)2. (4)

If MSE value starts decreasing, it means that the performance
of the model will be better. Oppositely, the performance
becomes worse if it increases.

V. RESULTS AND EXPERIMENTATION

This model was implemented using Keras 2.2.5 based
on TensorFlow 1.14 library. To do this experiment, all
the computations have been performed using the NVIDIA
Tesla P40 GPU. We have used the MSE to evaluate the
performance of our model as explained section IV-D.

A. Prediction on seen objects

In this experiment, we tested our model on unseen views of
the training objects (Fig. 3). We calculated the MSE average
of each object estimation to compare the reconstruction error



between different objects as shown in Fig. 8. While, Fig. 9,
visualises the completion results of three different objects (a
sugar box, a mustard bottle and a tuna can). Where these
object are different in geometry and size, and were viewed
from different camera poses. In both cases, the error is
smaller than 0.025 over 1 when we trained with all views
for the same objects. Although the tuna can was the worst
rebuilt, the error is acceptable. Perhaps, it was because of its
input viewpoint is worse than others.

B. Prediction on novel objects

In order to show the generalization capabilities of our
proposal, we present the reconstruction results obtained from
testing on 14 novel objects (Fig. 4). Fig. 10 shows the MSE
average of the predicted objects from 21 different views for
each object.

The visual perception of the prediction can be seen in
Fig. 11, in which we show some examples for objects
with different geometry like tomato soup can, Rubik’s cube,
lemon and Lego part. Although our method used complicated
views as input, it predicted fairly good the cylindrical objects
such as the soup can with an error around 0.10 over 1.
This can be extrapolated to other revolution objects like
the lemon with a spherical shape. Although, the Rubik’s
cube was observed from better viewpoints than others, this
experiments grew in the MSE. Since edges between faces
were more difficult to generalize than spherical (convex and
concave) shapes.

C. Performance Analysis

To measure the performance, we have analyzed the be-
havior of our model according to shape, size, and viewpoint.
To do this, we have considered the validation and testing
experiments, separately. The performance which depends
on shape, has been studied using four categories such as
cylindrical, spherical, rectangular and irregular; plus two
categories for size, these are big and small; and three final
categories for the observation angles such as top, bottom,
lateral. Then, we compare the average of MSE for each
category as shown in Table II.

Fig. 8: Average of Squared Mean Error (SME) of the
reconstruction of selection from seen objects but unseen
views

Fig. 9: Prediction example on validation objects from un-
known views. a) Original object. b) Ground-Truth. c) Shape
prediction.

In this experiment, we have noticed that the estimation
of cylindrical, spherical and rectangular objects is better
than the estimation of irregular objects due to the lack of
symmetry in the last one. In addition, big objects estimation
surpass the estimation of small objects because the edges
and corners are more detailed on bigger objects. According
to the observation viewpoint, the lateral views are resulting
in better estimation than the top and bottom views because
those partially appear in the lateral views. In contrast, the
top view could be identical for long and short objects which
leads to predicting different shapes. While in some bottom
views, it is difficult to recognize the shape of the object
whether it is spherical, cylindrical or rectangular. Finally,
as shown in table II, the performance of the model on the

Fig. 10: Average of Squared Mean Error (SME) of the
reconstruction from novel objects



Fig. 11: Prediction example on unknown objects from dif-
ferent views. a) Original object. b) Ground-Truth. c) Shape
prediction.

unknown objects is slightly worse than the performance on
the unknown views. Mainly, this is due to the fact that new
objects contain unseen surface shapes.

VI. CONCLUSIONS
In this work, we proposed a novel 3D CNN model trained

to predict the complete shape of an observed object from
an arbitrary single view. We trained and tested our model
on real depth maps not on synthesized ones.Our proposal
has the capability of the generalization from novel views
of models that are already seen during training, as well as
unseen objects. In addition, it provides a prediction in a few
milliseconds. Therefore, this enables it to be employed as an
input for grasp planning.

Currently, we are working to add touch data using tactile
sensing. In this case, the fusion between contact and visual
information will allow us to improve the whole shape esti-
mation of complex objects, especially when the visible part
is different from the hidden part. In our future study, other
evaluations metrics such as Jaccard similarity (Intersection-
Over-Union) and chamber’s distance will be used for a deep
monitoring on the model performance.
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TABLE II: Average of MSE of each class per group (smaller
is better)

Group Class Unknown views Unknown objects

Cylindrical 0.006 0.131
Shape Spherical 0.010 0.114

Rectangular 0.010 0.125
Irregular 0.013 0.192

Size Big objects 0.004 0.103
Small object 0.011 0.114

Top view 0.006 0.110
View Lateral view 0.002 0.108

Bottom view 0.016 0.109
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