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Abstract 

Occupant behavior towards heating and cooling system setting is a very complex process that has been under 

investigation in the past years. As most of dynamic energy simulation tools consider energy consumption as fully 

deterministic with fixed and unrealistic schedules, the ability to predict properly the energy consumption is poor 

because of occupant interaction with indoor environment. In this study, the occupant in residential buildings is 

modeled as a probabilistic process. The occupant behavior related to thermostat settings is studied through 

experimental measurements collected in eleven buildings in France over a period of one year, by monitoring 

various parameters, including indoor air temperature, ambient temperature, indoor and outdoor relative humidity 

and indoor CO2. The occupant attitude was classified into three groups, active, normal and passive, according to 

the number of setting changes per year. The Logistic regression is adopted to calculate the probability of 

changing the thermostat setting by an occupant, in terms of different environment parameters. The results yield to 

a proposed model that can be implemented in simulation software, in order to take into account the occupant 

behavior in the assessment of realistic energy consumption.  

 

Keywords: Thermostat setting points; Occupant behavior; Probabilistic model; Building energy performance 

simulation; Logistic regression. 

 

I. Introduction  

During building operation, occupants interact with different equipment to satisfy the comfort requirements. 

Occupant behavior include lighting switch on/off, window opening/closing, thermostat settings, etc. However, 

the behavior strongly differs from one occupant to another, leading to very large variations in indoor environment 

and energy consumption [1, 2]. Many investigations show a significant gap between calculated and actual energy 

consumption, exceeding up to 300% in extreme cases [3]. For this, it is very important to take into account the 

occupant interactions with indoor environment since the design stage. 
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 Various activities have been modeled such as window opening, lighting and blind use [4-7]. These activities 

have shown to produce significant changes in energy use. In this study, a probabilistic model is developed to 

consider the effect of thermostat setting on energy consumption. Traditionally, the temperature regulation is 

typically modeled through deterministic scenarios in the dynamic thermal simulation tools, though this does not 

correspond to the real use of heating. For these reasons, several researchers proposed stochastic models to define 

the behavior patterns to be implemented in simulation software.  

In the past decade, the probabilistic approach has been used to model the human behavior, as occupants have 

important influence on indoor environment. The institute of health watching (InVS) has found that occupants in 

France spend between 13.5 and 20 hours/day of their time at home [8]. Therefore, opening windows, switching 

lights and controlling HAVAC systems have important effects on energy consumption.  

Recently, Shi and Zhao [9] presented a stochastic model of occupant interactions with windows in 8 

residential apartments in Beijing and Nanjing, relating the use of windows to many indoor and outdoor 

environmental factors, such as outdoor air temperature, outdoor relative humidity, outdoor wind speed, etc. They 

analyzed the influence of each parameter on the probability of window opening, using univariate and multivariate 

logistic regression. On the other hand, Haldi and Robinson [5] proposed a model of window opening/closing by 

the occupants of the LESO building on the basis of 7 years of continuous measurements. Indoor air temperature 

and many environmental variables have been incorporated into the model. Several modeling approaches have 

been tested including logistic distributions, Markov chains and continuous time processes. The model has been 

validated and integrated in dynamic thermal simulation tools. Also, Fritsch et al. [10] proposed a model to predict 

the window opening angle in winter, on the basis of 8-months measurements taken every half hour in four office 

rooms facing the south in the LESO building. During the working hours, the transition probabilities between six 

possible opening angles over four orientations were defined. 

In addition, several studies considered other occupant interactions such as blind and thermostat setting in 

building. Sutter et al. [7] studied the use of Venetian blinds in eight individual offices, every 15 min, over a 

period of 30 weeks. Their study showed that the number of use of manual systems is three times lower than that 

of automated systems. In addition, they concluded that when the screen quality is high in terms of emitted 

brightness level, the probability that the occupant accepts the high level of diffuse reflection increases, benefiting 

more from the available daylights. Furthermore, Andersen et al. [11] studied the preferences in terms of 

temperature set, through a campaign of measurements on fifteen dwellings in Denmark in 2008. A linear 

regression was used to model the thermostatic valve positions of the radiators and the environmental variables 

(air temperature, relative humidity, wind speed and solar radiations). The results of this study indicate that the 

most influencing variables in the determination of the thermostatic valve positions are the outdoor temperature, 

relative humidity and wind speed.   



Regarding uncertainties, Simona D’Oca et al. [2] have modeled the occupant behavior in residential buildings 

by using probabilistic approaches developed to simulate both the effect of thermostat settings and window 

openings. The aim of this study was to compare mean values of the probabilistic distribution with a singular 

heating energy consumption value obtained by means of standard deterministic simulations. In order to highlight 

the effect of occupant behavior on energy consumption, simulations were performed for three different climate 

locations (Mediterranean, Continental and Nordic) and three comfort category conditions (Categories I, II, III). It 

can be noticed, that the deterministic approach (deterministic input) underestimated the heating consumption, 

when compared to probabilistic predictions taking into account the occupant behavior. As example, in 

Mediterranean climate and for Category of Comfort II, that the probabilistic distribution of heating loads ranges 

from 46 kWh/m²/year to 68 kWh/m²/year, with a maximum variation of 45%. Unlike, the heating load was 47 

kWh/m²/year for the deterministic scenario. Whereas, the variation of the probabilistic distribution of heating 

loads in the Continental and the Nordic climates are 36% and 26% respectively for the same comfort category 

(Category II). Otherwise, the largest impact in delivered energy variation from deterministic to probabilistic 

simulations was observed for category III, with a maximum variation of 61%, 47% and 35% in Mediterranean, 

Continental and Nordic climates respectively 

In general, determinist scenarios are mostly applied to describe occupant activities in buildings. The occupant 

behavior is a complex and stochastic process [12]. Indeed, several parameters influence the occupant behavior 

and the energy consumption, such as gender, income, energy cost, health situation, clothing, activity level etc. 

[13-16]. These studies showed that the energy need is greatly affected by occupant behavior. Moreover, the 

probabilistic modeling presents a way to quantify the uncertainties and to provide an interval on possible outputs. 

For example, Haldi and Robinson [5] presented a mathematical method to model the occupant adaptive actions. 

This mathematical model, describing occupant behavior, needs to be implemented in simulation software. There 

is a need to consider the occupant interaction with indoor environment in order to decrease the gap between 

predicted and real energy use. 

In the literature, heating profile is important parameter that influences the indoor temperature of residential 

buildings, with a large variation between different apartments [17-20]. The occupant has strong influence due to 

his presence and activities in the building on one hand, and due to his control actions that aim to improve indoor 

environmental conditions, on the other hand [21]. Xu et al. [22] carried out investigations and field observations 

in China to study how occupants interact with thermostatic radiator valves (TRVs). They found that 26 % of the 

occupants never changed the set-point and 46 % of them rarely adjusted the TRV setting, which has remained 

unchanged for several months. The rest of the occupants modified the TRVs frequently. This study showed large 

variations in the use of thermostats and these differences are the results of occupant habits. Karjalainen [15] 

conducted a questionnaire survey in Finland in order to investigate gender effects on the adjustment of thermostat 



setting. The results have shown significant differences between the genders in terms of thermal comfort and use 

of thermostats. As a result, females are less satisfied with room temperatures than males and preferred a higher 

heating set-point than males, but males adjusted the thermostat setting more often than females did. 

The studies mentioned above show that the set-point temperature is adjusted by occupants. Therefore, using a 

constant set-point temperature in the simulations will result in wrong estimations. Indeed, the designers calculate 

the energy consumption of a building by assuming that the heating set-point is always 19 °C and the cooling set-

point is always 26 °C [23]. It is therefore mandatory to consider the variations in occupants’ attitudes, preferences 

in indoor temperature and reactions with the indoor environment.  

      The development of behavioral models to predict occupant behavior inside buildings is a significant area of 

focus in the building sector. However, office buildings have been the objective of several surveys and behavior in 

residential building is not specifically treated. Furthermore, the most of the buildings monitored have been 

located in the UK, Switzerland and Asia, while France has been scarcely examined. In addition, in the literature, 

there is a lack of studies that evaluate the impact of thermostat changes in building energy consumption. As well, 

studies analyzing occupant behavior observed specificities in summer, but seasonal variations in behavior have 

yet to be taken into account. To answer the identified lacks, the present work provides new experimental results 

to show how the occupant behavior can impact the building energy use. In that case, models of the thermostat 

use, in residential buildings, were proposed to evaluate the impact of occupant behavior in building energy 

consumption when changing the thermostat. The description of the instrumented building is presented with 

statistical analysis of the obtained data. Afterward, the probabilistic analysis of the building energy performance 

is carried out to define the interaction patterns. The approach is constituted of two models: the univariate and 

multivariate logistic model of thermostat changes, as a function of indoor and outdoor environments and for 

different types of occupant behaviors (active, medium and passive) according to the seasons of the year (heating 

season and transition seasons). Finally, the study can be considered as a starting point defining the methodology 

of analysis and its advantages. It should be continued in the future with the purpose to not only show the 

importance of the probabilistic models of occupants' behavior but also to show how they can be coupled with 

building energy simulation software. 

II. Data and methods  

1. Experimental set-up 

In this section, the building for which data have been collected is presented in order to provide the basis for the 

development model. The survey was performed on a collective social building (Figure 1) located at the city of 

“Cébazat” in France. It is a low energy building with 45.44 kWh/m²/year regarding the climate and geographical 

area. 



The building has 18 apartments of type T2, T3 and T41. It is divided into two sections separated by an 

expansion joint. Only the eleven apartments (T2 and T3) of the southern part were instrumented due to the 

limited budget. Table 1 lists the main features of the eleven monitored apartments. 

The building is considered as independent building with an important mask at the north side (Figure 1). Built 

in 2010, the building has a concrete load-bearing structure. The eleven apartments are occupied by one to four 

people, as indicated in table 1. 

1.1 Why considering this building 

This building was chosen for several reasons: it is a low-energy building in the sense of the LEB-effinergie 

label. In addition being a social building, it was built to provide the maximum reduction of construction costs. 

The orientation North-South, due to the land geometry, is the opposite of bioclimatic logic and monitoring of 

comfort will make it possible to survey problems of summer overheating. Finally, the owner wishes to make this 

building a showcase of its commitment to sustainable development and a prototype of his future constructions. 

1.2 The envelope 

The external envelope consists of the same type of wall found on most of the opaque vertical walls (Table 2). 

The Reinforced concrete walls insulated with Xtherm Itex 32SE expanded polystyrene from Knauf, with thermal 

resistance R = 3.40 m².K/W. The walls of unheated area are insulated only from the inside. In several apartments, 

there are load-bearing walls which are used as partitions. The load-bearing walls are un-insulated and allow 

thermal transmission through the building. The roof is partially in wooden structure covered with Roman tiles 

insulated with 35 cm of cellulose wadding (R = 8 m².K/W).  The remained roof is covered by green vegetation 

for which the insulation is provided by rigid polyurethane foam panels with composite facings, or expanded 

polystyrene (R = 5.15 m².K/W). The first floors are insulated to compensate any possible vacancy of shops in the 

ground Floor, the insulation is of type Unimat Sol Supra thickness 70 mm (R = 2.60 m².K/W). 

Each intermediate floor is composed and insulated as follows: 

• Concrete slab; 

• 30 mm thick rock wool panels Isover Domisol LR30 on all surfaces; 

• Extruded polystyrene foam panels of Isover Styrofoam 2000-A type on all surfaces, U = 0.29 W/ 

m².K, R = 2 .60m².K/ W; 

                                                           
1 T is used for type, which corresponds to a type of apartment with a number of main rooms (living room and bedrooms are the main 
rooms. While, the kitchen and bathrooms are considered as included in all the apartments). In the real estate sector in France, a T2, T3 
or T4 is an expression used to designate a category of housing, which can be furnished or not. 
T2: Apartment 2 pieces including 1 bedroom and 1living room. 
T3: Apartment 3 pieces including 2 bedrooms and 1living room. 
T4: Apartment 4 pieces including 3 bedrooms and 1living room. 



• Polyane film; 

• 5 cm screed; 

• Peripheral strip composed of 8 mm thick polyethylene foam. 

 

1.3 Installed equipment 

The ventilation is provided by a hygro-B single flow CMV2 (controlled mechanical ventilation). The building 

is divided into two parts by an expansion joint. The apartments at the north of this joint are ventilated by a 

common extraction unit located on the roof. The southern part (the instrumented building) of the joint, the third 

floor is ventilated by two extraction groups. The heating is provided for each apartment by individual gas 

condensing boiler. The common areas are not heated. The T2 and T3 have combined boiler / DHW (domestic hot 

water) with micro accumulation of 23 kW. The building is uncooled. The domestic hot water (DHW) production 

is provided by individual gas boilers.  

2. Data collection 

A monitoring system was set up to record environmental parameters. The monitoring started on June 2011 

and continues till now. 

Table 3 presents the sensors and weather station characteristics. The time step used for data collection is one 

hour. The data is stored for a period of 21 days on the acquisition system located in the building's technical room. 

The controllers are connected via Ethernet line to a server located in the local in owner’s office, on which 

supervision software is installed. This software transmits by e-mails the raw data to be processed. 

    In each of the eleven instrumented apartments, the assessment of thermal comfort of occupants is carried out 

by measuring the indoor temperature Tint (°C), the indoor relative humidity RHint (%) and the CO2 concentration 

(ppm). The sensors are placed on the internal walls, about 1.5 m from the ground and at least 50 cm distant from 

the ceiling, the partition angles and any other dead zone. They are placed far from direct radiations, air streams, 

heat source and occupant proximity. 

 

The layouts of the four apartments in the first-floor as well as the location of sensors in every measured room 

are specified in Figure 2. The plans of the two other floors and the sensors location are similar to those of the first 

floor. Each apartment has a central heating controller which transmits the set-point temperature. The heating 

season (winter) and the transition seasons (autumn and spring) corresponds to the period during which the central 

                                                           

2
 A detailed explication on CMV is available in [24]. 



heating plant is operational, from September to May. One bedroom among the twelve apartments is equipped 

with carbon dioxide sensor. These sensors are used both to assess occupancy scenarios of the rooms where the 

measurements took place, in addition to indoor air quality.  

To quantify the actual outdoor climate conditions applied to the building, a meteorological station is installed. 

This station allows the measurement of the following quantities: 

- Dry bulb temperature (°C) and external relative humidity (%) 

- Diffuse and direct solar radiation on horizontal surface (W/m²). 

- Wind speed (m/s). 

- CO23 concentration of the outside air (ppm). 

This station is located on the roof of the building, away from solar masks as shown in Figure 3. 

   All the measurements were carried out in the living room and the bedroom of the apartments. The detail 

information relating to the location of the sensors of these apartments is shown in table 4. Moreover, occupant 

interactions with the set-point temperature were gathered by measurements of the most representative zones of 

the building. In this study, one thermostatic radiator valve (°C) in the living room is installed in each apartment. 

III. Method 

1. Statistical analysis 

The objective of the study is to evaluate the influence on thermostat changing. The controls of the set-point 

temperature inside the apartments were monitored by the thermostat. Through these thermostat units, the 

occupants were permitted to change their set-points temperature for the rest of the day.  

Figure 4 shows the distribution of heating consumption for each apartment during the heating season and the 

transition seasons. The heating consumption of the monitored apartments ranges from 441 kWh to 3157 kWh. 

The ratio between the highest and the lowest consumptions is equal to 6 for type T2 and 7 for type T3. Moreover, 

regarding the season, important variation can be observed in the heating consumption of the 11 apartments, 

resulting in a ratio between highest and lowest heating consumption of 25, 25 and 17 in winter, spring and 

autumn respectively. Consequently, regarding the same apartments, a high variation is observed in heating 

consumption. These differences must be a result of differences in occupancy and differences in the occupants’ 

behavior. 

Large variations in occupant behaviors have been recorded. As shown in table 5 and Figure 5, the total number 

of thermostat changes strongly varies between apartments. The apartments were grouped according to the number 

of interactions with thermostat during the monitoring period. Three occupant profiles have been observed: 
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 A detailed explanation on outdoor CO2 concentration is available in [25, 26]. 



Active, Passive and Medium. The probability of thermostat changes can be deduced for three different statistical 

models. It can be seen that the number of thermostat change is the highest in winter and spring and the lowest in 

autumn. It can also be noted that the apartment number twelve had the highest number of thermostat changes in 

winter, while the apartment number two and four had the lowest changes in autumn and spring. 

A summary of indoor and outdoor parameters monitored during the survey is reported in Table 6. This gives 

the variation ranges for each parameter, as well as statistical analyses including the mean, max, min, and standard 

deviation values. Based on the results of the survey, the living room is considered to be occupied permanently in 

all the apartments. Apartment 04 had the highest indoor temperatures in winter and spring because of its 

orientation (East-facing), which provides direct solar radiation only in the morning. In contrarily, apartment 03 

has the highest mean indoor temperature in spring (23.5 °C) owing to South-East its orientation which provides 

direct solar radiation all the day. Indoor humidity is very similar between the apartments, with a mean value of 

approximately 36% in winter, 42% in spring and 48% in autumn. 

    Figure 6 presents the distribution of the indoor temperatures during the heating season (winter) and transition 

seasons (autumn and spring). The median of indoor temperature fluctuate between 18 and 22°C, which indicates 

that the level of satisfaction in terms of comfort is very different between the apartments. This difference can be 

explained by household-specific attributes, such as age, income or social status. Contrary to expectations, the 

apartment orientation has shown low impact on the set-point temperature (table 1 and Figure 6). Moreover, the 

set temperature increases with the number of people in the apartment since the indoor temperature increase by 

1°C to 3°C for identical apartments (same surface and orientation) with a larger number of occupants. Indeed, 

Kelly et al. [27, 28] showed that the number of occupants in a building have the largest effect on energy 

consumption. These results prove that for each extra person living in the building, the mean daily internal 

temperature increases by nearly 0.25 °C.  

   In addition, the apartment surface has no impact on the set temperature. The apartments of the intermediate 

floor have lower indoor temperature that in the other floors. Based on these measurements, a thermostat changes 

model is proposed. This model provides the probability to act on the thermostat of the living room. 

2. Stochastic model of occupants interaction with thermostat in residential building 

    In this section, the model of occupant action is developed using logistic regression. In fact, the logistic 

regression models are very appropriate to predict probability p of a binary response variable when the 

explanatory variables x = (x1, x2,…, xn) are at particular values [5].  

      In our study, the thermostat change is a binary response variable: the value of 1 indicates that the occupant 

changed the set-point temperature and 0 indicates that no change happened. The outdoor variables including Text, 

RHext, Vwind, CO2ext, F and indoor variable such as Tint-upper/lower and RHint are explanatory variables, as given in 



table 7. The indoor temperature Tint-upper/lower represents the temperature of the upper and/lower apartment 

compared to the investigate apartment (Active, medium or passive). 

The relationship between the set-point changes probability p of the response and each explanatory variable can be 

expressed by a univariate logistic regression as following: 

����� � = ��� 	 �
1 − �� = 0 +  � 

 (1) 

where β0 is the intercept and β is the coefficient of the explanatory variable x. In the other hand, the relationship 

between the probability (p) of the binary response and multiple explanatory variables can be expressed by a 

multivariate logistic regression. Thus, in classical linear models, the probability can be assumed to take the form 

p(x) = β0 + β1x1 + … +βnxn where βn are the coefficients to be determined. However, this model would allow p to 

take values outside the interval [0 1]. It is then necessary to use a suitable transformation g of p(x) [5]. 

     The classical choice is the logistic transformation ���� = log� ����
�������. The probability distribution is called 

logit distribution [5]. The probability function is described by: 

���� = ���1, … , ��� = exp �0 + 1�1 + ⋯ + ����
1 + exp �0 + 1�1 + ⋯ + ���� 

 (2) 

where p is the probability of an event, β0 is the intercept, β1+ … +βn are coefficients associated to each 

explanatory variable and x1+…+xn are the explanatory variables.  

     In our study, first the relationship between the probability of thermostat changing and single explanatory 

variable was analyzed using univariate logistic regression. Then, the multivariate logistic regression models were 

determined using the ‘backward selection’ procedure with the studied explanatory variables presented in table 7.     

IV. Results 

From the data collected over the seasons, the obtained univariate logistic regression parameters are given in 

table 8 and tables 9 to 10 (in appendix A). The regressions are presented in Figure 7 and the multivariate logistic 

regression parameters are listed in table 11. The statistical software R was used for all data analyses. 

1. Univariate logistic model 

Univariate logistic model allows as analyzing the relationship between the probability of thermostat changes 

and each single explanatory variable (table 7). The analysis of thermostat changes for the active occupant 

considers only the apartments where there is maximum action on the thermostat. The variables of the indoor and 

outdoor environment are considered in this evaluation.  



Appendix C gives a summary of the possible criteria of goodness-of-fit for each of the models. Therefore, 

table 8 summarizes the regression parameters and the goodness-of-fit (GOF) estimators. The p-values are less 

than 0.001 for the outdoor temperature in autumn, winter and all the year, while they are higher for outdoor 

relative humidity, the solar flux and wind speed in the three seasons. Additionally, the indoor relative humidity 

and the indoor temperature of the upper/lower apartments had p-value < 0.001 in the different seasons and all the 

year. Although, the p-value of the CO2 concentration is less than 0.001 in autumn, spring and all the year only.  

The above information indicates that the probability of thermostat changes has a significant correlation. 

Indeed, a significant correlation is noticed in autumn with outdoor temperature, CO2 concentration, indoor 

relative humidity and the indoor temperature of the upper/lower apartment. Regarding winter, a correlation is 

noticed with outdoor temperature, indoor relative humidity and the indoor temperature of the upper/lower 

apartment. In spring, a correlation is noticed with outdoor CO2 concentration, indoor relative humidity and the 

indoor temperature of the upper/lower apartment. A correlation is noticed for all the year with the all explanatory 

variables except the wind speed. The probability of thermostat changes positively related to the outdoor relative 

humidity and negatively correlated with the rest of the explanatory variables. 

In autumn, the univariate logistic regression model with CO2 concentration, indoor relative humidity and 

indoor temperature of the upper/lower apartment had the highest values of Nagelkerke’s R², McFadden’s R² and 

AUC. This indicates that the univariate logistic regression model with these variables had the best predictive 

capability. Hence, the lowest values of the goodness-of-fit indicate the poor predictive capabilities of the model. 

In winter, the univariate logistic regression model with the outdoor temperature, indoor relative humidity and the 

indoor temperature of the upper/lower apartments had the highest values of Nagelkerke’s R², McFadden’s R² and 

AUC. In the other hand, the CO2 concentration and indoor relative humidity had the higher values of 

Nagelkerke’s R², McFadden’s R² and AUC for the univariate logistic regression model in spring. Finally, the 

goodness-of-fit estimators indicate that the outdoor temperature, the indoor relative humidity and indoor 

temperature of the upper/lower apartment are the principal driver for the univariate logistic regression model for 

all the year. 

    Figure 7 shows the observed probabilities and the corresponding logistic model during the all year (heating 

season and transition seasons), for the active occupant, for each explanatory variable. Thus, Figures 8 and 9 in 

appendix B show the observed probabilities and the corresponding logistic model for the medium and passive 

occupants. 

 In general, the probability of thermostat changes decreases when the outdoor temperature increases. When the 

outdoor relative humidity is higher than 30%, the probability of thermostat changes tends to increase when the 

outdoor relative humidity increases. The probability of thermostat changes first increases as the wind speed 



increases. Then, when the wind speed becomes more than 9 m/s the probability decreases to 0 when the wind 

speed is kept increasing. The relationship between the solar flux, CO2 concentration and the probability of 

thermostat changes is less pronounced. As for the indoor relative humidity and indoor temperature for the 

upper/lower apartments, the probability related to the thermostat changes is monotonically decreasing function 

with respect to both variables.  

 

 

2. Multivariate logistic model 

The multivariate logistic regression is based on the assumption that the studied explanatory variables are 

independent. The explanatory variables in each multivariate logistic regression model were determined based on 

the forward and backward selection procedure using the Akaike information criterion [5, 6, and 29]. The purpose 

of this procedure is to create a model containing only explanatory variables that had a consistent effect on the 

probability. Rory et al. [29] presented the steps to be considered in practice. 

The correlation between the explanatory variables for thermostat change models is assessed using the 

generalized variance inflation factor (GVIF). Table 12 shows the VIF and the GVIF analyses for thermostat 

change models. The GVIF1/(2*Df) was used to assess all the thermostat changes models for the whole year and 

season in order to evaluate when the multicollinearity exists or not between the explanatory variables.  A GVIF 

of 1 indicates that the explanatory variables are not correlated. As long as, a GVIF between 1and 5 indicates a 

moderate correlation between the explanatory variables, and more than 5 indicates a highly correlation [19]. It 

can be seen that, the GVIF value of all the explanatory variables, are between 1 and 2, turned to be small (less 

than 5), therefore we can consider that there is no collinearity between the explanatory variables [29]. 

 

In order to compare the influence of the different explanatory variables, it is required to normalize these 

variables as following:  

min
Normal

max min

x-x
x

x -x
=  

  (3)                                                        

where xnormal is the normalized explanatory variable, x is the explanatory variable, xmax and xmin are respectively 

the maximum and the minimum observed values. 

The multivariate logistic regression was carried out based on normalized explanatory variables and via 

backward and forward selection procedure. The parameters of the logistic model have been obtained using the 



‘step’ in function R [30]. Table 11 presents the coefficients of the explanatory variables included in the 

thermostat changes models.  

For the active occupant, four multivariate thermostat models were obtained, according to seasons. Equations 

4-7 show the most influential variables on thermostat changes behaviors in monitored apartments for the active 

occupant. 

The multivariate logistic regression model of thermostat changes during the heating season is expressed in 

Equation 4. The Outdoor Temperature, Wind Speed, and Outdoor CO2 concentration are removed from the 

model because they do not have a consistent effect on the probability of the probability of thermostat changes. 

The most influential factors are the outdoor relative humidity, the solar flux, the indoor temperature of the lower 

apartment and the indoor relative humidity. The regression coefficients of the indoor temperature of the lower 

apartment and indoor relative humidity are negative, indicating the negative correlation between thermostat 

changes and these two variables. 
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where p is the probability of thermostat changes in the living room, RHext is the outdoor relative humidity, F is 

the solar flux, RHint is the indoor relative humidity and Tint-lower is the indoor temperature of the lower apartment. 

In transition seasons, the multivariate logistic regression model of thermostat changes behaviors is expressed 

by equation 5 which introduces the spring season and equation 6 which introduces the autumn season. During 

autumn, solar radiation and outdoor CO2 concentration variables are removed from the model because they do 

not have a consistent effect on the probability of a thermostat changes. The indoor temperature of the upper 

apartment is the most important factor. Wind speed is the least significant factor in the model, which varies from 

0 to 2 m/s. The regression coefficient of the indoor relative humidity is positive, which indicates the overall 

increasing trend of indoor relative humidity with the increase of the thermostat change probability. On the other 

hand, during the spring season the variables of the outdoor temperature, the external and internal relative 

humidity, the solar radiation and the wind speed are eliminated from the model because they do not have a 

coherent effect on the probability of thermostat changes. The indoor temperature of the upper apartment is the 

least significant factor in the model. The regression coefficient of the outdoor CO2 concentration is negative, 

indicating the negative correlation between thermostat changes behaviors and this variable. 
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 Autumn  :ln( ) 2.247 3.39 3.36 1.032
1

                 2.17 4.29

ext ext wind
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• = − − −
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where p is the probability of thermostat changes in the living room, RHext is the outdoor relative humidity, RHint 

is the indoor relative humidity, Text is the outdoor temperature, Vwind is the wind speed, CO2ext is the outdoor CO2 

concentration and Tint-upper is the indoor temperature of the upper apartment. 

In the all year model (heating season + transition seasons) expressed in Equation 7, solar radiation and relative 

indoor relative humidity are eliminated because they are insignificant. Instead of that, the thermostat changes 

behavior is more affected by the indoor temperature of the lower apartment and the outdoor temperature, 

followed by the wind speed, the outdoor relative humidity, and the outdoor CO2 concentration. The regression 

coefficient of the outdoor temperature is negative, which is similar to that of the autumn season. The external 

concentration of CO2 and the external relative humidity are the least significant factors in this model. 

int

 All the year :ln( ) 0.1002 4.27 0.949 0.947 2
1
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ext ext ext
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V T −
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+ −
 

 

(7) 

 

where p is the probability of thermostat changes in the living room, RHext is the outdoor relative humidity, Text is 

the outdoor temperature, Vwind is the wind speed, CO2ext is the outdoor CO2 concentration and Tint-lower is the 

indoor temperature of the lower apartment. 

The indoor relative humidity, the indoor temperature of the upper/lower apartment as well as the outdoor 

relative humidity and the outside temperature contribute as a dominant factor in the majority of the proposed 

models. Solar radiation is significant only during the heating season (winter), which can be explained by the fact 

that the windows are toward North-East without direct sunlight coming in. 

 

 

 



V. Implementation in Energy Models 

     The results obtained in the study provide the possibility of defining behavioral models of thermostat use to be 

implemented as a tool for energy simulation. Usually, the energy simulation software uses a deterministic 

scenario in nature, consequently it needs to interpret the probability of an action such as thermostat changes.  

     The implementation steps of the probabilistic models of thermostat changes to predict the effect on energy 

consumption are presented. Figure 10 shows a general scheme describing the implementation procedure for a 

dynamic simulation of thermostat changes for each time step. The first step consists of verifying the occupancy 

status. If the occupant is absent, the thermostat state is set as identical to its previous state. If the occupant is 

present, the logistic models are used to calculate the probability of thermostat changes according to the occupant 

profile (active occupant, medium occupant or passive occupant).  

    These probabilities are compared to random number in order to determine if the event takes place or not. The 

occupant changes the thermostat when the probability of the thermostat changes is more than the random number. 

If the probability of thermostat changes is large than the random number, Predicted Mean Vote (PMV) is 

calculated. Indeed, the PMV is used to determine an index that allows knowing the percentage of dissatisfied. 

Depending on the ranges of admissible PMV, three kinds of comfort zones can be considered [31]. The PMV can 

be calculated using conventional parameters of the thermal environment (indoor temperature, indoor humidity), 

activity and clothing of occupant. In this work, the thermal comfort zone is usually spread between the sensation 

of light freshness (-1) and the sensation of slight heat (+1). If the PMV less than (-1), the occupant turns up the 

thermostat and if the PMV is higher than (+1) the occupant turn down the thermostat. Finally, the set-point was 

changed and the next time step starts. 

 

VI. Discussion and limitation 

In this study, it was noticed that the indoor conditions (indoor relative humidity and indoor temperature of the 

upper/lower apartments) impacts and describes thermostat changes action better than the outdoor conditions in 

the case of active occupant and univariate models. Moreover, the probability of thermostat changes given for 

multivariate models for active occupants tends to be always presented by the indoor environmental variables in 

all the cases (winter, spring, autumn and all the year). The main finding of this study underlines that the indoor 

environment of the upper/lower apartments is strictly interrelated to the thermostat changes.  

The different probabilistic patterns of thermostat changes (active, medium and passive occupant for different 

seasons) are investigated. The behavior models could be considered as models of specific occupants. 

Nevertheless, as the models were deducted from data of 11 different apartments including many residents, they 



could be considered as a representation of standard behavior patterns, enveloping the variation observed in the 11 

apartments. For that, Haldi et al [32] discussed how different occupants could be assigned different model 

coefficients, to model the fact that different occupants will have different behavior patterns. 

The present study is focused on developing thermostat changing models based on indoor and outdoor 

environment variables. However, other variables such as the psychological, social and economic behaviors 

should be considered. Gill et al. [33] show that the behavioral and social factors account for 51%, 37%, and 11% 

of the variance in heat, electricity and water consumption respectively. So, future research should try to collect 

larger dataset. 

In this study, the weather data for the all monitored apartments are specific only for one city. Hence, this study 

ignored the spatial difference of weather data. So, for the future analysis of occupant’s interaction with 

thermostat, it is better to take on a large interval of meteorological data in order to have an international model 

and improve the accuracy of the research. Additionally, the behavior due to psychological and many social 

factors which were not evaluated in this study need to be studied as they may have stronger relationship with the 

thermostat changing.  

 

VII. Conclusion 

This study investigated occupant behavior in residential building during the heating period. Occupant 

interaction with thermostat was evaluated. The adaptive actions executed on thermostat changes have been 

correlated with the different season as well as the indoor and outdoor environmental variables. Hence, behavioral 

models have been suggested. The aim of this study is to assess whether thermostat changes are driven by the 

outdoor variables and/or the indoor variables.  

Based on one year of observations of thermostat changes and indoor/outdoor variables in eleven apartments, 

and regarding the results, three occupant behaviors; active, medium and passive were noticed.  

A model has been established for occupant interaction with thermostat and indoor/outdoor environmental 

variables. The indoor environment variables and the outdoor temperature are the most important variables in 

determining the univariate logistic regression models of thermostat changing. In this context, four multivariate 

regression logistic models of thermostat changes were proposed in this study. The results of multivariate logistic 

regression based on normalized explanatory variables illustrate that the thermostat changes is mainly affected by: 

indoor relative humidity and temperature of the lower apartment in winter, and by the outdoor CO2 concentration 

in the other seasons.    



These models can be used in building performance simulation software to predict the energy consumption of 

residential buildings. The results of this study, recommended that when analyzing and modeling occupant 

behaviors in building, other variables, than just indoor/outdoor, should be taken into account. Ongoing studies 

have been initiated to take into account the psychological, social and economic factors on energy building 

simulation for a better energy use prediction. 

Acknowledgements 

• The data analyzed in this paper is drawn from Cerema (Center of Studies and Expertise on Risks, 

Environment, Mobility and Development) of Clermont-Ferrand. The authors would like to thank Mr. Cédric 

Besairie, Mr. Olivier Bonneau, Mr. Laurent Selve and Mr. Nicolas Laveissiere for their contribution in 

creating and managing the data set. 

• The Conseil Général de l’Alier – France, is grateful to have provided financial support for this study. 



Appendix C. Statistical tests for logistic models 

1. p-value for models 

The p-value is the probability under a specified statistical model that a statistical summary of the data would 

be equal to or more extreme than its observed value. The p-value for a model determines the significance of the 

model compared with the null model. So the p-value for the model indicates if there is a significant relationship 

described by the model. 

A p-value provides one approach to summarizing the incompatibility between a particular set of data and a 

proposed model for the data. The most common context is a model, constructed under a set of assumptions, 

together with a so called “null hypothesis.” Often the null hypothesis postulates the absence of an effect, such as 

no difference between two groups, or the absence of a relationship between a factor and an outcome. Smaller p-

values do not necessarily imply the presence of larger or more important effects, and larger p-values do not imply 

a lack of importance or even lack of effect. Any effect, no matter how tiny, can produce a small p-value if the 

sample size or measurement precision is high enough, and large effects may produce unimpressive p-values if the 

sample size is small or measurements are imprecise. Similarly, identical estimated effects will have different p-

values if the precision of the estimates differs [34, 35]. 

2. Area under ROC curve 

In this study, the area under ROC curve is called the AUC index. It is a direct measure of the discriminating 

power of a given model. The AUC of the logistic model have been obtained using the software R. The area under 

the ROC (Receiver Operating Characteristic) curve range from zero to one and provides a measure of the model’s 

ability to discriminate between those subjects who experience the outcome of interest versus those who do not. 

ROC curves plot sensitivity as a function of specificity for different values of the cutpoint between 0 and 1. A 

higher value of sensitivity for a given value of specificity indicates better performance [5, 36]. 

As a general rule: 

• If AUC = 0.5           : this suggests no discrimination. 

• If 0.6 ≤  AUC  < 0.8 : this is considered acceptable discrimination.  

• If 0.8 ≤  AUC < 0.9 : this is considered acceptable discrimination.  

• If AUC ≥ 0.9         :this is considered outstanding discrimination.  

 

 

3. The Nagelkerke R² and the McFadden R² 

The Nagelkerke R² or the McFadden R², called the coefficient of determination and generalized R², measures 

the proportion of explained deviance in a model and are defined as [37]: 
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where the null model is the logistic model with just the constant and the M model contains all the predictors in 

the model, based on n observations. The McFadden and Nagelkerke R² are the easiest to understand: when the 

regression is useless, the explanatory variables explain nothing, the indicator is 0; when the regression is perfect, 

the indicator is 1 
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Fig.4. Heating consumption for monitored apartments in different seasons 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Fig.5. Season average thermostat changes 

 

 

 

 

 

 

 

 

 



 

Fig.6. Distribution of indoor temperatures during the heating season and the transition 

seasons 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

  
 

 

 

 
 

 

 

 

 
 



Fig.7. Thermostat change probabilities in terms of explanatory variables for the active 

occupant: univariate model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix B. Thermostat change probabilities in terms of explanatory variables for Medium and Passive occupants: univariate 

model 

 

 

   

  

 

 

 



 

 
 

 

       

 

            

 

Fig.8. Thermostat change probabilities in terms of explanatory variables for Medium occupant: univariate model 



 

  

  



 

Fig.9. Thermostat change probabilities in terms of explanatory variables for Passive occupant: univariate model

 

 
 

 

 



 

 

Fig.10. Implementation scheme of the thermostat changes 
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Table 1 Main features of the monitored spaces 

Floor N° Apartment Type Area (m²) Number of residents Orientation 

1 01 T2 59.15 1 adult West 

1 02 T3 76.01 2 adults and 1 child South - West 

1 03 T3 75.03 2 adults South -East 

1 04 T2 57.55 1 adult East 

2 08 T2 59.15 1 adult West 

2 09 T3 76.01 2 adults and 2 children South - West 

2 10 T3 75.03 1 adults and 1 child South -East 

2 11 T2 57.55 2 adults East 

3 15 T2 59.15 2 adults West 

3 16 T3 76.01 2 adults South - West 

3 17 T3 74.88 2 adults and 1 child South -East 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2 Thermo-physical properties of the opaque components 

 Components Layers (Out to in) Thickness (cm) R value (m2. °C/W) 

Opaque walls 

External walls isolated 

from inside and 

outside 

Siding 

Polystyrene 

Concrete 

Polystyrene 

Plasterboard 

1 

15 

18 

10 

1,3 

8.33 

External walls isolated 

from inside 

Concrete 

Polystyrene 

18 

15 
4 

Internal walls isolated 

from inside 

Concrete 

Expanded polystyrene 

18 

15 
4 

 

Glass walls 

 

PVC double glazing 

Uf= 1.5 or 1.8 

Glass 

Air 

Glass 

0.4 

1.6 

0.4 

0.71 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3 Main features of the installed sensors 

(a) Sensor characteristics 

Parameter Sensor Accuracy Range 

Indoor temperature (°C) RFF ±  0.35 °C 5-40°C 

Relative Humidity % RFF ±  3 % 25 % �95 % at 20°C 

CO2 (ppm) NDIR ±  50 ppm 0�5000 ppm 

Set point temperature (°C) Thermostat ±  0.6°C 10°C �30°C 

(b) Weather station 

Air temperature (°C) ---------------- ± 0.35°C at 25°C - 40°C � 75°C 

Relative Humidity % ---------------- ± 3 % [0°C to 50°C] 0.00 % �100 % 

Air velocity (m/s) RB-WT1000 ± 0.5 m/s 0.5 m/s�54 m/s 

Global solar radiation (w/m²) Spektron ± 10 W/m² or ± 5% 0 W/m²�1280 W/m² 

CO2 (ppm) ---------------- ± 100 ppm 0�2000 ppm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

Table 4 Detailed information about monitored apartments 

Apartment N° Location Sensors Quantity  

01 to 04 

08 to 12 

15 to 17 

Bedroom Temperature, Hygrometry 1 per apartment 

Living room Set-point temperature, temperature probe 1 per apartment 
CO2 1 per apartment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 5 Total thermostat changing for monitored apartments considering living room 

variation 

Apartment N° 
Number of 

residents 

Heating season Transition seasons Heating and transition seasons 

Winter* Spring** Autumn*** All the year**** 

01 1 5 8 17 30 

02 3 61 74 139 274 

03 2 7 5 12 24 

04 1 59 175 12 246 

08 1 5 11 12 28 

09 4 30 13 18 61 

10 2 10 5 8 23 

11 2 340 48 97 485 

15 2 71 93 21 185 

16 2 12 0 33 45 

17 3 37 27 16 80 

*: From 1st December to 30th February  **:From 1st March to 30th May                 

***: From 1st September to 30th November        ****: From 1st September to 30th May     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 6 Summary of measured settings 

 Variable Max Min Mean St. Dev 

 W* S* Au* W* S* Au* W* S* Au* W* S* Au* 

 

 

Outdoor 

Temperature (°C) 17.2 32.8 28 -13.4 0.1 0 4.12 11.89 13.67 5.84 5.42 5.73 

Solar flux (w/m²) 589.4 915.6 672 0 0 0 46.39 121.8 25.10 105.12 204.17 95.50 

Outdoor RH (%) 98.9 98.4 98 28.4 7 24 73.77 63.72 71.35 12.43 16.88 16.26 

CO2 concentration (ppm) 3020 770 2180 190 330 840 709.12 579.56 1169.93 241.45 64.31 202.77 

Wind speed (m/s) 17.73 11.94 2 0 0 0 1.42 1.52 0.014 1.67 1.62 0.17 

Apartment 01 Indoor temperature (°C) 21.6 23.4 24 18.75 12.5 20 19.6 19.17 21.32 0.34 1.26 1.3 

Indoor RH (%) 82.6 81.7 71 32.4 32.6 44 48.62 55.79 57.79 5.93 7.06 5.36 

Apartment 02 Indoor temperature (°C) 22.15 25.35 25 11.05 12.95 18 17.07 20.6 21.20 2.65 1.71 1.57 

Indoor RH (%) 79.1 88.3 72 16.4 25.7 31 35.87 42.06 49.31 8.41 8.55 7.67 

Apartment 03 Indoor temperature (°C) 23.85 26.8 28 15.5 16 20 20.82 21.88 23.25 0.75 1.54 1.61 

Indoor RH (%) 54.9 67.3 60 14.9 16.1 30 30.85 38.19 43.78 7.04 7.45 7.38 

Apartment 04 Indoor temperature (°C) 23.65 25.4 27 19.1 19.55 20 21.4 22.22 22.7 0.88 0.89 1.21 

Indoor RH (%) 51.5 66.1 62 19.8 26.2 38 36.03 40.74 47.21 5.3 6.72 5.48 

Apartment 08 Indoor temperature (°C) 21 22.6 24 18.3 16.8 19 19.65 19.6 20.95 0.48 1.22 1.37 

Indoor RH (%) 53.9 64.2 71 18.4 27.9 36 39.22 43.61 50.65 5.96 5.63 7.24 

Apartment 09 Indoor temperature (°C) 22.3 25.85 27 12.55 11.85 19 17.74 19.43 21.91 1.27 1.43 1.9 

Indoor RH (%) 56 77.6 69 17.4 24.4 31 35.07 41.70 47 7.08 9.07 7.33 

Apartment 10 Indoor temperature (°C) 24.75 26.25 26 11.35 10.6 18 17.19 19.14 22.33 1.71 2.27 1.8 

Indoor RH (%) 56 83.4 63 16.8 24.3 29 35.11 41.83 45.29 7.59 9.82 6.88 

Apartment 11 Indoor temperature (°C) 22.35 25.65 26 17.55 18.85 20 20 21.33 22.18 0.65 1.36 1.55 

Indoor RH (%) 58.4 64.9 67 23.7 28.3 33 37.15 40.40 47.17 6 6.68 6.65 

Apartment 15 Indoor temperature (°C) 22.2 23.9 24 15.45 15.4 18 21.14 20.27 21.77 0.53 0.98 1.62 



Indoor RH (%) 48 75.7 65 25.6 32.2 39 37.03 43.52 50.37 4.66 8.60 6.30 

Apartment 16 Indoor temperature (°C) 23.85 25.75 27 10.05 10.7 17 15.68 18.03 20.21 2.21 2.25 2.28 

Indoor RH (%) 80.4 80.2 68 19.3 27.4 31 40.72 45.33 48.49 9.33 9.74 7.88 

Apartment 17 Indoor temperature (°C) 24.55 27.85 26 18.6 18.25 19 21.38 21.04 22.66 1.03 1.6 1.4 

Indoor RH (%) 54.2 71 61 12.8 23.9 30 29.32 38.49 44.16 6.98 8.69 7.83 

W*: winter, S*: spring,  Au*: autumn 



Table 7 List of explanatory variables used to infer the models of thermostat changing 

Variable Unit 

Outdoor temperature Text °C 

Outdoor relative humidity RHext % 

Solar flux F w/m² 

Wind speed Vwind m/s 

Outdoor CO2 concentration CO2ext ppm 

Indoor temperature Tint-upper (or lower) °C 

Indoor relative humidity RHint % 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 8 Univariate logistic parameters for changing thermostat states for active occupants 

 

Variable 

 

Season 

Thermostat Changing  

p-value of 

β1 

 

Goodness of fit Regression coefficient 

β0 β1 AUC Nagelkerke’s R² McFadden's R² 

 

 

Outdoor temperature Text 

Autumn -1.968±0.218 -0.054±0.016 0.001 0.60 0.015 0.012 

Winter -1.544±0.067 -0.040±0.010 < 0,0001 0.60 0.013 0.009 

Spring -2.708±0.192 0.021±0.014 0.137 0.55 0.24 0.18 

All the year -1.650±0.061 -0.116±0.007 < 0,0001 0.75 0.11 0.09 

 

 

Outdoor relative humidity RHext 

Autumn -2.575±0.399 -1.06×10-3±0.005 0.771 0.50 1.02×10-4 8.15×10-5 

Winter -1.738±0.356 6.42×10-4±0.005 0.892 0.51 1.44×10-5 9.7×10-6 

Spring -2.589±0.312 2.13×10-3±0.005 0.649 0.51 0.50 0.43 

All the year -3.924±0.245 0.019±0.003 < 0,0001 0.578 0.014 0.011 

 

 

Solar Flux  F 

Autumn -2.711±0.101 2.36×10-4±0.001 0.646 0.58 2.51×10-4 2.00×10-4 

Winter -1.738±0.065 9.49×10-4±0.001 0.066 0.55 0.0025 0.0017 

Spring -2.458±0.092 4.24×10-5±0 0.912 0.57 0.32 0.27 

All the year -2.432±0.052 -1.37×10-3±0 < 0,0001 0.514 0.007 0.005 

 

 

Outdoor CO2 concentration CO2ext 

Autumn 0.440±0.583 -2.77×10-3±0.001 < 0,0001 0.64 0.038 0.030 

Winter -1.659±0.186 -4.42×10-5±0.001 0.859 0.54 2.51×10-5 1.68×10-5 

Spring -0.365±0.721 -3.64×10-3±0.001 0.004 0.56 0.009 0.007 

All the year -1.823±0.142 -9.01×10-4±0.001 < 0,0001 0.54 0.011 0.008 

 

 

Wind speed Vwind 

Autumn -2.656±0.106 -0.042±0.079 0.598 0.52 0.00034 0.00027 

Winter -1.721±0.078 0.021±0.035 0.540 0.50 0.0003 0.00019 

Spring -2.429±0.107 -0.016±0.049 0.750 0.49 0.18 0.14 

All the year -2.618±0.061 0.067±0.028 0.018 0.523 0.002 0.001 

 Autumn -0.591±0.584 -0.044±0.012 0 0.60 0.016 0.013 



 

Indoor relative humidity RHint 

Winter -0.215±0.355 -0.04±0.010 < 0,0001 0.60 0.014 0.009 

Spring -3.416±0.460 0.023±0.011 0.003 0.54 0.30 0.25 

All the year 1.067±0.276 -0.091±0.007 < 0,0001 0.667 0.064 0.051 

Indoor temperature Tint-lower  

Autumn 

— — — — — — 

Indoor temperature Tint-upper 3.822±1.155 -0.310±0.056 < 0,0001 0.63 0.044 0.035 

Indoor temperature Tint-lower  

Winter 

5.029±1.489 -0.315±0.070 < 0,0001 0.6 0.017 0.011 

Indoor temperature Tint-upper — — — — — — 

Indoor temperature Tint-lower  

Spring 

— — — — — — 

Indoor temperature Tint-upper -3.862±0.608 -0.032±0.014 0.018 0.57 0.19 0.15 

Indoor temperature Tint-lower  

All the year 

15.70±1.173 -0.840±0.055 < 0,0001 0.714 0.10 0.08 

Indoor temperature Tint-upper — — — — — — 



Appendix A. Coefficients and GOF of logistic regression models for Medium and passive occupant (Table 9 + Table 10) 

 

Table 9 Regression results and statistical tests of the univariate logistic regression model for changing thermostat states:  Medium occupants 

 

Variable 

 

Season 

Thermostat Changing  

p-value of 

β1 

± 

Goodness of fit Regression coefficient 

β0 β1 AUC Nagelkerke’s R² McFadden's R² 

 

 

Outdoor temperature Text 

Autumn -4.897±0.492 0.049±0.029 0.098 0.62 0.0084 0.0078 
Winter -3.725±0.180 0.031±0.024 0.204 0.55 0.0035 0.0031 
Spring -1.237±0.336 -0.288±0.044 < 0,0001 0.80 0.4 0.37 

All the year -4.148±0.175 -0.062±0.017 0 0.63 0.019 0.018 
 

 

Outdoor relative humidity RHext 

Autumn -1.767±0.647 -3.62×10-2±0.010 0 0.67 0.039 0.036 
Winter -4.226±0.828 8.62×10-3±0.011 0.428 0.53 0.0013 0.0012 
Spring -5.270±0.668 0.022±0.009 0.019 0.60 0.57 0.55 

All the year -5.483±0.636 0.011±0.009 0.184 0.55 0.0028 0.0026 
 

 

Solar Flux  F 

Autumn -4.594±0.235 2.95×10-3±0.001 0 0.71 0.040 0.037 
Winter -3.599±0.145 3.19×10-4±0.001 0.791 0.51 1.42×10-4 1.26×10-4 
Spring -3.651±0.161 -0.002±0.001 0.083 0.46 0.22 0.20 

All the year -4.688±0.146 -1.91×10-4±0.001 0.798 0.52 9.8×10-5 9.3×10-5 
 

 

Outdoor CO2 concentration CO2ext 

Autumn -1.901±1.125 -2.00×10-3±0.001 0.047 0.59 0.014 0.013 
Winter -4.272±0.270 9.20×10-4±0 0.002 0.66 0.014 0.013 
Spring -0.993±1.336 -0.005±0.002 0.037 0.58 0.011 0.0097 

All the year -4.180±0.379 -6.21×10-4±0 0.182 0.50 0.003 0.003 
 

 

Wind speed Vwind 

Autumn -4.488±0.226 0.296±0.105 0.005 0.67 0.020 0.019 
Winter -3.908±0.179 0.189±0.058 0.001 0.60 0.018 0.016 
Spring -4.151±0.211 0.192±0.072 0.008 0.60 0.33 0.31 

All the year -4.652±0.165 -0.015±0.086 0.858 0.53 4.94×10-5 9.7×10-5 
 Autumn -2.722±1.12 -0.030±0.023 0.196 0.56 0.0054 0.0050 



 

Indoor relative humidity RHint 
Winter -6.119±1.068 0.069±0.028 0.015 0.60 0.013 0.012 
Spring 1.734±1.018 -0.144±0.028 < 0,0001 0.80 0.39 0.37 

All the year -2.564±0.578 -0.054±0.015 0 0.63 0.02 0.019 
Indoor temperature Tint-lower  

Autumn 
-4.863±1.175 0.014±0.024 0.552 0.54 0.034 0.032 

Indoor temperature Tint-upper — — — — — — 
Indoor temperature Tint-lower  

Winter 
— — — — — — 

Indoor temperature Tint-upper -5.709±0.924 0.056±0.023 0.017 0.60 0.0034 0.0030 
Indoor temperature Tint-lower  

Spring 
-3.205±1.463 -0.184±0.040 < 0,0001 0.75 0.20 0.18 

Indoor temperature Tint-upper — — — — — — 
Indoor temperature Tint-lower  

All the year 
-2.803±0.856 -0.096±0.044 0.03 0.60 0.0066 0.0063 

Indoor temperature Tint-upper -1.471±0.765 -0.185±0.046 < 0,0001 0.66 0.026 0.025 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 10 Regression results and statistical tests of the univariate logistic regression model for changing thermostat states:  Passive occupants 

 

Variable 

 

Season 

Thermostat Changing  

p-value of 

β1 

Goodness of fit 

Regression coefficient 

β0 β1 AUC Nagelkerke’s R² McFadden's R² 

 

 

Outdoor temperature Text 

Autumn -3.453±0.749 -0.192±0.075 0.011 0.77 0.073 0.072 
Winter -6.905±0.918 0.137±0.106 0.195 0.658 0.030 0.029 
Spring -5.521±1.051 -0.051±0.09 0.574 0.60 0.51 0.50 

All the year -5.154±0.288 -0.053±0.028 0.058 0.62 0.011 0.010 
 

 

Outdoor relative humidity RHext 

Autumn -6.513±1.802 0.012±0.024 0.601 0.52 0.0028 0.0027 
Winter -3.956±2.334 -0.030±0.033 0.372 0.65 0.011 0.010 
Spring -5.951±1.724 -0.002±0.026 0.935 0.49 0.64 0.63 

All the year -7.432±1.129 0.025±0.015 0.089 0.61 0.010 0.010 
 

 

Solar Flux  F 

Autumn -5.462±0.383 -0.002±0.003 0.477 0.67 0.0063 0.0062 
Winter -6.680±0.619 0.006±0.002 0.010 0.71 0.071 0.070 
Spring -5.532±0.448 -8.423 0.9 0.66 0.079 0.078 

All the year -5.491±0.221 -1.79×10-3±0.002 0.291 0.548 0.0045 0.0044 
 

 

Outdoor CO2 concentration CO2ext 

Autumn 4.504±3.545 -0.010±0.004 0.008 0.83 0.118 0.116 
Winter -6.638±0.926 0.001±0.001 0.461 0.75 0.0054 0.0053 
Spring -5.299 0.001±0.007 0.846 0.55 5.44×10-4 5.35×10-4 

All the year -5.825±0.556 2.59×10-4±0.001 0.671 0.54 5.56×10-4 5.43×10-4 
 

 

Wind speed Vwind 

Autumn -5.749±0.441 0.156±0.249 0.530 0.565 0.0033 0.0032 
Winter -5.469±0.528 -0.738±0.249 0.213 0.63 0.04 0.036 
Spring -6.037±0.607 -0.035±0.287 0.904 0.50 0.40 0.39 

All the year -5.374±0.253 -0.231±0.177 0.193 0.58 0.0066 0.0064 
 

 

Indoor relative humidity RHint 

Autumn -0.530±2.209 -0.119±0.054 0.029 0.74 0.050 0.049 
Winter -8.701±3.548 0.065±0.085 0.445 0.59 0.0091 0.0089 
Spring -3.131±2.899 -0.082±0.082 0.322 0.62 0.52 0.51 

All the year -8.701±3.548 0.065±0.085   0.0070 0.0069 
Indoor temperature Tint-lower  1.002±2.393 -0.161±0.063 0.010 0.80 0.065 0.064 



Indoor temperature Tint-upper Autumn 1.391±2.602 -0.175±0.070 0.012 0.79 0.10 0.088 
Indoor temperature Tint-lower  

Winter 
-24.39 0.933±0.993 0.348 0.60 0.0104 0.0103 

Indoor temperature Tint-upper 8.388 -0.688±0.502 0.171 0.66 0.017 0.016 
Indoor temperature Tint-lower  

Spring 
— — — — — — 

Indoor temperature Tint-upper -4.448 -0.087±0.211 0.681 0.58 0.49 0.49 
Indoor temperature Tint-lower  

All the year 
— — — — — — 

Indoor temperature Tint-upper -3.321±1.437 -0.120±0.076 0.116 0.60 0.0084 0.0082 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 11 Regression results and statistical tests of the multi-variate logistic regression model for changing thermostat states: Active occupants 

Variable Season Regression coefficient  p-value of β Goodness of fit 

Nagelkerke’s R² McFadden's R² 

Intercept β0  

 

 

 

Autumn 

 

2.247±0.850 —  

 

 

 

0.066 

 

 

 

 

0.053 

Outdoor temperature Text -3.39±1.426 0.0174 

Outdoor relative humidity RHext -3.36±0.949 0.0003 

Solar Flux  F — — 

Outdoor CO2 concentration CO2ext — — 

Wind speed Vwind -1.032±0.704 0.1426 

Indoor relative humidity RHint 2.17±1.029 0.0350 

Indoor temperature Tint-lower — — 

Indoor temperature Tint-upper -4.29±0.939 < 0,0001 

Intercept β0  

 

 

 

 

Winter 

-1.029±0.299 0.00060  

 

 

 

0.0324 

 

 

 

 

0.0219 

Outdoor temperature Text — — 

Outdoor relative humidity RHext 0.6195±0.3721 0.0959 

Solar Flux  F 0.5549±0.3348 0.0974 

Outdoor CO2 concentration CO2ext — — 

Wind speed Vwind — — 

Indoor relative humidity RHint -1.297±0.3658 0.00039 

Indoor temperature Tint-lower -1.287±0.3325 0.00010 

Indoor temperature Tint-upper — — 

Intercept β0  

 

 

 

-1.920±0.3090 —  

 

 

 

 

 

 

 

Outdoor temperature Text — — 

Outdoor relative humidity RHext — — 

Solar Flux  F — — 



Outdoor CO2 concentration CO2ext  

Spring 

-2.2295±0.5612 < 0,0001  

0.035 

 

0.027 Wind speed Vwind — — 

Indoor relative humidity RHint — — 

Indoor temperature Tint-lower — — 

Indoor temperature Tint-upper 1.795±0.3954 < 0,0001 

Intercept β0  

 

 

 

 

All the year 

-0.1002 ±0.329 —  

 

 

 

 

0.1529 

 

 

 

 

 

0.1223 

Outdoor temperature Text -4.27 ±0.387 < 0,0001 

Outdoor relative humidity RHext 0.945±0.356 0.0079 

Solar Flux  F — — 

Outdoor CO2 concentration CO2ext 0.947 ±0.483 0.050 

Wind speed Vwind 1.090 ±0.450 0.015 

Indoor relative humidity RHint — — 

Indoor temperature Tint-lower -4.90 ±0.519 < 0,0001 

Indoor temperature Tint-upper — — 

 

 

 

 

 

 

 

 



Table 12 Results of the VIF and GVIF analyses for the explanatory variables for all the year and different season thermostat changing models 

Variable Autumn Winter Spring All the year 

VIF* Df* GVIF1/(2*Df) VIF* Df* GVIF1/(2*Df) VIF* Df* GVIF1/(2*Df) VIF* Df* GVIF1/(2*Df) 

Outdoor temperature Text 6.54 1 2.55 — — — — — — 1.22 1 1.10 

Outdoor relative humidity RHext 4.58 1 2.14 1.32 1 1.15 — — — 1.17 1 1.08 

Solar Flux  F — — — 1.21 1 1.1 1.09 1 1.04 — — — 

Outdoor CO2 concentration CO2ext — — — — — — — — — 1.14 1 1.07 

Wind speed Vwind 1.18 1 1.08 — — — — — — 1.14 1 1.07 

Indoor relative humidity RHint 3.56 1 1.88 1.16 1 1.08 — — — — — — 

Indoor temperature Tint-lower — — — 1.01 1 1.00 — — — 1.13 1 1.06 

Indoor temperature Tint-upper 1.66 1 1.28 — — — 1.09 1 1.04 — — — 

VIF*: Variance Inflation Factor.             

Df*: Degree of freedom.             

 

 

 

 

 

 

 




