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Abstract: In the grasping and manipulation of 3D deformable objects by robotic hands, the physical
contact constraints between the fingers and the object have to be considered in order to validate
the robustness of the task. Nevertheless, previous works rarely establish contact interaction models
based on these constraints that enable the precise control of forces and deformations during the
grasping process. This paper considers all steps of the grasping process of deformable objects in
order to implement a complete grasp planning pipeline by computing the initial contact points
(pregrasp strategy), and later, the contact forces and local deformations of the contact regions while
the fingers close over the grasped object (grasp strategy). The deformable object behavior is modeled
using a nonlinear isotropic mass-spring system, which is able to produce potential deformation.
By combining both models (the contact interaction and the object deformation) in a simulation
process, a new grasp planning method is proposed in order to guarantee the stability of the 3D
grasped deformable object. Experimental grasping experiments of several 3D deformable objects
with a Barrett hand (3-fingered) and a 6-DOF industrial robotic arm are executed. Not only will
the final stable grasp configuration of the hand + object system be obtained, but an arm + hand
approaching strategy (pregrasp) will also be computed.

Keywords: 3D deformable object; grasping; robust manipulation; robot hand

1. Introduction

Nowadays, manipulation has become an increasingly important standing research topic in
robotics. Most of the related works in this field consider the grasping of rigid bodies as an extensively
studied area, which is rich with theoretical analysis and implementations using different robotic
hands ([1–8]). Robotic grasping of deformable objects has also acquired importance recently due to
several potential applications in various areas, including biomedical processing, the food processing
industry, service robotics, robotized surgery, etc. ([9–14]). Recent surveys covering the literature related
to the robotic grasping and manipulation of deformable objects can be found in [12,15].

Nevertheless, efficient and precise (i.e., deformation/force control) robotic grasping of 3D
deformable objects remains an underdeveloped area within the robotics community due to the technical
and methodological difficulties of the problem. In fact, this problem involves implementing two main
steps with their own subproblems: determining the initial location of the grasp points and moving the
hand + arm system towards them (i.e., pregrasping strategy), and closing the fingers of the robotic hand
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until a robust grasp is reached while taking into account the deformation of the object (i.e., grasping
strategy).

In the case of the pregrasp strategies, two main problems arise: firstly, implementing a grasp
quality measure to choose the most stable grasp configuration; secondly, applying the kinematic
constraints of the hand + arm system so that the chosen grasp is reachable. Several previous surveys
to quantify grasp quality were developed in [1,16–19]. All of these approaches have studied stable
grasps and developed various stability criteria to find optimal grasps for rigid objects. Nevertheless,
the development of algorithms that can efficiently synthesize grasps in 3D deformable objects is still
a challenging research problem. Wakamatsu et al. [20] analyzed the stable grasping of deformable
objects based on extending the concept of force closure of rigid objects to deformable planar objects
with bounded applied forces. Mira et al. [21] presented a grasp planner that can reproduce the actions
of a human hand to determine the contact points. Their algorithm combines the position information
of the hand with visual and tactile data in order to achieve a hand–object configuration. This method
is applied to planar objects without considering applied forces by fingers and object deformation.
Xu et al. [22] proposed a grasp quality metric for hollow plastic objects based on minimal work in
order to combine wrench resistance and object deformation. Jorgensen et al. [23] presented a generic
solution for doing pick and place operations of meat pieces with a vacuum gripper. This solution used
a grasp quality metric that combines wrench resistance and object deformation. It was based on the
computation of the required work to resist an external wrench and it can only be applied to planar
objects, without a direct relation between applied forces and deformation. In fact, none of these works
can be applied to general 3D deformable objects and they are solutions for specific types of objects.

For the second step of the grasping problem (i.e., closing of the fingers), previous grasping
synthesis methods are mainly based on the generation of force closure (FC) grasps ([24–26]). This means
that the robotic hand is able to maintain the manipulated object inside the palm despite any external
disturbance and evaluate the contact forces including those due to friction. FC is generally used
to implement the grasping of rigid objects with a low number of frictional contacts by taking into
account geometric criteria of their contact surfaces. Nevertheless, traditional FC-based approaches
cannot be applied to deformable objects due the complexity of their interaction with the robotic
hand’s fingers: the object deforms (i.e., its size and shape are changed) and the contact surfaces evolve
dynamically while contact forces are applied by the fingers. New reactive methods based on the
detection and avoidance of slippage have been developed in order to solve this limitation in the
grasping of deformable objects. For instance, Kaboli et al. [27] computed the tangential forces required
for slippage avoidance and adjusted the fingers’ relative positions and grasping forces accordingly,
taking into account an estimation of the weight of the grasped object. The main drawback of this
approach is that the relationship between applied forces and object deformation is not considered.
Zhao et al. [28] proposed a new slip detection sensor based on video processing in order to perceive
multidimensional information, including absolute slip displacement, the deformation at the object
surface, and force information. This method is only applied for 2D objects with transparent and
reflective surface, such as pure glass. However, these types of materials are not common in deformable
objects. In addition, the stress state of the gripper–object interface is not precisely analyzed when
taking into account the properties of the object’s material.

In order to solve all these limitations of reactive strategies, it is crucial to use a suitable
contact model ([29–32]) that explains the coupling between the contact forces and the object
deformations. A precise contact model can be exploited to provide a set of grasping forces and
torques that can be applied to maintain equilibrium before and after the deformation [33]. Thereby,
the grasp stability can be computed in real-time while the contact surfaces evolve during deformation.
This evolution of the object surface is obtained by sampling mechanical deformation models [34],
mainly mass-spring systems ([35,36]), finite element methods (FEM) ([37,38]), and impulse-based
methods ([39]). The mass-spring system is a fast and interactive physical model with a solid
mathematical foundation and well-understood dynamics. This model provides a more realistic
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force/deformation behavior in the case of large deformations, while maintaining the capability of
real-time response. FEM provides higher accuracy, but it requires higher numerical computation, which
is more appropriate for offline simulations. Therefore, this paper uses a deformation model based on
nonlinear mass-spring elements distributed across a tetrahedral mesh: lumped masses are attached
to the nodes and nonlinear springs represent the edges. The tracking of the mesh nodes positions
is assured by solving a dynamic equation based on Newton’s second law. The main interests of this
deformation model are the dynamic predictions of the object’s deformations and its realistic behavior,
which results from the nonlinearity of the object. More details about this object deformation model can
be found in previous works [40] and it will be used by the new proposed grasp synthesis algorithm.

Several previous works have taken into account the deformation of soft objects while grasping
them without integrating precise contact interaction models. Berenson et al. [41] presented a
vision-based deformation controller for elastic planar objects without considering the grasp properties.
This method takes into account just one contact point which cannot be used with a multifingered
hand for grasping deformable objects. Similarly, Nadon et al. presented a model-free algorithm in [42]
based on visual information for automatically selecting the contact points between the fingers and the
object’s contour in order to control its shape. However, contact forces and object stability were not
considered. Grasping deformable planar objects using contact analysis was proposed in [43]. It was
based on an algorithm to track the contact regions during the squeezing process and determine the
stick/slip mode in the contact area. Fingers’ displacements were considered rather than forces, and
object stability was not guaranteed. Similarly, Sanchez et al. [44] developed a manipulation pipeline
that is able to estimate and control the shape of a deformable object with tactile information but the
stability of the grasp is not considered. Authors in [45] proposed a new approach to lift a deformable
3D object, causing small deformations of the object by employing two rigid fingers with contact friction.
This approach considered small deformations within the scope of the linear elasticity during the grasp
operation and did not deal with the nonlinear relationships between deformations and forces of 3D soft
objects. Jorgensen et al. [46] presented a simulation framework for using machine learning techniques
to grasp deformable objects. In this framework, robot motions were parameterized in terms of grasp
points, robot trajectory, and robot speed. Hu et al. [47] presented a general approach to automatically
handle soft objects using a dual-arm robot. An online Gaussian process regression model was used to
estimate the deformation function of the manipulated objects and low-dimension features described
the object’s configuration. Finally, new works (such as [48,49]) integrate deep-learning techniques, 3D
vision, and tactile information in order to fold/unfold and pick-and-place clothes. Although all these
works consider the deformation of the object while manipulating it, an initial stable grasp is supposed
to be known and nonlinear force–deformation relations are not computed during the handling process.

None of these works combine all the previously explained elements that are required for the
implementation of a general and complete grasp planning pipeline for 3D deformable objects: a pregrasp
strategy for reaching the object that takes into account grasp quality metrics for 3D deformable objects,
and a grasp strategy for closing the fingers that guarantees a stable configuration of the object by
considering its deformation and the applied contact forces. This paper involves an extension of our
previous grasping strategy in [33] in order to implement this complete grasp planning pipeline. Firstly,
we adapt the stability criteria developed for robotic grasp synthesis of rigid objects to 3D deformable
objects (see Section 2 for a general description of the strategy and Section 3 for the new geometric
criterion of the initial grasp). We also defined a new pregrasp strategy (Sections 4 and 5) in order to
approach the deformable objects in an optimal way before manipulating them by using the previous
grasping metrics. This grasping strategy is based on an interaction model developed by the authors
in a previous work [40]. Section 6 indicates how this finger–object contact model is used in order to
compute the contact forces to be applied by the fingers for a stable grasp of the deformable object and
what their precise values are in the proposed experiments. We consider the problem of grasping and
manipulation of a 3D isotropic deformable objects with a 3-fingered Barrett hand. This hand is installed
as the end-effector of a 6-DOF Adept Viper robotic arm S1700D. Finally, a complete grasping planning
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strategy combining the pregrasp and grasp synthesis strategies of the hand + arm system is developed
and tested with real objects (Section 7).

2. General Description of the Grasp Planning Pipeline

As indicated in the introduction section, by using our previously developed contact model [33],
we can handle highly deformable objects and give precise estimations of the contact forces generated
while deforming them. Those precise estimations would guarantee the static equilibrium of the object
by considering new grasps metrics (Section 3) and optimizing the pregrasp configuration of the robotic
hand around the object (Sections 4 and 5).

The flowchart in Figure 1 shows all the steps that are required in order to compute and execute
a robust grasp (i.e., the configuration of fingers over the surface of the object) that guarantees the
stability of the object with our grasp planning pipeline.

Figure 1. Flowchart of the proposed grasp planning pipeline (i.e., pregrasp and grasping strategies) for
handling deformable objects with a hand + arm robot system.

In order to execute the computed grasp, the first step determines the pregrasp configuration.
In fact, the complete grasp planning strategy is divided into two phases: First, determining the
configuration of the robotic arm to bring the hand close to the object so that the fingers of the hand
can reach the surface of the object (Section 5). The second phase is determining the appropriate
initial configuration of the fingers of the hand to grasp the object based on a new geometric criterion
(Sections 3 and 4). The determination of the joint parameters of the arm and the hand for executing
both phases is ensured by the resolution of their inverse kinematics (IK).

Once the pregrasp step is performed, the robot moves next to the object and the fingers reach
the initial grasp. No important deformation is supposed to be generated when the fingers come into
contact with the object since a very small contact force will be firstly applied in order to avoid that
the grasp location changes. As soon as this initial grasp is executed precisely, the third step of the
algorithm is activated and an iterative closing of the fingers begins, based on the simulation of the
contact interaction model (Section 6). At each iteration of the simulation, the deformations of the object
are updated and the generated contact forces are computed. The computed contact forces are used
to evaluate the static equilibrium of the object + fingers system. The iterative process is repeated in
simulation until the static equilibrium is reached (see all these steps in simulation on the left side of
the flowchart in Figure 1).
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Upon completion of the simulation process, the real handling and manipulation of the object can
be performed by executing the contact forces obtained from simulation (see steps on the right side
of the flowchart). Firstly, the object is installed at the workspace of the robot with the same relative
configuration as at the beginning of the simulation. Then, the robotic arm moves towards the pregrasp
configuration (i.e., phase 1 in reality) and the hand fingers are moved towards the initial contact points
by position control (i.e., phase 2 in reality). At this stage (beginning of phase 3 in reality), the fingers are
closed by force control and apply progressive squeezing of the object until the contact forces (which are
measured by contact sensors installed inside each finger of the Barrett hand) become equal to the
contact forces computed at the simulation step. These contact forces guarantee the equilibrium of the
object–hand system (as validated by the simulation). Thereby, the object can be lifted up from the table
without any risk of sliding and can be robustly manipulated. In the next sections, all these steps are
described in detail and are validated with real pick-and-place experiments of deformable objects by a
hand + arm robot system (Section 7).

3. Synthesis of the Initial Grasp Configuration

In this section, we address the characterization of the object stability for a three-fingered grasp.
This implies determining a force closure configuration based on the choice of three contact points from
the set of all the points representing the outer 3D surface of the object. The following assumptions are
considered in this procedure:

• The use of three fingers for the grasp operation modeled as hemispheres with radius R.
• The first contacts between the fingers and the object are point contacts.
• The outer surface of the object is represented by a set of points Ω, which are described by their

position vectors
→
Pi measured with respect to a reference frame located at the center of mass (

→
Pco)

of the object.

In fact, a 3-fingered grasp is more reliable in terms of stability, slip avoidance, and balance of
forces when it converges towards an ideal equilateral grasp [17]. Thus, each three-fingered grasp can
be characterized by a value which represents its similarity to an equilateral triangle. We suggest an
algorithm based on geometric criteria to find this equilateral grasp. This algorithm determines, at first,
the set of all possible grasping triangles by scanning the points belonging to the contact surface Ω.
Then, using the Q1 criterion presented by Roa [17], our algorithm compares the angle values (alpha,
beta, and lambda) of these triangles with π/3 (i.e., the angle that characterizes an equilateral triangle)
in order to choose the configuration closest to an equilateral triangle (see Figure 2):

Q1 =
3

2π

(∣∣∣α− π

3

∣∣∣+ ∣∣∣β− π

3

∣∣∣+ ∣∣∣γ− π

3

∣∣∣) . (1)

For a target angle value of 3/2π, the minimum possible value of Q1 is 0 for a perfect equilateral
triangle, 2 for the most unfavorable case (the triangle degenerates into a segment), and 1 for an
intermediate state.

For evaluating the angles of the triangle, we use a margin of error defined by the interval [0, 0.3].
Depending on the density of the points of the contact surface Ω, this algorithm can give several grasp
configurations. Finally, a second criterion, referred to as Q2, is used in order to choose one between
them. It measures the distance between the center of the mass of the object CO and the center of the
grasping triangle CT (Figure 3), defined as

Q2 = |CO − CT | . (2)
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Figure 2. Force arrangement criteria.

This criterion was developed to obtain stable grasps with respect to the torques generated by
gravitational and inertial forces [17]. The complete grasp synthesis algorithm based on the these two
criteria Q1 and Q2 is represented in the diagram “Algorithm 1”:

Algorithm 1 Synthesis of the 3 contact points for initial grasp configuration.
Grasp synthesis algorithm. Input: points Pi on contact surfaces Ω with their 3D coordinates

1. Calculation of the set Γ of grasp triangles defined from points Pi.
2. Calculation of the value of the angles of the grasp triangles of the set Γ.
3. Choice of the grasp triangles closer to an equilateral triangle by applying criterion Q1, the set of

these triangles is named Ψ.
4. Calculation of the barycenter CT of the grasp triangles of the set Ψ.
5. Calculation of the distance between CO and the centers CT of the triangles of the set Ψ by applying

criterion Q2.
6. Choosing the triangle that minimizes Q2.

Output: 3 initial contact points of the grasp configuration

Figure 3. The distance between CO and CT .
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4. Pregrasp Strategy for the Robotic Hand: Placement of the Fingers

In this section, we present the pregrasp strategy for reaching the three contact points of the initial
grasp computed in Section 3 with a three-fingered robotic hand (e.g., the Barrett hand [50] in our
experiments). In order to describe the kinematic model of the Barrett hand, we establish the joint
frames of Figure 4. The movement of the fingers of the Barrett hand is controlled by defining 4 encoder
values [qM1 . . . qM4] that are connected to the joint values ϕi of the fingers (Figure 4) by the following
coupling relationships:

Figure 4. Barrett hand: dimensions, frames, and joints.



φ98

φ109

φ1211

φ1312

φ147

φ1514

φ87

φ117


=



1/125 0 0 0
1/375 0 0 0

0 1/125 0 0
0 1/375 0 0
0 0 1/125 0
0 0 1/375 0
0 0 0 2/35
0 0 0 −2/35


∗


qM1

qM2

qM3

qM4

 , (3)

where qMk =
[
0 17, 500

]
for k =

[
1 2 3

]
(i.e., the range of variation of the encoders of the motors

for closing/opening the three fingers), and qM4 =
[
0 3150

]
(i.e., the range of variation of the encoder

of the motor 4 for separating fingers 1 and 2 around the palm).
The pregrasp strategy for the three-fingered robotic hand involves two steps: the first one aligns

the orientation of the hand with the initial grasping triangle computed in Section 3; the second one
adjusts this initial estimation of the grasp by taking into consideration the kinematic constraints of the
hand. The first step consists of orientating the hand so that the TCP (Tool Center Point, defined along
the axis perpendicular to the palm of the hand) coincides with the CT grasp triangle center (as shown in
Figure 5). The second step involves the resolution of the IK of the fingers in order to estimate the joint
values to reach the three grasp points (P1, P2, and P3) of the initial grasp triangle. If no IK solution is
found, the length of the TCP line is changed and the IK resolution is recomputed. When an IK solution
is found, the motor commands qMk are computed in order to attend to these joint values, by applying
the inverse expression of (3). The implemented algorithm is shown in the diagram “Algorithm 2”.
In the context of this iterative solution search, we consider that the solution is validated for a value of
joint angle difference for each of the fingers smaller than 2 degrees.
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Figure 5. Intersection of the hand’s Tool Center Point (TCP) with the center CT of the
grasp triangle.

Algorithm 2 Pregrasp strategy for the robotic hand.
Finger placement algorithm for the initial grasp. Input: grasp triangle computed by Algorithm 1

1. Reorientation of the hand in the grasp plan and coincidence of TCP with CT .
2. Calculation of IK and definition of finger joint values.
3. Searching for a solution for qM1, qM2, and qM3 by successive iteration over the length L in order

to find a solution.
4. Reorientation of the hand around TCP and adjustment of the distance L to define a solution

for qM4.

Output: Definition of the values of [qM1 . . . qM4] and the 6 components (position + orientation) of the
tool frame defining the hand’s TCP.

5. Pregrasp Strategy for the Hand + Arm System: Reaching Trajectory by the Arm

After establishing the initial grasp points of the fingers (Section 3) and the corresponding pregrasp
configuration of the hand around the object (Section 4), we should execute the latter by moving the
hand with a robotic arm that carries it. Figure 6 shows the flowchart of the pregrasp strategy for
the hand + arm system that uses the IK of the arm and the hand for achieving this initial grasp.
For implementing this planning strategy, we have chosen a 6-DOF robotic arm (e.g., a Viper S1700D
for our real experiments) so that the hand can attain any pose (position + orientation) in the space
around the object. Initially, the object is resting on a table, modeled by a plane parallel to the XY plane
of the arm base.

For performing this pregrasp strategy, we should represent the object pose (position [x, y, z] in
mm and orientation [y, p, r] in ZYZ Euler angles) from its original WobjO frame (object mark) to the
WobjU frame (user mark), known by the arm (see Figure 7). The TCP pose will also be represented
firstly in the WobjO frame in order to easily define relative movements between the object and the
hand. Later, it will be transformed into the arm frame (WobjU) so that final movements of the arm can
be computed.

Firstly, we want to reach the relative object + hand configuration of Figure 8, which consists of
putting the TCP in coincidence with C0 (see Figure 9b). Then, we use the results from Section 3 to
determine the contact points. We calculate the grasp triangle formed by these three contact points as
well as its centroid CT . Finally, we define the final pregrasp configuration (defined in Figure 5) by the
translation and orientation of the hand. This step consists of matching the two TCP and CT points and
aligning the Z axis of the TCP coordinate system perpendicular to the grasp triangle (see Figure 9c)
by computing the arm movements required to reach the tool frame obtained by Algorithm 2. When this
final pregrasp configuration is reached by the hand, the fingers will be closed by applying the joints’
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angles obtained with Algorithm 2. An example of the main execution steps of this pregrasp strategy
for a cube is shown in Figure 9.

Figure 6. Flowchart for the pregrasp planning strategy of the hand + arm system. IK—Inverse
Kinematics.

Figure 7. Main frames of the hand + arm system, simulated in Matlab.
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Figure 8. Intersection of TCP and C0.

Figure 9. Main execution steps of the pregrasp strategy for the hand + arm system in order to grasp
a cube: (a) initial robot–object configuration, (b) reaching trajectory (intersection of TCP and CO),
(c) hand orientation (intersection of TCP and CT), (d) pregrasp configuration.

6. Final Stable Grasp Execution Based on Contact Interaction Modeling

In order to be able to evaluate the equilibrium with all the forces that take place in the real
experiment while the fingers of the hand are closing, a model of the contact interactions between the
fingertips and the object is required for precisely determining the forces–deformations relationship
during grasping. This model will receive as input the initial grasp of the object without any deformation
(i.e., the initial contact points of the fingertips over the object’s surface or contact polygon determined
at Section 3 and the fingers’ configuration of the pregrasp strategy are described in Sections 4 and 5).

After this initial grasp, the fingers should close iteratively towards the center of the object until
the equilibrium of all forces over the object is reached and a stable grasp is performed. With the aim
of computing the required fingertip forces for this equilibrium, the simulation of this contact model
is achieved in several sequential steps. Firstly, the contact between fingers and the object is detected.
Secondly, contact forces are computed (by the evaluation of the relative velocity between the fingers
and the object). Finally, the static equilibrium is checked for grasping stability. At each iteration of
the simulation, the dynamic model updates the overall shape and contact area deformations due to
the applied forces. Contact forces are individually calculated for each contact point, which gives a
realistic distribution of the contact pressure in the contact zone. The contact model takes into account
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the normal forces and the two modes of the tangential forces due to friction: slipping and sticking
modes. As the object is modeled by a set of nonlinear spring–damper pairs, the nonlinear normal force
is given by

fnj =

{
0 , δj ≤ 0
max(0, (Kδn

j + Cδ̇j))
(4)

fnj = fnj n f j, (5)

where δj is the penetration distance measured along the normal direction to the contact surface j; K and
C are the contact stiffness and damping constants, respectively. Those parameters depend on Young’s
modulus and the Poisson ratios. Based on the work presented in the literature [51,52], the stiffness
constant is calculated by

K = 2Ψ
√

R, (6)

where Ψ is a constant, calculated according to the mechanical properties of the two objects in contact,
and it is given by

Ψ =
1

1−v2
1

E1
+

1−v2
2

E2

, (7)

where E1 and E2 are the Young’s modulus; v1 and v2 are the Poisson ratios of the finger and the object,
respectively. The damping constant is determined by

C = 4πRγ, (8)

where γ is a constant.
To characterize these mechanical parameters, compression tests are done for obtaining curves of

stress evolution according to compressive deformation (see [33] for photos and detailed results of this
calibration process). Thereby, the Young’s modulus (4.928 MPa) and the Poisson’s ratio (0.39) of the
material of the objects (i.e., foam) to be grasped during the real experiments in Section 7 are identified.

Modeling of the tangential force, acting along each contact, is required in order to prevent any
slippage and to ensure grasp stability. The contact model takes into account the two modes of the
tangential forces due to friction: slipping and sticking modes. In this model, a parallel spring–damper
is attached to the ground at one end, via a slider element, and to the fingertip at the other end.
Therefore, the contact point location dynamically changes in the slipping condition. These variables
correspond to the relative displacements at the contact point due, respectively, to sticking and slipping.
They are dynamically reset to zero if the contact is broken. The sliding friction force can be defined in
terms of the Coulomb law as follows:

fslip =

{
0, ‖Vt‖ = 0
−µ fn

Vt
‖Vt‖

, (9)

where µ, fn, and Vt are friction coefficient, normal force, and tangential velocity, respectively. With this
model, the contact point location dynamically changes in the slipping condition. If the tangential force
norm is less than the threshold of sliding, then we have a sticking mode whose tangential force is
defined by

fstick =

{
0, v = 0
−(ktv− ctv̇) PcPs

‖PcPs‖ , v > 0 , (10)

where v is the tangential deformation at the contact facet, Pc is the contact point position, and Ps is
the contact point position at the sticking regime. The parameters kt and ct are respectively tangential
stiffness and damping coefficients estimated by using Dopico’s method [30].

As indicated at the beginning of this section, this contact model will be executed after the initial
grasp configuration (obtained as output of the pregrasp strategy) is reached and the fingers begin to
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touch the surface of the object. In fact, a simulation of the grasping execution strategy is implemented
in Matlab in order to determine the contact forces that should be applied to reach a robust grasp.
This simulation will iteratively close the fingers towards the center of the object, evaluate the forces
transmitted to the object by solving the contact model, update the state of the contact surface due
to deformations, and verify the static equilibrium of the hand + object system. When this static
equilibrium is obtained in the simulation, the contact forces applied by the simulated fingers will be
used as references for the force control of the real robotic hand. An example of this grasping execution
strategy will be shown in Section 7 in order to justify its application in our pipeline. Nevertheless, more
experiments of this grasp execution strategy can be found in the previous work [33] by the authors,
where it was first proposed.

7. Experimental Validation of the Grasp Planning Pipeline for the Hand + Arm System

The different steps of our complete grasp planning pipeline are validated with simulation and
real experiments. First of all, the synthesis algorithm for the first initial grasp configuration proposed
in Section 3 (i.e., Algorithm 1) is validated for three different shapes: a sphere, a cylinder, and a cube
(Figure 10). This algorithm has been implemented in Matlab, by integrating a discrete 3D tetrahedral
representation of the shape of these objects. The number of nodes of this 3D representation and the
values of the two grasping quality metrics computed by the algorithm for the three objects are shown
in Table 1. The initial grasping points obtained are shown in Figure 10 and they do not consider any
deformation of the objects.

Figure 10. Configuration of the initial grasping points for a sphere, a cube, and a cylinder.

Table 1. Evaluation of the initial grasping criteria for a sphere, a cube, and a cylinder.

Sphere
(80 mm)

Cube
(80∗80∗80mm)

Cylinder
(R35mm∗L140 mm)

Number of nodes 182 162 226

Q1 0.0491 0.2302 0.1145

Q2 (mm) 4.8659 13.334 11.6667

These initial grasp configurations are used as input for the pregrasp and grasp execution steps
of the grasp planning pipeline. For validating both steps, real experiments with the Adept arm and
the Barrett hand grasping a foam cube (Figure 11) and a cylinder (Figure 12) are performed. Both
objects represent typical shapes found in grasping applications of industrial products: a planar-faced
surface (e.g., a cube) and a revolution surface (e.g., a cylinder). After the grasping, the object is lifted
and carried to another position over the table in order to validate the stability of the grasp. The first
step consists of generating and executing the path of the Adept arm for the pregrasp configuration in
simulation, ensuring that the object is within the Barrett hand workspace (as explained for the cube in
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Figure 9a–c). The trajectory of the arm and the closing of the hand are then performed in the simulation
(Figure 9d) until the fingers come into contact with the object.

The second step is to model the interaction between the fingers and the object for closing the
fingers against the object surface in order to get the required contact forces in simulation (as explained
in Section 6). The real contact forces at each finger are obtained by strain gauges installed in the
phalanxes of the Barrett hand. Thereby, the Barrett hand is iteratively closed until the contact forces
obtained from the simulation of the contact model are attained (as shown in Figure 13). Thus, a stable
final grasp of the deformable object is obtained and the object can be lifted without any danger of
falling down. Figure 13 shows the variation in the norm of the three forces applied to the cube during
the simulation of the contact model. At the initial step (t0) of the simulation, the fingers move towards
the object in order to reach the initial contact points. When the fingers come into contact with the object
(t1), the contact model starts to evaluate the applied forces. This figure also shows that the contact
forces are continuous and directly related to the amount of local deformation inside the contact area.
The fingers continue to apply forces until equilibrium conditions are satisfied (i.e., reaching the three
fingers’ contact forces thresholds, identified by horizontal dashed lines in Figure 13). Once this state is
reached and the three force thresholds are obtained, the fingers should keep these contact forces in
order to ensure stable handling and then the simulation can stop.

Figure 11. Pick-and-place of the cube by the Adept robot and the Barrett hand: (a) grasping, (b) lifting,
and (c) leaving.
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Figure 12. Pick-and-place of a cylinder by the Adept robot and the Barrett hand: (a) grasping, (b)
lifting, and (c) leaving.

Figure 13. Grasping forces applied by the three fingers of the Barrett hand (F1, F2 and F3) in simulation.

The relation between these force thresholds and penetration of the fingers inside the object
(i.e., the deformation of its surface) is obtained by the simulation of the contact interaction model
while closing the fingertips over the object. The real relation force–penetration is very similar to the
one computed in the simulation (see real validation experiments in [33]). Thereby, our strategy of
applying the contact forces obtained from simulation in real grasping is suitable. In fact, the mean
error of the contact force obtained by our model is of 0.3N, which implies that only 15% of typical
contact forces is required for grasping most common life deformable objects. In addition, the nonlinear
relation force–penetration shows that simplified linear models cannot be used for grasping significantly
deformable objects and justifies the necessity of the proposed model. The proposed grasp planning
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strategy is validated by the correct execution of two pick-and-place tasks (for a cube and a cylinder):
lifting and stable transportation of both objects with the real robot without any slippage (as shown in
the real photographs of Figures 11 and 12).

8. Conclusions

This work has been devoted to the complete process of deformable object grasp planning with
an industrial manipulator (robotic hand + robotic arm). First of all, this requires the definition of the
grasp points over the surface of the object and thus, the determination of an initial grasp configuration.
Later, we presented our approach for determining the pregrasp strategy for reaching this initial grasp
by taking into account the kinematic constraints of the arm and the hand. Thereby, the grasp planning
has been divided into two phases: firstly, determining the configuration of the robot arm to bring the
hand close to the object; secondly, determining the appropriate configuration of the fingers of the hand
to grasp the object. The determination of the joint parameters of the arm and the hand is ensured by
the resolution of their inverse kinematics. In the case of the hand, the implemented strategy consists
first of putting the TCP (line perpendicular to the palm of the hand) at an intersection with the center
of the grasp triangle (obtained in the initial grasp synthesis) and aligning it with the normal vector of
this grasp triangle. The second step is to iteratively search for a solution to the articular parameters
of the three fingers of the Barrett hand in order to bring them into correspondence with the grasping
points previously defined by force-closure-type stability conditions. Thereby, this final grasp solution
combines the initial grasp based on a general geometric criteria for force closure (i.e., it only considers
the shape of the object) with the kinematic constraints of the robotic hand by applying the proposed
pregrasp strategy. Nevertheless, this grasp configuration does guarantee the robustness of the grasp
only for rigid objects but not for deformable objects. Thus, a force–deformation serving scheme is
activated when the fingers come into contact with the deformable object to be grasped. This scheme is
based on a simulation of the object–fingers interaction (previously developed by the authors in [33]),
which obtains the contact force thresholds that should be applied by the fingers in order to guarantee a
stable grasp while deforming the surface of the object. Finally, an iterative closing of the real fingers is
performed in order to attain these contact forces with the real object.

Objects with simple geometrical shapes (sphere, cube, and cylinder) were chosen for the
experiments to more efficiently simulate the interaction model described in Section 6. The proposed
pregrasp/grasp pipeline is not restricted to simple shapes and can be applied to any shape of object.
In fact, the mesh construction process required by the interaction model has been applied by the
authors to very irregular shapes of meat pieces in a previous work [10]. This grasp planning pipeline
is designed for nonlinear deformable objects to be manipulated by three-fingered robotic hands, but
its architecture could be redesigned as a group of interchangeable modules in future works. These
modules could include the following: other types of objects (e.g., changing the contact interaction
model for rigid objects, granular media [53]), new sensing data (i.e., combining tactile and vision
information for estimating the 3D shape of the object and the real contact forces in real-time [54]),
multiple robotic fingers (e.g., dexterous robotic hands [55]), or even more complex manipulation tasks
(e.g., in-hand manipulation [56]).
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