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Abstract— Localizing the vehicle in its lane is a critical task
for any autonomous vehicle. By and large, this task is carried
out primarily through the identification of ego-lane markings.
In recent years, ego-lane marking detection systems have been
the subject of various research topics, using several inputs
data such as camera or lidar sensors. Lately, the current
trend is to use high accurate maps (HD maps) that provide
accurate information about the road environment. However,
these maps suffer from their availability and their price tag.
An alternative is the use of affordable low-accurate maps. Yet,
there is relatively little work on it. In this paper, we propose an
information-driven approach that takes into account inaccurate
prior geometry of the road from OpenStreetMap (OSM) to
perform ego-lane marking detection using solely a lidar. The
two major novelties presented in this paper are the use of the
OSM datasets as prior for the road geometry, which reduces
the research area in the lidar space, and the information-driven
approach, which guarantees that the outcome of the detection is
coherent to the road geometry. The robustness of the proposed
method is proven on real datasets and statistical metrics are
used to highlight our method’s efficiency.

I. INTRODUCTION

Accurate self-vehicle localization is an important task for
autonomous driving and advanced driver-assistance systems
(ADAS). Indeed, for some ADAS applications like Lane
Keeping Assist, knowing the position of a vehicle within
the host lane in the road is crucial in ensuring adequate
maneuvering instructions and vehicle safety.
Several localization strategies have sprung up to fit the
lane/road understanding requirements entirely. One of the
most well-known techniques incorporates an inertial mea-
surement unit (IMU) with a classic global navigation satellite
system (GNSS) receiver (e.g., GPS, Galileo) to locate the
ego-vehicle. However, according to the GPS performance
analysis report of the Federal Aviation Administration [1],
the accuracy of a standard GNSS receiver device is within
3 m with a 95% confidence that does not meet the require-
ments needed for most ADAS applications.
One solution for having an accurate localization that satisfies
the criteria is to locate the vehicle with respect to certain
visual landmarks. Lane markings are the most used in that
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context since they are the easiest to identify and provide
more detail about the road. Leafing through the literature, it
appears that most researchers use a camera for lane marking
detection [2]. Indeed, there are two main advantages of using
the camera: currently, this sensor is the cheapest and most
reliable modality for automotive applications and it provides
dense information of the environment. However, this sensor
depends on the lightness conditions which entails a filtering
process. To overcome this issue lidar sensors can be used.
Using lidar data, it is possible to determine whether a lidar
beam has intercepted asphalt or road painting regardless of
the lighting conditions [3]. This specifically helps in coping
with shadows and darkness where cameras struggle. Besides,
lidar offers a centimeter-accurate 3D representation of the
world. In counterpart, lidar is more expensive than cameras.
Nevertheless, the progress in optical technology and the
increasing demand ultimately led to a decline in the price
of the lidar.
Detection of lane markings using lidar has been the topic
of several research works. Starting with the 2007 DARPA
Urban Challenge, the authors in [4] presented a road edge
(curb) detection using a 2D lidar. In [5] authors proposed
a method to detect road marking. The method relies on an
Otsu thresholding that allows the separation between asphalt
and road marking. Lately, Convolutional Neural Networks
(CNN) have been spread out for ego-lane detection for
images [6]. Before computing the convolutions, a process
phase is included that transforms the lidar points cloud into
reflectivity images, then the generated images are fed into a
neural network [7]. Authors in [8] presented a data-driven
approach for ego-lane marking recognition based on several
3D lidars. A mask is designed using the position of the
vehicle in order to extract ego-lane marking. However, a
problem arises when the algorithm miss matched the ego-
lane marking. Indeed, the outcome produced is incoherent
with the geometry of the lane marking. In contrast, this work
presents a probabilistic model that guarantees the coherence
between the right and left ego lane marking, which results
in a coherent geometry for the ego-lane marking.
High Definition (HD) maps have also been coupled with
lidar in order to provide accurate localization. In [9], the
authors used a lane-level localization based on lidar sensor to
match with an HD map. Lane markings are implemented in
two different steps: road segmentation and Hough Transform
on an intensity image, the resulting lanes are matched with
an HD map to enhance the vehicle localization. According
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Fig. 1: Overall algorithm for the proposed ego-lane detection. (a) The lidar provides pointclouds. (b) Using an IMU,
several pointclouds are accumulated. (c) The ego-lane detection is initialized with OSM geodata. In blue, the search area
corresponding to the uncertainty zone with its mean value in green. (d) the final ego-lane marking detection results after
convergence.

to [8], there are two main drawbacks of HD maps: the
first one is the cost involving creating them. The second
one is the availability for all the geographical locations.
Indeed, creating an HD map of the entire road structure
of the world is impossible due to the constant evolution
of the roads. These two drawbacks make high definition
(HD) maps as an intelligent sensor incapable of replacing the
already existing solutions (cameras and lidars). Furthermore,
as human beings, we do not need such a high precision map
to be conscious of where the road is. Therefore, in this work,
we present a method closer to the human process where we
only have a coarse approximation of the road map.
A more affordable alternative to HD maps is the collaborative
maps like OpenStreetMap (OSM). In the field of intelligent
transport system, OSM data-sets have been used for several
tasks like Road-level localization [10], Lane-level determi-
nation [11]. An interesting approach is presented in [12]. It
relies on the use of road priors and contextual information
for road detection using camera images. Depending on the
number of lanes and the width of the lane, OSM map is used
to build the road backbone. This road shape is then projected
onto the image taking into account the uncertainties related to
the ego-vehicle pose. The result is used as prior to roadway
detection. Worth mentioning study presented in [13] uses
OSM data prior to generating a more accurate map. Indeed,
the authors present a fusion framework from the OSM data
and proprioceptive sensors. In this paper, we use a similar
process as we benefit from the road geometry information
extracted from OSM to detect the ego-lane marking in the
lidar pointclouds. To the best of our knowledge, no study
has been conducted to use a low-cost map such as OSM
with lidar data.
In this paper, it is proposed an ego-lane marking detection
framework that uses only a single lidar and an OSM map.
There are two main novelties presented in this work are

• the use of a coarse map (OSM) to have a prior about
road geometry; and

• the information-driven approach used in the recognition
step. We adopt the information entropy features in order

to increase the signal to noise ratio in the recognition
procedure and ultimately reduce the computation com-
plexity. Furthermore, the probabilistic model proposed
will ensure the geometric coherency between ego-lane
marking.

II. OVERALL ALGORITHM

The pipeline of the proposed ego-lane marking algo-
rithm is illustrated in Figure 1. The method is divided into
three steps: Firstly, the raw point cloud is processed by
taking into account the five last frames. This process is
performed using the vehicle state information from an IMU
(Inertial Measurement Unit). Thereupon, the road model is
extracted from OSM and this model is projected into the lidar
reference. Finally, using this probabilistic model as prior,
recursive recognition detection is performed. All steps of this
algorithm are described in detail in the following sections.

A. Lidar point cloud process

The lidar frames are rich in information. However, one
single lidar frame is not sufficiently dense to correctly per-
form the ego-lane recognition. To overcome this drawback,
we integrate the previous lidar frames into one frame based
on the odometry information of the vehicle. For this work,
we took the last 5 frames into account. Figure 1(a) and
Figure 1(b) show the difference in the spareness of the lidar
pointclouds.
We apply then a threshold on reflectivity. Since we are
looking for the ego-lane marking, points cloud with high
reflectivity will be chosen.

B. Initialization of 2D model: OSM dataset

Before starting with this stage, we must briefly present the
OSM data. Basically, the OSM data are composed of three
keys components: Nodes, Ways, and Relations [14]. Nodes
are the geometrical elements that represent GPS points. Ways
are an ordered list of nodes that represents the roads network.
Thus, each Way (road) is composed of a set of segments [10].
In other words, belonging to a segment is equivalent to
belonging to an OSM Way. So the map matching task can



be reformulated as matching a GPS point with a segment.
Therefore, we use the map-matching algorithm presented
in [10] in order to choose the correct Way (road).
Once the road has been selected, the road is modeled in
2D lidar frame (x, y) as a cubic polynomial as shown on
Figure 2 with x in the forward direction and y in the left
direction [15]:

y(x) =
1

6
c′ x3 +

1

2
c0 x

2 + ψ x + d0 (1)

The parameters c′ is the curvature’s derivative of the road,
c0 the curvature of the road, ψ the vehicle’s heading with
respect of the tangent of the road, d0 the lateral shift of the
ego-vehicle in relation to the road model. For a lane of width
Lw, the left and right ego-lane markings are

yl,r(x) = y(x)± 1

2

Lw√
1 + y′(x)2

, (2)

where y′(x) = d
dx y(x). One can note that the equation for

the markings is not polynomial. However, as the curvature of
the road is small on the highways and most marked roads, the
derivative y′(x) can be neglected for small x. The equation
simplifies to

yl,r(x) ≈ y(x)± 1

2
Lw. (3)

In practice, the approximation even holds for large x, being
accurate enough up to 50 m.
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Fig. 2: The robot navigates on the lane of width Lw modeled
as a polynomial equation y(x). The left and right borders of
the lane are respectively approximated with the polynomials
yl(x) and yr(x).

As discussed before, the OSM data lacks information about
precision. As a consequence, the coefficients of the cubic
polynomial defined in Equation 3 are not accurate. However,
the two coefficients c′ and c0 represent the global shape of
the road so their values can be used as an estimation.
To encompass these uncertainties for each ego-lane marking,
we define a probabilistic model composed of a state vector
sl,r and its associated covariance matrix Csl,r . The state
vector sl,r is defined as

sl,r = [µc′ , µc0 , µψ, µd0 , µLw
]T , (4)

with µ refereeing to a mean value. The values (µ′c, µc0 )
are taken from OSM (Equation 1). These values are not

necessarily accurate but will be counterbalanced by taking
into account the incertitude on the vector sl,r. The co-
variance matrix Csl,r is initialized as

Csl,r =


σ2
c′ 0 0 0 0
0 σ2

c0 0 0 0
0 0 σ2

ψ 0 0

0 0 0 σ2
d0

0
0 0 0 0 σL2

w

 . (5)

We project this model on the lidar frame in order to get the
uncertainty about the cubic polynomial. To do so we compute
the Jacobian matrix of the polynomials yl,r(x):

Jyl,r =

(
∂yl,r
∂c′

∂yl,r
∂c0

∂yl,r
∂ψ

∂yl,r
∂d0

∂yl,r
∂Lw

)
(6)

Thus, we have:

Cyl,r = Jyl,rCsl,r JTyl,r . (7)

The resulting model (yl,r, Cyl,r ) is transformed into the lidar
space as illustrated in Figure 3 with Cyl,r representing the
uncertainties and thus defining the search area for the ego-
lane marking.

Fig. 3: Intensity image of the lidar points with the model
initialization of the presented ego-lane marking model. The
green line is used for the mean value of the probabilistic
model represented by the vectors yl,r, and the blue rectangles
are used to represent the uncertainty Cyl,r .

C. Recursive entropic recognition

Once the probabilistic model is defined, we proceed to
the recognition phase. In contrast to what is described in
most of the works available for lidar detection, we present
an informational driven approach that is inspired by the
work of [16] for camera images. The concept is based on
a focusing algorithm to detect the ego-lane marking. To
do so, we take advantage of the initialized probabilistic
model (yl,r,Cyl,r

) in order to limit the search areas for the
ego-lane marking. Once the search area created, we divide
this zone into nroi Regions Of Interest (ROI) that has the
same height. Afterward, we developed a Bayesian Network
(BN) coupled with the entropic features to choose the most
informative ROI, which means the ROI where we have the
best chance of detecting a section (a segment) of the ego lane
marking. After each detection, we update the probabilistic
model (yl,r,Cyl,r

) which leads to a new searching area and



accordingly reduce the size of the ROIs.
One of the main advantages of this method appears in
the case of wrong detection of a segment. This wrong
detection will produce a wrong probabilistic model. Hence
the resulting ROIs will no longer cover the ego-lane marking.
If this scenario happens, the recursive nature of the proposed
method allows us to downgrade to the previous probabilistic
methods. These steps are repeated until an entropic criterion
is achieved indicating that the ego-lane marking has been
detected. The overall architecture of the discussed algorithm
is presented in Figure 4. Each part of the algorithm is detailed
in the following:

i Initialization At this stage we define the initial proba-
bilistic model (yl,r,Cyl,r

) as already presented in Sec-
tion II-B.

ii Selection of the best Region Of Interest (ROI) Once
the probabilistic model is defined, we proceed to the se-
lection of the most informative ROI in a Top-Down pro-
cess fashion. To do so, we use Entropy from Shannon’s
information [17], because it measures the uncertainty
about a random variable. To select the most informative
ROI we use an a priori selection, we compute the
entropy improvement between the ego-lane state before
attempting a detection and after simulating a detection.
Thus, we define the informational criterion Hsel:

Hsel , ∆H

= H−e −H+
e (8)

With H−e the entropy of the ego-lane state before de-
tection and H+

e the entropy of the ego-lane state after
detection. Thus, H+

e depends on the simulated detection
result. As results Hsel is computed as

Hsel = H−
e −H+

e (9)

= p(Dk = 1, Db = 1).
1

2

[
log|2π eC−

yl,r
| − log|2π eC+

yl,r
|
]
,

with:{
C−

yl,r
Covariance before simulation of the detection, and

C+
yl,r

Covariance after simulation of the detection.

For the probabilities, p(Db), p(Dk), a Bayesian Network
is introduced [18]. Bayesian networks are generally used
to formalize knowledge in an uncertain environment and
are therefore entirely appropriate in this case [19]. The
scheme of our Bayesian network is illustrated in Figure 5.
Events modeled in the BN are the following:

Initialization

Selection of
the best ROI

Detection Update
Enough
entropy?

End

Fig. 4: All different steps of the Recognition stage for ego-
lane marking detection.

• Xk− , the confidence before the detection is at-
tempted

• Z0, the chosen landmark (the white strip) is observ-
able in the ROI

• Dk, a landmark is detected in the focal zone,
• Db, the correct landmark has been detected (which

manages landmark ambiguity)
• Xk+ , the confidence after the detection is attempted

(success or failure)
This BN can take into account several uncertainties: the
detector’s performances in the node Dk, the Observabil-
ity of the segment in the ROI modeled in the node Z0

and the ambiguity in the node Db. Also, this network has
two main uses, the first one is to calculate the a priori
probabilities p(Dk) and p(Db) for the entropic criterion
Hsel and the second one is to determine the confidence
p(Xk+) obtained after proceeding to a detection.

iii Detection Once the most informative ROI is chosen, we
proceed to the detection. The idea is based on a RANSAC
method, which is used in order to detect the segment in
the ROI. Thus, for each ROI two points p1(x1, y1) and
p2(x2, y2) are defined.

iv Update For the state vector yp = (y1, y2) we associate
a co-variance matrix Cyp

:

Cyp =

(
σ2
yt 0
0 σ2

yb

)
(10)

With (σ2
yt , σ

2
yb

) being the accuracy of the segment de-
tected. In order to update the probabilistic model, we
use a Kalman filter:{

y+
l,r = y−l,r +K

[
ŷp − yp

]
C+

yl,r
= C−yl,r

−KHcC
−
yl,r

,
(11)

wiçith K being the Kalman Gain, (y−l,r,C
−
yl,r

) is the
model before detection, (y+

l,r,C
+
yl,r

) is the model after
detection and Hc the matrix linking Cyp to C+

yl,r
.

v End After each detection, we want to know if the ego-
lane detection recognition is completed. This operation
is performed using the entropy as presented in Item ii. To
this end, we define an entropic criterion Hgain that will
compute the entropy improvement between the initial
covariance state C∗yl,r

and the current covariance state
Cyl,r

. In addition, this criterion takes into account the

Z0

Dk

Xk−

Db

Xk+

Fig. 5: Bayesian Network used for the confidence estimation.
Yellow nodes are the input nodes, Purple nodes are the output
nodes, and White is for the observable nodes.



confidence in the current state expressed by the proba-
bility p

(
X+
k

)
. Thus Hgain is computed as

Hgain = p
(
X+
k

)
.
1

2

[
log|2πeC∗yl,r

| − log|2πeCyl,r
|
]
.

(12)
The ego-lane marking has been detected if the following
condition is satisfied:

Hgain > λHmax (13)

with Hmax the entropy improvement if the detections
were successful in all the ROIs and λ ∈ [0, 1[. If the
condition is satisfied, it means that enough detections
have been attempted successfully and the probabilistic
model (y+

l,r,C
+
yl,r

) obtained is sufficiently precise to
consider the ego-lane recognition finished. Otherwise,
the ego-lane recognition process is carried out, and the
second most informative ROI is selected.
In the end of this process, an estimation of the model
(y+
l,r,C

+
yl,r

) is obtained.

D. Tracking step

The main objective of this module is to provide a smaller
confidence interval for the frame k+1 than the one provided
by the initial probabilistic model, which means smaller
values for matrix Cyl,r

. Thus, we have to compute yl,r(k+1)
and Cyl,r

(k+1) from yl,r(k) and Cyl,r (k) and the odometry
information from the vehicle. To do so, we define a general
vector y = (sl,r,yl,r) which contains the 2D vector sl,r and
the polynomial vector yl,r and Cy its covariance matrix.
The initial value of (y(0),Cy(0)) can be easily computed
using the same strategy presented in Section II-B. Thus, we
start computing the evolution of the model (sl,r,Csl,r ) as
follows: {

sl,r (k + 1) = M sl,r(k) + Wt

Csl,r (k + 1) = M Csl,r (k) MT + Q
(14)

With M the evolution matrix that includes the displacement
and the angle difference for a small time interval. The matrix
Q represents the error in the evolution matrix. Thereafter, we
update the new model (y(k+1),Cy(k+1)) using the model
(yl,r(k),Cyl,r

(k)) that we get from the recognition step:{
y(k + 1) = y(0) + Kt

[
sl,r(k + 1)− sl,r(0)

]
Cy(k + 1) = Cy(0)−KtHtCy(k)

(15)

with Kt = Cy(0)HT
t

[
HtCy(0)HT

t + Csl,r (k + 1)
]−1

and
sl,r = Hty. After this update, the vector yl,r(k + 1) and
its covariance matrix Cyl,r

(k + 1), contained in the model
(y(k + 1),Cy(k + 1)), define a new confidence interval for
the next frame.

III. EXPERIMENTAL RESULTS

A. Datasets and metric used for experimental results

In order to show the effectiveness of our lidar-based lane
detection system, we investigate on the available datasets for
autonomous vehicles. We focus our attention on the datasets

suitable for lane marking detection in highway scenarios.
Taking into account these consideration, it appears that most
of the available datasets are not suitable to qualify the effec-
tiveness of our algorithm, mainly for two reasons. The first
one, is that most of the datasets do not provide lidar data. The
second one is the type of annotation for the Ground Truth. As
highlighted by [20], there does not appear to be a consensus
among the autonomous driving community on the type of
annotation for ego-lane marking. In reality, most datasets use
pixel-wise annotation (e.g, KITTI [21], Ego-Lane Analysis
System (ELAS) [22], Unsupervised Llamas [23]). This pixel-
level annotation is not suitable for us. Indeed, we have a
higher level representation of the lane, as we represents
the ego-lane marking as polynomial. Of course, someone
may point out the Carina datasets [5]. However, to authors
knowledge theses datasets are still not available.
The absence of suitable GT to analyze the effectiveness of
our lidar-based lane detection system brought us to build
our own annotation using the KITTI datasets [21]. In order
to build our own GT, we first manually annotated the lidar
points to determine the ego-lane. For each pointcloud, we
transform the pointcloud into Bird’s Eye View image. The
image has a dimension of 240 × 600 pixels with each pixel
has a size of 0.05 x 0.05 m. This procedure is repeated for all
the sequences. Once the BEV images available, we annotate
the ground truth for the ego-lane as illustrated on Figure 6.
For the detection performances, several metrics are used in
the literature [8]. However, some of these metrics are not
suitable for our algorithm, as we have a higher representation
of the ego-lane marking (polynomial), we need a metric that
unable us to distinguish between an error of 1 cm and one
of 1 m. For that reason, we use Root mean squared error
(RMSE), it has the benefit of penalizing large errors.

Fig. 6: Process for the evaluation of the detection lane,
first a BEV (Bird’s Eye View) image is produced with its
associated ground truth in blue (a), the result of the detection
is transposed in the BEV image in green (b).

B. Experimental results

The parameters used for our experimental are shown in
Table I. Authors would like to emphasize that these param-



variable definition value

nroi number of ROIs 20
µd0 mean value for distance to center line 0 m
µpsi mean value for ψ 0 rad
µLw mean value for lane width 3.5 m
σc′ standard deviation for the curvature’s derivative 10−5 m
σc0 standard deviation for the curvature 10−4 m
σd0 standard deviation for distance to center line 0.25 m
σpsi standard deviation for ψ 0.1 rad
σLw standard deviation for lane width 0.5 m

TABLE I: Parameters used for our experiments

eters were set by hand and no extensive hand tuning was
performed. In addition, these parameters are means values
that are suitable for highway scenarios. These results are per-
formed on two highway sequences from the KITTI datasets
noted as ”2011 09 26/0027” and ”2011 09 26/0028”. The
corresponding results for the RMSE are summarized in
Figure 7. The average values for the whole sequences are
presented in Table II.
The results presented testify about the effectiveness of our

proposed algorithm. Accordingly, by taking into account the
RMSE in the Figure 7, we found that more than 97.80% of
the time the detection error is bellow 0.15 m for sequence
27 and 80.61% for sequence 28. Nevertheless, in the worst
cases, the maximum values in Table II are 0.40 m and 0.48 m
which shows that even when incorrect detections happen,
the error is still acceptable. In addition, when these incorrect
detections occur, the outcome result is still coherent as shown
on Figure 8. By investigating these cases we found that these
scenarios happen when the density of the lidar is not enough
sufficient for a good ego-lane marking.

0.00 0.04 0.08 0.12 0.16 0.20
error in m

Fig. 7: RMSE of the sequence 27 (a) and of the sequence
28 (b). The color code used is the follow: Orange stands for
sequence 27 and Blue for sequence 28

Some qualitative results concerning ego-lane detection are
presented in Figure 8. For a visual comparison, the ego-lane

Metrics Sequence 27 Sequence 28

RMSE (mean) 0.07m 0.11m
RMSE (median) 0.06m 0.10m
RMSE (max) 0.40m 0.48m

TABLE II: Results of RMSE for our experiments on the
KITTI dataset.

marking detected were projected on the image and a camera-
based detection solution was added.

C. Discussion

The presented results show that the proposed Lidar-based
solution is suitable to detect the ego-lane marking. In Fig-
ure 8(b) an illustration of a case where the high brightness
make the detection of the ego-lane marking difficult for the
camera. However, it is not the case when using the ego-
lane marking algorithm with the lidar data. However, the
most remarkable attribute of the proposed algorithm appears
when a miss-match happens, as illustrated in Figure 8(d).
Indeed, the outcome is still coherent, the geometry of the lane
is preserved. This feature is due to the probabilistic model
(yl,r,Cyl,r

), as we take into consideration the shape of road
from OSM as prior, the outcome of the detection, even if
a miss-match happens, is still coherent, which is not the
case when using classic data-driven approach. In [8] when
miss-matches occur, it results in a cross-shaped lane marking
that is not coherent to the shape of a road, ultimately this
kind of method can not be solely used for an autonomous
vehicle application. Besides our solution shows good results
when detecting the ego-lane marking, it guaranties that even
if the detecting process goes wrong, the outcome will be still
coherent and acceptable.

IV. CONCLUSION

In this work, we presented an ego-lane marking solution
based on lidar data and OpenStreetMap (OSM). It uses an
information-driven approach that takes into account inaccu-
rate priors on road’s geometry from OpenStreetMap. To do
so, a probabilistic model was introduced in order to restricts
the region of interests in the lidar domain, Moreover, this
probabilistic model ensures the coherence of the results of the
ego-lane detection, since it takes into account the geometry
restriction of the lane. Unlike other works, our presented
framework is differentiated by the use of the OSM data
as prior to reduce the space complexity of the detection
problem. It also guaranties the coherence of the detected ego-
lane marking, as the shape of the detected ego-lane marking
is coherent even if miss matches occurs. To conclude, we
show that starting from a coarse map, our pure lidar solution
reached significant results in term accuracy and consistency.
In future work, we aim at coupling this algorithm with a
camera-based solution to enhance the proposed framework.
Furthermore, we are still working on how to make the most
of the OSM data-set as we strongly believe that this kind of
map can be an alternative to HD maps.
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Fig. 8: Some examples of detections using the lidar, the
results were projected into the image for a visual comparison
with a camera solution. (a) shows a case where the lidar and
camera solution correctly detects the ego lane, (b) shows
a case where the camera fails due to high brightness, (c)
the lidar fails where the camera does not, in (d) both
of the solution fail. The color code used is as follows:
green for the mean value of the ego-lane marking using
lidar and blue for camera. An additional video is provided
in shorturl.at/bktvE

through the program Regional competitiveness and employ-
ment 2014- 2020 (FEDER - AURA region) and by the AURA
region.
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