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End-to-End Probabilistic Ego-Vehicle
Localization Framework

Abderrahim KASMI1,2, Johann LACONTE2, Romuald AUFRERE2, Dieumet DENIS1, Roland CHAPUIS2

Abstract—Locating the vehicle in its road is a critical part of any autonomous vehicle system and has been subject to different
research topics. In most works presented in the literature, ego-localization is split into three parts: Road level-localization consisting in
the road on which the vehicle travels, Lane level localization which is the lane on which the vehicle travels, and Ego lane level
localization being the lateral position of the vehicle in the ego-lane. For each part, several researches have been conducted. However,
the relationship between the different parts has not been taken into consideration. Through this work, an end-to-end ego-localization
framework is introduced with two main novelties. The first one is the proposition of a complete solution that tackles every part of the
ego-localization. The second one lies in the information-driven approach used. Indeed, we use prior about the road structure from a
digital map in order to reduce the space complexity for the recognition process. Besides, several fusion framework techniques based
on Bayesian Network and Hidden Markov Model are elaborated leading to an ego-localization method that is, to a large extent, robust
to erroneous sensor data. The robustness of the proposed method is proven on different datasets in varying scenarios.

Index Terms—Autonomous vehicle, localization, lane marking, map matching, road prior, fusion framework.
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1 INTRODUCTION

O VER the past decades, the automotive industry has
been growing strongly. The demand for the driver

and pedestrians security coupled with the technological
advances are the main factors behind this exponential
growth. In that regard, Advanced Driver Assistance Systems
(ADAS) have spread out. The main mission of these systems
is to ensure that driver safety is constantly guaranteed. For
this purpose, multiple applications have been deployed,
such as lane departure warning, lane keeping assist, pedes-
trian detection, collision avoidance, or lane change assist
system. To achieve this mission, the faultless knowledge
of the localization of the ego-vehicle with regards to the
surrounding environment is necessary.
The ego-localization of a vehicle is a mandatory component
for a safe autonomous driving. Direct applications range
from the decision-making system [1] regarding the decisions
to make in order to keep lane or to change lane, to naviga-
tion: including path planning and vehicle control [2]. Ulti-
mately, the lane/road understanding demands in terms of
precision and false alarm rate [3] vary from one application
to another. Therefore, the ego-localization solution must suit
perfectly the localization requirement for each application.
The ego-localization task has been widely tackled over the
years. The current literature is teeming with solutions that
address this issue in a variety of manners. However, one
interpretation of ego-localization consists of the knowledge
of three key components:
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I Road level localization: the road on which the vehicle
travels.

II Lane level localization: the position of the host lane
within the road (the lane on which the vehicle travels).

III Ego-lane level localization: the position of the vehicle
in the lane in terms of lateral and longitudinal position.

For the road level localization, digital maps (Google, Open-
StreetMap (OSM) or Waze) are used to perform this task,
GPS receivers are used to retrieve the geographic (latitude,
longitude) coordinates, and map-matching procedure is per-
formed in order to match the position of the ego-vehicle
with the correct road (‘link’). However, the accuracy of
the localization obtained is in the order of meters. Indeed,
according to the Federal Aviation Administration (FAA)
GPS Performance Analysis Report [4], the accuracy of a
standard GPS device is within 3m with a 95% confidence,
which can not be sufficient for most ADAS that require a
more precise localization.
For some applications like lane-keeping, knowing the road
on which the vehicle is traveling is not sufficient. These
systems must be informed about the position of the host lane
in the road to provide the adequate maneuver instruction
and maintain the vehicle safety.
Further, autonomous vehicle applications need a more accu-
rate localization, which can be translated by the knowledge
of the lateral and longitudinal position of the vehicle in
the ego-lane. For instance, overtaking maneuvers need a
faultless knowledge of the lateral position of the ego-vehicle
with respect to the ego-lane marking in order to decide
whether the vehicle should overtake the obstacle or not.
The task of vehicle localization is still challenging for
an autonomous vehicle, a complete ego-vehicle localiza-
tion must perform all the three key components described
above. Thus, in this work, an end-to-end solution for ego-
localization from Road level localization to Ego-lane level
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localization is presented.

2 RELATED WORK

Due to the vastity of this topic, this section will discuss
the main vehicle localization techniques relevant to our pre-
sented work. To do so, the current literature is divided into
three distinct topics: Localization on a map, Localization on
a road and Localization on a lane.

2.1 Localization on a Map

For Autonomous Vehicles, map-matching (MM) algorithms
are a critical piece on any localization system. In essence,
MM algorithms integrate the geographical position from
a GPS receiver with the spatial road network to identify
the correct road on which the vehicle is traveling. In [5]
a comprehensive literature survey of common MM meth-
ods is presented. The basic method combines an inertial
measurement unit (IMU) with a classic GNSS receiver
(e.g., GPS, Galileo) into a Kalman Filter to choose the
correct road [6] [7]. In the same manner, authors in [8]
propose a probabilistic MM that takes into account both
the spatial (geographical coordinates) and temporal infor-
mation (speed and time) to determine the likelihood road
on which the ego-vehicle is traveling. However, in more
complicated cases, such as urban scenarios, multi-path GPS
signals lead to a lack of accuracy. In this case, the use
of topological and geographical information enhances the
proposed algorithm. Towards this end, many studies pro-
posed a Hidden Markov Model (HMM) to take into account
the measurement noise [9]. The authors in [10] introduce
a HMM to robustify the proposed MM algorithm. The
HMM incorporates the topological and the geographical
road network information in the transition state to ensure
the temporal connectivity between links. A more recent
approach presented in [11] utilizes the HMM for the MM
task. In essence, the two approaches are similar, except for
the HMM modeling. Indeed, in [11] the transition from one
’link’ or segment to another must obey some rules, these
rules include the dynamics of the vehicles and the legal
and logical connectivity of the road map. In a more specific
way, the latest developments use the OpenStreetMap (OSM)
database to perform the MM. In our previous work [12],
a multi-criteria map-matching algorithm based on multiple
probabilistic criteria has been introduced. Nevertheless, the
road map topology has not been properly operated in the
MM process, which consists of one of the contributions of
this paper.

2.2 Localization on a road

Knowing the position of the ego-lane is still a challeng-
ing task for any localization system and subject-matter of
research. Indeed, lane-level localization has been widely
discussed in recent literature. According to [13], ego-lane
localization can be performed in two different manners:
model-driven and deep leaning approaches.

2.2.1 Model-driven approaches

The current literature abounds with ego-lane recognition
techniques based on model-driven approaches. In these
approaches, road level features are extracted from images
via feature extraction, mainly two features (edge and color)
are used. For the first feature, filters are used to extract
lanes edges, then the resulted outputs are fed into Hough
Transforms [14] or Ransac methods [15] to detect lanes in
the road. For the color features, it exploits the primary color
or the direction of lane components (arrow, zebra marking).
Once these features extracted, they are fed into a high-level
fusion framework. As an example, in [16] ego-lane recog-
nition is achieved from multiple-lanes detection. Adjacent
lanes are first hypothesized assuming the same curvature
and lane width in the road, then tested using a video-based
system. This approach shows interesting results. However
the occlusion of lanes marking by obstacle vehicles can not
be explained and will jeopardize the output of the ego-
lane. More high level features systems fuse visual features
from the road scene: surrounding vehicles [17], lanes mark-
ing [18] [19], road clues such as arrows marking [20], lane
marking colors [21], lane marking and adjacent vehicles [22].
These visual cues are fed into a fusion framework: Bayesian
filter (BF) [17], Bayesian Network (BN) [20] [18] [21], Hidden
Markov Model (HMM) [19] or combination of BN and
HMM [22]. A worth mentioning work is the one presented
in [23] in which a lane-level accurate map is used in order
to match the correct localization of the ego-vehicle. The
map contains center lines of every lane of the road in
addition to the lanes marking. Therefore to know the lane on
which the vehicle is travailing a map matching procedure is
presented. The presented method deals with the ambiguities
encountered in choosing the right ‘link’. Nevertheless, this
method is tributary to the accurate map. In contrast, we
present a method for lane level localization that relies only
on a camera and a coarse map (OSM).

2.2.2 Deep learning approaches

Convolutional Neural Networks (CNNs) have also been
widely adopted for lane level localization. These techniques
do not take any prior about the surrounding environment,
which makes these unrelated to the type of road-scenario
(e.g., highway, urban). However, a learning phase is needed
to set the weights of the used network.
In [24] local context of the scene is used to consider occlusion
to determine the end point of the local lane segment, ego-
lane is deduced once lane segments are extracted. Another
research [25] uses a combination of CNN and RNN to detect
lane boundaries. Similar to this approach a CNN is trained
in an end-to-end way to estimate the ego-lane [26]. In [13]
an end-to-end ego lane estimation is presented using a deep
learning network SegNet. For all the mentioned methods
before, no road prior is exploited. However, a learning stage
is needed in all cases, which may require a large database to
perform it.

2.3 Localization within a lane

In order to guarantee the ego-lane level localization, several
data fusion methods have been investigated. The first one
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uses a GPS receiver with a digital map to locate the ego-
vehicle in the lane. The lack of accuracy provided by a
classic GPS that can be caused by poor satellite signals,
high degree dilution of precision, or multi-path in urban
scenes, is first compensated with proprioceptive sensors,
such as Inertial Measurement Unit (IMU). These methods
are well known as Dead Reckoning [27]. Nevertheless, the
accuracy provided by this kind of method is not sufficient
for autonomous navigation, where centimetric accuracy is
needed. Furthermore, dead reckoning methods suffer from
integration errors that tend unbounded in time.
Leafing through the literature, it appears that most re-
searchers use lane marking detection from a camera to
provide an accurate ego-lane level localization. There are
two main advantages of using the camera: currently, this
sensor is the cheapest and most versatile modality for au-
tomotive applications and it provides dense information of
the environment. Common approaches are based on a two-
step process [3]. First, a road marking feature detection [28],
then a fitting procedure [29] is used. This fitting procedure
can be done with a polynomial fitting model based on the
road geometry design [30] or non-parametric model [31].
The above-mentioned approaches suffer from the camera’s
weaknesses: high luminosity variation and occlusion issues.
In an attempt to provide a more robust and more accurate

localization, the trend for manufacturers and researchers
is to equip the ego-vehicle with multiple sensors such as
Velodyne lidars, multiples cameras, IMUs and high defined
digital map that contains the precise location of high fea-
tures such as the lane marking or landmarks [32]. In that
way, authors in [33] used two lateral cameras combined
with an IMU and a GPS receiver to accurately determine
the lateral distance of the ego-vehicle with respect to the lane
marking. To do so, a vision-based ego-lane marking detector
was used [34] and fused with the IMU sensors through
an Extended Kalman Filter (EKF) to locate the ego-vehicle.
Furthermore, a sub-decimeter accuracy was achieved by
adding lanes marking from a created map. Yet again, an
EKF was introduced for the fusion stage between the lane
marking extracted from the map and the marking obtained
through the vision process. In order to bound the integration
errors coming from dead reckoning, authors in [35] present
a localization system based on the fusion of multi-sensor
and a high definition map. The integrity of the localization is
insured by a Student’s distribution that replaces the classical
Gaussian distribution used in fusion filter like Kalman filters
in an Informational Filter (IF). Close to our work, an atypical
approach presented in [36] relies on the use of road priors
and contextual information for road detection (roadway
detection). OSM map is used to create the road backbone
depending on the lanes number and the width of the lane.
This road shape is then projected on the image taking into
account the uncertainties related to the ego-vehicle pose.
The result is used as prior to roadway detection. The road
shape is then delimited by estimating the vanishing point
and the lane marking. Naturally, the mentioned approaches
are just a small part of the ego-lane localization techniques,
an interesting survey is presented in [3] for more detailed
approaches.
To the best of the authors’ knowledge, there is no end-to-
end localization solution proposed that tackles every aspect

of the ego-localization task. Thus, in this paper, we present
a complete solution for the overall localization problem.
Unlike existent work, this contribution distinguishes by
the information-driven approach. Indeed, we exploit the
available data from the OSM map in order to extract prior
about the road geometry. This strategy allows us to focalize
the region of interest in the recognition procedure and
ultimately reduce the computation complexity. In addition,
we propose a probabilistic model that will ensure the geo-
metric coherency between lanes marking. Finally, the main
contributions can be summarized as follows:

1) An enhanced map matching method based on OSM
datasets and a Hidden Markov Model

2) An ego-lane detection based on a prior OSM map and
a vision based recursive recognition ego-lane marking
in an information-driven fashion.

3) Once the ego lane marking is detected and the lateral
distance between the ego-vehicle and the lane marking
estimated, we proceed to the ego-lane determination
(the postion of the ego-lane in the road) using a com-
bination of a Bayesian Network and a Hidden Markov
Model.

We perform the complete localization steps in a sequential
fashion. Thereby, the robustness of the proposed approach
is highly improved. In addition to that, the split between the
different parts of the localization allows the use of any part
of the complete solution individually.

3 OVERALL LOCALIZATION ALGORITHM

In this work, we present an end-to-end algorithm for ego
localization as highlighted on Figure 1. The algorithm is
intentionally divided into three modules: Road-level local-
ization (RLL), Ego-lane level localization (ELL) and Lane
level localization (LLL). This split allows us to be in phase
with the current literature. Moreover, the pipeline of the
algorithm allows to have modular algorithms that can be
changed in the future without changing the entire algorithm
architecture. In the following, we will first introduce our
map-matching module based on OSM datasets, then we will
use this map as a prior for our ego-lane marking detection
in order to locate the vehicle within its lane. Once the ego-
lane level localization is performed, we will proceed to the
identification of the ego-lane in the road.

3.1 Road-level localization (RLL)
In this section, we present our road-level localization al-
gorithm using OSM datasets. As shown in Figure 2 the
proposed module is an upgrade of our work presented
in [12]. Indeed, an HMM is added to robustify the proposed
Map-Matching. Therefore, the algorithm is divided into two
different stages:
• Discrimination stage elimination of incongruent

links based on distance, orientation difference be-
tween vehicle steering, and links heading. Addition-
ally, a third factor was implemented, it is based on
the maximum speed allowed on the road.

• Selection stage in the case where the remaining
candidate links are greater than one, we proceed into
a selection procedure based on multiple probabilistic
criteria to eliminate the ambiguity.
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On-board
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Fig. 1: Overall algorithm for complete localization of the ego-vehicle starting from the Road-level localization (RLL): to
locate the ego-vehicle on the map Using OSM and GPS datasets, to the Lane-level localization (LLL): to locate the ego-
vehicle within its own lane using prior road model from OSM and camera images and the Ego-lane level localization (ELL):
to determine the ego-lane position in the road.

GPS data

OSM geodata

Discrimination
Stage

Preprocessing

Selection
of the

Correct Way

Estimated
Correct Way

Number
of lanes

Fig. 2: Overall algorithm for the RLL using GPS data and
OSM in order to extract the correct road and the correspond-
ing number of lanes.

3.1.1 Discrimination stage
Before starting with this stage, we must present the OSM
data. OSM data are composed of three keys components:
Nodes, Ways, and Relations [37]. Nodes are the geometrical
elements that represent GPS points. Ways are an ordered
list of nodes that represents roads network, every Way
has a number of tags, the latter provide information about
the characteristics of the Way (number of lanes, limitation
speed...). In addition, each Way is composed of a set of seg-
ments. In other words, belonging to a segment is equivalent
to belonging to an OSM Way. So the map matching task can
be reformulated as matching a GPS point with a segment.
In the remaining sections, the words segment and Way are
switchable.
Thus, the discrimination stage consists of the exclusion of
segments which are not compatible with the current vehicle
and the road network topology configuration. To do so, we
introduced three discrimination criteria [12]:

• The first one is based on the distance between the
ego-vehicle position estimated with the GPS data and
the segment.

• The second one is based on the angle difference be-
tween the ego-vehicle steering angle and the segment
heading (which expresses the traffic flow).

• The third one is based on the speed limit. The as-
sumption made is that the ego-vehicle is respecting
the limitation of speed to some extent i.e. the ego
speed can not be higher than the limitation plus
40 km h−1.

Once the discrimination stage completed, if the number of
candidates segment is higher than one, we proceed to the
selection of the correct Way.

3.1.2 Selection of the correct Way
We define the state of ego-vehicle at time step t as
xt = (xw, yw, θw)T . The selection procedure can be for-
mulated as finding the highest conditional probability of
belonging to a Way Wi knowing the pose of the ego-vehicle
xt at each time t:

arg max p(Wit |xt) (1)

The main goal of this formulation is to select the correct Way
on which the vehicle is traveling. Consequently, a selection
criterion must be introduced to determine the correct Way.
Based on equation (1) three probabilistic criteria [12] were
developed:

• Ce: Criterion based on Euclidean distance.
• Cm: Criterion based on Mahalanobis distance.
• Cp: Criterion based on the probability of belonging

to a segment.

Depending on the data available, one of these criteria is
calculated for each GPS data and for each candidate Way.
Furthermore, to take into account the relation between two
consecutive frames, a convenient and effective approach is
to use a HMM. Indeed, the change in Ways over time is
governed by topology constraints that can be embedded in
the transition state of the HMM. Thus we enhance the pro-
posed multi-criteria algorithm with an HMM. The HMM in
this work is an upgrade of the proposed HMM by [38] [39].
We fitted the HMM to the way selection problem. However,
the big difference lies in the probabilistic reasoning. Indeed,
we use criteria that represent probability to model the
observation probability, which is not the case in [38] [39],
where arbitrary functions have been introduced leading to
non-intuitive criteria.
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By definition a HMM consists of two stochastic processes,
the first one is a Markov Chain to model the change of a state
vector over time. This change is governed by a probability
that describes the transit probability over time, which is
called the transition probability. In the HMM, the states
of the chain are not visible but observable, for this reason
they are called “hidden”. The second process is called the
observation space, it produces emission of the observation
at each time. Although the elements of the state vector are
hidden, there is a relation between the hidden elements of
the state and the observations, this relation is referred as an
emission probability. Figure 3 describes the proposed HMM
for the map-matching task.
So, in order to model the HMM-MM, three components

must be defined:
State space the state of the system describes the list of
the Ways candidates for each observation xt. We will
use St to denote the set of candidates Ways at time t
St = {W1,W2, ...,Wnt

} with nt the number of candidates
Ways at each time t, St is a form of categorical distribution,
St ∼ Cat(ξ).
Observation space for each candidate Way composing the
state space, an emission probability is made. This emission
probability is directly calculated from the multi-criteria al-
gorithm. For each Way candidate the emission probability
Pe(Wi) is calculated as follows:

Pe(Wi) =
Ck(Wi)∑

j ∈ Si

Ck(Wj)
(2)

where Ck is the probabilistic criterion used with k ∈
{e, p,m}.
Transition probability The transition probability reflects the
probability of the transition matrix that a state will move
from one state to another. In the map matching procedure,
the topology of the network is used in order to determine
the transition matrix. Indeed, the vehicle can only move on
Ways that are physically connected.

Fig. 3: Modeling of the Hidden Markov model Map-
Matching (HMM-MM) algorithm, with St the state space
at time t, Wt the Way candidate at time t and Ot the obser-
vations at time t. Note that the number of Way candidates
at each time may vary.

TABLE 1: Transition matrix for example shown on Figure 4

W1 W2 W3 W4 W5

W1 s11 0 c13 0 c15
W2 0 s22 0 0 0
W3 c31 0 s33 c34 c35
W4 0 0 c43 s44 0
W5 c51 0 c53 0 s55

We will refer to P(W t
i ,W

τ
j ) as the transition probability

from Way W t
i to Way W τ

j given the state space St and Sτ
for time t and τ :

P(W t
i ,W

τ
j ) =

wi∑
j ∈ St

wj
(3)

Where wi is a criterion calculated for each Way, this criterion
obeys some rules defined as follows:

1) wi = 0 if the way W t
i and W τ

j are not connected;
2) wi = stτij if the Way W t

i and W τ
j are the same;

3) wi = ctτij if the Way W t
i and W τ

j are connected.
Figure 4 shows a simplified road network to illustrate the

transition matrix probability. These probabilities are shown
on Table 1. It can be noticed that in this example the number
of Ways is the same for two connected states, which is not
always the case. Indeed, the number of Ways may vary from
two consecutive frames.
The transition probability stτij is used whenever the two
Ways are the same. Let P(xw, yw) be the vector describing
the Cartesian coordinates of the ego-vehicle in the Universal
Transverse Mercator coordinate system frame (UTM), we
note P ′ the projection of the point P on the Way and
ψ the Way’s heading, the Way W τ

i is composed of two
nodes n1, n2 as represented on Figure 5. The criterion sij
is computed as a Gaussian distance to the middle of the
segment [n1, n2]. Indeed, the probability to change the Way
will be higher if P ′ is in the middle and will be lower in the
limits, thus it is calculated as follows:

sij = e
−

1

2

 t− u0

σ0

2

(4)

With P ′ = t.n1n2, u0 = 0 and we take σ0 = 0.25.
If the Way Wi and Wj are connected then we introduce

a criterion based on [39], this criterion depends on the

Fig. 4: Example of road network to illustrate the transition
probability calculation. In this example the number of Way
candidates is the same between two consecutive frames
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Fig. 5: Example of calculation for transition probability stτij ,
the vehicle is illustrated by the box with black triangle, ψ
represents the Way heading and θ the vehicle’s heading

difference between the vehicle’s heading and the Way’s
heading :

ctτij = e−β|∆θ−∆ψ| (5)

with ∆θ being the vehicle’s heading change over time, ∆ψ
the Way’s heading change between the two Ways Wi and
Wj and β a chosen coefficient. Once the Way selected, the
number of lanes is extracted from the OSM database.

3.2 Ego-lane level localization (ELL)

Once the RLL has been performed, the ELL is initiated. We
choose to start the ELL before the LLL for several reasons:
the first is that the ego-lane marking is, for the most part,
the easiest one to detect. The second one is due to the use of
the information driven approach. Indeed, when the ELL is
completed we have an estimate of the ego-vehicle’s lateral
position in its own lane. So, knowing the lane’s width and
the lanes number allows us to interpolate research zones for
other lane marking.
To perform the ELL, the road is modeled in a 2D vehicle’s
frame (xv, yv) as a cubic polynomial [40] [41]:

xv =
1

6
c0y

3
v +

1

2
c1y

2
v + c2yv + c3 (6)

The parameters c0 is the curvature’s derivative of the road,
c1 the curvature of the road, c2 the vehicle’s heading with
respect to the tangent of the road, c3 the lateral shift of the
ego-vehicle with regards to the road model. Once the road
has been modeled in the vehicle’s frame, the next step is
to project this model on the image taking into account the
intrinsic and extrinsic parameters of the camera. According
to [42] the projection of the road model (left and right lines)
in the image frame (ui, vi) is defined as follows:

ui = eu

(( evZ0

(vi − evα)

)2 c0
6
− evZ0

2(vi − evα)
c1 (7)

+
vi − evα
evZ0

(x0 ±
Lw
2

)− x0

)
where eu = f/du, ev = f/dv, f is the focal distance of the
camera, du and dv are the width and height of a pixel in the
image, Z0 is the height of the camera, x0 the lateral distance

of the ego-vehicle with respect to the ego-lane marking, the
± sign indicates whether the ego-marking is right (+) or
left (−), α is the camera tilt angle and Lw is the road width.
i = 1, ..., nRoi with nRoi the number of Region Of Interest
(ROI) for each lane marking.
As mentioned in [12], the OSM map does not provide
information about the accuracy of its data. However, it is
well known that OSM is a collaborative project in which vol-
unteers provide the geospatial data. If we consider that most
of the volunteers have a classic GNSS receiver, the accuracy
of the OSM is thus metric. That being said, the polynomial
representation of the road will be affected by this unknown
accuracy. For the parameters c0 and c1, they represent the
shape of the road. Given that we are working mostly with
highway roads, their values will not be affected by the
inaccurate geospatial accuracy of the OSM. In contrast, the
parameter c2 is more sensitive to inaccurate accuracy of the
OSM, and its value will be affected. Hence, to compensate
for the inaccuracy of its value, we will define Xv = [x0, c2]T

as the state vector of the road model in the ego-vehicle
frame. We associate a covariance matrix to this vector CXv

.
This matrix expresses the allowed dispersion around the
average parameters previously defined by the vector Xv .
Concerning the parameters c3, the value extracted from
equation (6) is not used. Indeed, it express the lateral shift of
the vehicle to the road. Hence it is not used in equation (7),
as we use x0, which is the lateral shift regarding the center
of the ego-lane. It assumed that the ego-vehicle travel in the
center of the ego-lane thus x0 is around 0.
Using equation ( 7), we can express the probabilistic model
(Xv, CXv

) into the image space. We will note this proba-
bilistic model as u′, C ′u, with u′ being the average values for
the pixel in the image and C ′u its corresponding covariance
matrix:

Cu = JuCXv
JTu (8)

with:

Ju =


∂u1

∂x0

∂u1

∂c2
. .
. .

∂un
∂x0

∂un
∂c2

 , CXv
=

[
σ2
x0

0
0 σ2

c2

]
(9)

The resulting projection of the equation (7) is shown in
Figure 6. Taking into account the prior about the road geom-
etry allows focalizing the zones of research in a Top-Down
process fashion. Indeed, not all the image is used in order to
perform the processing task. Consequently, the recognition
process is faster, and subject to less noise considering it takes
into account only the regions in the image that most likely
contains a lane marking.
Once the probabilistic model is defined, we proceed to the

recognition phase. This stage is inspired by [42]. For clarity’s
sake, we will discuss each aspect of this stage as presented
in Figure 7.

i Initialization in this stage we define the probabilistic
model (u′, C ′u) as already presented in Figure 6.

ii Selection of the best Region Of Interest (ROI) once
the probabilistic model is defined, we proceed to the
selection of the most informative ROI in the Image in
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Fig. 6: Projection of the initial probabilistic model (u′, C ′u)
on the image. The mean values of the lane marking u′

are presented in Red, Blue illustrates the dispersion around
these values. Finally, green boxes are the ROI for each lane
marking, in this example the number of ROI is 9 for each
lane marking.

Initialization

Selection of
the best ROI

Detection Update
Enough
entropy?

End

Fig. 7: All different steps of the Recognition stage for ego-
lane marking detection.

a Top-Down fashion To do so, we present an informa-
tional criterion based on the Shannon entropy [43]. For
each ROI, we use an a priori selection based on a entropic
criterion Hsel:

Hsel , H−v −H∗v (10)

= p(Dk = 1, Db = 1).
1

2

[
log|2π eC−Xv

| − log|2π eC∗Xv
|
]

with:
X−v The state vector before simulation of the detection,

C−Xv
Covariance before simulation of the detection,

X∗v The state vector after simulation of the detection,

C∗Xv
Covariance after simulation of the detection.

For the probabilities, p(Db), p(Dk), a Bayesian Network
(BN) is introduced. The presented nodes are an adap-
tation of the BN presented in [44]. The scheme of the
network is illustrated in Figure 8. The BN is composed
of the following nodes:

• Xk− the confidence before the detection is at-
tempted.

• Z0 is the chosen landmark (the white strip) is
observable in the ROI.

• Dk a landmark is detected in the focal zone,
• Db the correct landmark has been detected (which

manages landmark ambiguity).

Z0

Dk

Xk−

Db

Xk+

Fig. 8: Bayesian Network used for the confidence estimation.
Yellow nodes are the input nodes, Purple node is the node
we are seeking to estimate.

• Xk+ the confidence after the detection is at-
tempted.

This network has two uses, the first one is to calculate
the a priori probabilities p(Dk) and p(Db), the second
one is to determine the confidence p(Xk+) obtained after
proceeding to a detection.

iii Detection Once the most informative ROI is chosen, we
proceed to the detection. The implemented method is
based on a row filter as presented in [42]. The idea is to
compute the gradient of the image row by row with the
aim to find pixels that correspond to the lane marking.
Once the patterns have been selected for the complete
ROI, a Ransac method is used in order to detect the
segment in the ROI. Thus, for each ROI two points
p1(uu, vu) and p2(ud, vd) are defined.

iv Update for the state vector xp = (uu, ud) we associate a
covariance matrix Cp :

Cp =

(
σ2
uu

0
0 σ2uu

)
(11)

With σ2
uu

being the accuracy of the segment detected.
In order to update the probabilistic model, we use a
Kalman filter:{

u+ = u− +Ku [x̂p − xp]
C+
u = C−u −KuHuCp

(12)

Ku being the Kalman Gain, (u−, C−u ) is the model before
detection and (u+, C+

u ) is the model after detection.
v End after each detection, we compute the corresponding

entropic gain Hgain:

Hgain = p
(
Xk+

)
.
1

2

[
log|2πeC+

u | − log|2πeC
′
u|
]

(13)

With C
′
u the covariance from the initialization stage.

The ego-lane marking has been detected if the following
condition is satisfied :

Hgain > λHmax (14)

with

Hmax = p
(
Xk+

)
.
1

2

[
log|2π eC+

u | − log|2π eC
′
u|
]

With λ a fixed coefficient (< 1). If the condition is
satisfied, it means that enough detections have been
attempted successfully, and the obtained probabilistic
model (u+, C+

u ) is sufficiently precise to consider the
ego-lane recognition finished. Otherwise, the ego-lane



8

recognition process carried out, and the second most
informative ROI is selected.

The end of the marking detection involves the end of
the ego-lane level localization. Indeed, the update of the
model u,Cu leads to the update of the model Xv, CXv

. This
means that an estimation of the road parameters c2, x0 is
performed.

3.3 Lane level localization (LLL)
Once the ego-lane localization is estimated, we have to per-
form the lane-level localization to correctly choose the right
lane on which the vehicle travels. To do so, we proposed
in [22] a probabilistic framework that is split into three
stages. Thus, the presented LLL algorithm is an extension
of our work proposed in [22]. Indeed, the Hidden Markov
Model’s architecture is the same. The difference lies in the
input of the algorithm, as we take the information about
the road from OSM. In addition, the parameters of the road,
such as the curvature, are also extracted from OSM, which
will be useful for interpolating other lanes marking.
In the first stage, we extrapolate adjacent lanes by assuming
that lanes in the same road have the same width Lw and the
variation in the curvature c1 is very small. The second step
consists of a Bayesian Network (BN), that takes as input the
results of the hypothesized adjacent lane-marking detection,
whether these detections succeed or fail. Furthermore, since
the proposed BN is modular, we also use an adjacent vehicle
detector based on deep learning. The third step includes a
filtering process, using a Hidden Markov Model (HMM).

3.3.1 Adjacent lanes extrapolation
The adjacent lanes are extrapolated by taking advantage of
the estimated ego-lane localization. Thus, each adjacent lane
is described by a probabilistic model {Xl, CXl

}, where Xl

contains the parameters (x0, c2)T described in Section 3.2
and CXl

refers to the corresponding covariance matrix. The
assumption made is that the curvature and lane width stays
constant for all the lanes in the same road. Thereby, the
value of the vector Xl remains the same as xv described
in equation (6), only the value of x0 will be shifted by a
(±iLw), with (−i) indicates that the edge is at the right of
the ego-lane and (+i) the left. The number of adjacent lanes
extrapolated is equal to the lanes number from OSM. Thus,
from a perspective view, the hypothesized lanes are shown
in Figure 9.
As mentioned in the ELL section, the model {Xl, CXl

} can
be transferred to the model image {ul, Cul

}. As a conse-
quence, ul represents the horizontal pixel of the edges in the
image and Cul

its interval confidence. In Figure 10, the adja-
cent lane regions of interest resulting from the extrapolation
are shown.

For each adjacent lane marking extrapolated, the detection is
performed and the results are fed into a Bayesian Network
(BN).

3.3.2 Bayesian network for ego-lane determination
The proposed BN is designed to be flexible and modular for
other detection results from any type of sensor, i.e. vehicle
detector, guardrail detector. In order to show the flexibility

of the BN, we will first use only adjacent lanes detection
to determine the ego-lane. Thereafter, an adjacent vehicle
detector based on Deep Learning (YOLO [45]) is introduced.
The general architecture of the BN used is illustrated in
Figure 11. The described nodes are the following:

• Zki the element i is observable, this element can
represent any element of the road scene: {vehicles,
lane-marking, traffic signs...},

• Dki the detection of the element of type k is success-
ful. Later we will use Dl for adjacent lanes and Dv

for vehicles,
• LBN the lane on which the ego-vehicle is traveling,

LBN is a form of categorical distribution, LBN ∼
Cat(ξ) with LBN = {l1, ..., ln}, where l1 indicates
the leftmost lane and n the lanes number.

Depending on the results of the detection, we infer the
probability to belong to a lane li as follows:

P (LBN=li) = P (LBN=li |Dk1 , Zk1 , ..., Dkn , Zkn) (15)

The lane with the highest probability is chosen to be the
lane on which the vehicle travels. As mentioned before, the
proposed BN is aimed to be modular for other detectors.
To start, we only use the Adjacent Lanes Detection (ALD) as
input into our BN (BN + ALD), where Dli indicates whether
the detection of adjacent lane i is successful. After, we add
the information about the adjacent vehicles Dvi using the
Yolo detector, where Dvi indicates whether the detection
of the adjacent vehicle i is successful. Knowing that, this
detection is performed in the regions of the image bounded
by the neighboring marking-lanes.

3.3.3 HMM for ego-lane determination
The proposed BN in the previous section is applied on
a per-frame basis. However, the dynamic relationship be-
tween two consecutive frames is not taken into account.
Indeed, the BN does not take into consideration the dynamic
constraints of the ego-vehicle (i.e. the ego-vehicle can only
change lane to an adjacent lane). In order to take into
account these constraints, we filter the output of the BN by
a Dynamic Bayesian Network which is the Hidden Markov
Model (HMM).
We will use Lt to denote the set of ego-lane state variables
at time t, which depends on the lanes number nlanes and

Fig. 9: Detected ego-lane in solid red and the hypothesized
lanes in dash
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Fig. 10: Results of the adjacent lane regions of interest
resulting from the extrapolation

Zk1

Dk1

Zk2

Dk2

Zk3

Dk3

. . .

. . .

Zkn

Dkn

LBN

Fig. 11: Final architecture Bayesian Network (BN) used for
ego-lane determination.

which are assumed to be observable. et denotes the observ-
able evidence variable. The aim of the filter algorithm is to
estimate the probability P (Lt+1|e1:t+1). According to [46],
this probability can be formulated as follows:

P (Lt+1|e1:t+1) = P (Lt+1|e1:t, et+1)(dividing up the evidence)

= ηP (et+1|Lt+1, e1:t)P (Lt+1|et+1)(Baye’s rule)

= ηP (et+1|Lt+1)P (Lt+1|et+1)(Markov assumption) (16)

Where η denotes a normalizing constant to make probabili-
ties sum equal to 1. By arranging Equation (16):

P (Lt+1|e1:t+1) = ηP (et+1|Lt+1)
∑
lt

P (Lt+1|Lt, e1:t)P (Lt, e1:t)

= ηP (et+1|Lt+1)
∑
lt

P (Lt+1|Lt)P (Lt, e1:t) (17)

The probability P (et+1|Lt+1) comes from the observation
model. Hence, in this paper from the BN described previ-
ously, thus:

P (et+1|Lt+1) = P (LBN ) (18)

With regard to the probability P (Lt+1|lt), it comes from the
transition model. It expresses the probability of the ego-
lane to change its current state, which is the lane change
probability. Finally, the third term P (Lt, e1:t) expresses the
current state distribution. Graphically, we can illustrate the

corresponding HMM as in Figure 12.
With the recursive formulation obtained in Equation (17),

l1 l2 l3 . . . ln−1 ln

LBN

P(cr)

P(cr)−P(cl) P(cr)−P(cl) P(cr)−P(cl) P(cl)

P(cr)

P(cl)

P(cr)

P(cl)

P(cr)

P(cl)

e1
e2

e3
en−1 en

Fig. 12: Hidden Markov Model for n lanes case, with
L = {l1, l2, ..., ln} being the set of hidden states and
O = {e1, e2, ..., en} being the set of observations resulting
from the BN.
we can estimate the current ego-lane state given the obser-
vation obtained from the BN, but before we have to compute
the lane change probability.

3.3.4 Transition probability (Lane change probability)

To calculate the lane change probability, we model the lat-
eral position x0 estimated in the ego-lane level localization
as a normal distribution with mean µx0 and variance σx0 :

x0 ∼ N (µx0 , σ
2
x0

) (19)

The value µx0 and variance σx0 are obtained from the esti-
mated probabilistic model (xv , Cxv ). Therefore, we predict
the lateral position x0 at time tk+1 as shown on Fig 13.
Accordingly, the lane-change probability is calculated as

Fig. 13: Lane change probability, with the blue area repre-
senting the right change probability. The coordinate system
for x0 is centered on the vehicle
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follows:

P (Cr) =

∫ +∞

Lw/2

1

σx0

√
2π

e

−
(x− µx0 )

2

2σ2
x0 dx (20)

P (Cl) =

∫ −Lw/2

−∞

1

σx0

√
2π

e

−
(x− µx0 )

2

2σ2
x0 dx (21)

with P (Cr) the probability to right change lane and P (Cl) the
probability to left change lane.
Now that we have designed the HMM, we will introduce
the real-world experimental results in the following section.

4 REAL-WORLD EXPERIMENTAL RESULTS

The different parts of the localization algorithm have been
introduced in the previous section. In order to prove the
effectiveness of the presented algorithms, real-world exper-
iments have been carried out.
To do so, we tested our algorithm on real driving data-
sets. The first one was collected in the region of Clermont-
Ferrand in France, where we drove our acquisition vehicle
on two lanes and three lanes road in a national highway. In
order to collect these datasets, the acquisition vehicle was
equipped with a front camera, with the addition of an IMU
and a classic GPS receiver. The data have been stored on a
bag using using ROS. In addition to that, the ego-vehicle
provides information about its own odometery. Finally,
these datasets will be made available for researchers1. In
the following, they will be referred to as “2-lanes” for two
lanes road and “3-lanes” for three lanes road (1000 images
frames).
Furthermore, we wanted to compare the performances of
our algorithm to the literature on more challenging sce-
narios. Naturally, we turned our attention to the KITTI
datasets [47]. Although these dataset contain few lane-
changing scenarios, we will however use some part of those
in order to show the effectiveness of our RLL module. In
addition, we tested our algorithm on some datasets referred
to in [19]. Unfortunately, all the data were not ready yet.
We were able to test on some of them, noted as the A4-
Highway Italy, for a total of 9528 frames. The collected
datasets were manually annotated in a per-frame basis in
order to determine the correct ego-lane classification. In the
following, we will refer to these datasets as “4-lanes”.
Each part of the ego-localization: RLL, ELL and LLL will
be tested on the presented datasets, the results will be dis-
cussed in terms of accuracy. In the end, the overall algorithm
will be discussed in terms of computation time.
In order to assess the presented RLL algorithm, the cor-
rect Way has been manually annotated for each GPS
frame. The resulting ground truth was compared with
HMM-MM. The results are summarized on Table 2. As
highlighted, the Map-Matching with the addition of the
HMM improves the overall accuracy precision. This can
be explained by the inclusion of the topology of the
road network in the HMM. Indeed, the transition states
are governed by the connectivity between links. Further-
more, we test the reliability of our algorithm in more
challenging scenarios. Thus, we used the well-known

1. shorturl.at/lAR28

2-lanes 3-lanes KIIT-1 KIIT-2
Number of frames 1136 205 107 76

Correct MM Without HMM 99.64 % 99.51 % 100 % 100 %
Correct MM with HMM 100 % 100 % 100 % 100 %

TABLE 2: Map Matching results on the entire datasets with-
out and with the HMM, KITTI-1 and KITTI-2 refer to KITTI
sequences:’_2011_09_26_0001’ and ’_2011_09_26_0002’

KITTI [47] database in urban scenarios. The used sequences
are the following: “sequence_2001_09_26_0001” and “se-
quence_2001_09_26_0001”. Even if the two sequences were
taking in urban areas, the correct map-matching obtained
shows the effectiveness and the robustness of our proposed
RLL algorithm in varying scenarios. Finally, it can be noticed
that for the “4-lanes”, the GPS datasets have not been
mentioned. Indeed, practically the entirety of the datasets
is on the same Highway. Thus, the results on MM would
not be relevant.
As discussed in [48] [13], in most of the work presented

in the literature, the aim is to find the white strips in the
image without seeking for consecutive elements of lane
marking. Cnversely, in our work, we are more interested
in the curvature of the lane marking than the white strips.
However, by doing so, the characterization of the algorithm
is considerably more difficult. Some examples are presented
in Figure 14 showing the robustness of the presented ego-
lane marking detector on different lighting conditions. Once
the ego-lane localization completed, the Lane level localiza-
tion is performed. So as to point out the increment of each
added part, we first, determined the ego-lane using solely
the BN with adjacent lanes. Within the second instance,
we introduced adjacent vehicle detection in the BN. In all
instances, we filtered the outcome of the BN with the HMM.
All the results obtained are summarized in Table 3.
Considering the results, the increment provided by each
module is clearly illustrated. Indeed, altogether cases the

Fig. 14: Some examples of correct ego-lane marking recog-
nition (in Blue). As highlighted, the ego-lane marking are
correctly detected in varying imaging conditions: low light
level for the top images and high brightness for the bottom
images.
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BN +ALD BN +ALD +HMM BN +ALD +AVD BN +ALD +AVD +HMM
2-lanes 91.89% 99.00% 93.60% 99.00%
3-lanes 78.8% 86.8% 81.30% 90.90%
4-lanes 67.36% 78.36% 74.67% 85.35%

TABLE 3: Classification accuracy for ego-lane determination. BN+ALD refers to the BN feed with the adjacent lanes
detection, BN+ALD+HMM indicates the HMM with the corresponding BN, BN+ALD+AVD refers to the BN feed with
adjacent lanes and vehicles detection and BN+ALD+AVD+HMM refers to the HMM with the corresponding BN.

BN+ALD+AVD provides more accurate classification than
the BN+ALD, which suggests that the addition of another
information source also will improve the obtained accuracy.
After investigation on the inaccurate results, it appears that
the false classifications obtained using the BN+ALD are
due to two main reasons: either the lanes marking are not
detected or the lanes marking are wrongly detected. For the
primary case, this can be explained if the lanes marking are
missing or hidden by an object. For the second case, it shows
the limitation of the used lane marking detector. Moreover,
even if the introduction of the adjacent vehicle detection
shows excellent results, there are some cases where the ve-
hicles detection are not relevant, for instance, if the detected
vehicle is on the nearby road. To overcome this issue, we
would have to determine the localization of the detected
vehicle relative to the ego-vehicle, which is not the case since
we use solely images as input.
Finally, despite that the authors2 in [19] did not take into
account the lane change scenarios and designed empiri-
cally the HMM. Nevertheless, we manage to outperform
their results on the same datasets. Indeed, they achieved
77% correct classifications, where we were able to reach
85.35% on 9528 frames. Some ELL in different images are
presented in Figure 15. The presented results have been
carried using Python 3.7 under a Dell G3 3579 Core i7 8th
generation equipped with an NVIDIA GeForce GTX 1050
Ti. The computation time results presented in Figure 16
shows that even if the entire algorithm was coded in Python,
real-time implementation is possible. Indeed, the sum of
all parts of the ego-localization algorithm is under 500ms

(446.95ms on average). In addition, if we glance in-depth at
the time consumed in the RLL, we found that on average, it
takes 238.16ms to query the local server containing the OSM
data. Furthermore, from the 143.67ms dedicated to the LLL,
65.60ms are spent on the YOLO detector. These results lead
us to assume that implementation on C/C++ will divide the
calculation time by 10.

5 CONCLUSION

In this paper, we presented an end-to-end ego-vehicle lo-
calization. Starting from Road-level localization (RLL) using
OSM datasets and a classic GPS receiver, to the Ego-lane
level localization (ELL) using a recognition lane marking
in an information-driven fashion and finally, a Lane-level
localization (LLL) using the well-known YOLO detector in
a probabilistic framework composed of a Bayesian Network
and Hidden Markov Model to correctly determine the ego-
lane in the road. The distinction from other work lies in the
overall aspect of the ego-localization that has been tackled

2. The authors would like to acknowledge the authors of [19] for their
help with their datasets.

in stock in the paper. In addition, this work is distinguished
by the information-driven approach.
For our future work, we are currently working on adding
detectors from different sensors, i.e., lidar, radar to en-
hance the proposed framework. On the other hand, we
are still working on the OSM datasets in order to update
this database when it provides false information about the
environment.
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