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with the classical stochastic subspace identification method, which is based on white noise excitation. These two methods are first applied to numerical examples and then to a laboratory test. Results validate the novel ability of the method based on transmissibility measurements to eliminate harmonics, contrary to the stochastic subspace identification approach.

Abstract

The dynamic behavior of structures can be studied by the identification of their modal parameters. Classical modal analysis methods are based on the relation between the forces applied to structures (inputs) and their vibration responses (outputs). In real operational conditions it is difficult, or even impossible, to measure the excitation. For this reason, operational modal analysis approaches which consider only output data are proposed. However, most of these output-only techniques are proposed under the assumption of white noise excitation. If additional components, like harmonics for instance, are present in the exciting force, they will not be separated from the natural frequencies. Consequently, this assumption is no longer valid. In this context, an operational modal identification technique is proposed in order to only identify real poles and eliminate spurious ones. It is a method based on transmissibility functions.

The objective of the proposed paper is to identify modal parameters in operational conditions in the presence of harmonic excitations. Identification is performed using a method based on transmissibility measurements and then

Introduction

Modal analysis [START_REF] Guillaume | Modal analysis[END_REF][START_REF] Heylen | Modal analysis theory and testing[END_REF][START_REF] Peeters | Comparative study of modal analysis techniques for bridge dynamic characteristics[END_REF] is used to identify mode shapes, natural frequencies and damping ratios under vibrational excitation. These methods are efficient tool for detecting damage in structures, controlling them, and determining their structural stability. Modal parameters are initially identified using experimental modal analysis (EMA) [START_REF] Mejri | Dynamic characterization of machining robot and stability analysis[END_REF]. This technique exploits the Frequency Response Function (FRF) of the structure, which represents the relation between the excitation and the vibrational response of the structure. Resonance frequencies appear as peaks in the measured frequency response functions. From these FRFs, modal parameters are identified using various curve-fitting techniques. Many excitation forms and experimental setups exist,their choice depending on the structure's complexity. Usually, the EMA is carried out under impact hammer and/or shaker excitation. The major drawback to experimental modal tests is that both artificially applied forces and resulting structural vibration responses need to be measured. In practice, the measurement of the exciting force is not always possible. In EMA, tests are performed at rest, and the dynamic properties of structures at rest vary from those of structures in operational conditions [START_REF] Mejri | Experimental protocol for the dynamic modeling of machining robots[END_REF], which can significantly influence the identified modal model.

For these reasons, modal identification techniques are developed and operational modal analysis (OMA) is proposed [START_REF] Masjedian | A review on operational modal analysis researches: classification of methods and applications[END_REF][START_REF] Gagnol | Modal identification of spindle-tool unit in high-speed machining[END_REF], where the modal properties are estimated from responses only. Various operational modal identification techniques are proposed, example the Stochastic Subspace Identification approach (SSI) [START_REF] Van Overschee | Subspace algorithms for the stochastic identification problem[END_REF][START_REF] Peeters | Reference-based stochastic subspace identification for output-only modal analysis[END_REF]. However, OMA methods have limitations when applied to practical cases. One limiting constraint of OMA is that the non-measured excitation of the system in operation must be a stochastic realization (white noise) [START_REF] Masjedian | A review on operational modal analysis researches: classification of methods and applications[END_REF]. This implies that if harmonic components are present in addition to random excitation, standard OMA procedures cannot be applied in a straightforward way. Harmonic components are sometimes considered as virtual modes in the identification, but when the harmonic excitation frequencies are close to eigenfrequencies, the standard OMA approaches may break down [START_REF] Mohanty | Modified sstd method to account for harmonic excitations during operational modal analysis[END_REF].

Several indicators for the separation of structural and harmonic modes in output-only modal identification are proposed. One of the most widely-used methods is based on the Probability Density Function (PDF) of harmonic and structural responses. The PDF of a structural response is a distribution with only one peak, and the PDF of a harmonic response is a distribution with two peaks. This difference was originally illustrated by Lago [START_REF] Lago | The difference between harmonics and stochastic narrow band responses. Oral presentation at the SVIBS symposium[END_REF]. Kurtosis criteria have also been used to identify harmonic components and structural modes, [START_REF]Blind separation of vibration components: Principles and demonstrations[END_REF][START_REF]The spectral kurtosis: a useful tool for characterising nonstationary signals[END_REF][START_REF] Brincker | An indicator for separation of structural and harmonic modes in output-only modal testing[END_REF][START_REF] Jacobsen | Eliminating the influence of harmonic components in operational modal analysis[END_REF][START_REF] Jacobsen | Using efdd as a robust technique for deterministic excitation in operational modal analysis[END_REF]. Kurtosis is defined as the fourth central moment of the PDF, normalized with respect to the standard deviation. In addition to the above-mentioned methods, knowledge of the damping ratios is an a priori indicator to distinguish between harmonics and structural poles. Generally, the damping ratios of real poles vary between 0.1% and 2%. This information enables modes with negative and high damping to be eliminated [START_REF] Gagnol | Modal identification of spindle-tool unit in high-speed machining[END_REF]. The Modal Assurance Criterion (MAC) [START_REF] Kim | A new method to extract modal parameters using output-only responses[END_REF] is also an effective tool to distinguish a structural mode from a harmonic one. The MAC value between a structural mode shape and a mode shape corresponding to a harmonic component will show a low correlation. Specific numerical filters have also been developed [START_REF] Randall | New cepstral methods of signal pre-processing for operational modal analysis[END_REF] in order to eliminate harmonic components from the measured response. However, in practice filters are not perfect, and if the harmonic frequency is close to resonant frequencies, the filtering will disturb the response so that the identified modal parameters are perturbed. In order to overcome the white noise excitation assumption and consequently to identify modal parameters in the presence of harmonic excitation, an operational modal identification method is proposed by Devriendt et al. [START_REF] Mohanty | Modified sstd method to account for harmonic excitations during operational modal analysis[END_REF][START_REF] Devriendt | The use of transmissibility measurements in output-only modal analysis[END_REF][START_REF] Devriendt | Identification of modal parameters from transmissibility measurements[END_REF][START_REF] Devriendt | Operational modal analysis in the presence of harmonic excitations by the use of transmissibility measurements[END_REF]. This method is based on transmissibility measurements. The significant advantage of this approach is its independence from the nature of the excitation. Consequently, the presence of harmonics will not disturb the identified modal model.

The main objective of this paper is to identify the modal parameters of structures in the presence of harmonic components using the Transmissibility Function-Based method (TFB). The decision concerning whether a particular mode is structural or not is based on a singular value decomposition of the systems transmissibility matrix. The identified eigen-parameters are then compared to those obtained using the classical SSI method, which is based on the white noise excitation assumption. The idea behind this comparison is to demonstrate that the TFB method is a particular OMA which can eliminate harmonics and identify only the real poles of the structure. The paper is organized as follows. In section 2, a brief description of the TFB and SSI techniques is provided. In section 3, the OMA technique based on transmissibility measurements is applied to a numerical model and to a cantilever beam test. Results are then compared with those obtained via the SSI technique. Finally, section 4 concludes the paper.

Operational modal identification techniques

Modal identification method based on transmissibility functions (TFB)

OMA approaches are generally based on the assumption of white noise processes for operational excitations. However, this assumption is hard to respect in real situations [START_REF] Mohanty | Modified sstd method to account for harmonic excitations during operational modal analysis[END_REF][START_REF] Hermans | Modal testing and analysis of structures under operational conditions: industrial applications[END_REF]. The method based on transmissibility functions (TFB) is independent from the nature of the excitation, and solves the problem of the presence of harmonic components. The use of transmissibility functions was proposed by Devriendt et al [START_REF] Devriendt | The use of transmissibility measurements in output-only modal analysis[END_REF] as a new approach in operational modal analysis. The expression of the frequency response at a point i under an excitation at a point k is written as:

X k i (s) = H ik (s)F k (s) (1) 
A transmissibility function is defined as the ratio between the motion response X k i (s) and the reference motion response X k j (s) under a single force located at k.

T k ij (s) = X k i (s) X k j (s) = H ik (s)F k (s) H jk (s)F k (s) = H ik (s) H jk (s) (2) 
System poles are zero points resulting from the subtraction between two transmissibility functions measured at the same output points i and j but with two different input excitation locations k and l .

∆T kl ij (s) = T k ij (s) -T l ij (s) (3) 
And consequently the poles of its inverse:

∆ -1 T kl ij (s) = 1 T k ij (s) -T l ij (s) (4) 
The PolyMAX method [START_REF] Peeters | Polymax: A revolution in operational modal analysis[END_REF] is then investigated in order to calculate the system poles from ∆ -1 T kl ij (s). Generally, additional poles can be present in the ∆ -1 T kl ij (s) functions. Structural poles λ r can easily be determined by performing a singular value decomposition of the transmissibility matrix T [START_REF] Devriendt | The use of transmissibility measurements in output-only modal analysis[END_REF]. If we consider, for example, four different loading conditions k, l, m and n, the transmissibility matrix is the following:

T =       T k 1r (s) T l 1r (s) T m 1r (s) T n 1r (s) T k 2r (s) T l 2r (s) T m 2r (s) T n 2r (s) T k 3r (s) T l 3r (s) T m 3r (s) T n 3r (s) T k 4r (s) T l 4r (s) T m 4r (s) T n 4r (s) 1 1 1 1       (5) 
In fact, in system poles λ r the rank of matrix T is one; consequently, σ 1 > σ 2 > σ 3 > σ 4 ≥ 0 and 1/σ 2 tends to ∞.

Stochastic subspace identification method (SSI)

The dynamic behavior of a discrete mechanical system consisting of n masses connected through springs and dampers is described by the following matrix differential equation:

Mq(t) + C 2 q(t) + Kq(t) = f (t) (6) 
M, C 2 and K ∈ R n×n are the mass, damping and stiffness matrices. q(t) ∈ R n is the displacement vector at continuous time t. Vector f (t) ∈ R n is the excitation force. SSI is a method that converts a 2 nd order problem into two 1 st order problems. Equation ( 6) can be converted into the following state equation:

ẋ(t) = A c x(t) + B c f (t) y(t) = Cx(t) + Df (t) (7) 
The state matrix A c in continuous time, the load matrix B c and the output matrix C are given by:

A c = 0 1 1 -M -1 K -M -1 C 2 , B c = 0 M -1 , C = 1 1 0 , x = q q
D is the feedback matrix (zero in the case of mechanical systems). The first equation in ( 7) is called the state equation and models the dynamic behavior of the system. The second equation is called the observation or output equation. Equation ( 7) can be converted to following discrete-time stochastic state-space model [START_REF] Van Overschee | Subspace algorithms for the stochastic identification problem[END_REF]:

x k+1 = Ax k + w k y k = Cx k + v k (8) 
where y k = y(k∆t) is the sampled output vector, x k = x(k∆t) is the discrete state vector, w k is the process noise due to the unknown excitation of the structure, v k is the measurement noise and k is the time instant, A = exp(A c ∆t) is the discrete state matrix. In order to obtain the modal parameters, an eigenvalue decomposition (EVD) of the matrix A is performed:

A = ΨΛ d Ψ -1 (9) 
Ψ ∈ C n×n is the eigenvector matrix and Λ d = diag(λ i ) ∈ C n×n is the diagonal matrix containing the discrete time eigenvalues µ i . The continuous time state equation ( 7) is equivalent to the second order matrix equation of motion [START_REF] Masjedian | A review on operational modal analysis researches: classification of methods and applications[END_REF] . Consequently, they have the same eigenvalues and eigenvectors. These can be obtained by an eigenvalue decomposition of the continuous time state matrix:

A c = Ψ c Λ c Ψ c -1 (10) 
Where Λ c = diag(λ c ) is a diagonal matrix containing the continuous time complex eigenvalues and Ψ c contains the eigenvectors. The continuous time complex eigenvalues λ c are found from the discrete time eigenvalues λ i by:

λ c = ln(λ i ) ∆t ( 11 
)
where ∆t is the sampling time. The eigenvalues of A c occur in complex conjugated pairs and are written as:

λ c , λ * c = -ξ c ω c ± jω c 1 -ξ 2 c ( 12 
)
Natural frequencies f c and damping ratios ξ c are identified from:

f c = ω c 2π = |λ c | 2π , ξ c = | (λ c )| |λ c | (13) 
The modal matrix Φ can be obtained from the eigenvector matrix Ψ using the relation:

Φ = CΨ (14) 
3. Applications

Numerical model

In order to validate the numerical implementation of the transmissibility function-based method, a numerical model was considered and modal identification was performed in the case of impact hammer excitation and then in the case of a combination between harmonic and random excitations for comparison purposes.

Impact hammer excitation

A two-degree-of-freedom (DoF) system is considered for numerical validation and is illustrated in Figure 1 with its mechanical properties. Two impact hammer excitations were applied to both masses of the system separately. For each loading condition, responses in displacement are obtained by the integrating motion equations with the Range-Kutta algorithm. The mass displacement responses, which are sampled at N = 4000 points with a period ∆t = 0.01s, are presented in Figure 1.

c 1 k 1 m 1 c 2 k 2 m 2 6
x 2 (t) In this case, two transmissibility functions are calculated with respect to the frequency response of each mass of the studied system under the two different applied forces. In Figure 2a, the two transmissibility functions T 1 12 (s) and T 2 12 (s) cross each other at two different points, which represent the system's poles. The subtraction between two transmissibility functions under two different input excitations on each of the two masses is:

6 x 1 (t) m 1 = m 2 = 1 kg c 1 =
T 1 12 (s) = X 11 (s) X 21 (s) , T 2 12 (s) = X 12 (s) X 22 (s) (15) 
∆T (s) = T 1 12 (s) -T 2 12 (s) (16) 
Systems poles are poles of ∆ -1 T (s). In Figure 2b, two peaks of the system's poles are observed at ∆ -1 T (s). The frequency domain estimator, PolyMAX, is then investigated for the function ∆ -1 T (s), in order to identify the damping ratio and the natural frequency of the system's poles. Modal parameters are 1 with their exact values.

The modal parameters identified by the transmissibility function-based method are quite close to exact ones, thus confirming the numerical implementation of the TFB method. The damping ratio is more influenced by the nature of the excitation than the natural frequency. This explains the good correlation between TFB and exact values as regards the determination of natural frequencies.

Combination of white noise excitation and fixed harmonic excitation

In order to evaluate the influence of the presence of harmonic components on the exciting force, and to check the efficiency of the TFB method, a combination of harmonic excitation and Gaussian white noise excitation with zero mean is applied to each mass separately. The frequency of the applied harmonic excitation is equal to 15 Hz. The Fast Fourier Transform (FFT) of the simulated temporal response is shown in Figure 3. Three peaks combining structural and harmonic modes are present in the FFT curve. The harmonic component frequency is 15 Hz, and the two other modes are structural. In Figure 4, the T 1 12 (s) and T 2 12 (s) curves cross each other on the system's poles. In [START_REF] Devriendt | Operational modal analysis in the presence of harmonic excitations by the use of transmissibility measurements[END_REF], it was demonstrated that the ratio between two frequency responses under the same input force eliminates the harmonic component. Thus these harmonic components will not be present in ∆ -1 T (s) . However, ∆ -1 T (s) may contain additional poles that are not related to the system's dynamics, as can be seen on the curve of ∆ -1 T (s) in Figure 5. It is important to verify whether these peaks on the curve of ∆ -1 T (s) are real structural modes or not.

Step 1: Singular value decomposition of the transmissibility matrix T At the system poles, the rank of the proposed matrix T is one. Consequently, σ 2 tends to zero and the peaks of 1/σ 2 indicate the system's poles. Step 2: Stabilization diagram Stabilization diagrams showing the stability of the poles as a function of ∆ -1 T (s) and as a function of increasing model order were used to distinguish the spurious modes from the physical poles. Figure 6 shows such a stabilization diagram. The green point indicates that a pole is stable with respect to damping ratio and natural frequency, and the red point indicates that a pole is unstable with respect to damping ratio and/or natural frequency. Here it is clear that the two poles at frequencies demonstrate the novel ability of the TFB technique to eliminate harmonics, modal parameters are also identified using the SSI method. Results obtained from the two different approaches are presented in Table 2 and compared. The times consumption of the proposed TFB approach and the classical SSI method are respectively 3.544 s and 2.834 s. In the stabilization diagram obtained with the SSI method, shown in Figure 7, three poles are estimated.

The SSI is a robust method, but we cannot really distinguish between structural and non-structural poles, and this generally represents a difficulty in the operational modal identification field. With the transmissibility-based method, the harmonic mode is automatically eliminated, which is not the ------0.05 --case for SSI, that estimates it with a low damping value. However, the modal identification of the real structural pole parameters shows a good correlation, especially on the natural frequencies.

Laboratory experimental test 3.2.1. Experimental modal analysis

In order to check the efficiency of the OMA method based on transmissibility measurements, an experimental test, shown in Figure 8, was carried out for a cantilever beam. A cantilever beam 0.757 m in length, 0.103 m in width and 0.008 m in height is considered to identify its modal parameters. First, an analytical computation of the first five natural frequencies of the considered beam was performed, using the following equation:

f i = 1 2π √ 12 α 2 i E ρ h L 2 (17) 
with: Height: h=0.08 m Length: L=0.757 m Young's modulus: E=70000 MPa Density: ρ=2698 Kg/m 3 α 0 =1.8751, α 1 =4.695, α 2 =7.85, α i+1 =(2i +1)/2, for i >2 In order to obtain a reference modal model, an EMA was performed using an impact hammer at well-defined locations on the beam. Time responses were recorded using six PCB Piezoelectric accelerometers, equally distributed over the full length of the beam, as shown in Figure 8. LMS TEST.Lab software was used to acquire the responses from the accelerometers. Modal parameters were identified using the PolyMAX modal identification method implemented in the LMS TEST.Lab software. From the stabilization diagram shown in Figure 9, modal parameters of the studied cantilever beam were identified. The method based on transmissibility measurements is then applied to the measured data response. The results obtained by the two different methods are shown in Table 4. Results show a good correlation when comparing the values of the natural frequencies and the damping ratios. In order to compare the mode shapes identified by the two different methods, the modal assurance criterion is calculated. The modal assurance criterion (MAC) shows a very good correlation between the five structural mode shapes obtained by these two different techniques (Coefficient of correlation greater than 0.9). 

Operational modal analysis

In addition to the random impact hammer shocks, the beam is now excited by harmonic excitations provided by a motor turning at 851 rpm. The motor is fixed to the second point of the beam, as can be seen in Figure 11. Experimental tests were carried out under random impact hammer shocks in the presence of harmonic excitation. Data responses were measured using six accelerometers, equally distributed over the full length of the beam, as described in the EMA section. Operational modal analysis was performed The stabilization diagram is obtained using the PolyMAX method implemented in the LMS TEST.Lab software. Here we find that the distinction between harmonics and structural poles is difficult. It is therefore not possible to decide if a pole is real or spurious. The same difficulty was found when identifying the modal parameters of the excited beam with the SSI method, which identifies both structural and harmonic poles.

As explained in section1, in order to select the correct poles a singular value decomposition of the transmissibility matrix is performed, and the second singular value of T(s) should be close to 0 for this systems poles.

T =         T 1 12 (s) T 2 12 (s) T 3 12 (s) T 4 12 (s) T 1 32 (s) T 2 32 (s) T 3 32 (s) T 4 32 (s) T 1 42 (s) T 2 42 (s) T 3 42 (s) T 4 42 (s) T 1 52 (s) T 2 52 (s) T 3 52 (s) T 4 52 (s) T 1 62 (s) T 2 62 (s) T 3 62 (s) T 4 62 (s) 1 1 1 1         (18) 
Through the EMA of the studied cantilever beam, three structural poles are identified in the frequency band [0 200 Hz], at frequencies of 10.57 Hz, 67.51 Hz and 188.99 Hz, respectively. Furthermore, in Figure 13, it is shown that in the considered frequency band, the three dominant peaks coincide with the first three natural frequencies. The PolyMAX technique is then investigated to identify modal parameters from the transmissibility ∆ -1 T (s) functions. Results obtained from the two different TFB and SSI approaches are presented in Table 5. The times consumption of the proposed TFB approach and the classical SSI method are respectively 7.519 s and 2.492 s. Similarly to the first studied case, only structural modes are selected and estimated by the method based on transmissibility measurements. Modal parameter identification appears to be reasonably robust in relation to the determination of the natural frequencies and vibration mode shapes. However, the damping ratio identified by both SSI and PolyMAX methods is strongly influenced by the presence of harmonics. The modal assurance criterion (MAC) shows a very good correlation between the structural mode shapes obtained using these three different techniques (Coefficient of correlation greater than 0.8).

Conclusions

In this paper, an operational modal identification method is proposed for ambient vibration testing in the presence of harmonics. This operational modal identification method, based on transmissibility functions (TFB), is first applied to a two-degree-of-freedom system in order to validate its numerical implementation, and then investigated via an experimental beam test. Identified modal parameters are compared to those found by a classical OMA approach based on the white noise excitation assumption, namely the SSI method. In the two different cases, the time consumption of the TFB approach is higher than that of the SSI method. This can be explained by the additional stage of the signals preprocessing. It should be noted that the efficiency of the proposed TFB method also depends on the modal identification capacity from transmissibility functions. Even these functions are independent of excitations nature, the TFB could be thus less efficient when modal density is high as in mid-frequency range. The main advantage of the TFB method is its independence from the nature of the excitation and its novel ability to eliminate harmonic components. Consequently, it provides an accurate prediction of modal parameters in the presence of harmonic excitations. Thus, it opens possibilities for application to more complicated structures in the presence of harmonic excitations under operational conditions.
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Table 1 :

 1 Identified modal parameters from the TFB method and exact values

	Mode Natural frequency (Hz) Damping ratio (%)
		Exact	TFB	Exact	TFB
	1	3.55	3.51	1.12	1.36
	2	8.71	8.78	2.73	2.47
	reported in Table				

  3.54 Hz and 8.72 Hz are real structural poles, and that the other peaks are spurious ones. In order to
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Table 2 :

 2 Identified modal parameters using SSI and TFB methods

	Mode Natural frequency (Hz)	Damping ratio (%)
		Exact SSI	TFB	Exact SSI	TFB
	1 st	3.55	3.58	3.54	1.12	1.21	1.24
	2 nd	8.71 8.717	8.72	2.73	2.02	2.68
	3 rd	15	15				

Table 3 :

 3 Exact natural frequency values of the cantilever beam

	Mode Natural frequency (Hz)
	1 st	10.8
	2 nd	67.8
	3 rd	189.85
	4 th	371.5
	5 th	614.8

Table 4 :

 4 Modal parameters identified using EMA

	Mode Natural frequency (Hz) Damping ratio (%)
		PolyMAX	TFB	PolyMAX TFB
	1 st	10.569	10.57	1.05	1.059
	2 nd	67.751	67.51	0.74	0.841
	3 rd	185.959	188.99	1.59	1.547
	4 th	387.542	388.92	0.78	0.763
	5 th	626,917	626,51	0,57	0,578

Table 5 :

 5 Modal parameters of the cantilever beam, identified through experimental and operational modal analysis

	Component	Identified frequency (Hz)	Damping ratio (%)	Nature
		PolyMAX SSI	TFB	PolyMAX SSI	TFB Structural
	1 st	10.14	10.22 10.12	1.12	7.85 1.128 Harmonic
	2 nd	14.10	14.46 ---	0.10	0.04 ---Harmonic
	3 rd	---	25.93 ---	---	7.9 ---Harmonic
	4 th	43.69	43.52 ---	0.66	6.12 ---Harmonic
	5 th	63.70	63.67 67.751	2.66	9.05	2.20	Structural
	6 th	184.10	183.1 185.957	0.94	0.72	0.39	Structural
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