
HAL Id: hal-03048336
https://uca.hal.science/hal-03048336

Submitted on 9 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Using Model Learning for the Generation of Mock
Components

Sébastien Salva, Elliott Blot

To cite this version:
Sébastien Salva, Elliott Blot. Using Model Learning for the Generation of Mock Components. Testing
Software and Systems - 32nd IFIP WG 6.1 International Conference, ICTSS 2020, Naples, Italy,
December 9-11, 2020, Proceedings, pp.3-19, 2020, �10.1007/978-3-030-64881-7_1�. �hal-03048336�

https://uca.hal.science/hal-03048336
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Using Model Learning for the Generation of
Mock Components

Sébastien Salva1 and Elliott Blot1

LIMOS CNRS UMR 6158, Clermont Auvergne University,
sebastien.salva@uca.fr, eblot@isima.fr

Abstract. Mocking objects is a common technique that substitutes
parts of a program to simplify the test case development, to increase
test coverage or to speed up performance. Today, mocks are almost ex-
clusively used with object oriented programs. But mocks could offer the
same benefits with communicating systems to make them more reliable.
This paper proposes a model-based approach to help developers generate
mocks for this kind of system, i.e. systems made up of components inter-
acting with each other by data networks and whose communications can
be monitored. The approach combines model learning to infer models
from event logs, quality metric measurements to help chose the compo-
nents that may be replaced by mocks, and mock generation and execution
algorithms to reduce the mock development time. The approach has been
implemented as a tool chain with which we performed experimentations
to evaluate its benefits in terms of usability and efficiency.

Keywords: Mock; Model Learning; Quality Metrics; Communicating
Systems

1 Introduction

A technique commonly used in the context of crafting tests for software ap-
plications consists of replacing a software component (typically a class) with a
test-specific version called mock, which behaves in a predefined and controlled
way, while satisfying some behaviours of the original. Mocks are often used by
developers to make test development easier or to increase test coverage. Mocks
may indeed be used to simplify the dependencies that make testing difficult (e.g.,
infrastructure or environment related dependencies [21, 3]). Besides, mocks are
used to increase test efficiency by replacing slow-to-access components. This pa-
per addresses the generation of mocks for communicating systems and proposes
a model-based mock generation. When reviewing the literature, it is particularly
noticeable that mocks are often developed for testing object oriented-programs
and are usually written by hands, although some papers have focused on the
automatic generation of mocks.
Related Work: the idea of simulating real components (most of the time objects
in the literature) with mocks for testing is not new in software engineering. The
notion of mock object originates from the paper of Mackinnon et al. [14] and has

2 S. Salva and E. Blot

then been continuously investigated, e.g., in [10, 11, 21, 3]. Some of these works
pointed out the distinctions between mocks and other related terms such as stub
or fake. In this paper, we will use the term mock to denote a component that
mimics an original component and whose behaviours can be verified by tests to
ensure that it is invoked as expected by the components being tested.

A few works related to mock generation have been proposed afterwards. Saff
et al. [16] proposed to automatically replace some objects instantiated within
test cases by mocks to speed up the test execution or to isolate other objects to
make the bug detection easier. The mock generation is performed by instrument-
ing Java classes to record both method calls and responses in transcripts. These
ones are used as specifications of mock objects. Tillmann and Schulte proposed
to generate mocks by means of a symbolic analysis of .NET codes [24]. These
mocks represent variables, which can be given to a robustness test generator for
producing unexpected but admissible input values. Galler et al. generate mocks
from Design by Contract specifications, which allow developers to establish the
semantics of objects with pre-, post-conditions and invariants [12]. These con-
ditions and invariants are used as specifications of mocks. Alshahwan et al. also
proposed the mock generation from method post-conditions but also from test
coverage measurements [2].

Apart from some guides or good practices dealing with Web service mocking,
we did not find any attempt to mock other kinds of components in the litera-
ture, yet the need for replacing components by mocks for testing other kinds
of systems under test (SUT) continues. Like object oriented-programs, the use
of mocks for testing communicating systems could help experiment in isolation
some components having dependencies that make testing difficult. Using mocks
could also help increase test coverage. After our literature review, we believe
that these four main obstacles currently prevent the use of mocks for testing
communicating systems:

– the lack of specification. If no component specification is provided, it becomes
long and difficult to develop interoperable mocks;

– the difficulty in maintaining mocks when SUT is updated;
– the difficulty of choosing the mockable components that is, those that may

be replaced by mocks;
– the lack of tools to help generate mock components.

Contributions: this paper addresses these obstacles and proposes an approach
for helping developers in: the analysis of a communicating system to classify its
components; the choice of mockable components; and the mock generation. In
our context, the mock components can be used for several purposes, e.g., for
increasing test coverage, for security testing, or for testing new systems made
up of reusable components during the development activity. To reach these pur-
poses, our approach combines model learning, quality metrics evaluation and
mock generation. Model learning is used to infer models, which encode the be-
haviours of every component of a communicating system and its architecture.
On these models, we evaluate 6 quality metrics mostly related to Auditability,

Using Model Learning for the Generation of Mock Components 3

Testability and Dependability. These metrics allow to classify components into 4
categories: “Mock”, “Test”, “Test in Isolation” and “Code Review”. We finally
propose model-based algorithms to help generate and execute mocks.

This approach has been implemented as a tool chain available in [18]. We per-
formed a preliminary experimentation on a home automation system composed
of smart devices to assess its benefits in terms of usability and efficiency.
Paper organisation: Section 2 recalls some preliminary definitions and nota-
tions. Section 3 presents our approach: we give an overview of our model learning
algorithm called CkTail; We define quality metrics and show how to classify com-
ponents with them; we introduce the mock generation and execution algorithms.
The next section introduces an empirical evaluation. Section 5 summarises our
contributions and draws some perspectives for future work.

2 Preliminaries

We express the behaviours of communicating components with Input Output
Labelled Transition Systems. This model is defined in terms of states and tran-
sitions labelled by input or output actions, taken from a general action set L,
which expresses what happens.

Definition 1 (IOLTS). An Input Output Labelled Transition System (IOLTS)
is a 4-tuple 〈Q, q0, Σ,→〉 where:

– Q is a finite set of states; q0 is the initial state;
– Σ ⊆ L is the finite set of actions. ΣI ⊆ Σ is the finite set of input actions,
ΣO ⊆ Σ is the finite set of output actions, with ΣO ∩ΣI = ∅;

– →⊆ Q×Σ ×Q is a finite set of transitions.

We also define the following notations: (q1, a, q2) ∈→⇔def q1
a−→ q2; q

a−→⇔def

∃q2 ∈ Q : q
a−→ q2. Furthermore, to better match the functioning of communi-

cating systems, an action has the form a(α) with a a label and α an assignment
of parameters in P , with P the set of parameter assignments. For example, the
action switch(from := c1, to := c2, cmd := on) is made up of the label ”switch”
followed by parameter assignments expressing the components involved in the
communication and the switch command. We use the following notations on
action sequences. The concatenation of two action sequences σ1, σ2 ∈ L∗ is de-
noted σ1.σ2. ε denotes the empty sequence. A run q0a1(α1)q1 . . . qn of the IOLTS
L is an alternate sequence of states and actions starting from the initial state
q0. A trace is a finite sequence of actions in L∗.

The dependencies among the components of a communicating system are
captured with a Directed Acyclic Graph (DAG), where component identifiers
are labelled on vertices.

Definition 2 (Directed Acyclic Graph). A DAG Dg is a 2-tuple 〈VDg, EDg〉
where V is the finite set of vertices and E the finite set of edges.
λ denotes a labelling function mapping each vertex v ∈ V to a label λ(v)

4 S. Salva and E. Blot

3 A model-based mock generation approach

Fig. 1: Approach Overview

Our approach is structured into 3 main steps, illustrated in Figure 1. A model
learning technique is firstly applied to a given event log collected from a system
denoted SUT. For every component c1 of SUT, it generates one IOLTS L(c1)
expressing the behaviours of c1 along with one dependency graph Dg(c1) ex-
pressing how c1 interacts with some other components of SUT. The second step
computes quality metrics on these models, and assists the developer in the com-
ponent classification under the categories: “Mock”, “Test”, “Test in Isolation”,
“Code Review”. Once the mockable components are identified, the third step
helps the developer in the mock generation by means of the IOLTSs produced
previously. It is worth noting that mocks often increase test coverage along with
the generation of more logs, which may be later used to generate more precise
IOLTSs and re-evaluate metrics. This cycle may help produce mocks that better
simulate real components. These steps are detailed in the following.

3.1 Model Generation

Fig. 2: Model learning with the CkTail approach

We proposed a model learning approach called Communicating system kTail,
shortened CkTail, to learn models of communicating systems from event logs. We
summarise here the functioning of CkTail but we refer to [17] for the technical
details. The CkTail’s algorithms rely on some assumptions, which are required
to interpret the communications among the components of SUT in event logs.
These are given below:

Using Model Learning for the Generation of Mock Components 5

Fig. 3: Example of model generation with CkTail

– A1 Event log: we consider the components of SUT as black-boxes whose
communications can be monitored. Event logs are collected in a synchronous
environment. Furthermore, the messages include timestamps given by a
global clock for ordering them. We consider having one event log;

– A2 Message content: components produce messages that include param-
eter assignments allowing to identify the source and the destination of every
message. Other parameter assignments may be used to encode data. Besides,
a message is either identified as a request or a response;

– A3 Component collaboration: the components of SUT can run in par-
allel and communicate with each other. But, they have to follow this strict
behaviour: they cannot run multiple instances; requests are processed by a
component on a first-come, first served basis. Besides, every response is as-
sociated with the last request w.r.t. the request-response exchange pattern.

The assumption A3 helps segment an event log into sessions, i.e. temporary
message interchanges among components forming some behaviours of SUT from
one of its initial states to one of its final states.

Figure 2 illustrates the 4 steps of CkTail. The event log is firstly formatted
into a sequence of actions of the form a(α) with a a label and α some param-
eter assignments, by using tools or regular expressions. The second step relies
on A3 to recognise sessions in the action sequence and to extract traces. In
the meantime, this step detects dependencies among the components of SUT.
It returns the trace set Traces(SUT), the set of components C and the set
Deps(SUT), which gathers component dependencies under the form of compo-
nent lists c1 . . . ck. We have defined the notion of component dependency by
means of three expressions formulating when a component relies on another one.
Intuitively, the two first expressions illustrate that a component c1 depends on

6 S. Salva and E. Blot

another component c2 when c1 queries c2 with a request or by means of suc-
cessive nested requests. The last expression deals with data dependency. The
third step builds one dependency graph Dg(c1) for every component c1 ∈ C.
These show in a simple way how the components interact together or help iden-
tify central components that might have a strong negative impact on SUT when
they integrate faults. The last step builds one IOLTS, denoted L(c1) for every
component c1 ∈ C. The IOLTSs are reduced by calling the kTail algorithm [4],
which merges the (equivalent) states having the same k-future, i.e. the same
event sequences having the maximum length k.

Figure 3 illustrates a simple example of model generation performed by Ck-
Tail. The top of the figure shows an action sequence obtained after the first
step. For simplicity, the labels directly show whether an action encodes either
a request or a response. CkTail covers this action sequence, detects three com-
ponents and builds three dependency graphs. For instance, Dg(d1) shows that
d1 depends on G because the action sequence includes some requests from d1 to
G. Thereafter, CkTail generates three IOLTSs whose transitions are labelled by
input or output actions. For instance, the action req1(from:=d1,to:=G,...) has
been doubled with an output !req1 and an input ?req1. The former is labelled on
the transition q0 → q1 of L(D1) to express the sending of the request by d1; the
latter is labelled on the transition q0 → q1 of L(G) to express that G expects to
receive the input ?req1.

3.2 Quality Attribute Evaluation

Quality Metrics Component Categories

Accf Undf InDepsf OutDepsf Obsf Contf Mock Test in
isolation

Test Code
Review

0 ≥ 0 ≥ 0 ≥ 0 ≥ 0 ≥ 0 X
≥ 0 weak ≥ 0 ≥ 0 ≥ 0 ≥ 0 X
> 0 strong 0 0 strong weak X X
> 0 strong > 0 > 0 weak weak X X
> 0 strong > 0 0 strong weak X+ X X
> 0 strong 0 > 0 strong weak X++ X X
> 0 strong > 0 > 0 strong weak X X X
> 0 strong > 0 0 weak strong X+ X X
> 0 strong 0 > 0 weak strong X X
> 0 strong > 0 > 0 weak strong X X X
> 0 strong > 0 > 0 strong strong X+ X++
> 0 strong 0 > 0 strong strong X++
> 0 strong > 0 0 strong strong X++ X++
> 0 strong 0 0 strong strong X++
> 0 strong 0 0 weak strong X X
> 0 strong 0 0 weak weak X

Table 1: Classification of a component in component categories w.r.t. quality
attributes. X stands for “is member of”. X, X+, X++ denote 3 levels of interest.

Some quality attributes can now be automatically evaluated for all the com-
ponents of SUT. By means of these attributes, we propose to classify the com-
ponents into 4 categories “Mock”, “Testable”, “Testable in Isolation”, “Code
Review”, to help developers dress their test plan. To select relevant quality at-
tributes, we firstly studied the papers dealing with the use of mocks for testing,

Using Model Learning for the Generation of Mock Components 7

e.g., [10, 11, 21, 3, 16, 12, 2, 23, 22]. In particular, we took back the conclusions of
the recent surveys of Spadini et al. [22, 21], which intuitively report that devel-
opers often use mocks to replace the components that are difficult to interpret,
complex, not testable, or those that are called by others (e.g., external compo-
nents like Web services). Then, we studied some papers related to Testability [7,
19, 8, 9] and Dependability [20, 5]. We finally selected 6 attributes, which, when
used together, help classify a component into the previous categories. We kept
the attributes dedicated to:

– evaluating the degree to which a component of SUT is understandable and
reachable through PO or PCO (point of control and observation). We con-
sider Understandability and Accessibility;

– selecting the components that can be tested. Testability often refers to two
other attributes called Observability and Controllability;

– identifying the dependencies among components. We distinguish between de-
pendent and dependee components. Intuitively, the former depend on other
components; the latter are required by other components. With regard to
these two kinds of components, we consider In- and Out-Dependability.

Quality attribute measurement is usually performed on specifications with
metrics. But in the present work, we have models inferred by a model learn-
ing technique. They generalise what we observed about SUT, but may expose
more behaviours than those possible (over-approximation) or may ignore be-
haviours that can occur (under-approximation). As a consequence, we shall talk
about fuzzy metrics in the remainder of the paper. We hence measure quality
with the 6-tuple 〈Accf , Undf , InDepsf , OutDepsf , Obsf , Contf 〉. This notion of
fuzzy metric, albeit unusual, reinforces the fact that the quality measurement
may evolve as we gather more data by testing SUT and updating the models.

Table 1 summarises our literature study and our interpretations of the re-
lationships of a component with the four component categories studied in the
paper with respect to quality metric measurements. We use the imprecise terms
“weak” “strong” to express two levels of range of values whose definition is left
to the user’s knowledge on SUT. For instance, the range weak < 0.5 and strong
≥ 0.5 is a possible solution, but not suitable for any system. The relations ex-
pressed in Table 1 are discussed per category below.

Mock category: Table 1 brings out two kinds of mockable components:

– accessible and dependee components, which could be replaced by mocks to
deeper test how dependent components interacts with them. When Observ-
ability or Controllability of a dependee component are weak, the developer
has to assess how the lack of Testability may impede the testing result inter-
pretations. Furthermore, if a dependee component is also a dependant one,
the mock may be more difficult to devise;

– accessible, uncontrollable and dependent only components are also good
candidates because such components cannot be experimented with tests al-
though they trigger interactions with other components. Mocking out those

8 S. Salva and E. Blot

components should allow to deeper test SUT. As previously, the developer
needs to consider Observability and in-Dependability to assess the difficulty
of replacing these components with mocks.

Test, Test in Isolation categories: a testable component has to expose both
Observability and Controllability. Out-Dependability (with OutDepsf > 0) is
here used to make the distinction between the categories Test and Test in iso-
lation. In Table 1, the level of interest is the lowest when a component ex-
poses weak Observability or Controllability. Here, the developer needs to assess
whether testing should be conducted.

Code Review category: Table 1 shows that many kinds of components belong
to this category. These components either are unreachable or have unreadable
behaviours, or they are not testable (weak Obsf or weak Contf).

We now define the fuzzy quality metrics in the remainder of this section. The
metrics for Understandability and Observability are taken from the papers [7,
19, 8, 9] and adapted to our models. The metrics for Accessibility, Dependabil-
ity and Controllability are revisited to take into account some specificities of
communicating systems.

Component Understandability evaluates how much component information
can be interpreted and recognised [1, 15]. In our context, this attribute mainly
depends on the clearness/interpretation of the actions. As these are made up
of parameter assignments, we say that Understandability depends on how as-
signments are interpretable, which we evaluate with the boolean expression is-
Readable. For instance, the latter may be implemented to call tools for detecting
whether parameter values are encrypted. Given a component c1 ∈ C, the metric
which assesses the Understandability of c1 is given below. The more Undf (c1)
is close to 1, the more interpretable the IOLTS L(c1) is.

– Und(a(α)) =def 0 ≤

∑
(x:=v)∈α

isReadable(x := v)

| α |
≤ 1

– Undf (c1) =def 0 ≤

∑
a(α)∈Σ

Und(a(α))

| Σ |
≤ 1

Component Accessibility is usually expressed through the accesses of Points
of Control and Observations (PCO). Several PCO may be required to bring
a full access to a communicating system. Accessibility may be hampered by
diverse restrictions applied on the component interfaces e.g., security policies,
or by the nature of the protocols used. We evaluate the ability to interact with
a component c1 ∈ C through its interfaces with:
0 ≤ Accf (c1) =def

interfaces of c1 interconnected with reachable PCO
interfaces of c1

≤ 1

Using Model Learning for the Generation of Mock Components 9

Component Dependability helps better understand the architecture of a
component-based system, and may also be used to evaluate or refine other
attributes, e.g., Reusability [20, 5, 13]. The metric given below relies upon the
DAGs generated by CkTail from which the sets of dependent and dependee com-
ponents can be extracted. This separation offers the advantage of defining two
metrics OutDepsf and InDepsf , which help better evaluate if a component is
mockable. The degree to which a component requires other components for func-
tioning is measured by OutDepsf . InDepsf defines the degree to which a com-
ponent is needed by other ones. The closer to 1 OutDepsf (c1) and InDepsf (c1)
are, the more important c1 is in the architecture of SUT and its functioning.

– OutDepsf (c1) =def 0 ≤ | {λ(v) | v ∈ V (Dg(c1))} \ {c1} |
| C | −1

≤ 1

– InDepsf (c1) =def 0 ≤

| {λ(v1) | v1 → v2 ∈
⋃
c∈C

EDg(c) ∧ λ(v2) = c1} \ {c1} |

| C | −1
≤ 1

Component Observability evaluates how the specified inputs affect the out-
puts [9]. For a component c1 modelled with the IOLTS L(c1) = 〈Q, q0, Σ,→〉,
Observability is measured with:

– out(a1(α1)) =def

⋃
q1

a1(α1)−−−−→q2

{a(α) ∈ ΣO | q2
a(α)−−−→}

– Obs(a1(α1)) =def

1 iff ∀a2(α2) ∈ ΣI 6= a1(α1) : out(a2(α2)) ∩ out(a1(α1))
= ∅ ∧ out(a1(α1)) 6= ∅
0 otherwise

– 0 ≤ Obsf (c1) ≤ 1 =def

∑
a1(α1)∈ΣI

Obs(a1(α1))

| ΣI |

Component Controllability refers to the capability of a component to reach
one of its internal state by means of a specified input that forces it to give a
desired output. We denote the metric that evaluates how a component c1 can be
directly controlled through queries sent to its interfaces with ContD(c1). This
metric depends on the Accessibility of c1. But, when some interfaces are not
accessible, we propose another way to measure the capability of controlling c1
by considering interactions through a chain of components calling each other.
In this case, we define another metric denoted ContI. The Controllability of c1
is measured with Contf (c1), which evaluates the best way to control c1, either
directly or through a chain of components.

Definition 3 (Component Controllability). Let a1(α1) ∈ ΣO be an output
action of L(c1) = 〈Q, q0, Σ,→〉, and L(c2) = 〈Q′, q0′, Σ′,→′〉 such that Σ′I ∩
ΣI = Σ′O ∩ΣO = ∅.

10 S. Salva and E. Blot

– in(q0,L(c1)) =def ∅
– in(q1,L(c1)) =def {a(α) ∈ ΣI | q2

a(α)−−−→ q1} ∪ {a(α) ∈ in(q2,L(c1)) |
a2(α2) ∈ ΣO ∧ q2

a2(α2)−−−−→ q1}
– in(a1(α1),L(c1)) =

⋃
q1

a1(α1)−−−−→q2∈→

in(q1,L(c1))

– Cont(a1(α1),L(c1)) =


1 iff ∀a2(α2) ∈ ΣO 6= a1(α1) :
in(a2(α2),L(c1)) ∩ in(a1(α1),L(c1)) = ∅
∧in(a1(α1),L(c1)) 6= ∅
0 otherwise

– 0 ≤ ContD(c1) ≤ 1 =
∑

a1(α1)∈ΣO

Cont(a1(α1),L(c1))

| ΣO |
∗Accf (c1)

– 0 ≤ ContI(c1, ckck−1 . . . c1) ≤ 1 =
∑

a1(α1)∈ΣO

Cont(a1(α1),L(ck) ‖ · · · ‖ L(c1))

| ΣO |
∗

Accf (ck)
– 0 ≤ Contf (c1) ≤ 1 = max({ContI(c1, ckck−1 . . . c1) | Dg(ck) = (V,E) ∧
ck → ck−1 → · · · → c1 ∈ E∗} ∪ {ContD(c1)})

3.3 Mock Generation and Execution

In reference to [14, 22], we recall that developing a mock comes down to creating
a component that mimics the behaviours of another real component (H1). A
mocks should be easily created, easily set up, and directly queriable (H2). In
the tests, the developer has to specify how the mock ought to be exercised (H3).
Besides, a mock can be handled by tests to verify that it runs as expected (H4).
If the mock is not exercised as expected, it should return an error so that tests
fail (H5). With regard to these requirements and to take advantage of the models
inferred previously, we have designed a mock for communicating systems as a
Mock runner, which is responsible for running behaviours encoded in a Mock
model.

For a component c1 ∈ C, a Mock model is a specialised IOLTS L that
expresses some behaviours used to simulate c1 (H1). It is specialised in the sense
that every action a(α) has to include new assignments of the parameters weight,
repetition, delay, so that it may be used as a mock specification by the Mock
runner. The parameter weight, which is initialised to 0, will be used to better
cover the outgoing transitions of an indeterministic state q, instead of randomly
firing one of the transitions of q. The parameter repetition will be used to repeat
the sending of an output action a large number of times without altering the
readability of L. The parameter delay expresses a legal period of inactivity, and
will be used to detect quiescent states. With an output action, delay expresses a
waiting time before the sending of the action. With an input action, it sets the
period of time after which the action cannot be received any-more.

Definition 4 (Mock model). A Mock model for c1 ∈ C is an IOLTS 〈Q, q0, Σ,
→〉 such that Q is the finite set of states, q0 is the initial state, → is the transi-

Using Model Learning for the Generation of Mock Components 11

tion relation, Qt ⊆ Q is the non empty set of terminal states, Σ is the action set
of the form a(α) such that α is composed of the assignments of the parameters
weight, repetition and delay.
weight(a(α)) = w, repetition(a(α)) = r, delay(a(α)) = d denote these parame-
ter assignments.

Component Accf Undf InDepsf OutDepsf Obsf Contf Mock
d1 1 1 1/2 1/2 1 0 X+
d2 1 1 1/2 1/2 1 1 X+
G 1 1 1/2 1/2 0 0 X

(a) Quality metrics

(b) Example of Mock model for d1

Fig. 4: Quality metrics and Mock model example for the system of Figure 3

A Mock model L for c1 may be written from scratch, but we strongly rec-
ommend to derive it from the IOLTS L(c1) (H2). For instance, for conformance
testing, L might correspond to L(c1) whose some paths are pruned. Mocks are
also used with other testing types. With robustness testing, a Mock model might
be automatically generated by injecting faults in L(c1), e.g., transition removal,
transition duplication, action alteration, etc. With security testing, the Mock
model might be automatically generated from L(c1) by injecting sequences of
transitions expressing attack scenarios. If we take back our example of Figure 3,
the quality metrics given in Table 4a reveal that d1 and d2 are good candidates
as mockable components. Figure 4b shows a mock example for d1. This IOLTS
was written by hands from the IOTS L(d1) of Figure 3. It aims at experimenting
G with unexpected and high temperature values.

A Mock runner is a generic piece of software in the sense that its design and
implementation depend on the type of system considered. For instance, it may
be implemented as a Web service for HTTP components. The Mock runner is
implemented by Algorithm 1. It takes as input a Mock model L, which specifies
the mock behaviours (H3). Then, it creates instances, i.e. concrete executions by
following the paths of L from its initial state. We chose to create one instance at
a time to make the test results more easily interpretable (H2). As a consequence,
if an incoming action is received but cannot be consumed in the current instance,
it is stored in “inputFifoqueue” for being processed later. The Mock runner starts
an instance by either processing an incoming action in inputFifoqueue (line 3)
or by sending an action if an output action may be fired from the initial state
of L (line 9). In both cases, if the initial state is not deterministic, the Mock
runner chooses the transition whose action includes the smallest weight. Then,
the weight of this action is increased so that another transition will be fired later.

12 S. Salva and E. Blot

Algorithm 1: Mock Runner
input : IOLTS L = 〈Q, q0, Σ,→〉

1 repeat
2 Take a(α) in inputFifoqueue;

3 if q0
a(α)−−−→ then

4 Take t = q0
?a(α)−−−−→ q1 ∈→ such that weight(?a(α)) is the smallest;

5 weight(?a(α))++;
6 treatInstance(q0?a(α)q1, now());

7 else
8 Log(Error);

9 if ∃!a(α) ∈ ΣO : q0
!a(α)−−−−→ then

10 Take t = q0
!a(α)−−−−→ q1 ∈→ such that weight(t) is the smallest;

11 weight(t)++; r ← q0;
12 for i← 1 to repetition(!a(α)) do
13 send a(α); wait delay(!a(α)));
14 r ← r.!a(α).q1;

15 treatInstance(r, now());

16 Procedure treatInstance(r, time) is
17 while not expires(r) do
18 Log(r); q ← last state of r;

19 if Receipt a(α) and q
?a(α)−−−−→ and (now()-time)< delay(?a(α)) then

20 Take q
?a(α)−−−−→ q1 ∈→ such that weight(?a(α)) is the smallest;

21 weight(?a(α))++;
22 r ← r.?a(α).q1;
23 time← now();

24 else
25 add a(α) to inputFifoqueue;

26 if ∃!a(α) ∈ ΣO : q
!a(α)−−−−→ and (now()-time)> delay(!a(α)) then

27 Take q
!a(α)−−−−→ q1 ∈→ such that weight(!a(α)) is the smallest;

28 weight(a(α))++;
29 for i← 1 to repetition(!a(α)) do
30 send a(α); wait delay(!a(α)));
31 r ← r.!a(α).q1;

32 time← now();

33 Log(r);

In line 8, if the Mock runner receives an unexpected action, it inserts an error
in its log, so that the test, which handles the Mock runner, may fail (H5).

The Mock runner creates an instance given under the form of the couple
(r, time) with r a run of L and time the current time returned by the clock of
the Mock runner. This last parameter is used to compute waiting times before
sending actions or time delays during which the Mock runner allows the receipt
of input actions. When the Mock runner creates an instance that starts with
an output action (line 12), it sends it as many times as it is specified by the
parameter repetition. The run r is updated accordingly.

Once a new run is created, the Mock runner calls the procedure treatInstance
to process a run q0a0(α0) . . . q until it expires. For simplicity, the run expiration
(line 17) is not detailed in the procedure. We say that a run q0a0(α0) . . . q expires

Using Model Learning for the Generation of Mock Components 13

if either q ∈ Qt is a terminal state, or q is a quiescent state (∀q a(α)−−−→ q2 : a(α) ∈
ΣI∧ now()− time > delay(a(α)))). The procedure logs every run update (lines
18,33) so that the mock behaviours can be verified by tests (H4). The remaining
of the procedure is very similar to Algorithm 1: it either waits for the receipt of
an action a(α), or sends an output action if an output action may be fired from
the state q. The procedure updates the run r and time for every received or sent
action.

4 Preliminary Evaluation

Our approach is implemented as a prototype tool chain, which gathers the model
learning tool CkTail, a tool to compute quality metrics on IOLTSs and DAGs,
along with two Mock runners [18]. The first is implemented as a Java Web service
that can be deployed on Web servers. The second Mock runner is implemented
as a C++ Web service that can be installed on some embedded boards (Arduino
compatibles). The latter can replace real devices more easily as these boards can
be placed anywhere, but their memory and computing capabilities are limited.
At the moment, both Mock runners are implemented with a slightly simplified
version of the algorithm proposed in Section 3.3 as they take IOLTS paths as
inputs, given under the form of rules. However, both Mock runners offer the
capability to execute on demand some robustness tests (addition or removal of
messages, injection of unexpected values in HTTP verbs and contents) and some
security tests (injection of denial-of-service (DoS) or Cross-site scripting (XSS)
attacks). This prototype tool chain was employed to begin evaluating the us-
ability of our approach through the questions given below. The study has been
conducted on a real home automation system. We firstly monitored it during 5
minutes and collected an event log of 240 HTTP messages involving 12 compo-
nents. From the event log, we generated 12 IOLTSs along with 12 DAGS and
evaluated quality metrics. Table 2 provides the IOLTS sizes, 4 quality measures
(Accf = Undf = 1 for all the components) and the recommendations given by
Table 1.

0%
10%
20%
30%

40%
50%
60%
70%
80%
90%

100%

Light M. Weath.Serv. Switch-A Switch-B Thermost. GW

Fig. 5: Proportion of valid traces of the mocks

Does the mock generation from models allow to save time?

14 S. Salva and E. Blot

Component # transi-
tions

InDepsf OutDepsf Obsf Contf Mock Test Test in
Isolation

Light Meter 4 0 1/11 1 0 X++ X
Weather Web serv. 2 1/11 0 1 1 X++ X++
Switch A 3 1/11 0 0 1 X+ X
Switch B 7 1/11 1/11 0 0 X
Heatpump Th.1 3 0 1/11 1 0 X++ X
Heatpump Th.2 5 0 1/11 1 0 X++ X
Heatpump Th.3 4 0 1/11 1 0 X++ X
Heatpump Th.4 7 1/11 1/11 0 1 X X
Heatpump Th.5 11 1/11 2/11 0 1/4 X
Heatpump Th.6 11 1/11 2/11 0 1/4 X
Client 72 3/11 1/11 1/2 1/36 X
Gateway 136 8/11 6/11 2/25 3/62 X

Table 2: Model sizes, quality metrics and category relationships automatically
generated for our case study

This question investigates how our tool chain is time efficient in comparison
to manual coding. The experiment was carried out by 24 fourth year Computer
Science students. Most of them have good skills in the development and test of
Web applications and all of them attended a course on Internet of Thing imple-
mentation. We asked them to develop one mock as a Java service by using the
Mockito framework, and another mock as a C++ service, for every component
of SUT. These mocks had to simulate real components only. We separated the
event log into 12 files (one file per component) and gave every file to a group of
two students. On average, the students took less than 30 min. for implementing
the Java mock and 60 min. for the C++ mock for the small components. The
mocks of the gateway required more than 60 min. and 120 min. respectively. The
total time is around 5 hours 30 min. for the Java mocks and 11 hours for the
C++ versions. Although some studies concluded that considering students for
experiments is not controversial [6], we might still consider that experts could
do it for half the time, that is 2 hours 45 min. and 5 hours 30 min. With our tool
chain, it required 1 hour 30 min. to generate all the mocks (30 min. to format
the event log, 10 min. to generate models, the remaining time to write rules).
Hence, we are convinced that the tool brings greater efficiency.

Can the generated mocks replace real devices? Can they be used for
testing? What are the observed limitations?

To investigate these questions, we replaced the 6 most mockable compo-
nents given in Table 2 along with the gateway by their mocks (Java and C++
mocks) in three phases: 1) substitution of the components one after another; 2)
substitution of the 6 components; 3) substitution of all the components (gate-
way included). In the meantime, we monitored SUT to collect event logs during
5 minutes. We firstly observed that mocks communicated as expected with the
other components (no crash or hang of SUT). Then, we measured the proportion
of valid traces of every mock, that is the proportion of traces of a mock accepted
by the IOLTS of its real device. The bar graph of Figure 5 illustrates the pro-
portion of valid traces for the 7 components. We obverse that the mocks of the
basic devices (light meter, switch, weather forecast service) behave as expected

Using Model Learning for the Generation of Mock Components 15

and can completely replace real devices. The mocks of the other components
provided between 62% and 72% of valid traces. After inspection, we observed
that these mocks, which simulate more complex components, received messages
composed of unexpected values, e.g., temperate orders, and replied with error
messages. These results confirm that the precision of the IOLTSs used to build
mocks is important. Here, the IOLTSs are under-approximated (they exclude
correct behaviours).

Besides replicating a real device, a mock aims to be called by a test case to set
and verify expectations on interactions with a given component under test. We
implemented the Mock runners with these purposes in mind. The Mock runners
are services whose methods can be called from test cases. The mock initialisation
is carried out by a method taking a rule set as a parameter. Besides, a test case
can have access to the 10 last messages received or sent by the mock to verify its
behaviour. We successfully wrote security test cases with the 6 previous mocks
to check whether the gateway is vulnerable to some DoS or XSS attacks. In
these test cases, the mocks are initialised with rules extracted from IOLTSs,
and are then called to inject predefined attacks in these rules. We observed in
this experiment that the gateway was vulnerable to the receipt of multiple long
messages provoking slowdowns and finally unresponsiveness.

This study has also revealed several limitations that need to be investigated in
the future. Although the Java Mock runner accepts large rule files and can replace
complex components, the second Mock runner only supports rule files having
up to 40 actions on account of the memory limitations of the board. In general,
mocks are also implemented to speed up the testing stage. The Java Mock runner
can indeed be used to quicker provide HTTP responses, but not the second
Mock runner. Our current mock implementation does not support data flow
management, which is another strong limitation. The data flow of the mocks do
not follow any distribution and do not meet any temporal pattern. For instance,
the mock of the light meter periodically sends luminance measurements, which
are arbitrarily chosen. The data flow exposes unexpected peaks and falls, which
corresponds to an incorrect behaviour for this kind of component.

5 Conclusion

We have proposed a model-based mock generation approach, which combines
model learning, quality metrics evaluation and mock generation to assist devel-
opers in the test of communicating systems. Given an event log, model learning
allows to get models, which can be automatically analysed with quality metrics
to help classify every component of a communicating system and choose the best
candidates for mocking out. The models are also used to ease the mock genera-
tion. As future work, we firstly plan to evaluate our approach on further kinds
of systems, e.g., Web service compositions. We also intend to consider further
quality metrics to refine the range of levels of interest for the mockable com-
ponents. As suggested in our evaluation, we need to improve the Mock runner

16 S. Salva and E. Blot

algorithms so that mocks might provide consistent data-flows, e.g., by following
predefined distributions or temporal patterns.

References

1. Al-Qutaish, R.: Quality models in software engineering literature: An analytical
and comparative study. Journal of American Science 6 (11 2010)

2. Alshahwan, N., Jia, Y., Lakhotia, K., Fraser, G., Shuler, D., Tonella, P.: Automock:
Automated synthesis of a mock environment for test case generation. In: Harman,
M., Muccini, H., Schulte, W., Xie, T. (eds.) Practical Software Testing : Tool
Automation and Human Factors. No. 10111 in Dagstuhl Seminar Proceedings,
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, Dagstuhl, Germany
(2010), http://drops.dagstuhl.de/opus/volltexte/2010/2618

3. Arcuri, A., Fraser, G., Just, R.: Private api access and functional mocking in au-
tomated unit test generation. In: 2017 IEEE International Conference on Software
Testing, Verification and Validation (ICST). pp. 126–137 (2017)

4. Biermann, A., Feldman, J.: On the synthesis of finite-state machines from sam-
ples of their behavior. Computers, IEEE Transactions on C-21(6), 592–597 (June
1972). https://doi.org/10.1109/TC.1972.5009015

5. Caliebe, P., Herpel, T., German, R.: Dependency-based test case selection and
prioritization in embedded systems. In: 2012 IEEE Fifth International Conference
on Software Testing, Verification and Validation. pp. 731–735 (2012)

6. Daun, M., Hübscher, C., Weyer, T.: Controlled experiments with student par-
ticipants in software engineering: Preliminary results from a systematic mapping
study. CoRR abs/1708.04662 (2017)

7. Drira, K., Azéma, P., de Saqui Sannes, P.: Testability analysis in com-
municating systems. Computer Networks 36(5), 671 – 693 (2001).
https://doi.org/https://doi.org/10.1016/S1389-1286(01)00183-9, http:

//www.sciencedirect.com/science/article/pii/S1389128601001839, theme
Issue: The Economics of Networking

8. Dssouli, R., Karoui, K., Petrenko, A., Rafiq, O.: Towards testable commu-
nication software. In: Cavalli, A., Budkowski, S. (eds.) AProtocol Test Sys-
tems VIII: Proceedings of the IFIP WG6.1 TC6 Eighth International Work-
shop on Protocol Test Systems, pp. 237–251. Springer US, Boston, MA (1996).
https://doi.org/10.1007/978-0-387-34988-6 15

9. Freedman, R.S.: Testability of software components. IEEE Transactions on Soft-
ware Engineering 17(6), 553–564 (June 1991). https://doi.org/10.1109/32.87281

10. Freeman, S., Mackinnon, T., Pryce, N., Walnes, J.: Mock roles, not ob-
jects. In: Companion to the 19th Annual ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages, and Applications. p.
236–246. OOPSLA ’04, Association for Computing Machinery, New York,
NY, USA (2004). https://doi.org/10.1145/1028664.1028765, https://doi.org/

10.1145/1028664.1028765

11. Freeman, S., Pryce, N.: Growing Object-Oriented Software, Guided by Tests.
Addison-Wesley Professional, 1st edn. (2009)

12. Galler, S.J., Maller, A., Wotawa, F.: Automatically extracting mock object behav-
ior from design by contract; specification for test data generation. In: Proceedings
of the 5th Workshop on Automation of Software Test (may 2010)

Using Model Learning for the Generation of Mock Components 17

13. Gui, G., Scott, P.: Measuring software component reusability by cou-
pling and cohesion metrics. Journal of Computers 4, 797–805 (Sept 2009).
https://doi.org/10.4304/jcp.4.9.797-805

14. Mackinnon, T., Freeman, S., Craig, P.: Endo-Testing: Unit Testing with Mock
Objects, p. 287–301. Addison-Wesley Longman Publishing Co., Inc., USA (2001)

15. Nazir, M., Khan, R.A., Mustafa, K.: A metrics based model for understandability
quantification. CoRR abs/1004.4463 (2010), http://arxiv.org/abs/1004.4463

16. Saff, D., Artzi, S., Perkins, J.H., Ernst, M.D.: Automatic test factoring for java.
In: Proceedings of the 20th IEEE/ACM International Conference on Automated
Software Engineering. p. 114–123. ASE ’05, Association for Computing Machinery,
New York, NY, USA (2005). https://doi.org/10.1145/1101908.1101927, https://
doi.org/10.1145/1101908.1101927

17. Salva, S., Blot, E.: Cktail: Model learning of communicating systems. In: Proceed-
ings of the 15th International Conference on Evaluation of Novel Approaches to
Software Engineering, ENASE 2020, Prague, CZECH REPUBLIC, May 5-6, 2020.
(2020)

18. Salva, S.: Using model learning for the generation of mock components, companion
site, https://https://perso.limos.fr/~sesalva/tools/mockgen/

19. Salva, S., Fouchal, H., Bloch, S.: Metrics for timed systems testing. In: 4th Inter-
national Conference on Distribued Systems (OPODIS). Paris, France (December
2000)

20. Sharma, A., Grover, P.S., Kumar, R.: Dependency analysis for component-
based software systems. SIGSOFT Softw. Eng. Notes 34(4), 1–6 (Jul 2009).
https://doi.org/10.1145/1543405.1543424, https://doi.org/10.1145/1543405.

1543424

21. Spadini, D., Aniche, M., Bruntink, M., Bacchelli, A.: Mock objects
for testing java systems. Empirical Softw. Engg. 24(3), 1461–1498 (Jun
2019). https://doi.org/10.1007/s10664-018-9663-0, https://doi.org/10.1007/

s10664-018-9663-0

22. Spadini, D., Aniche, M.F., Bruntink, M., Bacchelli, A.: To mock or not to mock? an
empirical study on mocking practices. 2017 IEEE/ACM 14th International Con-
ference on Mining Software Repositories (MSR) pp. 402–412 (2017)

23. Succi, G., Marchesi, M. (eds.): Extreme Programming Examined. Addison-Wesley
Longman Publishing Co., Inc., USA (2001)

24. Tillmann, N., Schulte, W.: Mock-object generation with behavior. In: 21st
IEEE/ACM International Conference on Automated Software Engineering
(ASE’06). pp. 365–368 (2006)

