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Universal Notice Network: Transferable Knowledge Among Agents

Mehdi Mounsif, Sebastien Lengagne, Benoit Thuilot and Lounis Adouane

Abstract— Being able to learn and transfer skills from one
agent to another is a fundamental feature in constructing even
more intelligent behaviors. In this paper, we introduce a new
kind of architecture and information pipeline that aims to
enable the transmission of skills from one robot to one or
several others. The Universal Notice Network (UNN) originality
lies in the fact that it clearly distinguishes knowledge necessary
to solve the task from the agent intrinsic perceptions and
capabilities, hence increasing its reusability and its potential
transmission to other agents. In various experiments, focusing
on manipulation and comanipulation tasks in original environ-
ments, we demonstrate the capabilities of the proposed method
that takes advantage of reinforcement learning algorithms and
domain knowledge, such as forward geometric model and
inverse kinematics. In particular, we show that a learned UNN
through the interactions of an agent with its environment is
transmissible to other agents, conserving a similar perfomance
level.

I. INTRODUCTION

From any point of view, fine-grained and versatile control
of robot would yield great benefits. Various research fields
focus on this goal: control, planning, and more recently
learning-based approaches have been particularly visible
among the research community. Combining modern deep
learning techniques and reinforcement learning principles
has led to impressive results. Indeed, both model-based and
model-free methods demonstrate high performance in com-
plex tasks such as the game of go [18], [19] or continuous
control [9] [13] and [14]. Even though recent works show
reflexion and progress toward adaptable skills or knowledge,
in particular using character retargeting [15] or environment
adaptation [22], most agents are usually trained on a specific
environments, with no option for transferring skills or gained
knowledge. Whenever the environment requires the agent to
learn reusable skills, it would be highly appreciable to be able
to embed the logic necessary to solve the task in a separate
module so it is potentially transferable to other entities.

This concept is more fully understood if we focus on
the industrial use of robots. In this case, there are two
main incentives to rely on such a methodology. The first
one corresponds to the case where a robot could easily be
replaced by another, with more or less different specifications
(different number of joints, segment length,...), as depicted
in Figure 1. Another motivation behind this approach is life-
long adaptation. In fact, while the instructions given to the
robot might be the same during its whole lifetime (e.g.,
pick and place, reach, push, ...) the robots component will
be altered by its use, changing its model over-time. The
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Fig. 1: Transferring learned Universal Notice Network
(UNN) to other manipulator structures

proposed methodology could adapt to these modifications
and be able to deal with damages either due to shocks or
age decay.

Next section introduces relevant works to our current
research and emphasizes areas where improvements in trans-
fer learning can be made. Section III presents the main
concepts and contributions of this paper, leading to section
IV where we demonstrate the capabilities of our method in
various experiments. Finally, section V focuses on leads of
improvements and discussions.

II. RELATED WORKS

In the robotics field some works describe how to control
robots based on a hierarchical decomposition of tasks into a
set of simpler sub-tasks with some priorities [10]. The high
priority sub-tasks ensure the integrity of the robot and of
its environment, the low priority tasks describe the action to
achieve. The desired task will be performed if it does not
conflict with the high priority sub-tasks. Unfortunately, this
method requires a model of the robot and a mathematical
description of the action to be performed, and of its derivative
regarding the robot joint positions. Except for specific cases,
it is usually not trivial to frame a robotic problem in such
a way. Learning based techniques, however, are generally
not impacted by these constraints. For instance, the Dactyl
system by OpenAI [11], operating on the Shadow Hand was
trained on simulation and yet is able to perform complex
manipulation tasks of rigid objects in the real-world. In [15],
a model-free method learns to control an articulated ragdoll



in a simulator to mimic acrobatic human motion with an end-
to-end pipeline involving recovering 3D poses images with
no depth information and reconstructing the human body
joints trajectories.

Commonly, reinforcement learning agents are trained with
the only objective of performing the task they are taught
through the reward function. In a few cases, this agent
can be used as an expert to provide demonstrations, for
instance in [6], which can be seen as an instance of Imitation
Learning. But in many works, the gained knowledge doesn’t
go any further than its initially destined task. Transferring
knowledge has mostly been an issue the reseachers working
with deep convolutional networks [4] or NLP models [7]
had to deal with. Indeed, given the resources needed to
train a model, many works detail methods aiming at gen-
eralizating a model in a setting different of the one it has
learned with. This trend is also perceptible in reinforcement
learning, with techniques such as domain randomization [21].
Also, to match the IMPALA architecture [2], DeepMind
proposed [1] a corpus of environments for agents navigation,
featuring mazes with walls of differents colors and textures
for benchmarking transfer of skills from one environment
to another. While partially addressing the transfer of skills
between environments using a single agent, the knowledge
gained through learning in these models isn’t distangled, e.g.,
it is not possible to interpret and determine regions of the
model where the task is solved. The idea of transferring
knowledge in a concise and distangled-enough way to be
usable for various tasks isn’t new in the learning community.

Hence, the most salient drawback with current transfer
learning settings may be the fact that no precaution is taken
to enforce knowledge in a specific part of the model. This,
in turn, implies that it is not possible to isolate parts of the
model and transferring them to other agents.

Another promising approach, yet less common, is Meta-
Learning. In this setting, a model is trained on a corpus of
tasks with the objective of finding a model initialization point
in the parameters space where it is only a few iterations away
from a local optimum, ie: where it will produce a good
generalization concerning a specific task. Recent notable
work include the MAML algorithm [3], where the authors
introduced the interleaved training procedure, composed of
an inner-loop for task-specific optimization and outer-loop
for a more general gradient. Further developments such
as the CAML algorithm [24] decrease the number of ad-
justable parameters and improve the overall performance of
the model. While the formulation is appealing, the results
presented focused on trivial tasks, such as regression over
sine curves, or in the reinforcement learning framework,
moving a particle towards a point in a bidimensional space,
which is rather far from robotic task in an industrial context.

Overall, most of the transfer techniques are rather aiming
at transferring skills gained through interactions with a
specific environment into another one, increasing the agent
adaptability and retargeting their abilities to new domains.
However, to the best of our knowledge, there is no specific
way to ensure that knowledge necessary for solving a task

is not spread all over the layers, making it then difficult
to transfer blocks between agents. The following section
introduces our novel method, the Universal Notice Network
that adresses exactly this important drawback.

III. UNIVERSAL NOTICE NETWORK

A. Problem formulation

We start by introducing several notations, useful for the
problem formulation: T , the task to be solved, R is one
robot physically able to perform the task and s is a vector
of observations coming from the environment. Thus, we
are seeking a controller C such that following sequences of
actions given by:

a = C(T , s, R) (1)

can ultimately solve the task.

B. Concept

The proposed Universal Notice Network (UNN) objective
is to provide a dedicated task module that can be set in the
middle of a control pipeline, allowing any compatible robot
to solve the task. To motivate our approach we start with an
example, depicted in Figure 2. Let us consider two persons
charged each one of moving a heavy load from a point to
another. The initial and current target location are given on
a notice, that they share. In this setting, it is straightforward
to see that both individuals have the same task description
but with different physical capabilities. In other words, while
their environment is the same, they might end up choosing
various ways of completing the task.

Fig. 2: Solving the same task with different capabilities. Each
row shows a possible outcome based on individual strengths
and preferences.

C. Formalism

Our aim is to show that it is possible to construct a central
bloc that holds sufficient knowledge to solve a task. This
bloc, the UNN, must be independant from the agents physical
capabilities so that it is transferrable to other entites. How-
ever, different bodies configurations imply different intrinsic
observation e.g., the vector holding this information will have
as many dimension as needed to describe the entity. To deal
with this particularity we rely on the following mechanism:
we do not feed the full observation vector s from the
environment into the UNN. Rather, the observation is split
into a task observation st and an intrinsic observation vector



Fig. 3: UNN architecture. The agent receives an observation
vector s, splitted into a robot observation vector si processed
by the input base and a task observation vector st. The
UNN, operates on the processed robot information and the
task informations. Later the output base, computes the action
based on UNN output c and robot intrinsic state vector si

that holds data concerning the robot si, s = {si, st}. The
latter is processed by an input base BRin, a model specific to
the robot R that translate si into a vector s′i, understandable
by the UNN. The UNN hence receives as input s′ such as:

s′i = BRin(si) (2)

s′ = concat[s′i, st] (3)

Based on this vector s′, the UNN model outputs a high-
level instruction, called oUNN. However, in the same manner
as before and in order to keep the UNN independant of
structures considerations, we introduce an additional model,
the output base BRout, again, specific to each agent. This
output base uses the intrinsic robot observation si to translate
oUNN into an action suitable with the robot configuration.

oUNN = UNN(s′) (4)

a = BRout(oUNN, si) (5)

Finally, the whole process, as shown in Figure 3 can be
synthetized as:

a = BRout(UNN(BRin(si), st), si) (6)

D. Background in Reinforcement Learning

While in principle this technique is compatible with any
kind of learning approach, we rely on reinforcement learning
to train the UNN. The usual reinforcement learning frame-
work involves various concepts: we consider an agent inter-
acting with an environment. The environment is defined as a
Markov Decision Process M = [S,A,P,R, γ] where S, A
are respectively the set of states and actions available within
the environment. P is the probability transition between st+1

and st when selecting action a ∈ A ie: p(st+1|st, at). R
is the reward function, reflecting the desirability of the state

reached and γ is the discount factor for future rewards, which
goal is to favorise immediate rewards.

In reinforcement learning, the objective is to find the
policy that maximizes the expected cumulative reward:
π?θ = argmax

πθ

E
τ∼D

[
∑T
t=0 γ

trt], where D is a set of

fixed-horizon trajectories, defined as a set of states-actions
pairs {(s0, a0), (s1, a1), ..., (sn, an)}. When using neural
networks as function approximators, we actually seek the
best policy parameters θ.

The RL community yields various methods suitable for
finding the optimal policy [5], [23]. When dealing with
continuous spaces, it is common to take advantage of policy
gradient methods, rather than Q-Learning that would not be
as efficient due to the curse of dimensionality [20]. However,
simple policy gradient agents are very brittle and fail to
improve their performance due to gradient variance issues.
Instead, this work is based on a Policy Gradient variant called
Proximal Policy Optimization [16], capitalizing on an actor-
critic and trust-region setting. These two concepts improve
strongly the agent performance thanks to reduced variance in
the performance estimation and a controlled policy optimiza-
tion step. Policy gradients algorithms use gradient ascent to
maximize the policy performance, estimated using rollouts
of the policy in the environment. The most communly used
estimator has the following form:

ĝ = Ê[∇θ log πθ(at|st)Ât]

where Ât measures how good the action was and, in the
simplest policy gradient theorem [20] is the plain reward rt.
Actor-Critic methods use a supplementary network, called
the critic to estimate the state value V (st), corresponding
to the expected cumulative reward from that state until the
end of the episode, which in turn enables estimating the
advantage such as Ât = rt + γV (st+1) − V (st). Finally,
trust-region methods aim at taking the biggest optimization
step without destroying the policy. In this view, the PPO
algorithm maximizes a clipped surrogate objective:

Lt(θ) = min(rt(θ)Ât, clip(r(θ), 1− ε, 1 + ε)Ât)

where r(θ) is the probability ratio: r(θ) = ( πθ(a|s)
πθold (a|s)

)

between the policy parametrized by its current weights πθ
and a previous version πθold .

IV. EXPERIMENTS

We chose to implement the learning environments through
the Pymunk physic library, a python API relying itself on the
open-source Chipmunk engine [17]. For the learning part, the
PyTorch [12] learning library was used and the baseline PPO
implementation is [8]. Videos of trained agents are available
at https://bit.ly/2QdOIep.

A. Experiments configuration

As stated previously, we expect the UNN to act as
a plug-and-play module by being seamlessly transferred
between various agents. In this purpose, we design the
various experiments cases to demonstrate our method. Let

https://bit.ly/2QdOIep


(a) The catcher task: A ball is dropped or thrown
and the agent has to catch it and raise it as high
as possible.

(b) The double-catcher task: A bar is dropped
while the a target position and orientation is
specified to the agent(the dashed line)

Fig. 4: Two tests environments

the notation Rij describe a robot with j degrees of freedom
and belonging to the sub-case i ∈ {A,B,C,D}. The sub-
cases explicits the base types. A corresponds to the case
where the bases are analytical. Specifically, we use forward
kinematic model to compute the robot effector position and
orientation of the effector base. The output base relies on
inverse kinematics to compute joints velocities to comply
with instructions given by the UNN. B is used for cases
where bases are learned models of the analytical approaches,
obtained using supervised learning separately. C and D cases
however indicate that the UNN has already been learned
and the bases are retrieved through training. The difference
between these two subcases is that C is initialized before
starting the training while D indicates that the bases are
initialized with completely random weights. The baseline
PPO implementation without bases, e.g., mapping states
directly to joints speed, will be noted Rj .

B. Manipulation tasks

The first environment, called catcher consists in a multi-
joint robotic arm with a bar attached to its effector and a
ball, falling from a higher position with an initial velocity,
see Figure 4a. Each episode starts with setting the robot in a
random configuration. The episode ends if the ball height is
below a threshold, implying that it has either fallen from the
robot’s bar or that the agent was not able to hold it, or after
500 steps. The goal of this environment is for the robot to
catch the ball and raise it as high as possible. To incentivize
the agent to fulfill the task, we introduce the following reward
function: R = c × h, where c is a binary operator that is 1
only if there is a contact between the agent effector and the
ball, otherwise 0, and h is the ball height.

In this setting, we first assess the learning performances

Fig. 5: Cumulative reward over training for the catcher task.

of our method using a baseline PPO algorithm. Figure 5
shows the evolution of the cumulative reward along training
for various robots RA3 , R

A
6 , R3, R6. Cumulative reward is a

frequently used metric to benchmark reinforcement learning
algorithms. It depends on the environment reward magnitude
and represents the performance of an agent through one
episode. The higher the cumulative reward, the better the
agent performed. As can be seen in Figure 5, the per-
formances of the UNN agents reaches higher cumulative
rewards while also being slighlty faster than the baseline
PPO agents. Once the UNN is trained, the final performances
are evaluated through 2000 episodes on the tasks. Each of
these episodes starts with setting the initial condition to some
preset determined beforehand in order to have uniform test
conditions. Along these runs, if the policy holds the ball
for more than 450 steps out of 500 we consider that it has
succeeded, otherwise the episode is counted as a failure.
Table I shows comparaisons between a baseline PPO agent
and a UNN agent for various robot configurations. Given that
the ball initial velocity or robot initial configuration may not
allow the agent to succeed in the task, the table displays
common successes (e.g., both the UNN and PPO reached at
least 450 steps), common failures and cases where only one
of them succeeded. We can see that in this case the UNN
performances are competitive with the PPO baseline. While
these results fit with what has been observed during multiple
training session and that PPO is among the most stable and
consistent RL algorithms, it is important to keep in mind that
reinforcement learning performances can vary between two
training sessions and that these results could be different for
another seed.

C. Transmission of a trained UNN

We now place ourselves in the case where we have in
our possession a trained UNN, from last experiment. We
demonstrate here that it is possible to conserve a similar
level of performances when transfering a trained UNN to
another manipulator structure. If the bases are of type A or
B, this can be done directly. Using C of D bases types is



PPO Ri vs UNN RA
i

Common result Distinct result
Config Success Fail Success PPO Success UNN
3 joints 521 441 362 676
4 joints 594 397 521 488
5 joints 516 472 454 558
6 joints 416 572 511 501

TABLE I: Comparative results on catcher of a baseline agent
and UNN with configuration A: analytical bases. Statistics
are obtained after 2000 episodes

PPO Ri vs UNN RB
i

Common result Distinct result
Config Success Fail Success PPO Success UNN
3 joints 526 456 685 333
4 joints 605 392 513 490
5 joints 513 511 505 471
6 joints 406 578 509 507

TABLE II: Comparative results on catcher of a baseline
agent and UNN with configuration B: supervised model of
analytical bases

also possible by training only the base. This configuration
relates to following case: the forward model is known and
we want to recover the inverse model. For these runs, the
forward model architecture consists of two layers, with 30
units each, with a tanh linearity in between. The inverse
model architecture is a single layer of 64 neurons, followed
by a tanh activation function that is finally used to compute
Gaussians distributions using a diagonal covariance matrix
parametrized by a vector of size n, where n is the number
of joints, trained using PPO. To test the transfer aspect, we
compare performances of a trained UNN on a specific robot,
obtained with type A configurations, given in the first column
with a different manipulator structure and base, given in the
second column. The same episodes initialization as table I
are used. As can be seen in table III, results are consistent
between robots. In particular, we observe a higher number
of shared successes, which means that the knowledge and
methodology is indeed transfered. Imperfect learning, for
instance when recovering bases in RCi cases, may hinder
performances.

Configuration Comparaison with RA
i

Common result Distinct result
UNN Transmitted to Success Fail RA

i UNN

RA
4

RA
3 1032 548 221 199

RC
3 987 414 408 157

RA
5 884 521 241 354

RB
5 857 528 329 286

RC
5 826 507 419 248

RA
5

RA
3 1102 497 186 215

RC
3 918 454 422 206

RA
4 1009 474 197 320

RC
4 923 507 308 262

RC
5 925 560 332 183

TABLE III: Results on 2000 episodes of UNN transmission
to various configurations and base types.

Fig. 6: Comparaison of the evolution of cumulative reward
for a baseline agent, and two UNN configurations: RC3 and
RD3

Fig. 7: Principles of the double-catcher task where each base
can be of a specific type

D. Co-manipulation tasks

To further demonstrate the adaptability of our method, we
introduce another environment, double-catcher. It consists of
two robotic arms operating to catch a falling bar. The objec-
tive is to move the bar to a specific position and orientation
defined each time a new episode starts. In the same fashion
as in the previous environment, the episode ends after a fixed
number of timesteps or if the bar falls below a threshold. The
reward is also similar, with the following formula being used:
R = c1× c2× dm× d, with C1, C2 being the binary contact
indicators, dm a distance mask, that nullifies the reward if
the bar position and orientation is too far from the target and
d = 1

dpos+dori
a value proportional to the inverse distance to

target 4b, lower half for a more visual description of this
tasks.

Figure 8 shows the evolution of the cumulative reward for
two RA3 controlled either by the UNN or a baseline PPO.
On this specific case, the UNN outperforms the baseline by
a important margin, both in learning speed and final perfor-
mance. In table IV, we tested several manipulators structure
with different bases types and compared the test results with
a baseline. The first two columns hold information about
manipulators structure, while the next two columns give
the base type. Finally, the two rightmost columns details
statistics obtained over 1500 episodes, showing again the
adaptability of the UNN approach.



Fig. 8: Cumulative reward over training on double catcher

Arm Structure Base type Rewards
Robot 1 Robot 2 Robot 1 Robot 2 Max Mean

3 3 Baseline 7.45 0.37
3 3 A A 17.68 3.54
3 4 B B 14.27 2.39
4 4 A C 14.89 3.04
4 5 C C 13.87 2.87

TABLE IV: Comparative results for double-catcher

V. CONCLUSION & PROSPECTS

This paper adresses the problem of knowledge transfer
between agents. A novel plug-and-play architecture is pre-
sented to prevent learned models to be unusable for other
agents. Its key contribution lies in the fact that knowledge
is clearly separated from low-level controllers. Thus, this
pipeline allows to create separable tasks models that can
be easily shared between agents. Simulation results prove
our method consistency between robots configurations and
competitivity with respect to state-of-the-art baselines. The
UNN however preserves generated knowledge for further use
and transmission, as shown in multiple benchmark cases.
Future work will focus on improving state representation in
order to free the UNN from domain knowledge.
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