N

N
N

HAL

open science

HoCL High level specification of dataflow graphs

Jocelyn Sérot

» To cite this version:

Jocelyn Sérot. HoCL High level specification of dataflow graphs. Réunion thématique du GdR ISIS,

Nov 2020, Rennes, France. hal-03038307

HAL Id: hal-03038307
https://uca.hal.science/hal-03038307
Submitted on 3 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://uca.hal.science/hal-03038307
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

HoCL

High level specification of
dataflow graphs

Jocelyn Serot

Institut Pascal, UMR 6602 U. Clermont-Auvergne / CNRS
IETR, UMR 6164 I. Rennes | / CNRS

v

GdR ISIS 2020-11-18

Introduction

Question |

Q :What are the three most things in programming ?
A:

|. abstraction

2. abstraction

3. abstraction

Question 2

Q : Do dataflow models promote abstraction ?

A :Well, it depends...

EXAMPLE |

Dataflow formulation of an iterative algorithm in Preesm
https://preesm.github.io

P();
for i=0 to N do B() done;

E();

Source : Extensions and Analysis of Dataflow Models of Computation for Embedded
Runtimes.. PhD thesis. F. Arrestier, 2020.

EXAMPLE 2
Dataflow formulation of an RMOD application in DIF
(Dataflow Interchange format)

CFDF RMOD ({
topology {
nodes c, s, T, F, M, P, X, K;
edges el(Cc, s8), e2(C, T), e3(S, T), e4(T, F),
e5(F, M), e6(F, P), e7(M, X), e8(P, X), e9(X, K);

actor C {
name = "mod ctrl";
out_r = el; out_m = e2; /+ Assign edges to ports x/
actor S {
name = "mod_src";
in _ctrl = el; out_data = e3;
mode_count = 3;
actor T {
name = "mod lut";
in _ctrl = el; in_bits = e3; out_symbol = e4;
mode_count = 4;
/* Other actor definitions x/

[x ... */

Source : The DSPCAD Framework for Modeling and Synthesis of Signal Processing Systems.
Shuoxin Lin, Yanzhou Liu, Kyunghun Lee, Lin Li, William Plishker,
and Shuvra S. Bhattacharyya, 2017.

Motivations

e Simplify the specification of large and complex dataflow graphs

e Independently of the underlying dataflow model of computation
- pure coordination language (..CL = Coordination Language)

e Support for hierarchical and parameterized graphs

* Independently of the target implementation platform (software,
hardware, mixed, ...)

* Support for mixed-style descriptions (structural or functional)

This presentation

* Informal presentation of the language by means of small
examples

* Technical details such as typing, semantics, etc. deliberately
omitted

— https://github.com/jserot/hocl

Core features

node £

in (i: int) out(o:

node g

in (i: int) out(o:

graph top

in (i: int)

out (o: int)
struct

wire w: int

box nl: f£(i)(w)

box n2: g(w) (o)
end;

Example |

int);

int);

D D

* This defines a graph top, with input i
and output o.

* This graph is built from two boxes,
nl and n2, linked by a wire w

* Boxes and wires are typed

* Each box is an instance of a node
(fand g resp.)

* Nodes fand g are here defined as
opaque actors (black boxes)

* The graph top is here defined
structurally

Example |

P e =

e This is an alternative description of
graph top using a functional style

node f
in (i: int)
out(o: 1int); * Nodes are interpreted as functions and

the graph is described using function

node g application
in (i: int) PP
out(o: int); * applying function £ to value x (here
denoted as £ x) builds a node by
graph top instantiating actor f and connecting the
in (i: int) wire representing the value x to its input
out (o: 1int)) .
fun * An actor with m inputs e:ty, ..., €m!tm and
val o = g (f i) n inputs si:t’y, ..., snit'mis interpreted as a
end; (curried) function of type
et ... » emitm > U1 *t'm
Example |
node f

in (i: int)
out(o: int);

node g
in (i: int) e Another functional formulation using
out(o: int); the reverse application operator | > :
graph top x |> £ =£f x

in (i: int)
out (o: int)
fun
valo=1i |>f |[>g¢g
end;

Example 2 A slightly more complex graph

node £ in (i: int) out (ol: int, o2:int);
node g in (i: int) out (o: int);
node h in (il: int, i2:int) out (o:int);

graph top
in (i: int)
out (o: int)
fun
val (x1,x2) = £ i
val o = h (g x1) (g x2)
end;

Cycles and recursive wiring

D,

node £ in (il: t1, i2: t2) out (ol: t4, 02: t3);
node g in (i: t3) out (o: t2);

graph top

in (i: tl) out (o: t4)
fun

val rec (o,z) = £ i (g z)

end;

Delayed cycles @]

graph top
graph top in (i: int) out (o: int)
in (i: int) out (o: int) struct
fun wire wl, w2: int
val rec (o,z) = £ (i, delay ‘0’ z) box nl: f(i,wl)(o,w2)
end; box n2: delay(‘0’',w2)(wl)
end;

* Delays are required to avoid deadlock when simulating the graph (they provide the
initial token(s) on the feedback edge(s)

* The special actor delay is predefined (and interpreted specifically by the various
backends)

- the actor parameter (* 0, here) specifies the initial value)

* Using type or application specific delay actors is also possible

Recursive graphs

Example (from [Lee and Parks, 1995])

node f
in (i: t)

__*EE] out (o: t);

node gmf

[= " (i)
— out (ol: t, 02: t);

lN

E—‘—J F —l-ppm:
ﬂ—- = OMF graph top
oM F OME in (i: t)
out (o: t)
fun
FB(D > 0) val rec fb d x =
| P, if d = 0 then f x
e I P 1 else
ey i) = let x1,x2 = gmf x in
/ gnf (£ x1)
(fb (d-1) x2)
- val o = fb 3 i
end;

Hierarchical graphs

D

sub

...

* Nodes can be described as

node foo in (i: t) out (o: t);)
node bar in (e: t) out (s: t); (sub)graphs (either
structurally or functionally),

node sub in (i: t) out (o: t) giving rise to hierarchical
fun graphs
eng?l @ =4 |» oo [> ke » Node with no description are

' interpreted as opaque actors
graph top in (i: t) out (o: t) (« blackboxes »)
fun _ * Toplevel graphs are

val o = i[> sub identified with the graph
end; keyword
Parameters

o

node mult

in (k: int param, i: int)
out (o: int);
graph top
in (i: int) out (o: int)
fun
val o = i |> mult ‘2’

end;

* Parameters are used to configure
(specialize) nodes

* Parameters are distinguished from
data by their type :

* t param is the type of a parameter
having itself type t
* |In functional descriptions, this allows
specifying their value using partial
application of the corresponding
function

Parameter passing

* Parameters can be passed from one hierarchy level to a nested one

node sub

in (k: int param, i: int) [::::1
out (o: int) S~ a
fun sub |— o
val o = i

i |> mult k |> mult k
end;

graph top

in (i: int) out (o: int)
fun

val o = i |> sub ‘2
end;

Parameter passing

node sub C T

k=2
in (k: int param, i: int) - >~
out (o: int) sub — 0 >
fun i
val o =
i |> mult k |> mult k
end;
graph top

in (k: int param=2, i: int)
out (o: int)
fun

val o = i |> sub k
end;

* The value of the toplevel parameters can be defined in the corresponding
graph interface

Parameter dependencies

node sub |
in (k: int param, i: int) e — -7 <

out (o: int) ¥ sub > o >
fun i >

val o =

i |> mult ’k+1°’ *
end;
graph top E:____ﬂ__jr—@

in (k: int param=2, i: int)

out (o: int)

fun
val o = i |> sub k
end;

* The value of some parameters can depend on that of other parameters, defined
at the same or at higher level(s) in the graph hierarchy

* Dependencies between parameter values create a tree in graph, which is
“orthogonal” to the data flow

Higher order features
Ho..

Wiring functions

Another formulation : * body is a wiring function : it
encapsulates the wiring pattern
HEE of the encoded graph

in (i: int)
out (o: int)
fun
val body x = * The top graph is built by simply
let (x1,x2) = £ x in applying this function
h (g x1) (g x2)
val o = body i
end;

* The definition of body makes
use of a local definition (let .. in)

* Wiring functions can be defined
within a (sub)graph (local
scope) or globally

Higher order wiring functions

® The diamond function
abstracts further the
definition of body, by taking
as parameters the actors
to be instantiated to build
the defined graph

Pushing the abstraction a bit further :

graph top
in (i1: int)
out (o: int)

fun * The graph top is built by
val diamond left middle right x = supplying the actual actors
let (x1,x2) = left x in (f, g and h) as arguments to
right (middle x1) (middle x2) diamond.
val o = diamond £ g h i)) .
end; * diamond is an higher-

order wiring function
(HOWF)

Higher order wiring functions

graph top \ "4

in (i: int) out (o: int)

g

el N struct

! H . H " — wire wl,w2,w3,w4,

f}_*(g }_*(h wh5,w6,w7,w8,

W P w9,wl0,wll,wl2:int

box fl: f(i)(wl,w2)
box f2: f(wl) (w3,w4)
box f3: f(w2) (w5,wb6)

graph top box gl: g(w3) (w7)
in (i: int) out (o: int) box g2: g(wd) (w8)
fun box g3: g(w5)(w9)
val diamond 1 m r x = .. box gd: g(w6) (wl0)
val sub = diamond f g h box hl: h(w7,w8) (wll)
val o = diamond f sub h i box h2: h(w9,wl0) (wl2)
end; box h3: h(wll,wl2) (o)
end;

® The diamond function is here instantiated at two levels :
- within the sub function, to describe the « inner » diamond structure

- within the definition of the output o, to build the toplevel graph structure

« Classic » higher order wiring functions

e Many recurrent graph patterns can be encapsulated using higher-order wiring
functions

* Example :
S

graph top
in (i: int)
out (o: int)

fun
val o = i |> pipe [£f1l;£f2;£f3]
end;
where : val rec pipe fs x = match fs with
[l -> X

| £::fs' -> pipe fs' (f x);

« Classic » higher order wiring functions

* Many recurrent graph patterns can be encapsulated using higher-order wiring
functions

* Example :
S A D
graph top
in (i: int)
out (o: int)
fun
val o = i |> iter 4 f
end;
where: a1l rec iter n f x =

if n = 0 then x
else iter (n-1) f (f x)

« Classic » higher order wiring functions

* Many recurrent graph patterns can be encapsulated using higher-order wiring
functions

* Example :

graph top
in (i:int)
out (ol:int, o02:int, o03:int)
fun
val (0l,02,03) =
i |> mapf [£f1;£f2;£3]
end;

e
(O8] (NS} —_

where: val rec mapf fs x = match fs with
[1 => [1]

| £::fs' => £ x :: mapf fs' x;

Higher order wiring functions

* Higher order wiring functions

- promote abstraction

- allow common graph patterns to be encapsulated for reuse
* In HoCL, they are defined within the language itself

- the set of available reusable patterns can therefore be freely
extended to suit the application domain

- this is in contrast with existing dataflow-based design tools in which
similar abstraction mechanisms rely on a predefined and fixes set of
patterns

In practice

Implementation

* Prototype compiler written in OCaml
* Based upon a fully formalized static semantics (natural style)
* Source code available on github (jserot/hocl)
* Two versions
-a command line compiler
- a toplevel interpreter
* The CL compiler currently has four backends
- a .dot backend (for visualizing the DFGs)
- a DIF backend (for interfacing to DF-based analysis tools)

-a Preesm backend (for generating code on heterogeneous many-core
embedded platforms)

- a SystemC backend (for simulation under the DDF and SDF MoCs)

Example : using the SystemC backend

* Used to simulate the described DFGs
* Initialisation and per-activation code provided as external C functions

* Automatic generation of FIFOs, delay, broadcast and 10 nodes (reading/writing files)

Example void foo(IN int *i, OUT int *0); foo.h
node foo void foo(IN int *i, OUT int *o0) fOO.C
in (i: int) out (o: int) { *o = *1i * 2; }
actor
systemc (1234 .. top_i,dat
loop fn="foo",
incl file="foo.h", *
src_file="foo.cpp") .
end; - bash> hoclc -systemc main.hcl
Wrote file systemc/main_top.cpp
graph top * # Wrote fJ:_le systemc/top gph.h
in (i: int) out (o: int) # Wrote fJ._le systemc/foo_act.h
fun # Wrote file systemc/foo act.cpp
val o = i |> foo
end; main.hcl

bash> cd ./systemc; make

>

B :int :int >
1 foo 0
2 46 8 ..

top_o.dat

Conclusion

* Another attempt to bring the benefits of functional programming
outside its « classical » circle

- programmers in the DSP field are not familiar with concepts such as
polymorphic typing and higher order functions

* Drawing of previous experience in a similar context with the CAPH
project (http://dream.ispr-ip.fr/ CAPH)

- provide interfaces to existing, already used, tools
- demonstrate practical benefits wrt. this tools

- introduce disruptive concepts only if it serves a well identified goal

Conclusion

* Work in progress
- injection of MoC-specific features into specifications

- design of large scale DSP applications with HoCL for assessing gains if
programmer’s productivity

Thanks for your (remote) attention

