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Introduction



Question |

Q :What are the three most things in programming ?
A:

|. abstraction

2. abstraction

3. abstraction

Question 2

Q : Do dataflow models promote abstraction ?

A :Well, it depends...



EXAMPLE |

Dataflow formulation of an iterative algorithm in Preesm
https://preesm.github.io

P();
for i=0 to N do B() done;

E();

Source : Extensions and Analysis of Dataflow Models of Computation for Embedded
Runtimes.. PhD thesis. F. Arrestier, 2020.

EXAMPLE 2
Dataflow formulation of an RMOD application in DIF
(Dataflow Interchange format)

CFDF RMOD ({
topology {
nodes c, s, T, F, M, P, X, K;
edges el(Cc, s8), e2(C, T), e3(S, T), e4(T, F),
e5(F, M), e6(F, P), e7(M, X), e8(P, X), e9(X, K);

actor C {
name = "mod ctrl";
out_r = el; out_m = e2; /+ Assign edges to ports x/
actor S {
name = "mod_src";
in _ctrl = el; out_data = e3;
mode_count = 3;
actor T {
name = "mod lut";
in _ctrl = el; in_bits = e3; out_symbol = e4;
mode_count = 4;
/* Other actor definitions x/

[x ... */

Source : The DSPCAD Framework for Modeling and Synthesis of Signal Processing Systems.
Shuoxin Lin, Yanzhou Liu, Kyunghun Lee, Lin Li, William Plishker,
and Shuvra S. Bhattacharyya, 2017.



Motivations

e Simplify the specification of large and complex dataflow graphs

e Independently of the underlying dataflow model of computation
- pure coordination language (..CL = Coordination Language)

e Support for hierarchical and parameterized graphs

* Independently of the target implementation platform (software,
hardware, mixed, ...)

* Support for mixed-style descriptions (structural or functional)

This presentation

* Informal presentation of the language by means of small
examples

* Technical details such as typing, semantics, etc. deliberately
omitted

— https://github.com/jserot/hocl




Core features

node £

in (i: int) out(o:

node g

in (i: int) out(o:

graph top

in (i: int)

out (o: int)
struct

wire w: int

box nl: f£(i)(w)

box n2: g(w) (o)
end;

Example |

int);

int);

D D

* This defines a graph top, with input i
and output o.

* This graph is built from two boxes,
nl and n2, linked by a wire w

* Boxes and wires are typed

* Each box is an instance of a node
(fand g resp.)

* Nodes fand g are here defined as
opaque actors (black boxes)

* The graph top is here defined
structurally



Example |

P e =

e This is an alternative description of
graph top using a functional style

node f
in (i: int)
out(o: 1int); * Nodes are interpreted as functions and

the graph is described using function

node g application
in (i: int) PP
out(o: int); * applying function £ to value x (here
denoted as £ x) builds a node by
graph top instantiating actor f and connecting the
in (i: int) wire representing the value x to its input
out (o: 1int) ) .
fun * An actor with m inputs e:ty, ..., €m!tm and
val o = g (f i) n inputs si:t’y, ..., snit'mis interpreted as a
end; (curried) function of type
et ... » emitm > U1 *t'm
Example |
node f

in (i: int)
out(o: int);

node g
in (i: int) e Another functional formulation using
out(o: int); the reverse application operator | > :
graph top x |> £ =£f x

in (i: int)
out (o: int)
fun
valo=1i |>f |[>g¢g
end;



Example 2 A slightly more complex graph

node £ in (i: int) out (ol: int, o2:int);
node g in (i: int) out (o: int);
node h in (il: int, i2:int) out (o:int);

graph top
in (i: int)
out (o: int)
fun
val (x1,x2) = £ i
val o = h (g x1) (g x2)
end;

Cycles and recursive wiring

D,

node £ in (il: t1, i2: t2) out (ol: t4, 02: t3);
node g in (i: t3) out (o: t2);

graph top

in (i: tl) out (o: t4)
fun

val rec (o,z) = £ i (g z)

end;



Delayed cycles @ ]

graph top
graph top in (i: int) out (o: int)
in (i: int) out (o: int) struct
fun wire wl, w2: int
val rec (o,z) = £ (i, delay ‘0’ z) box nl: f(i,wl)(o,w2)
end; box n2: delay(‘0’',w2)(wl)
end;

* Delays are required to avoid deadlock when simulating the graph (they provide the
initial token(s) on the feedback edge(s)

* The special actor delay is predefined (and interpreted specifically by the various
backends)

- the actor parameter (* 0, here) specifies the initial value)

* Using type or application specific delay actors is also possible

Recursive graphs

Example (from [Lee and Parks, 1995])

node f
in (i: t)

__*EE] out (o: t);

node gmf

[ = " (i)
— out (ol: t, 02: t);

lN

E—‘—J F —l-ppm:
ﬂ—- = OMF graph top
oM F OME in (i: t)
out (o: t)
fun
FB(D > 0) val rec fb d x =
| P, if d = 0 then f x
e I P 1 else
ey i) = let x1,x2 = gmf x in
/ gnf (£ x1)
(fb (d-1) x2)
- val o = fb 3 i
end;




Hierarchical graphs

D

sub

.............................................

* Nodes can be described as

node foo in (i: t) out (o: t); )
node bar in (e: t) out (s: t); (sub)graphs (either
structurally or functionally),

node sub in (i: t) out (o: t) giving rise to hierarchical
fun graphs
eng?l @ =4 |» oo [> ke » Node with no description are

' interpreted as opaque actors
graph top in (i: t) out (o: t) (« blackboxes »)
fun _ * Toplevel graphs are

val o = i[> sub identified with the graph
end; keyword
Parameters

o

node mult

in (k: int param, i: int)
out (o: int);
graph top
in (i: int) out (o: int)
fun
val o = i |> mult ‘2’

end;

* Parameters are used to configure
(specialize) nodes

* Parameters are distinguished from
data by their type :

* t param is the type of a parameter
having itself type t
* |In functional descriptions, this allows
specifying their value using partial
application of the corresponding
function



Parameter passing

* Parameters can be passed from one hierarchy level to a nested one

node sub

in (k: int param, i: int) [::::1
out (o: int) S~ a
fun sub |— o
val o = i

i |> mult k |> mult k
end;

graph top

in (i: int) out (o: int)
fun

val o = i |> sub ‘2
end;

Parameter passing

node sub C T

k=2
in (k: int param, i: int) - >~
out (o: int) sub — 0 >
fun i
val o =
i |> mult k |> mult k
end;
graph top

in (k: int param=2, i: int)
out (o: int)
fun

val o = i |> sub k
end;

* The value of the toplevel parameters can be defined in the corresponding
graph interface



Parameter dependencies

node sub |
in (k: int param, i: int) e — -7 <

out (o: int) ¥ sub > o >
fun i >

val o =

i |> mult ’k+1°’ *
end;
graph top E:____ﬂ__jr—@

in (k: int param=2, i: int)

out (o: int)

fun
val o = i |> sub k
end;

* The value of some parameters can depend on that of other parameters, defined
at the same or at higher level(s) in the graph hierarchy

* Dependencies between parameter values create a tree in graph, which is
“orthogonal” to the data flow

Higher order features
Ho..




Wiring functions

Another formulation : * body is a wiring function : it
encapsulates the wiring pattern
HEE of the encoded graph

in (i: int)
out (o: int)
fun
val body x = * The top graph is built by simply
let (x1,x2) = £ x in applying this function
h (g x1) (g x2)
val o = body i
end;

* The definition of body makes
use of a local definition (let .. in)

* Wiring functions can be defined
within a (sub)graph (local
scope) or globally

Higher order wiring functions

® The diamond function
abstracts further the
definition of body, by taking
as parameters the actors
to be instantiated to build
the defined graph

Pushing the abstraction a bit further :

graph top
in (i1: int)
out (o: int)

fun * The graph top is built by
val diamond left middle right x = supplying the actual actors
let (x1,x2) = left x in (f, g and h) as arguments to
right (middle x1) (middle x2) diamond.
val o = diamond £ g h i ) ) .
end; * diamond is an higher-

order wiring function
(HOWF)



Higher order wiring functions

graph top \ "4

in (i: int) out (o: int)

g

el N struct

! H . H " — wire wl,w2,w3,w4,

f}_*(g }_*(h wh5,w6,w7,w8,

W P w9,wl0,wll,wl2:int

box fl: f(i)(wl,w2)
box f2: f(wl) (w3,w4)
box f3: f(w2) (w5,wb6)

graph top box gl: g(w3) (w7)
in (i: int) out (o: int) box g2: g(wd) (w8)
fun box g3: g(w5)(w9)
val diamond 1 m r x = .. box gd: g(w6) (wl0)
val sub = diamond f g h box hl: h(w7,w8) (wll)
val o = diamond f sub h i box h2: h(w9,wl0) (wl2)
end; box h3: h(wll,wl2) (o)
end;

® The diamond function is here instantiated at two levels :
- within the sub function, to describe the « inner » diamond structure

- within the definition of the output o, to build the toplevel graph structure

« Classic » higher order wiring functions

e Many recurrent graph patterns can be encapsulated using higher-order wiring
functions

* Example :
S

graph top
in (i: int)
out (o: int)

fun
val o = i |> pipe [£f1l;£f2;£f3]
end;
where : val rec pipe fs x = match fs with
[l -> X

| £::fs' -> pipe fs' (f x);



« Classic » higher order wiring functions

* Many recurrent graph patterns can be encapsulated using higher-order wiring
functions

* Example :
S A D
graph top
in (i: int)
out (o: int)
fun
val o = i |> iter 4 f
end;
where: a1l rec iter n f x =

if n = 0 then x
else iter (n-1) f (f x)

« Classic » higher order wiring functions

* Many recurrent graph patterns can be encapsulated using higher-order wiring
functions

* Example :

graph top
in (i:int)
out (ol:int, o02:int, o03:int)
fun
val (0l,02,03) =
i |> mapf [£f1;£f2;£3]
end;

e
(O8] (NS} —_

where: val rec mapf fs x = match fs with
[1 => [1]

| £::fs' => £ x :: mapf fs' x;



Higher order wiring functions

* Higher order wiring functions

- promote abstraction

- allow common graph patterns to be encapsulated for reuse
* In HoCL, they are defined within the language itself

- the set of available reusable patterns can therefore be freely
extended to suit the application domain

- this is in contrast with existing dataflow-based design tools in which
similar abstraction mechanisms rely on a predefined and fixes set of
patterns

In practice



Implementation

* Prototype compiler written in OCaml
* Based upon a fully formalized static semantics (natural style)
* Source code available on github (jserot/hocl)
* Two versions
-a command line compiler
- a toplevel interpreter
* The CL compiler currently has four backends
- a .dot backend (for visualizing the DFGs)
- a DIF backend (for interfacing to DF-based analysis tools)

-a Preesm backend (for generating code on heterogeneous many-core
embedded platforms)

- a SystemC backend (for simulation under the DDF and SDF MoCs)

Example : using the SystemC backend

* Used to simulate the described DFGs
* Initialisation and per-activation code provided as external C functions

* Automatic generation of FIFOs, delay, broadcast and 10 nodes (reading/writing files)

Example void foo(IN int *i, OUT int *0); foo.h
node foo void foo(IN int *i, OUT int *o0) fOO.C
in (i: int) out (o: int) { *o = *1i * 2; }
actor
systemc ( 1234 .. top_i,dat
loop fn="foo",
incl file="foo.h", *
src_file="foo.cpp") .
end; - bash> hoclc -systemc main.hcl
# Wrote file systemc/main_top.cpp
graph top * # Wrote fJ:_le systemc/top gph.h
in (i: int) out (o: int) # Wrote fJ._le systemc/foo_act.h
fun # Wrote file systemc/foo act.cpp
val o = i |> foo
end; main.hcl

bash> cd ./systemc; make

>

B :int :int >
1 foo 0
2 46 8 ..

top_o.dat



Conclusion

* Another attempt to bring the benefits of functional programming
outside its « classical » circle

- programmers in the DSP field are not familiar with concepts such as
polymorphic typing and higher order functions

* Drawing of previous experience in a similar context with the CAPH
project (http://dream.ispr-ip.fr/ CAPH)

- provide interfaces to existing, already used, tools
- demonstrate practical benefits wrt. this tools

- introduce disruptive concepts only if it serves a well identified goal

Conclusion

* Work in progress
- injection of MoC-specific features into specifications

- design of large scale DSP applications with HoCL for assessing gains if
programmer’s productivity



Thanks for your (remote) attention



