corresponding to the iterative computations of the loop. Finally, the epilogue is the processing done after the final iteration of the loop. The three phases of Algorithm 1 are sequential due to the data dependency of dataBu er. This data dependency is enforced at line 4 of the loop kernel phase, where results from the previous loop iterations are used. In other words, the line 4 computation of iteration n + 1 and iteration n are not executable in parallel. Nevertheless, parallelism can still be exploited inside each of the 3 phases. In the column headings for the data-flow tables shown in Fig. 2, each port is represented by the edge that is connected to the port. If m D 1, then T executes in the BPSK mode and consumes only 1 token on its input edge. On the other hand, if m D 4, then T executes in the 16-QAM mode and consumes 4 tokens on its input edge. After firing in their respective BPSK or 16-QAM modes, S and T switch back to their INIT modes and await new values of r and m for the next round of computation. The remaining actors are SDF actors that consume/produce a single token on each of their input/output edges every time they fire.

Data-Flow Graph Specification in the DIF Language

As discussed above, the DIF language is a design language for specifying mixedgrain data-flow models in terms of a variety of different forms of data flow [22].

The DIF language provides a C-like, textual syntax for human-readable description of data-flow structure. An XML-based version of the DIF language, called DIFML, is also provided for structured exchange of data-flow graph information between different tools and formats [17]. DIF is based on a block-structured syntax and allows specifications to be modularized across multiple files through integration with the C preprocessor. As an example, a DIF specification of the RMOD application is shown in Listing 1.

Listing 1 DIF Language specification of the RMOD application CFDF RMOD { topology { nodes = C, S, T, F, M, P, X, K; edges = e1(C, S), e2(C, T), e3(S, T), e4(T, F), e5(F, M), e6(F, P), e7(M, X), e8(P, X), e9(X, K); • Simplify the specification of large and complex dataflow graphs • Independently of the underlying dataflow model of computation pure coordination language (..CL = Coordination Language)

• Support for hierarchical and parameterized graphs • Independently of the target implementation platform (software, hardware, mixed, ...)

• Support for mixed-style descriptions (structural or functional)

Motivations

• Informal presentation of the language by means of small examples • Technical details such as typing, semantics, etc. deliberately omitted https://github.com/jserot/hocl This presentation

Core features

• This defines a graph top, with input i and output o.

• This graph is built from two boxes, n1 and n2, linked by a wire w

• Boxes and wires are typed • Each box is an instance of a node (f and g resp.)

• Nodes f and g are here defined as opaque actors (black boxes)

• The graph top is here defined structurally Example 1

node f in (i: int) out(o: int); node g in (i: int) out(o: int); graph top in (i: int) out (o: int) struct wire w: int box n1: f(i)(w) box n2: g(w)(o) end; i f o g
• This is an alternative description of graph top using a functional style • Nodes are interpreted as functions and the graph is described using function application

• applying function f to value x (here denoted as f x) builds a node by instantiating actor f and connecting the wire representing the value x to its input • An actor with m inputs e 1 :t 1 , …, e m :t m and n inputs s 1 :t' 1 , …, s n :t' m is interpreted as a (curried) function of type

e 1 :t 1 →… → e m :t m → t' 1 * … * t' m Example 1 node f in (i: int) out(o: int); node g in (i: int) out(o: int); graph top in (i: int) out (o: int) fun val o = g (f i) end; i f o g
• Another functional formulation using the reverse application operator |> :

x |> f = f x Example 1 node f in (i: int) out(o: int); node g in (i: int) out(o: int); graph top in (i: int) out (o: int) fun val o = i |> f |> g end; i f o g f g g h o i node f in (i: int) out (o1: int, o2:int); node g in (i: int) out (o: int); node h in (i1: int, i2:int) out (o:int); Example 2 x1 x2 graph top in (i: int) out (o: int) fun val (x1,x2) = f i val o = h (g x1) (g x2) end;
A slightly more complex graph Cycles and recursive wiring Delayed cycles

• Delays are required to avoid deadlock when simulating the graph (they provide the initial token(s) on the feedback edge(s)

• The special actor delay is predefined (and interpreted specifically by the various backends)

the actor parameter ('0', here) specifies the initial value)

• Using type or application specific delay actors is also possible HoCL comes with a standard library defining several useful wiring functions encapsulating classical graph patterns such as, for example :

• iter, for applying a given function n times in sequence; so that the function twice can actually be defined as : v a l t w i c e = i t e r 2 f

• pipe, a variant of iter in which a distinct function is applied at each stage (see Sec. VI), • map, to apply the same function to a list of values,

• mapf to apply a list of functions to a given value, • . . . An important feature is that all these functions are defined using regular HoCL declarations, i.e. within the language itself 6 . For example, the definition of the iter wiring function is just, and as expected :

v a l r e c i t e r n f x = i f n=0 t h e n x e l s e i t e r (n 1) f (f x)

The set of available higher order graph patterns is therefore not fixed but can be freely modified and extended by the application programmer to suit her specific needs. This is in strong contrast with most dataflow-based design tools in which similar abstraction mechanisms rely on a predefined and fixed set of patterns.

B. Recursive graphs

In a dataflow context, a recursive graphs is a graph in which the refinement of some specific nodes is the graph itself. A typical example is provided by Lee and Parks in their classical paper on dataflow process networks [6].

This example is an analysis/synthesis filter bank under the SDF (Synchronous Data Flow) model. The corresponding dataflow graph has a regular structure which can be characterized by its "depth". Fig. 2, for example, shows a graph of depth three 7 .

F domain in Ptolemy. The he graph can be completely

-1 2 + aMF--, - 1- - - 2 + 1 -1 3 es e n l- is m
The graphical representation in Fig. 15 is useful for developing intuition, and exposes exploitable parallelism, but it is not so useful for programming. The depth of the filter bank is hard-wired into the visual representation, so it cannot be conveniently made into a parameter of a filterbank module. The representation in Fig. 16 is better. A hierarchical node called "FB," for "filterbank" is defined, and given a parameter D for "depth." For D > 0 the For the sake of generality, Lee and Parks propose to view this graph as an instance of a "recursive template", depicted in Fig. 3. 6 In file lib/hocl/stdlib.hcl technically. 7 The meaning of the actor QMF and F and the numbers on the wires are irrelevant here. parameter of the node. In fact, dataflow processes with state cover many of the commonly used higher-order functions in Haskell.

The most basic use of icons in our visual syntax may therefore be viewed as implementing a small set of built-in The recursive nature of this description is evidenced by Mutual recursion is also possible, as exemplified by the following description of the graph depicted in Fig. 5 : node f i n (i 1 : t , i 2 : t) out (o1 : t , o2 : t) ; node g i n (i 1 : t , i 2 : t) out (o1 : t , o2 : t) ; graph t o p i n (i 1 : t , i 2 : t) out (o1 : t , o2 : t) fun v a l r e c ((o1 , z1) , (z2 , o2)) = f i 1 z2 , g z1 i2 end ; Parameter dependencies

• The value of some parameters can depend on that of other parameters, defined at the same or at higher level(s) in the graph hierarchy • Dependencies between parameter values create a tree in graph, which is ''orthogonal'' to the data flow Pushing the abstraction a bit further :

• The diamond function abstracts further the definition of body, by taking as parameters the actors to be instantiated to build the defined graph • The graph top is built by supplying the actual actors (f, g and h) as arguments to diamond.

• diamond is an higher- order wiring function (HOWF) • The diamond function is here instantiated at two levels :

within the sub function, to describe the « inner » diamond structure within the definition of the output o, to build the toplevel graph structure Higher order wiring functions • Many recurrent graph patterns can be encapsulated using higher-order wiring functions • Many recurrent graph patterns can be encapsulated using higher-order wiring functions • Example :

val rec iter n f x = if n = 0 then x else iter (n-1) f (f x)
where :

f o f f f i
« Classic » higher order wiring functions • Many recurrent graph patterns can be encapsulated using higher-order wiring functions • Example : where : Higher order wiring functions • Higher order wiring functions promote abstraction allow common graph patterns to be encapsulated for reuse • In HoCL, they are defined within the language itself the set of available reusable patterns can therefore be freely extended to suit the application domain this is in contrast with existing dataflow-based design tools in which similar abstraction mechanisms rely on a predefined and fixes set of patterns In practice

• Prototype compiler written in OCaml • Based upon a fully formalized static semantics (natural style) • Source code available on github (jserot/hocl) • Two versions a command line compiler a toplevel interpreter • The CL compiler currently has four backends a .dot backend (for visualizing the DFGs) a DIF backend (for interfacing to DF-based analysis tools) a Preesm backend (for generating code on heterogeneous many-core embedded platforms) a SystemC backend (for simulation under the DDF and SDF MoCs)

Implementation

• Used to simulate the described DFGs • Initialisation and per-activation code provided as external C functions • Automatic generation of FIFOs, delay, broadcast and IO nodes (reading/writing files)

Example : using the SystemC backend

Conclusion

• Another attempt to bring the benefits of functional programming outside its « classical » circle programmers in the DSP field are not familiar with concepts such as polymorphic typing and higher order functions

• Drawing of previous experience in a similar context with the CAPH project (http://dream.ispr-ip.fr/CAPH) provide interfaces to existing, already used, tools demonstrate practical benefits wrt. this tools introduce disruptive concepts only if it serves a well identified goal

Conclusion

• Work in progress injection of MoC-specific features into specifications design of large scale DSP applications with HoCL for assessing gains if programmer's productivity Thanks for your (remote) attention

 an iterative algorithm in Preesm https://preesm.github.io

 Figure 4.9 -Equivalent SDF graph of Algorithm 1.

Figure 4 .Fig. 1

 41 Figure 4.9 shows how Algorithm 1 is expressed in the strict SDF MoC. Note that the inner processing of the loop kernel phase is fully exposed in the strict SDF MoC. Actors P , {R, B} and E represent the prologue, the loop kernel and the epilogue phases of Algorithm 1, respectively. The size of dataBu er is noted D and corresponds to the consumption and production rates of actor B. Actor I is used here to set the number N of iterations of the for loop. Actors RB 0 , RB 1 and Dup are special actors used to manage the loop context of Algorithm 1. RB 0 and RB 1 are used to guarantee unique execution of the prologue and epilogue phases. RB 0 duplicates N times the tokens received on its input port to its output port and symmetrically, RB 1 forwards only the last D tokens received on its input port to its output port. The Mux actor is a multiplexer used to select which tokens are forwarded to actor B. Since actors are stateless in the SDF MoC, the Mux actor distinguishes the first iteration from the rest of the loop based on the values produced by actor I. On the first firing of actor B, tokens produced by actor P are used. For every other firings, actor B uses the tokens produced by its previous firing through a feedback Fifo. The Dup actor is a duplicate actor and is used to forward the data tokens produced by actor B to both Mux and RB 1 .

 actor definitions * / / * ... * / } Source : The DSPCAD Framework for Modeling and Synthesis of Signal Processing Systems. Shuoxin Lin, Yanzhou Liu, Kyunghun Lee, Lin Li, William Plishker, and Shuvra S. Bhattacharyya, 2017.

 in (i: t1) out (o: t4) fun val rec (o,z) = f i (g z) end; node f in (i1: t1, i2: t2) out (o1: t4, o2: t3); node g in (i: t3) out (o: t2); graph top in (i: int) out (o: int) fun val rec (o,z) = f (i, delay '0' z) end;

Fig. 2 :

 2 Fig. 2: A filter bank of depth 3 under the SDF model (from [6], Sec III-C, p 792)

FB

 Fig.16. This representation uses template matching.A recursive representation of the filter bank application.

 Fig. 18. different raised cosine pulses. An example of the use of the Map actor to plot three

Fig. 3 :

 3 Fig. 3: A recursive template for filter bank of depth D under the SDF model (from [6], Sec III-C, p 793)

Fig. 5 :

 5 Fig.5: Graph example 7

 : int) out (o: int) fun val o = i |> sub '2' end;Parameter passing • Parameters can be passed from one hierarchy level to a nested one value of the toplevel parameters can be defined in the corresponding graph interface

 a wiring function : it encapsulates the wiring pattern of the encoded graph • The definition of body makes use of a local definition (let .. in) • The top graph is built by simply applying this function • Wiring functions can be defined within a (sub)graph (local scopemiddle right x = let (x1,x2) = left x in right (middle x1) (middle x2) val o = diamond f g h i end;

 graph top in (i: int) out (o: int) struct wire w1,w2,w3,w4, w5,w6,w7,w8, w9,w10,w11,w12:int box f1: f(i)(w1,w2) box f2: f(w1)(w3,w4) box f3: f(w2)(w5,w6) box g1: g(w3)(w7) box g2: g(w4)(w8) box g3: g(w5)(w9) box g4: g(w6)(w10) box h1: h(w7,w8)(w11) box h2: h(w9,w10)(w12) box h3: h(w11,w12)(o) end;

 :int, o2:int, o3:int) fun val (o1,o2,o3) = i |> mapf [f1;f2;f3] end; val rec mapf fs x = match fs with [] -> [] | f::fs' -> f x :: mapf fs' x;

 cd ./systemc; make void foo(IN int *i, OUT int *o); void foo(IN int *i, OUT int *obash> hoclc -systemc main.hcl # Wrote file systemc/main_top.cpp # Wrote file systemc/top_gph.h # Wrote file systemc/foo_act.h # Wrote file systemc/foo_act.cpp 2