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Université Clermont Auvergne
CNRS, SIGMA Clermont, Institut Pascal

F-63000, Clermont-Ferrand, France
noemie.debroux@uca.fr

Guillaume Lienemann
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Abstract—While segmentation consists in partitioning a given
image into meaningful constituents in order to identify relevant
structures such as homogeneous regions or edges, registration,
given two images, aims at finding an optimal orientation-
preserving one-to-one deformation aligning the structures visible
in an image into the corresponding ones in the other. Recently,
intertwining both tasks into a single framework has proven to
yield better results in terms of accuracy —in particular when
the images exhibit weak boundary definition —and increase of
reliability of the encoded structure matching —since now, not
only based on intensity distribution comparison but also on
geometrical and topological features —. In line with this idea, we
propose going a step further by adding explicitly some dynamics
in the modelling, i.e., by making the minimization problem
both space and time-dependent so that the correlation between
both tasks is achieved through the process, connecting thus the
problem to an interpolation one. The shapes to be matched are
viewed as Saint Venant-Kirchhoff materials, a special instance
of hyperelastic ones, and are implicitly modelled by level-set
functions. These are evolved in order to minimize a functional in-
cluding both a nonlinear-elasticity-based regularizer prescribing
the physical nature of the deformation and a term penalizing
the shape misalignment, thus promoting structure matching
rather than intensity pairing. Theoretical results emphasizing
the mathematical soundness of the model are provided, among
which the existence of minimizers and the existence of a weak
viscosity solution to the related evolution problem. The model is
then applied to the longitudinal registration of hepatic dynamic
contrast-enhanced MRI sequences and shows good performance.
This application has an important impact on the computer-aided
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follow-up of patients suffering from liver cancers.
Index Terms—registration, Saint Venant-Kirchhoff material,

topology-preserving segmentation, time-dependent problems, vis-
cosity solutions, hepatic DCE-MRI sequences.

I. INTRODUCTION

Multitask frameworks and especially variational ones have
demonstrated significant improvements over sequential ap-
proaches. The former cover a large spectrum of image pro-
cessing problems including combined segmentation and reg-
istration models (see references herein below); joint image
reconstruction and motion estimation [2], [8], [10], [26]; joint
reconstruction and registration for post-acquisition motion
correction [11] with the goal to reconstruct a single motion-
free corrected image and retrieve the physiological dynamics
through the deformation maps, joint optical flow estimation
with phase field segmentation of the flow field [7], or joint
segmentation/optimal transport models [5] (to determine the
velocity of blood flow in vascular structures). Sharing repre-
sentation between tasks and carefully intertwining them allows
to reduce error propagation, to create synergies, to compensate
for some possible flaws such as image quality impairment,
while increasing the accuracy of the outcomes and bridging
the gap towards generalization.
Joint segmentation and registration models such as [16], [18]
(joint phase field approximation and registration), [21] (model
based on metric structure comparison), [15], [25] (level set
formulation that merges the piecewise constant Mumford-Shah
model with registration principles), [17] (grounded in the ex-
pectation maximization algorithm), [14] (based on a nonlocal
characterization of weighted-total variation and nonlocal shape
descriptors), or [1], [20], [23], [24], [27], fall within this
framework.978-1-7281-8750-1/20/$31.00 ©2020 European Union
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Registration can be seen as the incorporation of prior
information —such as topological constraints for instance,
since the one-to-one property of the deformation makes the
moving shape homeomorphic to the original one —in the
segmentation process. By the same token, accurate segmented
structures enable one to drive the registration process correctly
by transferring edges for instance. The primary scope of the
paper is thus to go one step further in this bi-task formalism
by explicitly introducing some dynamics in the modelling, i.e.,
by making the optimization problem both space and time-
dependent phrased then on a Sobolev space of Banach-space-
valued functions. The model promotes large deformations in a
nonlinear-elasticity-based setting, and includes a fidelity mea-
sure fostering shape overlaps and relying on nonlocal shape
descriptors from the piecewise constant Mumford-Shah model
in a spatio-temporal setting.

This model is then applied to the longitudinal computer-
aided diagnosis and follow-up of hepatic diseases. In clinical
routine, Dynamic Contrast Enhancement MRI (DCE-MRI) is
a standard for liver cancers such as HCC (Hepato-Cellular
Carcinoma) for instance [3]. In DCE-MRI four main phases
may be visualized: at non-injected phase (phase I), the lesion
is difficult to differentiate from healthy tissues; at contrasted
arterial phase (phase II), the HCC is enhanced when compared
with the surrounding liver tissues; and at the portal and delayed
phases (phases III and IV), the signal of the HCC appears
slightly lower than the surrounding liver, defined as wash
out. In this context, our joint model serves as a registration
tool of such sequences and shows good behavior with high
Dice coefficient values. As a long-term vision, this will surely
improve computerized analysis of DCE-MRI volumes in the
follow-up of patients suffering from liver cancers as HCC.

II. MATHEMATICAL MODELLING

A. Mathematical background

Let Ω be a connected bounded open subset of R2 of class
C1. Let us denote by R : Ω̄ → R the Reference image
assumed to be sufficiently smooth and by T : Ω̄ → R the
Template image. The shape contained in the Template image
is assumed to be modelled by a Lipschitz continuous function
Φ0 (input of the problem) whose zero level line is the shape
boundary. Denoting by C the zero level set of Φ0 and by
w ⊂ Ω the open set it delineates, Φ0 is chosen such that
C = {x ∈ Ω |Φ0(x) = 0}, w = {x ∈ Ω |Φ0(x) > 0} and
Ω \ w̄ = {x ∈ Ω |Φ0(x) < 0}. For theoretical and numerical
purposes, we may consider a linear extension operator (see [6,
p. 158]) P : W 1,∞(Ω) → W 1,∞(R2) such that for all Φ ∈
W 1,∞(Ω), (i) PΦ|Ω = Φ, (ii) ‖PΦ‖L∞(R2) ≤ C ‖Φ‖L∞(Ω)

and (iii) ‖PΦ‖W 1,∞(R2) ≤ C ‖Φ‖W 1,∞(Ω), with C depending
only on Ω. By this extension process, we consider then that
Φ0 ∈ W 1,∞(R2) to ensure that Φ0 ◦ ϕ – with ϕ introduced
later – is always defined.
We recall that, in the general case, if U is an open subset of
RN , for 1 ≤ p ≤ +∞, the Sobolev space denoted by W 1,p(U)
consists of the functions in Lp(U) whose partial derivatives
up to order 1, in the sense of distributions, can be identified

with functions in Lp(U).
Let ϕ : Ω̄→ R2 be the sought deformation. A deformation is
a smooth mapping that is orientation-preserving and injective,
except possibly on ∂Ω. The deformation gradient is ∇ϕ: Ω̄→
M2(R), the set M2(R) being the set of all real square matrices
of order 2 identified to R4. This deformation to be recovered
is seen as the optimal solution of a specifically designed cost
function, comprising a regularization on ϕ prescribing the
nature of the deformation, and a term measuring alignment or
how the available data are exploited to drive the registration
process. These are depicted hereafter.

B. Deformation regularization
Nonlinear elasticity principles dictate the design of the

smoothness on ϕ. The shapes to be matched are viewed as
hyperelastic materials (capable of undergoing large deforma-
tions), and more precisely as Saint-Venant Kirchhoff ones. The
considered regularizer is given, setting ξ = ∇ϕ, by :

QW (ξ) =

{
WSVK(ξ) + µ (det ξ − 1)

2 if ‖ξ‖2 ≥ α,
Ψ(det ξ) if ‖ξ‖2 < α,

(1)

with WSVK(F ) =
λ

2
(trE)

2
+µ trE2, the stored energy func-

tion of a Saint Venant-Kirchhoff material, λ and µ the Lamé
coefficients, E =

(
FTF − I

)
/2 the Green-Saint Venant

stress tensor measuring the deviation between ϕ and a rigid
deformation, and with the following notation A : B = trATB,
the matrix inner product, and ‖A‖ =

√
A : A the related

matrix norm (Frobenius norm). Additionally, α = 2 λ+µ
λ+2µ and

Ψ is the convex mapping defined by Ψ : s 7→ −µ2 s
2 + µ (s−

1)2 +
µ(λ+ µ)

2(λ+ 2µ)︸ ︷︷ ︸
:=γ

. Several arguments motivate this choice by

comparison to the stored energy function WSVK alone: (i)
first, although the stored energy function WSVK is the simplest
one that agrees with the generic expression of the stored
energy function of an isotropic, homogeneous, hyperelastic
material, it lacks a term penalizing the determinant. It thus
does not preclude deformations with negative Jacobian deter-
minant; (ii) second, it is not rank-1 convex and consequently
not quasiconvex (see [13, Chapter 9]), which raises some
theoretical issues in terms of existence of minimizers, contrary
to QW which exhibits this fine latter property; (iii) thirdly,
we see in the expression of QW that when ‖ξ‖2 < α, a
penalization on the determinant still remains, showing good
behavior under compression.
By introducing explicitly the time variable t ∈ [0, T̄ ] in the
model and the unknown ϕ = ϕ(x, t) being now space and
time-dependent, it yields the following regularization on ϕ

Reg(ϕ) =

∫ ∫
V

‖∂ϕ
∂t
‖22 dx dt

+

∫ ∫
V

QW (∇xϕ(x, t)) dx dt, (2)

‖ · ‖2 denoting the Euclidean norm in R2 and with V = Ω×
[0, T̄ ].



C. Dissimilarity measure
Complying with the idea of promoting structure/shape

matching rather than intensity-based rules, we introduce a
metric fostering the overlap of shapes as follows. Recall that
the shape contained in the Template image is assumed to
be modelled by a Lipschitz continuous function Φ0 whose
zero level line is the shape boundary. The idea is to deform
the function Φ0 so that the zero level line of the deformed
function, Φ0 ◦ ϕ, is aligned with the boundary of the shape
belonging to the Reference. The trade-off between segmenta-
tion and registration —which makes our model a bi-task one
—is ensured by processing at the same time the segmentation
of the Reference via the level set function Φ̃ (see 4) and
the deformation of Φ0, and these tasks are connected in a
single framework to maximize the overlap of the two resulting
shapes. More precisely, the dissimilarity measure is defined by:

Fid(ϕ) =

∫ ∫
V

|Hε(Φ0 ◦ ϕ(x, t))−Hε(Φ̃(x, t))|2 dx dt,

(3)

Hε denoting a C∞-regularization of the one-dimensional
Heaviside function and the evolution of Φ̃ being dictated by
the following evolution equation, which constitutes a revised
version of [20] to unify local and global (region-based) fea-
tures to segment the Reference :

∂Φ̃

∂t
= |∇Φ̃|

[
div

(
g̃(|∇R|) ∇Φ̃

|∇Φ̃|

)
+ k

(
(R− c2)2

−(R− c1)2
) ]

+ 4
µ′

d2
H̄(Φ̃(x) + l)H̄(l − Φ̃(x))∫

Ω

[
〈x−y,∇Φ̃(y)〉 e−‖x−y‖22/d2

H̄(Φ̃(y)+l)H̄(l−Φ̃(y))
]
dy ,

Φ̃(x, 0) = Φ0(x) ,

∂Φ̃

∂~n
= 0, on ∂Ω ,

(4)

with c1 =
∫
Ω
H̄(Φ̃)R(x) dx∫
Ω
H̄(Φ̃) dx

and c2 =
∫
Ω
H̄(−Φ̃)R(x) dx∫
Ω
H̄(−Φ̃) dx

(we

dropped the dependency on Φ̃ to lighten the expressions). Φ0 is
naturally taken to be the initial condition of this segmentation
process. Function g̃ is an edge-detector function satisfying
g̃(0) = 1, g̃ strictly decreasing and lim

r→+∞
g̃(r) = 0. The

first two components of the right hand side of equation (4)
constitutes a balance between the classical geodesic active
contour model ( [9]) and the piecewise constant Mumford-
Shah model ( [22]) which allows to partition R into two phases
w and Ω \w with respective values c1 and c2. The latter one
prescribes some topological constraints ( [20]) in order for the
evolving contour to be homeomorphic to the original one.
The overall registration problem thus reads :

J(ϕ) =

∫ ∫
V

‖∂ϕ
∂t

(x, t)‖22 dx dt+

∫ ∫
V

[QW (∇xϕ(x, t))

(5)

+
ν

2

(
Hε(Φ0 ◦ ϕ(x, t))−Hε(Φ̃(x, t))

)2
]
dx dt,

with V = Ω× [0, T̄ ].

D. Theoretical results

We state the main theoretical result related to the existence
of minimizers.

Theorem 1 (Existence of minimizers): There exists at least
one minimizer of problem (5) in the functional space W ={
ϕ ∈ L4(0, T̄ ;W 1,4(Ω,R2)) | ∂ϕ

∂t
∈ L2(0, T̄ ;L2(Ω,R2))

}
endowed with the norm ‖ϕ‖W = ‖ϕ‖L4(0,T̄ ;W 1,4(Ω,R2))+

‖∂ϕ
∂t
‖L2(0,T̄ ;L2(Ω,R2)).
Proof: The proof is divided into the following three steps

and relies on Aubin-Lions lemma:
• Coercivity inequality: By taking ϕ(t) = Id ∀t ∈ [0; T̄ ],

we get J(ϕ) < +∞ and the functional is proper. We first
derive a coercivity inequality:

J(ϕ) ≥ ‖∂ϕ
∂t
‖2L2(]0,T̄ [×Ω,R2)

+
β

2(c4 + 1)
‖ϕ‖4L4(0,T̄ ;W 1,4(Ω,R2)) − βα

2meas(Ω)T̄

− µ(λ+ 3µ)

2(λ+ 2µ)
meas(Ω)T̄ + γmeas(Ω)T̄ + k′T̄ .

So, the infimum is finite.
• Convergence of a minimizing sequence: Let {ϕk}k∈N

be a minimizing sequence. As the functional is proper,
there exists ϕ̂ such that for all k large enough, J(ϕk) ≤
J(ϕ̂) + 1 < +∞. Then from the coercivity inequality,
we can deduce that {ϕk}k∈N is uniformly bounded in W
so we can extract a subsequence still denoted {ϕk} such
that ϕk ⇀ ϕ̄ in W . As W 1,4(Ω,R2) ⊂ L2(Ω,R2) with
compact injection, Aubin-Lions lemma states that the
embedding of W in L4(0, T̄ ;L2(Ω,R2)) is compact. As
L4(0, T̄ ;L2(Ω,R2)) ⊂ L2(]0, T̄ [×Ω,R2) is continuous
then the embedding of W into L2(]0, T̄ [×Ω,R2) is
also compact. We can therefore extract a subsequence
of {ϕk} still denoted {ϕk} such that ϕk → ϕ̄ in
L2(]0, T̄ [×Ω,R2).

• Weak lower semi-continuity: ‖.‖L2(]0,T̄ [×Ω,R2)

is convex and strongly continuous and so it is
weakly lower semi-continuous in L2(]0, T̄ [×Ω,R2)

so ‖∂ϕ̄∂t ‖L2(]0,T̄ [×Ω,R2) ≤ lim inf
k→+∞

‖∂ϕ
k

∂t ‖L2(]0,T̄ [×Ω,R2).

As, ϕk → ϕ̄ in L2(]0, T̄ [×Ω,R2), up to a subsequence,
one has pointwise convergence of {ϕk} to ϕ̄ and the
dominated convergence theorem enables us to obtain the
weak lower semi-continuity of the data fidelity term.
Let {ψk}k∈N be a sequence that strongly
converges to ψ̄ in L4(0, T̄ ;W 1,4(Ω,R2)). Then∫ T̄

0

‖ψ̄(t) − ψk(t)‖4W 1,4(Ω,R2) dt −→
k→+∞

0. By seeing

‖ψ̄(t) − ψk(t)‖4W 1,4(Ω,R2) as a real-valued function
depending on t defined on ]0, T̄ [ and by applying the
reciprocal of the dominated convergence theorem, we
get that ‖ψ̄(t) − ψk(t)‖4W 1,4(Ω,R2) converges to 0 for
almost every t ∈]0, T̄ [ up to a subsequence. So for
almost every t ∈]0, T̄ [, ψk(t) strongly converges to ψ̄(t)



in W 1,4(Ω,R2) and det∇ψk(t) →
k→+∞

det∇ψ̄(t) in

L2(Ω). From what was done in the stationary case [15],
for almost every t ∈]0, T̄ [,∫

Ω

QW (∇ψ̄(t)) dx ≤ lim inf
k→+∞

∫
Ω

QW (∇ψk(t)) dx.

So by Fatou’s lemma, we get:∫ T̄

0

∫
Ω

QW (∇ψ̄(x, t)) dx dt

≤ lim inf
k→+∞

∫ T̄

0

∫
Ω

QW (∇ψk(x, t)) dx dt.

Then it is convex and strongly sequentially lower semi-
continuous and so it is weakly lower semi-continuous.
We finally have∫ T̄

0

∫
Ω

QW (∇ϕ̄(x, t)) dx dt

≤ lim inf
k→+∞

∫ T̄

0

∫
Ω

QW (∇ϕk(x, t)) dx dt,

which concludes the proof.

The well-definedness of Φ̃ is then investigated to ensure
that the fidelity term exhibits sufficient regularity and makes
sense. Equation (4) falls within the framework of viscosity
solution theory ( [4], [12]) for equations with a measurable
dependence in time (called L1 -viscosity solution). Under mild
assumptions, the following theorem holds.

Theorem 2 (Existence of weak solutions of the considered
evolution problem): Assuming that g := g̃(|∇R|), g

1
2 and ∇g

are bounded and Lipschitz continuous on R2, for fixed c1 and
c2, problem (4) admits at least one weak solution.

III. NUMERICAL RESOLUTION

We now aim to apply this theoretical model to the longitudi-
nal study of an image sequence. Let (In)Nn=0 be the temporal
image sequence. The segmentation evolution problem now
reads :

∂Φ̃
∂t = |∇Φ̃|

[
div
(
g̃(|∇In|) ∇Φ̃

|∇Φ̃|

)
+ k((In − c2,n)2

−(In − c1,n)2)

]
+ 4µ

′

d2 H̄(Φ̃(x) + l)H̄(l − Φ̃(x))

∫
Ω

[
〈x−y,∇Φ̃(y)〉e−

‖x−y‖2

d2 H̄(Φ̃(y)+l)H̄(l−Φ̃(y))

]
dy,

c1,n =
∫
Ω
H̄(Φ̃)In(x) dx∫

Ω
H̄(Φ̃)

, c2,n =
∫
Ω
In(x)H̄(−Φ̃) dx∫
Ω
H̄(−Φ̃) dx

,

for t ∈ [tn−1, tn], N ≥ n ≥ 1,

Φ̃(x, 0) = Φ0(x),
∂Φ̃
∂~n = 0, on ∂Ω.

(6)

For the registration problem, rather than considering a
continuum in time which is not realistic, we assume that the
problem is sampled in time and drop the regularization in

time introduced only for theoretical purposes. We thus solve
sequentially the subproblems :

inf
ϕi∈Id+W 1,4

0 (Ω,R2)

∫
Ω

QW (∇ϕi) dx

+
ν

2

∫
Ω

(
Hε(Φ0 ◦ ϕ1 ◦ · · · ◦ ϕi)−Hε(Φ̃(·, ti))

)2

dx,

for i ∈ {1, . . . , Nζ}, ζ being the number of steps saved in
the segmentation process between tn−1 and tn. In the end,
the overall deformation is given by ϕ1 ◦ · · · ◦ ϕNζ , and the
deformation between the initial frame and the n-th frame by
ϕ1 ◦ . . . ◦ ϕnζ .

Remark 1: From a theoretical standpoint, the existence
of minimizers for each subproblem is guaranteed: Rellich-
Kondrachov’s embedding theorem states that weak conver-
gence in W 1,4(Ω,R2) leads to uniform convergence in Ω̄,
an extension process as before can be applied on all ϕk,
k = 1, · · · , i−1 to ensure the well-definedness of the composi-
tion, and the continuous injection W 1,4(R2,R2) 	 C0(R2,R2)
holds, these three elements combined allowing to handle the
fidelity term.
In order to deal with the nonlinearity in ∇ϕ, we propose
introducing an auxiliary variable Vi simulating the Jacobian
deformation with a quadratic penalty method as in [15]. The
decoupled problem becomes :

inf
ϕi∈Id+W 1,2

0 (Ω,R2),Vi∈L4(Ω,M2(R))

∫
Ω

QW (Vi) dx

+
ν

2

∫
Ω

(
Hε(Φ0 ◦ ϕ1 ◦ · · · ◦ ϕi)−Hε(Φ̃(·, ti))

)2

dx

+
γ

2
‖∇ϕi − Vi‖2L2(Ω,M2(R)), (7)

for i ∈ {1, . . . , Nζ}. We then use an alternating minimization
scheme to solve the problem. We refer the reader to [15,
Section 4.3.] for an exhaustive description of the algorithm
relying on the derivation of Euler-Lagrange equations solved
by an L2 gradient flow algorithm and an implicit/semi-implicit
Euler time stepping scheme.

IV. NUMERICAL SIMULATIONS

The proposed method has been evaluated both qualitatively
and quantitatively as a registration process to the longitudinal
analysis of 2 DCE-MRI sequences (composed of 4 MRI
phases each denoted I, II, III and IV) for a patient suffering
from cirrhosis and HCC. DCE-MRI exams were performed
on a 1.5T SIGNA™ Artist (General Electric, Milwaukee,
WI) with a phased array coil. Manual segmentations of the
liver have been elaborated thanks to a Slicer 3D plug-in we
are developing [19]. The segmentation step of our method
serves here as an interpolation process between the manual
segmentations to guide the registration and improve both the
matching quality and the topology-preservation property.

To assess the performance of our algorithm, we display the
visual outputs in Fig. 1 and use two metrics: the Dice coef-
ficient measuring set agreement with the highest score 1; the



mutual information to measure image alignment with larger
value meaning better matching. These quantitative measures
are reported in Table I along with the max and min value of
the deformation Jacobian determinant to appraise the topology
preservation. We can see in Fig. 1 that the deformed contour
is well aligned with the edge of the liver at all times and
the deformation grid does not exhibit overlaps, highlighting
the topology preservation property of our algorithm. This
is particularly visible in the zoom-in views of the complex
topology exhibited by the liver around the vena cava: the
segmentation delineates well the concavity without violating
topology preservation. It thus shows the capability of our
model to handle large deformations on complex shapes and
intensity variations between frames. This is further confirmed
by the analysis of the Dice coefficients between the deformed
initial frame (T ◦ ϕ) and the corresponding temporal frame
(R) and their mutual information. Indeed, the latter always
significantly increases between the non-deformed frame T
and the deformed one T ◦ ϕ, while the Dice coefficient is
greater than 98.7% at all times. Favoring shape matching
rather than intensity pairing has therefore a positive impact on
the registration quality when intensity changes are involved
between the temporal frames. Furthermore, we can see in
Table I that the determinant remains positive at all times which
translates into the ability of our model to generate physically
meaningful deformations along the longitudinal analysis. This
experiment is thus a proof of concept that our method can be
used for the longitudinal analysis of complex organs such as
the liver including intensity variations.

V. DISCUSSION AND FUTURE WORKS

In this article, we have proposed a novel joint registration-
segmentation model that minimizes a functional by integrating
both space and time-dependent terms. Our contribution enables
one to generate large deformations thanks to a nonlinear elas-
ticity regularization process and promotes structure matching
rather than intensity-based similarity measuring.

We have successfully exploited our model in a computerized
diagnosis and follow-up process by computing the registration
of liver shapes within DCE-MRI sequences. By construc-
tion, these MRI volumes have variable intensity ranges (due
to contrast agent absorption), which would have penalized
standard approaches that consider more pixel values than
geometrical or topological structures. In this context, we can
handle concavities that are generally considered as strong
topological constraints for registration. Our experiments show
that our model can offer accurate performance by means of
excellent Dice coefficient and mutual information measures.

As future works, we first plan to increase the capability
of our model by developing a fully 3D approach rather
than a slice-based one, and by studying multi-modal joint
registration-segmentation through the context of personalized
MRI/CT alignment. Moreover, we would like to tackle the
problem of internal tissue registration by studying tumors
throughout dynamic sequences. In this case, we can extend
our framework by considering two level sets: one for the liver

volume, and another one for the tumor. We can also produce
an approximate registration of the tumors by applying the
deformations obtained from the whole liver to internal tissues.
Finally, we can exploit further our model by calculating a more
precise segmentation of the liver and internal lesions within
medical 3D volumes.
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TABLE I
QUANTITATIVE EVALUATION OF THE REGISTRATION IN THE LONGITUDINAL STUDY COMPRISING THE FOUR STEPS OF TWO DCE MRI EXAMS WITH TWO

METRICS: DICE COEFFICIENT, MUTUAL INFORMATION AND MIN/MAX OF THE DEFORMATION JACOBIAN DETERMINANT.
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Fig. 1. Visual assessment of the longitudinal analysis performed on the sequence 19-02-2013 Phase I to IV followed by 08-08-2013 Phase I to IV. For each
time step, the image with the initial contour along with the image with the deformed contour and the deformation grid are shown. Zoom-in views are provided
below to highlight the preservation of topology in complex shapes such as concavities, and the quality of the alignment between the deformed contour and
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