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III. Special prime closed ideals of A.

Notations: Let IK be an algebraically closed field complete with respect to an ultrametric absolute value | . |. Given a ∈ IK and r > 0, we denote by d(a, r) the disk {x ∈ IK | |x -a| ≤ r}, by d(a, r -) the disk {x ∈ K | |x -a| < r}, by C(a, r) the circle {x ∈ IK | |x -a| = r} and set D = d(0, 1 -). Let a ∈ D. Given r, s ∈]0, 1] such that 0 < r < s we set Γ(a, r, s) = {x ∈ IK |r < |x -a| < s}.

Let A be the IK-algebra of bounded power series converging in D which is complete with respect to the Gauss norm defined as

∞ n=1 a n x n = sup n∈ IN
|a n |: we know that this norm actually is the norm of uniform convergence on D [START_REF] Escassut | Analytic Elements in p-adic Analysis[END_REF].

We will denote by B( IN, IK) the IK-algebra of bounded sequences of IK. Let S = (a n ) n∈N be a sequence in D thinner than W. We will denote by T S the mapping from A into B( IN, IK) which associates to each f (x) = ∞ n=0 a n x n the sequence (f (a n ) n∈ IN ), we will denote by Σ(S) the set of ultrafilters thinner than S and by I(S) the ideal of the f ∈ A such that f (a n ) = 0 ∀n ∈ IN.

Given a ∈ IK and r > 0, we denote by Φ(a, r) the set of circular filters secant with d(a, r) i.e. the circular filters of center b ∈ d(a, r) and radius s ∈ [0, r].

We denote by W the circular filter on D of center 0 and diameter 1 and by Y the filter admitting for basis the family of sets of the form Γ(0, r, 1) \ ∞ n=0 d(a n , r - n ) with a n ∈ D, r n ≤ |a n | and lim n→∞ |a n | = 1.

An ultrafilter U on D will be called coroner ultrafilter if it is thinner than W. Similarly, a sequence (a n ) on D will be called a coroner sequence if its filter is a coroner filter, i.e. if lim n→+∞ |a n | = 1.

Two coroner ultrafilters F, G are said to be contiguous if for every subsets F ∈ F, G ∈ G of D the distance from F to G is null.

Let ψ ∈ M ult(A, . ) be different from . . Then ψ will be said to be coroner if its restriction to IK[x] is equal to . . In [START_REF] Escassut | About the ultrametric Corona problem[END_REF] regular ultrafilters were defined: Let (a n ) n∈ IN be a coroner sequence in D. The sequence is called a regular sequence if inf

j∈ IN n∈ IN n =j |a n -a j | > 0.
An ultrafilter U is said to be regular if it is thinner than a regular sequence. Thus, by definition, a regular ultrafilter is a coroner ultrafilter.

By Corollary (4.6) in [START_REF] Van Der Put | The Non-Archimedean Corona Problem Table Ronde Anal. non Archimedienne[END_REF], we have Theorem III.1:

Theorem III.1: Let S be a sequence in D thinner than W. Then T S is surjective on B( IN, IK) if and only if the sequence S is regular.

Notations:

Let S be a regular sequence. Since T S is surjective, there exists a IK-algebra isomorphism Λ S from A Ker(T S ) onto B(N, K), where Ker(T S ) = I(S). By Theorem 23 [START_REF] Escassut | Multiplicative spectrum of ultrametric Banach algebras of continuous functions Topology and its applications[END_REF], we have this:

Theorem III.3: Let S be a regular sequence and let M be a maximal ideal of A. The following two statements are equivalent:

(i) I(S) ⊂ M, (ii) There exists an ultrafilter U thinner than S such that M = J (U). Moreover, the mapping Ψ which associates to each ultrafilter U thinner than S the ideal J (U) is a bijection from Σ(S) onto the set of maximal ideals of A containing I(S).

Proof: Obviously, (ii) implies (i). Thus, suppose (i) true. Let S = (a n ) n∈ IN . By Theorem III.2, the isomorphism Λ S makes a bijection Ψ from the set of maximal ideals of A containing I(S) to the set of maximal ideals of B( IN, IK) and more precisely, it makes a bijection from the set of maximal ideals of A of infinite codimension containing I(S) to the set of maximal ideals of B( IN, IK) of infinite codimension which actually are the non-principal maximal ideals of B( IN, IK). Let N = Ψ(M ). By Theorem III.1, there exists an ultrafilter U on IN such that N is the ideal of the bounded sequences tending to zero along U. Now, let Ξ be the natural bijection from the set of non-principal ultrafilters of IN onto the set of ultrafilters thinner than S and let V = Ξ(U). Then N = Λ S (M ) hence M = I(S). Moreover, in this way, we can see that Ψ • Ξ -1 is a bijection from Σ(S) onto the set of maximal ideals of A containing I(S).

Corollaire III.3.1: If U is a regular ultrafilter on D, J (U) is a maximal ideal of A.

Corollary III.3.2: If A is multbijective, then for every φ ∈ M ult m (A, . ) there exists a coroner ultrafilter U such that φ = ϕ U .

Notation: Let F be a field, let R be a commutative F -algebra with unity and let D be a derivation on R. Let J be an ideal of R. We will denote by

J the set {f ∈ R | D (n) (f ) ∈ J ∀n ∈ IN}.
Theorem III.4: There exist regular maximal ideals M of A and f ∈ M, having a sequence of zeros of order 1 and no other zeros, such that f / ∈ M, and such that M = {0}.

Proof: By Theorem II. is a zero of g of order z n ≥ s n . And since lim n→∞ s n = +∞, for every fixed k ∈ IN, we can see that f (k) (α n ) = 0 when n is big enough, therefore g (k) belongs to M. Consequently, M is not null, which ends the proof.

Remark: Theorem III.4 shows that ideals of the form M are not null and are not equal to M in general.

The following Theorem III.5 only concerns algebraic considerations but will be useful next:

Theorem III.5: Let F be a field, let R be a commutative F -algebra with unity and let D be a derivation on R. Let J be an ideal of R and let J be the set of f ∈ J such that Df ∈ J. Then J is an ideal of R. Let J be the set of f ∈ J such that D n f ∈ J ∀n ∈ IN * Then J is an ideal of R and ( J) = J. Moreover, if F is of characteristic 0 and if J is prime, so are J and J.

Notation: On A we shall apply this notation to the usual derivation of functions. Let ψ ∈ M ult(A, . ). Here we set Subker(ψ) = Ker(ψ).

Since f ≤ f ∀f ∈ A, we can derive Corollary III.5.1: Corollary III.5.1: Suppose IK is of characteristic zero. Let P be a prime ideal of A. Then P and P are prime ideals of A such that ( P) = P. Moreover, if P is closed, so are P and P.

Corollary III.5.2: Suppose IK is of characteristic zero. Let ψ ∈ M ult(A, . ). Then Subker(ψ) is a prime closed ideal .

Remark: Suppose IK is of characteristic 0. By Corollary III.5.1, given a prime closed ideal P , both P and P are prime closed ideals. An interesting question is whether they are kernels of elements of M ult(A, . ). If one of them were the kernel of an elemenent of M ult(A, . ), this would be a new kind of continuous multiplicative semi-norm. If none of them is the kernel of an element of M ult(A, . ), then they are new kinds of prime closed ideals which are not the kernel of an elemenent of M ult(A, . ). Actually, we do not imagine what elemenent of M ult(A, . ) might admit P or P for kernel.

In order to prove Theorem III.8 and give a counterexample to Theorem III.5 when K is of characteristic p = 0, we shall state Theorem III.6:

Theorem III.6: There exist regular maximal ideals M of A and f ∈ M, having a sequence of zeros of order 1 and no other zeros, such that f / ∈ M, and such that M = {0}. Proof: By Theorem II.13 there exist bounded sequences (a n ) n∈ IN in D such that a 0 = 1 and such that the sequence an an+1 is strictly increasing and then the function 

f (x) = ∞ n=0 a n x
(x)| ≥ f δ ρ ∀x ∈ ∞ n=0 d(a n , (δρ) -). Proof: Let us fix t ∈ IN, let r = |a t |. Set u = x -a t , g(u) = f (x)
and consider |g|(ρ). Since g has a unique zero in d(0, ρ -) and admits all the the a n -a t as zeros, by Lemma I.7 and I.8 we can check that |g|(ρ

) ≥ g δ = f δ. Inside d(0, ρ -), g(u) is of the form b 1 u + ∞ n=2 b n u n with |b 1 |ρ ≥ |b n |ρ n ∀n ≥ 2. Consequently, |g (u)|ρ| ≥ f δ Now |g (u)| = |b 1 | = |g(u)| ρ ∀u ∈ d(0, ρ -). Now, of course f (x) = g (u) hence |f (x)| = |f (x)| ρ ≥ f δ ρ ∀x ∈ d(a t , ρ -).
That holds for every t ∈ IN, therefore that ends the proof.

Remarks: Lemma III.7 is a correction to Lemma 2.13 in [START_REF] Escassut | Ultrametric Corona problem and spherically complete fields[END_REF].

Theorem III.8: Suppose IK is spherically complete and let M be a regular maximal ideal of A.

There exists f ∈ M, having a sequence of zeros of order 1 and no other zeros, such that f / ∈ M. Proof: Since M is a regular maximal ideal, there exists a regular sequence (a n ) n∈ IN and a regular ultrafilter U thinner than the sequence (a n ) such that M = J (U). Since the sequence is regular, we have

δ = inf k∈ IN n =k,n∈ IN |a n -a k | > 0 and ρ = inf k =n,k,n∈ IN |a n -a k | > 0
Since IK is spherically complete, since δ > 0 we may apply Corollary II.15.1 showing there exists f ∈ A admitting each a n as a zero of order 1 and no other zero. Now by Lemma III.7, we have |f

(x)| ≥ f δ ρ ∀x ∈ ∞ n=0 d(a n , δ -) which shows that ϕ U (f ) > 0 because the set E = ∞ n=0
d(a n , (δρ) -) obviously belongs to U. Consequently, f does not belong to M.

Remarks: 1) Now we may notice that when the field is of characteristic 2, it is easy to show that for certain maximal ideals M of A, M is not prime. Indeed, by Theorem III.6, there exists a regular maximal ideal M and

f ∈ M such that f / ∈ M. Hence f does not belong to M. Now consider g = f 2 . Then g = 2f f = 0 hence g (n) ∈ M ∀n ∈ IN.
If IK is of characteristic 3, we can also construct a similar but less simple counter-example.

2) In the algebra of bounded complex holomorphic functions in the open unit disk of l C, the derivation is not an endomorphism. Consequently, ideals of the form P do not exist.

By Theorem II.14, we may notice the following proposition III.9:

Proposition III.9: Let IK be spherically complete. Let (a j ) j∈IN be a coroner sequence such that Notation: Recall that we denote by U the disk d(0, 1). Considering the ring U [x] of polynomials with coefficients in U , we denote by H be the family of ideals J of U [x] such that J ∩ U = {0} and, given an integer s ∈ IN * , let H s be the set of J ∈ H generated by s elements. For every ideal J ∈ H we put t

(J) = sup{|x| | x ∈ J ∩U } and (J) = inf{sup f ∈J |f (x)| | x ∈ V }
and we denote by u(J) the number such that t(J) = (J) u(J) . Finally, we put m(s

) = sup{u(J) | J ∈ J s }. Henceforth, given f 1 , ..., f s ∈ H(U ) such that f i < 1 ∀i = 1, ..., s, we set w(f 1 , ..., f s ) = inf{max 1≤i≤s |f i (x)| | x ∈ U }. Moreover, given f 1 , ..., f s ∈ A we set λ(f 1 , ..., f s ) = inf{max 1≤i≤s |f i (x)| | x ∈ D}.
Remark: Characterizing the coroner ultrafilters U such that J (U) is a maximal ideal appears very hard. For instance, consider an ultrafilter U thinner than Y. It is a coroner ultrafilter. But J (U) = {0}. Indeed, suppose a non-identically zero function f lies in J (U). Let (a n ) be its sequence of zeros, set

r n = |a n |, n ∈ IN, and let E = D \ ∞ n=0 d(a n , r - n ). Clearly |f (x)| = |f |(|x|) ∀x ∈ E.
However, E belongs to Y and therefore, U is secant with E, a contradiction with the hypothesis f ∈ J (U).

On the other hand, the mapping J from the set of coroner ultrafilters to the set of ideals of A is not injective: as noticed in [START_REF] Escassut | About the ultrametric Corona problem[END_REF], two contiguous coroner ultrafilters define the same ideal. Thus, by Theorem II.12 if an element ψ ∈ M ult(A, . ) is neither the Gauss norm nor of the form ϕ F on the whole set A, with F a circular filter on D of diameter r < 1, then, its restriction to IK[x] must be the Gauss norm on IK[x]. So its kernel is a prime closed ideal included in a maximal ideal of the form J (U), with U a coroner ultrafilter.

Here we shall first examine the problem of the continuation of ϕ W to A through multiplicative norms, what was not done in [START_REF] Escassut | About the ultrametric Corona problem[END_REF].

Notation: Let F be a field, let R be a commutative F -algebra with unity and let D be a derivation on R. Let J be an ideal of R. We will denote by

J the set {f ∈ R | D (n) ∈ J ∀n ∈ IN}.
On A we shall apply this notation to the usual derivation of functions. Let ψ ∈ M ult(A, . ).

Here we set Subker(ψ) = Ker(ψ).

In [START_REF] Escassut | Multiplicative spectrum of ultrametric Banach algebras of continuous functions Topology and its applications[END_REF], we asked the question whether there exist prime closed ideals which are neither zero nor maximal ideals. Theorem II. [START_REF] Lazard | Les zéros des fonctions analytiques sur un corps valué complet[END_REF] shows that such ideals do exists and can be the kernel of an element of M ult(A, . ). Now we will construct another kind of prmie closed ideal which is neither maximal nor null.

Theorem III.10 comes from classical algebraic results:

Theorem III.10: Let F be a field, let R be a commutative F -algebra with unity and let D be a derivation on R. Let J be an ideal of R. Then J is an ideal of R and ( J) = J. Moreover, if F is of characteristic 0 and if J is prime, so is J.

Since f ≤ f ∀f ∈ A, we can derive Corollary III.10.1:

Corollary III.10.1: Suppose IK is of characteristic zero. Let P be a prime ideal of A. Then P is a prime ideal of A such that ( P) = P. Moreover, if P is closed, so is P.

Corollary III.10.2: Suppose IK is of characteristic zero. Let ψ ∈ M ult(A, . ). Then Subker(ψ) is a prime closed ideal .

Theorem III.11: Let U be a regular ultrafilter. Then the ideal M = J (U) is a maximal ideal of A and there exists f ∈ M, having a sequence of zeros of order 1 and no other zeros, such that f / ∈ M, and such that M = {0}.

Proof: By Theorem II.13 we know that there exist sequences (a n ) n∈ IN in D such that the sequence an an+1 is strictly increasing and then the function

f (x) = ∞ n=0 a n x n admits a sequence of zeros (α n ) n∈ IN * satisfying |α n | = an
an+1 . Thus, particularly, if we set r n = an an+1 then f admits exactly a unique zero in each circle C(0, r n ), each of order 1, and has no other zero in D. Consequently, by Lemma I.8, we can see that |f

(α n )| = |f |(r n ) ∀n ∈ IN * . Now,
let U be an ultrafilter thinner than the sequence (α n ) n∈ IN * . We can check that the sequence (α n ) is regular, hence U is a regular ultrafilter. Consequently, by Corollary III.3.1 the ideal M = J (U) is a maximal ideal of A. On the other hand, by lemma III.7, f does not belong to M.

For each n ∈ IN, let u n = log(r n ). Then, by Theorem II.8, we have log( f ) = -∞ n=0 u n . By Lemma I.2, there exists an increasing sequence (s n ) n∈ IN of IN such that lim n→∞ s n = +∞ and such that the series ∞ n=0 s n u n converges. Now, by Corollary II.14.1, there exists g ∈ A (not identically zero) such that for each n ∈ IN, α n is a zero of g of order z n ≥ s n . And since lim n→∞ s n = +∞, for every fixed k ∈ IN, we can see that f (k) (α n ) = 0 when n is big enough, therefore g (k) belongs to M. Consequently, M is not null, which ends the proof. By Theorem III.11 and Corollary 7.2, we now have this corollary:

Corollary III.11.1: A admits maximal ideals of infinite codimension.

Remarks: 1) Now we may notice that when the field is of characteristic 2, it is easy to show that for certain maximal ideals M of A, M is not prime. Indeed, by Theorem III.4, there exists a regular maximal ideal M and f ∈ M such that f / ∈ M. Hence f does not belong to M. Now

consider g = f 2 . Then g = 2f f = 0 hence g (n) ∈ M ∀n ∈ IN. If IK is of characteristic 3,
we can also construct a similar but less simple counter-example. 2) In the algebra of bounded complex holomorphic functions in the open unit disk of l C, the derivation is not an endomorphism. Consequently, ideals of the form P do not exist. Following Corollary II.12.1, we can now complete the characterization of continuous multiplicative norms on A.

Theorem III.12: Let ψ ∈ M ult(A, . ) be coroner. Then Subker(ψ) is not null. Moreover, if IK is spherically complete, then, for every f ∈ A such that ψ(f ) < f , there exists g ∈ Subker(ψ) admitting no zero but zeros of f and admitting each zero of f as a zero of order superior or equal to its order as a zero of f . Proof: The proof takes advantage of the proof of a theorem in [START_REF] Bourbaki | Topologie générale, Ch. I[END_REF]. Suppose the claim is wrong. Let ψ ∈ M ult(A, . ) be an absolute value on A different from the Gauss norm . on A. So, there exists a circular filter F on D, of diameter r ≤ 1 such that ψ(P ) = ϕ F (P ) ∀P ∈ K[x]. But by Corollary II.12.1, we know that r = 1 and hence, the restriction of ψ to K[x] is the Gauss norm. Now, since ψ is not the Gauss norm on A, there exists f ∈ A such that ψ(f ) < f . Actually, without loss of generality, we can choose f ∈ A such that ψ(f ) < 1 ≤ f . Let ρ = ψ(f ). And, up a change of origin, we can also assume that f (0) = 0. By Proposition II.4, f is not quasi-invertible, hence f has a sequence of zeroes (a n ) n∈ IN in D, with |a n | ≤ |a n+1 |. For each n ∈ IN, let q n be the multiplicity order of a n . By Theorem II.8 we know that ∞ n=0 -q n log |a n | < +∞. Now, there clearly exists a sequence t n of strictly positive integers satisfying

t n ≤ t n+1 , n ∈ IN, lim n→∞ t n = +∞, ∞ n=0 t n q n log(|a n |) < +∞.
By Theorem II.14 there exists a function g ∈ A admitting each a n as a zero of order

s n ≥ t n q n , such that |g|(|a n |) ≤ 2 n k=0
a n a k tnqn ∀n ∈ IN and consequently, g belongs to A.

Now, for each n ∈ IN and for each k = 0, ..., n, let u n,k = max(0, t n q k -s k ) and let

P n (x) = n k=0 (x -a k ) u n,k .
Clearly, all coefficients of P n lie in D except the leading coefficient that is 1. Consequently, P n = 1 ∀n ∈ IN and therefore (1) P n g = g .

On the other hand, since the sequence t n is increasing, we can check that for each fixed n ∈ IN, each zero a k of f tn is a zero of P n g of order ≥ t k q k . Consequently, by Lemma I.5 in the ring A we can write P n g in the form f tn σ n , with σ n ∈ A.

By (1), we have σ n f tn = g hence, since f ≥ 1, we can see that σ n ≤ g . But now, since the restriction of ψ to K[x] is . , we have ψ(P n ) = 1, hence ψ(P n g) = ψ(P n )ψ(g) = ψ(g) and therefore [START_REF] Berkovich | Spectral Theory and Analytic Geometry over Non-archimedean Fields[END_REF] 

ψ(g) = ψ(f tn σ n ) = ψ(f ) tn ψ(σ n ) ≤ ρ tn g .
Relation (2) holds for every n ∈ IN hence lim n→+∞ ρ tn g = 0. Consequently, ψ(g) = 0, a contradiction. This ends the proof.

Notation: We will denote by M ult n (A, . ) the set of continuous multiplicative norms of A.

Corollary III.12.1: Let ψ ∈ M ult(A, . ) be coroner. Then ψ is not a norm.

By Theorems II.12 and III.5, we now can also state Corollary III.12.2:

Corollary III.12.2: Let ψ ∈ M ult n (A, . ). If ψ is not . , there exists a circular filter F on D, of diameter r < 1, such that ψ = ϕ F .

On the other hand, each coroner maximal ideal is the kernel of some coroner continuous multiplicative semi-norm of A.

Corollary III.12.3: Let M be a coroner maximal ideal of A. Then M is not null.

Concerning the Corona Problem, we may notice this:

Corollary III.12.4: M ult n (A, . ) is included in the closure of M ult 1 (A, . ).

Theorem III.13: Let G be the set of circular filters on D of diameter r ∈]0, 1[. For every circular filter F ∈ G, ϕ F is a multiplicative norm on A and the mapping from G into M ult(A, . ) that associates to each F ∈ Φ(0, 1) the norm ϕ F is a bijection from G onto M ult n (A, . ) \ { . }.

Proof: By Corollary II.12.1, we know that for each F ∈ G, if 0 < diam(F) < 1, ϕ F has extension to a multiplicative norm on A and the mapping G into M ult(A, . ) that associates to each F ∈ G the norm ϕ F is obviously injective because its restriction to H(D) is already injective. Now, consider a multiplicative semi-norm φ on A which is not of the form ϕ F with F a circular filter of diameter r < 1. Then, if φ is not . , φ is coroner, therefore by Corollary III.12.1, it is not a norm. Consequently, the mapping from G into M ult(A, . ) that associates to each F ∈ G the norm ϕ F is a surjection from G onto the set of multiplicative norms of A other than . , which ends the proof. Thus, Theorem III.13 lets us characterize the continuous multiplicative norms of A, which we can summarize in this way: Corollary III.13.1: Let φ ∈ M ult(A, . ) be different from . . Then φ is a norm if and only if it is of the form ϕ F with F a circular filter of diameter r ∈]0, 1[. IV. Density of M ult 1 (A, . ) in M ult m (A, . ). Now we will consider the question whether M ult 1 (A, . ) is dense in M ult m (A, . ). We have to prove many intermediate results.

The following Proposition IV.2 is also called Corona Statement in dimension 1. However, on a non-archimedean field, it is not at all proven to be equivalent to a property of density for maximal ideals defined by points of D inside the set M ult(A, . ). We will prove Proposition IV.2 in the same way as in [START_REF] Van Der Put | The Non-Archimedean Corona Problem Table Ronde Anal. non Archimedienne[END_REF]. Proposition IV.1 is proven in [START_REF] Van Der Put | The Non-Archimedean Corona Problem Table Ronde Anal. non Archimedienne[END_REF] and is indispensable for further results.

Notation:

Recall that we denote by U the disk d(0, 1). Let H be the family of ideals J of U [x] such that J ∩ U = {0} and, given an integer s ∈ IN * , let H s be the set of J ∈ H generated by s elements. For every ideal J ∈ H we put t

(J) = sup{|x| | x ∈ J ∩ U } and (J) = inf{sup f ∈J |f (x)| | x ∈ V }
and we denote by u(J) the number such that t(J) = (J) u(J) . Finally, we put m(s) = sup{u(J)

| J ∈ J s }. Henceforth, given f 1 , ..., f s ∈ H(U ) such that f i < 1 ∀i = 1, ..., s, we set w(f 1 , ..., f s ) = inf{max 1≤i≤s |f i (x)| | x ∈ U }. Moreover, given f 1 , ..., f s ∈ A we set λ(f 1 , ..., f s ) = inf{max 1≤i≤s |f i (x)| | x ∈ D}.

Proposition IV.1:

Let J be a finitely generated ideal of U [x] such that J ∩ U = {0}. Then m(s) = 2 ∀s ≥ 2.

Proposition IV.2:

Let s ∈ IN * . For any f 1 , ..., f s ∈ A satisfying f i < 1 (1 ≤ i ≤ s) and λ(f 1 , ..., f s ) > 0. There exist g 1 , ..., g s ∈ A satisfying s i=1

f i g i = 1 and g i < λ(f 1 , ..., f s )) -2 .
Proof. As a first step, we will prove that for any f 1 , ..., f s ∈ H(U ) satisfying f i < 1 ∀i = 1, ..., s and w(f 1 , ..., f s ) > 0, there exist g 1 , ..., g s ∈ H(d(0, R)) satisfying s i=1 f i g i = 1 and g i < (w(f 1 , ..., f s )) -2 ∀i = 1, ..., s.

Since IK[x] is dense in H(U ), we can find polynomials P 1 , ..., P s ∈ IK[x] such that P if i ≤ (w(f 1 , ..., f s )) 2 ∀i = 1, ..., s. Since w(f 1 , ..., f s ) > 0, by Corollary II.12.1, there exists no maximal ideal M of H(U ) containing the ideal generated by f 1 , ..., f s . Consequently, there exist g 1 , ..., g s ∈ H(U ) such that s i=1 g i f i = 1. Therefore, we can define h 1 , ..., h s ∈ H(U ) such that h i ≤ 1 ∀i = 1, ..., s and such that s i=1 h i f i is an element P 0 ∈ U . Let I be the ideal of U [x] generated by P 0 , P 1 , ..., P s . Since I ∩ U = {0}, we have 0 < t(I) < (I). Consequently, by Proposition IV.1 we can find Q

0 , Q 1 , ..., Q s ∈ U [x] such that s i=0 Q i P i be an element a ∈ U satisfying |a| ≥ (w(f 1 , ..., f s )) m(s) = (w(f 1 , ..., f s )) 2 . Then s i=1 a -1 f i + a -1 Q 0 s i=1 h i f i = 1 + s i=1 a -1 Q i (f i -P i ).
By construction, we have

s i=1 a -1 Q i (f i -P i ) < 1 and hence 1 + s i=1 a -1 Q i (f i -P i ) is an in- vertible element u in H(U ). So, s i=1 u -1 a -1 (Q i + Q 0 h i ) f i = 1 and
hence for every i = 1, ..., s,

we have u -1 a -1 (Q i + Q 0 h i ) ≤ (w(f 1 , ..., f s )) -2 ∀i = 1, ..., s. Thus, putting g i = u -1 a -1 (Q i + Q 0 h i ) , i = 1,
..., s we have proven that for any f 1 , ..., f s ∈ H(U ) satisfying f i < 1 ∀i = 1, ..., s and w(f 1 , ..., f s ) > 0, there exist g 1 , ..., g s ∈ H(U ) satisfying s i=1 f i g i = 1 and g i < (w(f 1 , ..., f s )) -2 ∀i = 1, ..., s.

Now, let us prove the conclusion of Proposition IV.2. So, we take f 1 , ..., f s ∈ A.

Let (u n ) n∈ IN be a sequence in IK such that 0 < |u n | < |u n+1 | < ... < 1 and lim n→+∞ |u n | n = 1. For each i = 1, ..., s, set f i,n (x) = f i (u n x).
Since each u n belongs to D, each f i,n is a power series of radius r > 1 and hence belongs to H(U ). Then by the claim we have just proven, for each n ∈ IN, there are g i,n ∈ H(U ) such that

s i=1 g i,n f i,n = 1 and g i,n < (w(f 1,n , ..., f s,n )) -2 . Now, each g i,n is a power series +∞ k=0 g i,n,k x k . Let h i,n be the power series 2n k=0 g i,n,k (u n ) -k x k . Then we have h i,n < |u n | -2n (w(f 1 , ..., f s )) -2 and hence s i=1 h i,n f i is of the form 1 + x n t n (x) with t n ∈ H(U ).
We will get to a conclusion thanks to a Banach process. Let E be the Banach space of bounded sequences in IK provided with the classic norm (a n ) n∈ IN 0 = sup n∈ IN |a n | and let C be the closed sub-space of converging sequences. For every sequence (a n

) n∈ IN ∈ C, we put L((a n )) = lim n→+∞ a n .
Suppose first that IK is spherically complete. There exists a linear map L of norm 1 from

E to IK expanding L to E. Set h i,n = +∞ k=0
x k and let l i,k be the sequence (h i,n,k ) 1≤n . For each pair (i, k), we can now define g i,k = L(l i,k ) and put g i = +∞ k=0 g i,k x k . Since L is of norm 1, each sequence g i,k is bounded and hence g i belongs to A. Moreover, by construction, g i satisfies g i < (λ(f 1 , ..., f s )) -2 ∀i = 1, ..., s. Now, we have (1)

s i=1 g i f i = +∞ k=0 s i=1 ( k j=0 L(l i,j )f i,k-j ) x k and for each fixed k ∈ IN, s i=1 k j=0 L(l i,j )f i,k-j = L s i=1 ( k j=0 f i,j h i,n,k-j ) .

Consequently, since

s i=1 h i,n f i = 1 + x n t n (x), we can check that lim n→+∞ s i=1 ( k j=0 f i,j h i,n,k-j ) = 1 whenever k = 0 and lim n→+∞ s i=1 ( k j=0 f i,j h i,n,k-j ) = 0 whenever k = 0. Consequently, since L ex- tends to E the limit on C, we have L s i=1 ( k j=0 f i,j h i,n,k-j ) = 1 whenever k = 0 and L s i=1 ( k j=0 f i,j h i,n,k-j ) = 0 whenever k = 0.
Therefore by (1) we obtain s i=1

g i f i = 1.
Consider now the general case when IK is no longer supposed to be spherically complete. Consider a spherically complete algebraically closed extension IK of IK. Let D be the disk of K: {x ∈ K | |x| < 1} and let A be the algebra of bounded analytic functions from D to K. Set

B = λ(f 1 , ..., f s )) -2 .
Then by what forgoes, there exist h 1 , ..., h s ∈ A such that s j=1 h j f i = 1 and max 1≤j≤s h j < B.

Inside A, let F be the closed subspace of the IK-Banach space generated by 1 and all coefficients of all the h j . Let us take > 0 such that (1 + ) max 1≤j≤s h j ≤ B. Since F is a IK-Banach space of countable type, there exists a IK-linear map from F to IK satisfying (1) = 1 with a norm . * satisfying * ≤ 1 + . Let T be the closed subspace of A consisting of the power series with coefficients in F . Then T is a A-module and then we have an extension L of from T to A defined as L(

∞ k=0 e k x k ) = ∞ k=0 (e k )
x k which is A-linear and its norm satisfies L * ≤ 1 + . Now, putting g j = L(h j ), 1 ≤ j ≤ s, we have s i=1 f i g i = 1 and max 1≤j≤s g j < B.

Notation: Let I be an ideal of A. For each f ∈ A and for each > 0, we set

E(f, ) = {x ∈ D | |f (x)| ≤ }.
Corollary IV.2.1: Let I be a proper ideal of A. The family (E(f, ), f ∈ I, > 0) generates a filter F on D such that I ⊂ J (F).

Proof. Let (E(f j , j ), 1 ≤ j ≤ n be such that n j=1 E(f, j ) = ∅. Let = min 1≤j≤n ( j ) and let By Lemma III.7 and Corollary IV.2.1, we can derive Corollary IV.2.2: Corollary IV.2.2: Let M be a maximal ideal of A. Then there exists an ultrafilter U on D such that M = J (U). Moreover, if U converges, M is of codimension 1 and of the form (x -a)A, a ∈ D. If U does not converge, it is coroner, M is of infinite codimension and for every f ∈ M, f is not quasi-invertible.

F j = D\E(f j , ), 1 ≤ j ≤ n.
Let us recall the definition of an increasing pierced filter.

Definition: Let a ∈ IK, let R > 0 and consider the filter G admitting for basis the annuli Γ(a, r, R) r ∈]0, R[. This filter is called increasing filter of center a and diameter R. Moreover, if all F is an infraconnected subset of IK and if every annulus Γ(a, r, R) contain holes of F , then the filter on F induced by G is said to be pierced. Next, a pierced filter is called a T -filter if its holes satisfy a certain relation [START_REF] Escassut | Analytic Elements in p-adic Analysis[END_REF].

By using properties of T -filters and particularly idempotent T -sequences [START_REF] Sarmant | T-suites idempotentes[END_REF], by Lemma 35.1 and Proposition 37.1 in [START_REF] Escassut | Analytic Elements in p-adic Analysis[END_REF], Proposition 1.6 and [START_REF] Van Der Put | The Non-Archimedean Corona Problem Table Ronde Anal. non Archimedienne[END_REF]), we have the following proposition:

Proposition IV.3: Let (r n ) n∈ IN be a sequence in | IK| such that 0 < r n < r n+1 , lim n→+∞ r n = 1, let (q n ) n∈ IN be a sequence of IN such that q n ≤ q n+1 and lim n→+∞ r n r n+1 qn = 0. Let l ∈]0, 1[
and for each n ∈ IN, let b n ∈ C(0, (r n ) qn ), let a n,1 , ..., a n,qn be the q n -th roots of b n and let

F = D \ n∈ IN ( qn j=1 d(a n,j , l -) . Set f n (x) = n k=1 q k j=1 1 1 -x a k,j
. Then each f n belongs to R(F ) and the sequence (f n ) n∈ IN converges in H(F ) to an element f strictly vanishing along the pierced increasing filter of center 0 and diameter 1.

Notation: Given a unital commutative ultrametric IK-algebra B and f ∈ B, we denote by sp(f ) the spectrum of f i.e. the set of x ∈ IK such that f -x is not invertible in B.

Proposition IV.4: Let (B, . ) be a unital commutative ultrametric Banach IK-algebra. Suppose there exist ∈ B, φ, ψ ∈ M ult(B, . ) such that ψ( ) < φ( ), sp( ) ∩ Γ(0, ψ( ), φ( )) = ∅ and there exists ∈]0, φ(

) -ψ( )[ satisfying further ( -a) -1 ≤ M ∀a ∈ Γ(0, ψ( ), φ( ) -). Then there exists f ∈ B such that ψ(f ) = 1, φ(f ) = 0. Proof. Let s = ψ( ), t = φ( ), Q = , R = t -and l = 1 M . Let r 0 ∈]s, t -[. Consider the sequence (a n,j ) n∈ IN,1≤j≤qn
defined in Proposition IV.3 and the set

E = d(0, Q -) \ n∈ IN qn j=1 d(a n,j , l -) . Then in H(E) we have (1) 1 x -b E ≤ l ∀b ∈ n∈ IN qn j=1 d(a n,j , l -) .
There exists a natural homomorphism θ from R(E) into B such that θ(x) = . Since Q = and ( -b) -1 ≤ M ∀b ∈ Γ(0, s, t), by Theorem I.11 and by (1) θ is clearly continuous with respect to the norms . E of R(E) and . of B. Consequently, θ has continuation to a continuous homomorphism from H(E) to B. Now, let ψ = ψ • θ, φ = φ • θ. Then both φ , ψ belong to M ult(H(E), . ) and satisfy ψ (x) = s, φ (x) = t -. So, ψ is of the form ϕ F with F a circular filter on E secant with C(0, s) and φ is of the form ϕ G with G a circular filter on E secant with C(0, t).

Consider now the function f constructed in Proposition IV.3 which, by construction, belongs to H(E) and has no zero and no pole in d(0, s -). Consequently, |f (x)| = |f (0)| = 1 ∀x ∈ d(0, s -). Moreover, we have lim G f (x) = 0, hence φ (f ) = 0. Let g = θ(f ). Then ψ(g) = ψ (f ) = 1 and φ(g) = φ (f ) = 0, which ends the proof.

Proposition IV.5: Let M be a non-principal maximal ideal of A and let U be an ultrafilter thinner than G M . Then ϕ U belongs to the closure of M ult 1 (A, . ) in M ult m (A, . ).

Proof. Let V be neighborhood of ϕ U in M ult(A, . ). It contains some set of the form V(ϕ U , f 1 , ..., f q , ), where f 1 , ..., f q ∈ A and > 0, with respect to the topology of pointwise convergence i.e.

V(ϕ r , f 1 , ..., f q , ) = {φ ∈ M ult(A, . ) | ϕ r (f j ) -φf j ) ∞ ≤ , j = 1, ..., q, q ∈ IN * }. For each j = 1, ..., q, there exists

E j ∈ U such that |f j (x)| -ϕ U (f j ) ∞ ≤ ∀x ∈ E j . Let E = q j=1 E j . Then |f j (x)| -ϕ U (f j ) ∞ ≤ ∀x ∈ E, ∀j = 1, ..., q.
Consequently, ϕ a belongs to V(ϕ U , f 1 , ..., f q , ) for all a ∈ E. Proposition IV.6: Let U be a coroner ultrafilter on D, let f ∈ A \ J (U) be non-invertible in A, such that f ≤ 1 and let g ∈ A, h ∈ J (U) be such that

f g = 1 + h. Let τ = ϕ U (f ), let ∈]0, τ [ and let Λ = {x ∈ D |f (x)g(x)| -1 ∞ < , |f (x)| -τ ∞ < }.
Suppose that there exist a function h ∈ A admitting for zeros in D the zeros of h in D \ Λ and a function h ∈ A admitting for zeros the zeros of h in Λ, each counting multiplicities, so that h = h h. Then | h(x)| has a strictly positive lower bound in Λ and h belongs to J (U).

Moreover, there exists ω ∈]0, τ [ such that ω ≤ inf{max(|f (x)|, |h(x)|) x ∈ D}. Further, for every a ∈ d(0, (τ -)), we have ω ≤ inf{max(|f (x) -a|, |h(x)|) x ∈ D}.

Proof. Let u ∈ Λ and let s be the distance of u from IK \ Λ. So, the disk d(u, s -) is included in Λ, hence f g has no zero inside this disk. Consequently, |f (x)g(x)| is a constant b in d(u, s -). Consider the family F u of radii of circles C(u, r), containing at least one zero of f g. By Theorem I.4, F u has no cluster point different from 1. Consequently, there exists ρ ≥ s such that f g admits at least one zero in C(u, ρ) and admits no zero in d(u, ρ -). And then |f (x)g(x)| is a constant c in d(u, ρ -). But then, at u we see that b = c and therefore d(u, ρ -) is included in Λ. Hence ρ = s and therefore f g admits at least one zero α in C(u, s). Thus, at α we have h(α) = -1. Therefore, in the disk d(α, s -) we can check that ϕ α,s (h) ≥ 1. But by Theorem I.9, we have ϕ α,s (h) = ϕ u,s (h), hence ϕ u,s (h 

) ≥ 1. Now, h ϕ u,s (h) = h ϕ u,s ( h) h ϕ u,s (h) ≥ h ϕ u,s ( h) 
| h(u)| ≥ h h ∀u ∈ Λ.
This shows that h does not belong to J (U), hence, ϕ U ( h) = 0. Consequently, ϕ U (h) = 0. Now, by hypothesis, we have f g -h h = 1. Since both g, h belong to A and therefore are bounded in D, it is obvious that inf{max(|f (x)|, |h(x)|) x ∈ D} > 0. So, we may obviously choose ω ∈]0, τ -[ such that [START_REF] Berkovich | Spectral Theory and Analytic Geometry over Non-archimedean Fields[END_REF] ω ≤ inf{max(|f (x)|, |h(x)|) x ∈ D}.

Let us now show that for every a ∈ d(0, (τ -)), we have The following basic Proposition is easily checked and is an application of Proposition 10 in [3]: Proposition IV.7: Let S be a set and let E be a subset. Let F be an ultrafilter on E. Then the filter F on S with basis F is an ultrafiter inducing on E the ultrafilter F .

ω ≤ inf{max(|f (x) -a|, |h(x)|) x ∈ D}. Let Λ = {x ∈ D |f (x)| ≥ τ -}
Corollary IV.7.1: Let S be a set and let E be subset of S. Let F be an ultrafilter on E and let F = G be the ultrafilter on S having F as a basis of filter. Let f be a function defined on S with values in a compact topological space T . Then lim

G f (x) = lim F f (x).
Proof. Suppose that f admits distinct limits on F and G. Then F is a basis of a filter on S that is not secant with G, a contradiction since F is the ultrafilter induced by G on E.

We can now prove Proposition IV.8 in the general context of a field that is not supposed to be spherically complete: Proposition IV.8: Let M be a non-principal maximal ideal of A and let U be an ultrafilter on D such that M = J (U). Let f ∈ A \ M satisfy f < 1, let τ = ϕ U (f ) and let ∈]0, τ [. There exists c > 0 such that, for every a ∈ d(0, τ -), there exists g a ∈ A satisfying (f -a)g a -1 ∈ M and g a ≤ c.

Proof. Suppose first that f is invertible in A. By Theorem I.4, |f (x)| is a constant and hence is equal to τ . Therefore, |f (x) -a| = τ ∀a ∈ d(0, τ -). Consequently, f -a is invertible and its inverse g a satisfies g a = τ -1 . Thus, we only have to show the claim when f is not invertible. Since f does not belong to M, we can find g ∈ A and h ∈ M such that f g = 1 + h with h ∈ M.

Let IK be an algebraically closed spherically complete extension of IK and let D be the disk {x ∈ IK | |x| < 1}. Let A be the algebra of bounded power series converging in D with coefficients in IK. U makes a basis of a filter U on D and by definition, U is the the filter induced by U on D. By Corollary IV.7.1 U is an ultrafilter on D.

Consider now f as an element of A. Then U defines an element ψ of M ult( A, . ) as

ψ( ) = lim b U | (x)|, ∀ ∈ A. Consequently, by Corollary IV.7.1 τ is equal to lim U |f (x)|. Let Λ = {x ∈ D | |f (x)g(x)| -1| ∞ < , | |f (x)| -τ | ∞ < }.
Since IK is spherically complete, by Proposition III.9. we can factorize h in the form hh where h ∈ A is a function admitting for zeros in D the zeros of h in D \ Λ and h ∈ A is a function admitting for zeros the zeros of h in Λ, each counting multiplicities. Moreover, we can choose h so that h < 1. Now, in the field IK, by Proposition IV.6, there exists ω > 0 such that for every a ∈ d(0, (τ -)), we have ω ≤ inf{max(|f (x)-a|, |h(x)|) x ∈ D}. This implies that inf{max(|f (x)-a|, |h(x)|) |x ∈ D} ≥ ω ∀a ∈ d(0, τ -). We notice that f -a < 1 for every a ∈ d(0, τ -), so we may apply Proposition IV.2 and obtain a bound b only depending on f and h and functions a , h a ∈ A such that (f -a) a + hh a = 1, with [START_REF] Araujo | Prime and maximals ideals in the spectrum of the ultrametric algebra H ∞ (D)[END_REF] a < b, h a < b ∀a ∈ d(0, τ -). 

By hypothesis we have lim

U hh a (x) = 0 ∀a ∈ d(0, τ -). Now, let us fix a ∈ d(0, τ -). Let G be the closed IK-vector subspace of IK (considered as a IK-Banach space), linearly generated over IK by 1 and all coefficients of a . Take η > 0 such that (1 + η) max( a , h a ) ≤ b. We notice that G is a IK-Banach space of countable type, hence there exists a IK-linear mapping Ξ from G to IK of norm ≤ 1 + η, such that Ξ(1) = 1 [START_REF] Van Der Put | The Non-Archimedean Corona Problem Table Ronde Anal. non Archimedienne[END_REF].

Let F be the closed IK-vector subspace of A consisting of all power series with coefficients in E.

Then F is a A-module and Ξ has continuation to a A-linear mapping Ξ from F to A defined as Ξ( Theorem IV.9: A is multbijective.

Proof. Suppose A is not multbijective and let M be a maximal ideal which is not univalent. Let F be the quotient field A M , let θ be the canonical surjection from A onto F and let . q be the IK-Banach algebra quotient norm of F . By Corollary IV.2.2 there exists an ultrafilter U on D such that M = J (U). Thus, there exists ψ ∈ M ult(A, . ) such that Ker(ψ) = M and ψ = ϕ U . Consequently, there exists f ∈ A such that ψ(f ) = ϕ U (f ), with ψ(f ) = 0, ϕ U (f ) = 0. We shall check that we may also assume ψ(f ) < ϕ U (f ). Indeed, suppose ψ(f ) > ϕ U (f ). Let g ∈ A be such that θ(g) = θ(f ) -1 . Then we can see that ψ(g) = ψ(f ) -1 , ϕ U (g) = (ϕ U (f )) -1 , therefore ψ(g) < ϕ U (g). Thus, we may assume ψ(f ) < ϕ U (f ) without loss of generality. Similarly, we may obviously assume that f < 1.

By construction, ϕ U factorizes in the form φ 1 • θ and similarly, ψ factorizes in the form φ 2 • θ with φ 1 , φ 2 ∈ M ult(F, . q ). So, on F we have φ 1 (θ(f )) > φ 2 (θ(f )).

Let σ = ϕ U (f ) and let ∈]0, σ[. By Proposition IV.8, there exists c > 0 such that, for every a ∈ d(0, σ -), there exists g a ∈ A satisfying (f -a)g a -1 ∈ M and g a ≤ c. Now, θ(g a ) = (θ(f -a)) -1 . Thus, (θ(f -a)) -1 q ≤ c ∀a ∈ d(0, σ-). Therefore, by applying Proposition IV.4 to the Banach IK-algebra F , we can see that there exists y ∈ F such that φ 1 (y) = 1, φ 2 (y) = 0. Therefore, taking g ∈ A such that θ(g) = y, we get ϕ U (g) = 0, ψ(g) = 1, a contradiction to the hypothesis Ker(ϕ U ) = Ker(ψ). This finishes showing that A is multbijective.

Corollary IV.9.1: For every φ ∈ M ult m (A, . ) \ M ult 1 (A, . ), there exists a coroner ultrafilter U such that φ(f ) = lim Corollary IV.9.2: M ult 1 (A, . ) is dense in M ult m (A, . ).

Conjecture: M ult 1 (A, . ) is dense in M ult(A, . ).

For

  every ultrafilter G on IN we will denote by Θ(G) the ideal of B( IN, IK) consisting of sequences (a n ) n∈ IN such that lim G a n = 0. The following Theorem III.2 is classical: Theorem III.2: Θ is a bijection from the set of ultrafilters on IN onto M ax(B( IN, IK)). The restriction of Θ to the subset of non-principal ultrafilters on IN is a bijection from this set onto the set of non-principal maximal ideals of B( IN, IK). Moreover, a maximal ideal of B( IN, IK) is principal if and only it is of codimension 1.

∞

  n=0 |a n | > 0. There exists f ∈ A admitting each a n as a zero of order 1 and having no other zeros. Proof. Let E be the divisor on D (a n , 1) n∈ IN By Theorem II.15, there exists f ∈ B such that T (f ) ≥ E and such that |f |(r) ≤ 2|E|(r) ∀r ∈]0, 1[. But since n∈ IN |a n | > 0, by Corollary II.8.1 |E|(r) is bounded in ]0, 1[ and hence f belongs to A. Consequently, I is not null.

  Then

F

  j = D, hence by Theorem IV.2, 1 ∈ I, a contradiction.

Corollary IV. 5 . 1 :

 51 Let M be a univalent non-principal maximal ideal of A and let φ ∈ M ult m (A, . ) satisfy Ker(φ) = M. Then φ is of the form φ(f ) = lim U |f (x)| with U a coroner ultrafilter and such that J (U) = M. Moreover, φ belongs to the closure of M ult 1 (A, . ) in M ult m (A, . ).

U

  h(x) = 0. Hence by Corollary IV.7.1, on D we have lim b U h(x) = 0. Then, by Corollary IV.7.1 we have lim b U h(x) = 0 hence, on D,

  n )x n . This mapping Ξ has a norm bounded by 1 + η. Set g a = Ξ( a ). Then by (1) we have (3) g a ≤ b(1 + η) ∀a ∈ d(0, τ -). On the other hand, by construction, for every z ∈ G, we have | Ξ(z)| ≤ |z|(1 + η): that holds particularly for elements of G ∩ D. Now, since (f -a)(l a ) -hh a = 1, for all x ∈ D, we have l a (x) ∈ G, f (x)-a ∈ K and hence hh a (x) belongs to G. Therefore the inequality applies and shows that | Ξ(hh a )(x)| ≤ |(hh a )(x)|(1+η), hence by (2) we can derive lim U Ξ(hh a )(x) = 0 ∀a ∈ d(0, τ -). But since Ξ is a A-module linear mapping, we have Ξ((f -a)h a -1) = (f -a)g a -1. Consequently, lim U |(f (x) -a)g a (x) -1| = 0 ∀a ∈ d(0, τ -) and hence (f -a)g a -1 belongs to J (U). Putting c = b(1 + η), by (3) we are done.

U

  |f (x)| ∀f ∈ A.

  [START_REF] Guennebaud | Algèbres localement convexes sur les corps valués[END_REF] we know that there exist bounded sequences (a n ) n∈ IN in D such that the sequence an an+1 is strictly increasing and then the function f (x) = By Lemma I.2, there obviously exists an increasing sequence (s n ) n∈ IN of IN such that lim n→∞ s n = +∞ and such that the series

∞ n=0 a n x n admits a sequence of zeros (α n ) n∈ IN * satisfying |α n | = an an+1 . Thus, particularly, if we set r n = an an+1 then f admits exactly a unique zero in each circle C(0, r n ), each of order 1, and has no other zero in D. Consequently, by Lemma I.8, we can see that |f (α n )| = |f |(r n ) ∀n ∈ IN * . Now, let U be an ultrafilter thinner than the sequence (α n ) n∈ IN * . On the other hand, we can check that the sequence (α n ) is regular, hence U is a regular ultrafilter. Consequently, by Corollary III.3.1, J (U) is a maximal ideal of A. Thus f belongs to J (U) but f doesn't. Now, for each n ∈ IN, let u n = log(r n ). Then, by Lemma I.3, we have log( f ) = -∞ n=0 u n . ∞ n=0 s n u n converges. Now, by Corollary II.8.1, there exists g ∈ A (not identically zero) such that for each n ∈ IN, α n

Let (a n ) n∈ IN be a regular sequence, let δ = inf k∈ IN n =k,n∈ IN |a n -a k | and let ρ = inf k =n,k,n∈ IN |a n -a k |. Let f ∈ A admit each a n as a zero of order 1 and have no other zero. Then |f

  n admits a sequence of zeros (α n ) n∈ IN * satisfying |α n | = an an+1 . Thus, particularly, if we set r n = an an+1 , then by Theorem II.13 f admits exactly a unique zero in each circle C(0, r n ), each of order 1, and has no other zero in D. Consequently, by Lemma I.8, we can see that |f(α n )| = |f |(r n ) ∀n ∈ IN * . Now,let U be an ultrafilter thinner than the sequence (α n ) n∈ IN * . We can check that the sequence (α n ) n∈ IN is regular, hence U is a regular ultrafilter. Consequently, by Corollary III.3.1 J (U) is a maximal ideal of A. Now, by construction, f belongs to J (U). But lim ∈ A (not identically zero) such that for each n ∈ IN, α n is a zero of g of order z n ≥ s n . And since lim n→∞ s n = +∞, for every fixed k ∈ IN, we can see that f (k) (α n ) = 0 when n is big enough, therefore g (k) belongs to M. Consequently, M is not null, which ends the proof.

	n→+∞ Now, for each n ∈ IN, set u n = log(r n ). By Lemma I.3, we have log( f ) = -|f (α n )| = lim |f |(r n ) = f = 0, hence f does not belong to J (U). n→+∞	∞ n=0 u n . By
	Lemma I.2, there exists an increasing sequence (s n ) n∈ IN of IN such that lim n→∞ s n = +∞ and such that the series ∞ n=0 s n u n converges.
	Now, by Theorem II.14, there exists g Lemma III.7:	

  .

	Therefore, since ϕ u,s (h) ≥ 1, we obtain		
	(1)	h ϕ u,s ( h)	≤ h .
	But since by definition d(u, s -) is included in Λ, h has no zero in this disk, hence | h(x)| is constant
	and equal to ϕ u,s ( h). Consequently, by (1) we obtain	h | h(u)|	≤ h and therefore

  and let a ∈ d(0, (τ -) -). When β lies in Λ , we have |f (β)| > |a|, hence by (2), max(|f (β) -a|, |h(β)|) ≥ ω because by(2), either ω ≤ |h(β)|, or ω ≤ |f (β)| = |f (β) -a|. Now, let β lie in D \ Λ and let t be the distance from β to Λ . Since D \ Λ is open, t is > 0. Consider ϕ β,t (f ). Either there exists µ ∈ Λ such that |β -µ| = t and then ϕ β,t (f ) ≥ |f (µ)| ≥ τ -, or there exists a sequence (x n ) n∈ IN ∈ Λ such that lim n→+∞ |β -x n | = t and |x n -β| > t. Suppose that we are in the second case: there exists a sequence (x n ) n∈ IN ∈ Λ such that lim n→+∞ |β -x n | = t and |x n -β| > t. Then the sequence is thinner than the circular filter of center β and diameter t, hence lim

n→+∞ |f (x n )| = ϕ β,t (f ) hence ϕ β,t (f ) ≥ τ -again. If f has no zero in d(β, t -), then |f (x)| is a constant in that disk, hence of course ϕ β,t (f ) < τ -, a contradiction. Consequently, f must have a zero γ in d(β, t -).

Therefore, due to (2), we have |h(γ)| ≥ ω. But since by definition, Λ ⊂ Λ , the zeros of h belong to Λ . And since d(β, t -) ∩ Λ = ∅ actually h has no zero in d(β, t -). Consequently |h(x)| is constant in d(β, t -) and hence |h(β)| ≥ ω, which completes the proof.
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