
HAL Id: hal-02995973
https://uca.hal.science/hal-02995973

Submitted on 9 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hybrid CUDA-OpenMP parallel implementation of a
deterministic solver for ultra-short DG-MOSFETs

José M Mantas, Francesco Vecil

To cite this version:
José M Mantas, Francesco Vecil. Hybrid CUDA-OpenMP parallel implementation of a determin-
istic solver for ultra-short DG-MOSFETs. International Journal of High Performance Computing
Applications, 2020, 34 (1), pp.81-102. �10.1177/1094342019879985�. �hal-02995973�

https://uca.hal.science/hal-02995973
https://hal.archives-ouvertes.fr

Abstract

The simulation of nanoscale 2D DG-MOSFETs and similar semiconductor devices through a de-
terministic and accurate model can be very useful for the industry but is particularly costly from the
computational point of view. In this paper, we develop a hybrid parallel solver: the computing phases
which corresponds to the simulation of the Boltzmann transport equation in the longitudinal dimension
are performed on the GPU, while that phases related to the modelling of the electrons as waves in the
transversal dimension are computed on the multi-core CPUs by using OpenMP. We have adapted the
most costly computing phases to GPU in an efficient manner, achieving high performance and reduc-
ing drastically the simulation time. We give details about the parallel-design strategy and show the
performance results.

Keywords. Semiconductor physics, Subband decomposition, WENO schemes, Quantum-classical dimen-
sional coupling, Deterministic mesoscopic models, Parallel heterogeneous systems, GPU computing, Schrö-
dinger-Poisson system, Parallelization of numerical algorithms.

1

Hybrid CUDA-OpenMP parallel implementation of a deterministic

solver for ultra-short DG-MOSFETs

José M. Mantas∗and Francesco Vecil†

1 Introduction

The simulation of semiconductor devices is of very high interest from the technological point of view. In
particular, our efforts are oriented towards the nanoscale Double Gate Metal Oxide Semiconductor Field-
Effect Transistor, (DG-MOSFET) [Camiola (2013), Suhag (2017)] depicted in Figure 1, which is widely used
as logical unit inside electronic devices. The shortest MOSFET used in real integrated circuits is, as of
mid 2017, 14 nm long. In this work we aim at simulating a 10 nm one. Downscaling allows for better
performances and energy saving [Prasher (2013)]: by one side more logical units fit in the same physical
space, on the other side the MOSFET’s switching time is reduced .
In order to simulate such objects, we have used a semiclassical approach [Ben Abdallah et al. (2009)]. In the
longitudinal dimension, electrons are described as particles: their travel along the device driven by an applied
bias is modeled by a set of Boltzmann equations; seven scattering phenomena between electrons and phonons
(the silicon crystal lattice’s vibrations) are also taken into account. In the transversal dimension, the confine-
ment is modeled through Schrödinger equations thus describing the electrons as waves. Finally, the Poisson
equation for the electrostatic field couples the classical and the quantum dimension. In this way, we obtain a
fully deterministic solver for the Boltzmann-Schrödinger-Poisson system of equations which exhibits several
important advantages in comparison with Monte-Carlo Solvers [Mantas et.al. (2009), Vecil et al. (2014)].
We address the reader to the germ works [Vecil et al. (2014), Ben Abdallah et al. (2009)] for a sound de-
scription of the model and the methods.
A sequential implementation of this solver is not practical for realistic simulations because the numeri-
cal methods which take part are too time-consuming. In [Vecil et al. (2014)], a parallel implementation
of the solver based on the Message Passing Interface (MPI) was described and its performance was stud-
ied on a computer cluster. Notwithstanding, the performance is still not competitive with respect to a

∗Lenguajes y Sistemas Informáticos, Universidad de Granada, Spain
†Laboratoire de Mathématiques Blaise Pascal, Université Clermont Auvergne, France

so
u
rc

e
co

n
ta

ct

d
ra

in
 c

o
n
ta

ct

source channel

silicon oxide layer

silicon oxide layer

drain

upper gate

lower gate

Figure 1: Geometry of the DG-MOSFET.

2

macroscopic, hence lower-dimensional, models which posses an intermediate accuracy depth like: drift-
diffusion [Ben et.al. (2004)], energy-transport [Ungel (2010)], moment-like [Ringhofer (2001)], maximum-
entropy-principle [Camiola (2013), Mascali et.al. (2012)] or Spherical Harmonics Expansion (SHE) models
[Rupp (2011), Hong (2011), Rupp (2012)].
The use of heterogeneous systems equipped with Graphics Processing Units (GPUs) has proven to be ef-
fective in the acceleration of many numerical computations in science and engineering which exhibit a
lot of exploitable fine-grain parallelism. [Owens (2008), Ujaldon (2012), Brodtkorb (2013)]. Nowadays
the theorical peak performance of a modern and powerful GPU is around seven times the peak perfor-
mance of a corresponding CPU [NVIDIA CUDA C (2018)]. In particular, NVIDIA CUDA framework
[NVIDIA CUDA Home(2018)] has shown a high efectiveness in the mapping of intensive numerical com-
putations to GPUs, making it possible substantial accelerations of practical simulations over a cutting-edge
CPU with a very affordable price and programming effort. As a consequence, there has been a widespread
use of CUDA-based platforms to accelerate numerical solvers for Partial Differential Equations. In multiple
cases, the main data structures and computations of the numerical scheme are fully ported to the GPU
device (see [Asunción (2011), Castro (2011), Asunción (2013), Abdi (2017)] as a sample) and the CPU only
monitors the GPU execution by launching the CUDA kernels. However, in many applications it is necessary
an hybrid CPU-GPU parallelization because some computing phases can not be efficiently adapted to the
CUDA programming model. In this approach, the CUDA programming model can be used for the GPU
phases and other parallel programming interfaces can be used to exploit the multiple cores of the available
CPUs [DeVries (2013), Ye (2015), Norouzi (2017)].
In the literature, it can be found that other works have derived GPU implementations to simulate semi-
conductor devices, obtaining noteworthy performance improvements regarding CPU implementations. In
[Suzuki (2015)] , a particle-based Monte-Carlo method to approximate the Boltzman transport equation is
adapted to a CUDA-enabled GPU in order to simulate a nanostructured MOSFET device. Another Monte-
Carlo approach to solve a quantum-kinetic model which describe the electron transport in semiconductors
is adapted to a CUDA-based platform in [Karaivanova (2013)]. In [Rupp (2012)], a GPU implementation
of the SHE method is derived using the ViennaCL library [Rupp (2016)] to simulate a 2D n+nn+ diode.
However, we have not found works that had dealt with the adaptation to GPU-based platforms of the fully
deterministc numerical solution of the Boltzmann-Schrödinger-Poisson system.
The goal of the present work is the development of an efficient implementation strategy for the Boltzmann-
Schrödinger-Poisson solver in [Vecil et al. (2014)] which exploits a heterogeneous parallel environment with
several shared-memory multi-core CPUs and one GPU. We make joint use of OpenMP [Chapman (2008)] and
CUDA technologies to reduce considerably the simulation times. The solver, basically, alternatively performs
two computational phases: it integrates in time the Boltzmann equations, and it computes the eigenstates.
The first part is fully parallelized on the GPU. The second part involves several calculations which are difficult
to adapt efficiently to the GPU. Therefore, a mixture of parallel-programming technologies is exploited,
depending on which one is empirically more suitable. In this way, we will be able to perform device simulations
in reasonable execution times which would promote the use of this highly accurate deterministic simulator
for engineering environments.
The paper is structured as follows: Section 2 summarizes the mathematical model and the numerical solver;
on Section 3 we detail our implementation strategy; on Section 4 we show our numerical experiments; finally,
Section 5 draws some conclusions and sketches our plans for the future.

2 Summary of the mathematical model and the numerical scheme

2.1 Mathematical model

In this paper we focus on efficiently solving the adimensionalized Boltzmann-Schrödinger-Poisson model. We
address the reader to [Vecil et al. (2014)] for the mathematical model written with physical units and all the
adimensionalization parameters.
From now on, every magnitude will be meant dimensionless. Moreover, some other constants resulting from

3

the rescaling process will be omitted for the sake of clarity and lighter equations, and can be found in
[Vecil et al. (2014)].
The Boltzmann-Schrödinger-Poisson model reads

∂Φν,p
∂t

+
∂

∂x

[
a1
ν Φν,p

]
+

∂

∂w

[
a2
ν,p Φν,p

]
(1)

+
∂

∂φ

[
a3
ν,p Φν,p

]
= Qν,p[Φ] sν(w)

−1

2

d

dz

(
1

mz,ν

dψν,p
dz

)
− (V + Vc)ψν,p = εν,p ψν,p (2)

−∇ · (εR∇V) = −

(∑
ν,p

%ν,p · |ψν,p|2 −ND

)
(3)

where z is the electron confinement dimension and x is the electron transport dimension. Here, Φν,p(t, x, w, φ)
is the probability of finding an electron of the νth valley, pth subband, at time t, at position x, with energy-
angle (w, φ) in the 2D impulsion space. The electron-phonon interactions are described by the scattering
operator Qν,p[Φ], with sν(w) a given function due to the cartesian-to-ellipsoidal change of variables in the
impulsion space. The eigenstates are the energy levels εν,p and the wave functions ψν,p, while the electrostatic
potential V and the volume density N are mixed states. The physical constants in here are the silicon’s
effective masses mz,ν and dielectric rigidity εR, and the MOSFET’s confining potential Vc and doping profile
ND.
The presence of several valleys inside the Si band structure, plus the confinement due to the oxide layers,
split the total electron population into several: one for each (ν, p)-pair. Hence, we have as many Boltzmann
Transport Equations (BTEs) (1) as (ν, p)-pairs; for each BTE, the electrons are advected through the fluxes
given by

a1
ν(w, φ) =

√
2w(1 + ανw) cos(φ)
√
mx,ν(1 + 2ανw)

(4)

a2
ν,p(x,w, φ) = −∂εν,p

∂x
(x) a1

ν(w, φ) (5)

a3
ν,p(x,w, φ) =

∂εν,p
∂x

(x)
1√

2w(1 + ανw)

sin(φ)
√
mx,ν

(6)

where αν is Kane’s non-parabolicity factor for the νth valley. Remark that while a1 is a constant for the
problem, a2 and a3 evolve together with the energy levels εν,p. Multiple scattering phenomena are taken
into account, so that the operator is actually the sum of seven similarly-structured operators.
The Schrödinger equations (2) describe the confinement. Because dimension x acts only as a parameter, we
have to solve as many eigenproblems as Si valleys times the discretization points along the x-dimension.
For the Poisson equation (3), its differential operators (the divergence and the gradient) are meant for (x, z),
thus for both the transport and the confinement dimensions.
Refer to [Vecil et al. (2014), Ben Abdallah et al. (2009)] and references therein for more details.

2.2 Numerical scheme

2.2.1 The discretization

Globally, the problem spans on a 7-dimensional space:

(i). The valley (the silicon band structure)
ν ∈ {0, 1, 2}.

4

(ii). The subband (the energy level’s index):

p ∈ {0, . . . , Nsbn − 1}.

We shall use Nsbn = 6 subbands in all our tests.

(iii). The longitudinal dimension (unconfined):

xi = i× 1

Nx − 1︸ ︷︷ ︸
∆x

, i = 0, . . . , Nx − 1.

Nx denotes the number of discretization points in this dimension (x).

(iv). The transversal dimension (confined):

zj = j × 1

Nz − 1︸ ︷︷ ︸
∆z

, j = 0, . . . , Nz − 1.

Nz denotes the number of discretization points in this dimension (z).

(v). The energy:

w` = (`+ 0.5)× wmax

Nw − 1︸ ︷︷ ︸
∆w

, ` = 0, . . . , Nw − 1.

Nw is the number of points in the energy discretization and wmax denotes the maximum value of the
energy [Vecil et al. (2014)]. The value w = 0 is taken out of the meshes because of a singularity at
this point.

(vi). The angle:

φm = m× 2π

Nφ︸︷︷︸
∆φ

, m = 0, . . . , Nφ − 1, Nφ ∈ 2N.

Nφ is the number of discretization points for the angle.

(vii). As for the time step, it is adapted following a Courant-Friedrichs-Lewy condition, thus:{
t0 = 0 n = 0
tn+1 = tn + CFL×∆tnmax n ≥ 0

with
∆t

0
max = 10

−18
n = 0

∆t
n
max =

(
‖a1‖∞

∆x
+
‖a2,n‖∞

∆w
+
‖a3,n‖∞

∆φ

)−1

n ≥ 0

where CFL is a parameter in the interval]0, 1[, empirically chosen, and the flux coefficients ai are (4),
(5), (6), to which have have added index n to stress their time-dependency.

5

2.2.2 The magnitudes

From now on, index ν refers to the valley, index p to the subband, index i to point xi, index j to point zj ,
index ` to energy point w`, index m to angle point φm, index n to time instant tn, index s to the sth stage
of the multi-stage time-integrator.1

Moreover, when the indices ν, p, i, j, `,m are not explicitly quantified or specified, we mean by that we take
them in their whole rank.
Hence, for instance,

Φn,sν,p,i,`,m = Φn,sν,p (xi, w`, φm)

∀ν ∈ {0, 1, 2}
∀p ∈ {0, . . . , Nsbn − 1}
∀i ∈ {0, . . . , Nx − 1}
∀` ∈ {0, . . . , Nw − 1}
∀m ∈ {0, . . . , Nφ − 1}.

The main magnitudes used for the computations (for a fixed time instant tn and a particular time-integrator
stage s) are:

(a). The probability distribution function (pdf) is 5-dimensional:

Φν,p,i,`,m.

(b). The energy level is 3-dimensional:

εν,p,i

(c). The surface density is 3-dimensional:

%ν,p,i

(d). The wave function is 4-dimensional:

ψν,p,i,j

(e). The electrostatic potential is 2-dimensional:

Vi,j

(f). The volume density is 4-dimensional:

Nν,p,i,j

Taking into account that the values of all the magnitudes will be stored on a one-dimensional array, the
particular ordering of the values for each magnitude is specified in Table 1. In this table, we detail how the
N -dimensional index for a magnitude is mapped to a one-dimensional index. For example, if the order is
i > ν > p > ` > m, the mapping is

(ν, p, i, `,m) 7−→ i× 3×Nsbn ×Nw ×Nφ
+ν ×Nsbn ×Nw ×Nφ
+p×Nw ×Nφ
+`×Nφ
+m.

1The time-integrator chosen for this work is the third-order Total-Variation Diminishing Runge-Kutta algorithm and will be
described in the following.

6

dimensions N 1 2 3 4 5

Φν,p,i,`,m 5 m ` p ν i
εν,p,i 3 p ν i
%ν,p,i 3 p ν i

ψν,p,i,j 4 j p ν i
Vi,j 2 j i

Nν,p,i,j 4 p ν j i
Wν,p,ν′,p′,i 5 p′ ν′ p ν i

Φ̃ν,p,i,` 4 ` p ν i
Ai,j,j′ 3 j′ j i

Dν,p,i,`,m 5 m ` p ν i
Qν,p,i,`,m 5 m ` p ν i
Hν,p,i,`,m 5 m ` p ν i

Table 1: Ordering of the values for each magnitude.

2.2.3 General view

In Figure 2 we depict the general idea of how the scheme works. The time integrator used is the (explicit)
third-order Total-Variation Diminishing Runge-Kutta (TVD RK-3) [Carrillo et al. (2003)]: we advance in
time by performing the following phases:

BTE. We approximate the right hand side (rhs) of the Boltzmann Transport Equations at stage s (omitting
the time index n) as:

Hsν,p,i,`,m := Ds
ν,p,i,`,m +Qsν,p,i,`,m (7)

where

Ds
ν,p,i,`,m := −

[
∂

∂x

(
a1 Φs

)]
ν,p,i,`,m

(8)

−
[
∂

∂w

(
a2,s Φs

)]
ν,p,i,`,m

−
[
∂

∂φ

(
a3,s Φs

)]
ν,p,i,`,m

are the partial derivatives approximated by means of a fifth-order Weighted Essentially NOnoscillatory
reconstruction (FD-WENO-5) (refer to [Carrillo et al. (2003)] and references therein about the WENO
schemes) and

Qν,p,i,`,m[Φs] :=

6∑
µ=0

[
Qµ,gain
ν,p,i,` +Qµ,loss

ν,p,i,`,m

]
(9)

is explicitly integrated by some formulae whose details are given later. Here, µ indexes one scattering
phenomenon.

Then, we advance to the next Runge-Kutta stage Φn,s −→ Φn,s+1, using the above-mentioned TVD
RK-3 scheme:

Φn,1 = Φn,0 + ∆tH0 (10)

Φn,2 =
3

4
Φn,0 +

1

4
Φn,1 +

1

4
∆tH1 (11)

Φn+1,0 =
1

3
Φn,0 +

2

3
Φn,2 +

2

3
∆tH2. (12)

7

Approx. rhs of the
Boltzmann Eqs.

RK: n,s→n,s+1

Compute surface
density

Update the
eigenstates

For each Runge-Kutta
stage s=0,1,2

Initialization

B
T

E
IT

E
R

Φν , p
n ,s , ϵν , p

n , s , ψν , p
n , s

Φν , p
n ,s+1

ρν , p
n , s+1

ϵν , p
n , s+1, ψν , p

n , s+1

D
E

N
S

Compute Δ
n

t n+1
=t n

+Δ
n

While (t n
<tmax)

Figure 2: Overview of the scheme’s design.

Schematically (omitting the time index n),{
Φsν,p,i,`,m, ε

s
ν,p,i, ψ

s
ν,p,i,j

}
input

↓{
Φs+1
ν,p,i,`,m

}
output.

DENS. The surface densities, which depend on the pdf, are recomputed in the following way (omitting the
indices n and s):

%ν,p,i = ∆w∆φ

Nw−1∑
`=0

Nφ−1∑
m=0

Φν,p,i,`,m.

Schematically, {
Φs+1
ν,p,i,`,m

}
input

↓{
%s+1
ν,p,i

}
output.

ITER. As the eigenstates depend on the surface densities, we need to recompute them, in particular the energy
levels {εν,p}, which are the advection field of the BTEs. To that purpose, we solve the Schrödinger-
Poisson block (2)-(3) through a Newton-Raphson iterative method.

8

Schematically, {
%s+1
ν,p,i

}
input

↓{
εs+1
ν,p,i, ψ

s+1
ν,p,i,j

}
output.

After this phase, we can now chain up to the next RK stage.

In the following, we describe in detail the three main computational phases.

2.3 The BTE phase

In Figure 3 we summarize the computations involved in the BTE phase.

ν,p,i,l,m

ν,p,i,l,m

ν,p,i,l,m

ν,p,i,l,m

Φ ν,
s+1

p,i,l,m

ν,Φ
s εν,

s

p,i,l,m p,i,l,m ψ
s

Q

D

H
Runge−Kutta stage

advance to next

 (WENO)
partial derivatives

integrate scatterings

+

=

precompute overlap
integral W

integrate collisional
phenomena

Figure 3: BTE phase.

2.3.1 Partial derivatives

This phase computes the three derivatives in (8). For the x-derivative we have

∂

∂x

[
a1 · Φs

]
ν,p,i,`,m

(13)

≈

(
̂a1ν,`,m · Φsν,p,·,`,m

)
i+ 1

2

−
(

̂a1ν,`,m · Φsν,p,·,`,m

)
i− 1

2

∆x
,

for the w-derivative we have

∂

∂w

[
a2,s · Φs

]
ν,p,i,`,m

(14)

≈

(
̂a2,sν,p,i,·,m · Φsν,p,i,·,m

)
`+ 1

2

−
(

̂a2,sν,p,i,·,m · Φsν,p,i,·,m

)
`− 1

2

∆w
,

9

for the φ-derivative we have

∂

∂φ

[
a3,s · Φs

]
ν,p,i,`,m

(15)

≈

(
̂a3,sν,p,i,`,· · Φsν,p,i,`,·

)
m+ 1

2

−
(

̂a3,sν,p,i,`,· · Φsν,p,i,`,·

)
m− 1

2

∆φ
.

Flux reconstruction and boundary conditions. In order to reconstruct the fluxes(
̂a1

ν,`,m · Φsν,p,·,`,m
)
i− 1

2

for i = 0, . . . , Nx(
̂a2,s

ν,p,i,·,m · Φsν,p,i,·,m
)
`− 1

2

for ` = 0, . . . , Nw(
̂a3,s

ν,p,i,`,· · Φsν,p,i,`,·

)
m− 1

2

for m = 0, . . . , Nφ

using the FD-WENO-5 interpolation technique, we need three ghost points at the left of the first point, and
three ghost points at the right of the last point:(

a1
ν,`,m · Φsν,p,i,`,m

)
for i = −3,−2,−1(

a1
ν,`,m · Φsν,p,i,`,m

)
for i = Nx, Nx + 1, Nx + 2(

a2,s
ν,p,i,`,m · Φ

s
ν,p,i,`,m

)
for ` = −3,−2,−1(

a2,s
ν,p,i,`,m · Φ

s
ν,p,i,`,m

)
for ` = Nw, Nw + 1, Nw + 2(

a3,s
ν,p,i,`,m · Φ

s
ν,p,i,`,m

)
for m = −3,−2,−1(

a3,s
ν,p,i,`,m · Φ

s
ν,p,i,`,m

)
for m = Nφ, Nφ + 1, Nφ + 2,

These are set depending on the boundary conditions chosen, and are described in detail in [Vecil et al. (2014)].
We recall, anyway, that at the left border for w we substitute(

̂a2,s
·,m · Φs·,m

)
`=− 1

2

(16)

↑(
̂a2,s
·,m · Φs·,m

)
`=− 1

2

−
(

̂a2,s

·,m±
Nφ
2

· Φs
·,m±

Nφ
2

)
`=− 1

2

2
,

where indexes ν, p, i have been omitted for the sake of compact notations and m± Nφ
2 means the one which

is between 0 and Nφ − 1. It is important to remark that, for the w-derivative, the flux reconstruction is
non-local with respect to index m; rather, we need information coming from two lines(

a2,s
`,m · Φ

s
`,m

)
for ` = −3, . . . , Nw + 2

and(
a2,s

`,m±
Nφ
2

· Φs
`,m±

Nφ
2

)
for ` = −3, . . . , Nw + 2

10

to obtain all the (
̂a2,s
·,m · Φs·,m

)
`− 1

2

for ` = 0, . . . , Nw

and(
̂(a2,s

·,m · Φs
·,m±

Nφ
2

)
`− 1

2

for ` = 0, . . . , Nw

Upwinding for FD-WENO-5. Let us take as example the x-derivative. In order to approximate the flux(
̂a1

ν,`,m · Φsν,p,·,`,m
)
i− 1

2

for some i ∈ {0, . . . , Nx}, we need five values, namely(
a1
ν,`,m · Φsν,p,I,`,m

)
I∈{i−3,i−2,i−1,i,i+1}

or(
a1
ν,`,m · Φsν,p,I,`,m

)
I∈{i−2,i−1,i,i+1,i+2}

depending on whether the wind blows from the left (i.e. a1
ν,`,m > 0) or from the right (i.e. a1

ν,`,m < 0). The
w-derivative goes much the same as the x-derivative: for the x-derivative and the w-derivative, the wind
direction is constant with respect to x and w respectively; otherwise stated, neither the sign of a1

ν,`,m nor

that of a2,s
ν,p,i,`,m depend on index i and ` respectively.

On the other hand, for flux a3,s
ν,p,i,`,m the wind direction is not constant with respect to m, hence a flux

splitting is needed:

a3,s
ν,p,i,`,m

=
a3,s
ν,p,i,`,m +

∥∥a3,s
∥∥
∞

2︸ ︷︷ ︸
=:a3+,sν,p,i,`,m≥0

+
a3,s
ν,p,i,`,m −

∥∥a3,s
∥∥
∞

2︸ ︷︷ ︸
=:a3−,sν,p,i,`,m≤0

.

This way, for m = 0, . . . , Nφ, (
̂a3,s

ν,p,i,`,· · Φsν,p,i,`,·

)
m− 1

2

=

(
̂a3+,s

ν,p,i,`,m · Φsν,p,i,`,·

)
m− 1

2

+

(
̂a3−,s

ν,p,i,`,m · Φsν,p,i,`,·

)
m− 1

2

.

2.3.2 Scatterings

The computations, sketched in Figure, follow two steps:
(i). Overlap integral. In this step, the overlap integral is precomputed, i.e.

Wν,p,ν′,p′,i = ∆z

Nz−2∑
j=1

|ψν,p,i,j |2 |ψν′,p′,i,j |2 , (17)

where ν′ and p′ take values in the same range as ν and p.
(ii). Integration. In this step, the scattering phenomena are integrated. In order to describe the following
computations, let us first introduce some notations:

11

• The boolean function 1I is defined as

1I (condition) =

{
1 if condition is fulfilled
0 otherwise

• {Φ̃ν,p,i,`} means the φ-integrated pdf functions, which are computed inside the DENS phase. Refer to
Section 2.4 for more details.

• In order to evaluate {Φ̃ν,p,i,`} at points Γ, which do not a priori belong to the w-grid, a linear interpo-
lation is used:

LI
[
Φ̃ν,p,i,·

]
(Γ) :=

Φ̃ν,p,i,`u − Φ̃ν,p,i,`d
∆w

× Γ

+
w`u · Φ̃ν,p,i,`d − w`d · Φ̃ν,p,i,`u

∆w
× 1I (Γ ≥ 0 ∧ `d ≤ Nw − 2)

with

`d :=

⌊
Γ

∆w
− 1

2

⌋
, `u := `d + 1.

• The definition of all the physical and numerical constants, appearing in the following, can be found in
[Vecil et al. (2014)].

• The values Γ are the energies exchanged at collisional events, their expression being given by

Γ0
ν,p,ν′,p′,i,` = w` + εν,p,i − εν′,p′,i

Γµ,±ν,p,ν′,p′,i,` = w` + εν,p,i − εν′,p′,i ±
~ωµ

ε∗
.

• Magnitude sν , ` represents the Jacobian of the change of variables

sν(w) :=
√
mx,νmy,ν(1 + 2 α̃ν ε

∗ w).

We distinguish between three kinds of phenomena:

Elastic. One intra-valley phenomenon, without energy exchange:

Qµ,gain
ν,p,i,` = Cµ

Nsbn−1∑
p′=0

Wν,p,ν,p′,i · 1I
(
Γ0
ν,p,ν,p′,i,` ≥ 0

)
× sν(w`) · LI

[
Φ̃sν,p′,i,·

] (
Γ0
ν,p,ν,p′,i,`

)
(18)

and

Qµ,loss
ν,p,i,`,m = −Cµ 2π · Φsν,p,i,`,m

Nsbn−1∑
p′=0

Wν,p,ν,p′,i

× 1I
(
Γ0
ν,p,ν,p′,i,` ≥ 0

)
· sν

(
Γ0
ν,p,ν,p′,i,`

)
. (19)

12

G-type. Three intra-valley phenomena, with energy exchange:

Qµ,gain
ν,p,i,` = Cµ sν(w`)

Nsbn−1∑
p′=0

Wν,p,ν,p′,i{
1I
(

Γµ,+ν,p,ν,p′,i,` ≥ 0
)
· (Nµ

ν,ν + 1)

× LI
[
Φ̃ν,p′,i,·

] (
Γµ,+ν,p,ν,p′,i,`

)
+ 1I

(
Γµ,−ν,p,ν,p′,i,` ≥ 0

)
·Nµ

ν,ν

×LI
[
Φ̃ν,p′,i,·

] (
Γµ,−ν,p,ν,p′,i,`

)}
(20)

and

Qµ,loss
ν,p,i,`,m = −Cµ 2πΦsν,p,i,`,m

Nsbn−1∑
p′=0

Wν,p,ν,p′,i{
1I
(

Γµ,+ν,p,ν,p′,i,` ≥ 0
)

×Nµ
ν,ν · sν

(
Γµ,+ν,p,ν,p′,i,`

)
+ 1I

(
Γµ,−ν,p,ν,p′,i,` ≥ 0

)
×(Nµ

ν,ν + 1) · sν
(

Γµ,−ν,p,ν,p′,i,`

)}
. (21)

F-type. Three inter-valley phenomena, with energy exchange:

Qµ,gain
ν,p,i,` = Cµ 2

Nsbn−1∑
p′=0

2∑
ν′=0

Wν,p,ν′,p′,i{
1I
(

Γµ,+ν,p,ν′,p′,i,` ≥ 0
)
· (Nµ

ν′,ν + 1)

× sν′(w`) · LI
[
Φ̃ν′,p′,i,·

] (
Γµ,+ν,p,ν′,p′,i,`

)
+ 1I

(
Γµ,−ν,p,ν′,p′,i,` ≥ 0

)
·Nµ

ν′,ν

×sν(w`) · LI
[
Φ̃ν′,p′,i,·

] (
Γµ,−ν,p,ν′,p′,i,`

)}
(22)

and

Qµ,loss
ν,p,i,`,m = −Cµ 4πΦsν,p,i,`,m

Nsbn−1∑
p′=0

2∑
ν′=0

Wν,p,ν′,p′,i{
1I
(

Γµ,+ν,p,ν′,p′,i,` ≥ 0
)

Nµ
ν,ν′ · sν′

(
Γµ,+ν,p,ν′,p′,i,`

)
+ 1I

(
Γµ,−ν,p,ν′,p′,i,` ≥ 0

)
+(Nµ

ν,ν′ + 1) · sν′
(

Γµ,−ν,p,ν′,p′,i,`

)}
. (23)

2.4 The DENS phase

This phase performes two computations, that are sketched in Figure 4.

13

Figure 4: DENS phase. Performs reductions on the pdf Φn,sν,p,i,`,m.

(i). Angle-averaged pdf. In this step, the φ-integrated distribution function, noted Φ̃, is computed:

Φ̃ν,p,i,` := ∆φ

Nφ−1∑
m=0

Φsν,p,i,`,m. (24)

Remark. These computations are needed for the integration of the scattering operator in the next Runge-
Kutta stage.
(ii). Surface densities. Once Φ̃ have been computed, their w-integral yields the surface densities %ν,p,i:

%ν,p,i = ∆w

Nw−1∑
`=0

Φ̃ν,p,i,`. (25)

2.5 The ITER phase

The idea is to solve the Poisson equation by seeking for the zero of this functional:

P [V] := −∇2V +
∑
ν,p

%ν,p(x) · |ψν,p[V]|2 (26)

via a Newton-Raphson iterative scheme. Here, we have stressed the direct dependency of the wave functions
{ψν,p} on the electrostatic potential V through the Schrödinger equation.
Let us describe how these phases work.

2.5.1 The Newton-Raphson scheme

The iterative scheme on (26) can be restated as

P
[
V (k)

]
+ dP

(
V (k), V (k+1) − V (k)

)
= 0 (27)

V (0) is given.

14

Obviously, stage k+ 1 is a refinement of the previous stage k. The derivative is meant in a directional sense.
Details of the computations can be found in [Ben Abdallah et al. (2009)].

2.5.2 Schrödinger diagonalization

We can rewrite the steady-state Schrödinger equation in terms of the V -dependent linear operator

S[V](Ψ) := −1

2

d

dz

(
1

mz,ν

dΨ

dz

)
− V ·Ψ.

We wish to compute the first Nsbn eigenvalues and relative eigenvectors, called energy levels and wave
functions.
Remark that for this equation, both the valley ν and the position x are parameters, we shall have then
3×Nx completely independent eigenproblems to solve.
In order to do this, we discretize the operator (for ν = 0, 1, 2 and i = 0, . . . , Nx − 1) using finite differences
thus obtaining a symmetric tridiagonal matrix of order Nz − 2, being:

 1/4
mz,ν,i,j−1

+ 1/2
mz,ν,i,j

+ 1/4
mz,ν,i,j+1

∆z2
− Vi,j

j=1,...,Nz−2

the elements in the diagonal, and − 1/4
mz,ν,i,j

+ 1/4
mz,ν,i,j+1

∆z2

j=1,Nz−3

the elements in the sub-diagonal (and the super-diagonal).
The values of the effective masses mz,ν , for the particular case of the DG-MOSFET device, depend on the
material:

mz,ν,i,j =

 0.5 if (i, j) is in the SiO2 region
0.19 if ν < 2 and (i, j) is in the Si region
0.98 if ν = 2 and (i, j) is in the Si region

From this matrix we extract by some method the first (lowest) Nsbn eigenvalues {εν,p,i}p∈{0,...,Nsbn−1} and

relative eigenvectors {ψν,p,i,j}(p,j)∈{0,...,Nsbn−1}×{0,...,Nz−1}.

We take into account the boundary condition

ψν,p,i,0 = ψν,p,i,Nz−1 = 0

and the normalization of the eigenvectorsψν,p,i,j ←− ψν,p,i,j√
∆z
∑Nz−2
j′=1 |ψν,p,i,j′ |

2

j=1,...,Nz−2

.

2.5.3 Updating the potential V (construction and solution of the linear system)

One stage of the Newton-Raphson scheme on (26) translates into solving (27). (More details about the
derivation can be found in [Ben Abdallah et al. (2009)].) This scheme boils down to the linear system on
V (k+1)

L(k) V (k+1) = R(k), (28)

15

where

L(k) V (k+1) =− div
[
εR∇V (k+1)

]
+

∫
A(k)(x, z, ζ)V (k+1)(x, ζ) dζ

R(k) =−N (k)(x, z)

+

∫
A(k)(x, z, ζ)V (k)(x, ζ) dζ,

being A(k)(x, z, ζ) := A[V (k)](x, z, ζ) basically the directional derivative of the density N (k) := N [V (k)].
The scheme is depicted in Figure 5.

ρ ν,p,i

ε ν,p,i ψ ν,p,i,j

s+1

s+1 s+1

pick an initial
guess for V

Schroedinger

compute densities

Schroedinger

test convergence

compute densities

yes

no

update V

Figure 5: ITER phase.

The Laplacian in the linear system (28) reads

div
[
εR∇V (k+1)

]
=
∂

∂x

(
εR

∂V (k+1)

∂x

)
+

∂

∂z

(
εR

∂V (k+1)

∂z

)

16

and is discretized using finite differences(
div
[
εR∇V (k+1)

])
i,j

=

(1
2 (εR)i−1,j + 1

2 (εR)i,j

∆x2

)
V

(k+1)
i−1,j

+

(1
2 (εR)i,j−1 + 1

2 (εR)i,j

∆z2

)
V

(k+1)
i,j−1

−
(1

2 (εR)i−1,j + (εR)i,j + 1
2 (εR)i+1,j

∆x2

+
1
2 (εR)i,j−1 + (εR)i,j + 1

2 (εR)i,j+1

∆z2

)
V

(k+1)
i,j

+

(1
2 (εR)i,j + 1

2 (εR)i,j+1

∆z2

)
V

(k+1)
i,j+1

+

(1
2 (εR)i,j + 1

2 (εR)i+1,j

∆x2

)
V

(k+1)
i+1,j .

The integral is discretized by means of trapezoid rule(∫
A(k)(x, z, ζ)V (k+1)(x, ζ) dζ

)
i,j

(29)

=
∆z

2
·

Nz−2∑
j′=0

A(k)
i,j,j′ V

(k+1)
i,j′ +

Nz−1∑
j′=1

A(k)
i,j,j′ V

(k+1)
i,j′

 ,
where

A(k)
i,j,j′ = 2

∑
ν,p

∑
p′ 6=p

%s+1
ν,p,i − %

s+1
ν,p′,i

ε
(k)
ν,p′,i − ε

(k)
ν,p,i

(30)

× ψ(k)
ν,p,i,j′ ψ

(k)
ν,p′,i,j′ ψ

(k)
ν,p′,i,j ψ

(k)
ν,p,i,j

For the right hand side R(k), the integral is computed in a similar way to (29), and the density is simply

N
(k)
i,j = 2

∑
ν,p

∑
p′ 6=p

%s+1
ν,p,i

∣∣∣ψ(k)
ν,p,i,j

∣∣∣2 . (31)

As for the boundary conditions, Dirichlet is imposed at metallic contacts (source, drain and the two gates),
while homogeneous Neumann is taken elsewhere.
The matrix L(k) representing this linear system (28) is of order Nx × NZ , and contains Nx square blocks
of size Nz on the diagonal. In Figure 6 we depict it, together with a zoom around one block. Remark that
five diagonals are due to the Laplacian, the filling of the blocks are due to the integral term; the remaining
non-zero values take into account the boundary conditions.

3 Implementation strategies

In this section we give the relevant details about the non-trivial parts of the parallel hybrid implementation
of the numerical solver, taking into account the different computing phases (see Figure 2).

17

3.1 The BTE phase

We remind that this phase consists of three main computations:

• the integration of the scattering operator, which includes the computation of the overlap integral,

• the computation of the partial derivatives through FD-WENO-5, and

• the sums and multiplications required to implement the Runge-Kutta steps.

3.1.1 Implementation of the scattering operator

The rhs of the Boltzmann equation (see Eq. 7) is stored with the same ordering as the pdf (see Table 1 for
the ordering of the arrays).
Overlap integral. The overlap integral is 5-dimensional

Wν,p,ν′,p′,i.

Each CUDA thread computes one point in the output array, by performing the summation in (17) for the
corresponding values of (ν, p, ν′, p′, i). The results are stored as an array in the global device memory (see
Table 1).
Constant magnitudes. After the precomputations, several magnitudes (the effective masses m{x,y,z},ν , the
Kane factors α̃ν , the occupation numbers Nµ,ν→ν′ , and several parameters) are computed in arrays which
are moved to the device’s constant memory (in total, about 200 double-precision values).
Integration of the gain part. In formula (9) we have stressed that the gain part of the collisional operator
does not actually depend on m, it is thus 4-dimensional. Then, we create one thread for each (ν, p, i, `) point
and store them in a 4D array ordered as i > ν > p > `. Each thread performs the following computations:
once (18), three times (20) and three times (22).
The kernel is implemented in such a way to minimize accesses to global memory. In particular, this requires
a reordering of the for -loops. Formulae (9) together with (18), (20), (22), written for human comprehension,
suggest that, for any (ν, p, i, `) given, the ordering be

1 for µ = 0, . . . , 6

2 for p′ = 0, . . . , Nsbn − 1

3 for ν′ = 0, 1, 2

4 [compute]

which is not a ggod idea because the magnitudes Wν′,p′,ν,p,i, Wν,p′,ν,p,i, εν′,p′,i, εν,p,i, reside in global device

18

memory and we want to read them as few times as possible. To improve this, a better order is

1 read εν,p,i

2 for p′ = 0, . . . , Nsbn − 1

3 perform F-type integration

4 for ν′ = 0, 1, 2

5 if ν′ 6= ν

6 read Wν′,p′,ν,p,i and εν′,p′,i

7 for µ = 4, . . . , 6

8 [compute]

9 perform elastic integration

10 read Wν,p′,ν,p,i and εν,p′,i

11 [compute]

12 perform G-type integration

13 for µ = 1, . . . , 3

14 [compute]

which minimizes the reading of these data from global memory.
Integration of the loss part. This part of the code has to compute once (19), three times (21) and three
times (23). In order to perform that, we create one thread for each (ν, p, i, `,m) point.
In order to minimize uncoalesced access to global memory for this computation, we store in the shared
memory the ε·,·,i and the Wν,p,·,·,i needed by a CUDA thread block. For each block, we shall allocate
3×Nsbn×3 doubles of shared memory, the factor being due to the fact that inside one thread block, at most
two different values for i are possible (remember that i comes first in the ordering, see Table 1).

3.1.2 Implementation of FD-WENO-5

.
We have tested several implementations for each of the three partial derivatives

∂

∂x

[
a1
ν,`,·Φ

s
ν,p,·,`,m

]
i

∂

∂w

[
a2,s
ν,p,i,·,mΦsν,p,i,·,m

]
`

∂

∂φ

[
a3,s
ν,p,i,`,·Φ

s
ν,p,i,`,·

]
m

and kept the most efficient one based on empirical evidence.
The x-derivative. Each thread takes care of one whole line in the x-dimension. More clearly, we create
3×Nsbn ×Nw ×Nφ threads, each of them computing

∂

∂x

[
a1
ν,`,· · Φsν,p,·,`,m

]
i
∀i = 0, . . . , Nx − 1.

The w-derivative. The strategy is similar to that for the x-derivative, with the main difference that each

19

thread takes care of two lines instead of just one: for m = 0, . . . ,
Nφ
2 − 1, it computes

∂

∂w

[
a2,s
ν,p,i,·,mΦsν,p,i,·,m

]
`
∀` = 0, . . . , Nw − 1

and

∂

∂w

[
a2,s

ν,p,i,·,m+
Nφ
2

Φs
ν,p,i,·,m+

Nφ
2

]
`

∀` = 0, . . . , Nw − 1

in order to perform locally on the thread the averaging described in (16).

We exploit shared memory to load from global memory the
∂εν,p
∂x hence reducing costly loads.

The φ-derivative. Unlike the x- and w-derivatives, each (ν, p, i, `,m)-point ∂
∂φ

[
a3,s
ν,p,i,`,·Φ

s
ν,p,i,`,·

]
m

of the

partial derivative is computed by a thread. We remind that a flux splitting is needed, thus

∂

∂φ

[
a3,s
ν,p,i,`,·Φ

s
ν,p,i,`,·

]
m

=
∂

∂φ

[
a3+,s
ν,p,i,`,·Φ

s
ν,p,i,`,·

]
m︸ ︷︷ ︸

information from the left

+
∂

∂φ

[
a3−,s
ν,p,i,`,·Φ

s
ν,p,i,`,·

]
m
.︸ ︷︷ ︸

information from the right

Hence, for fixed (ν, p, i, `), the partial derivative at point φm depends on the seven points {φm−3, φm−2, φm−1, φm, φm+1, φm+2, φm+3},
six for ∂

∂φ

[
a3+,s
ν,p,i,`,·Φ

s
ν,p,i,`,·

]
m

and six for ∂
∂φ

[
a3−,s
ν,p,i,`,·Φ

s
ν,p,i,`,·

]
m

, as sketched in Figure 7.

If we use NTPB threads per block, this means that we need NB :=

⌈
3×Nsbn ×Nx ×Nw ×Nφ

NTPB

⌉
blocks in

total.
Each block will take care of NTPB points, thus involving at most NS different (ν, p, i, `)-points where:

NS =

⌈
NTPB − 1

Nφ

⌉
+ 1.

NS represents the number of φ-lines or sections, partially or totally included to compute the output of a
thread block. Therefore, we declare a shared memory vector sm with

2×NS × (Nφ + 6)︸ ︷︷ ︸
sm sz

doubles. The factor 2× is required to take into account the flux splitting

a3,s
ν,p,i,`,m = a3+,s

ν,p,i,`,m + a3−,s
ν,p,i,`,m

in such a way that if
sm [k]←→ a3+,s

ν,p,i,`,m · Φ
s
ν,p,i,`,m,

then
sm [k + sm sz]←→ a3−,s

ν,p,i,`,m · Φ
s
ν,p,i,`,m.

Moreover, the +6 takes into account the boundary conditions (FD-WENO-5 requires 3 ghost points at each
border).
The mapping from the global memory to the shared memory is sketched in Figure 8, for just the positive
flux.
We proceed in the following manner for each block:

1. Compute information for the particular block:

20

• the first index in the block:
fi = blockIdx×NTPB,

• the number of sections in the block:

NS =

⌈
NTPB − 1

Nφ

⌉
+ 1,

• the number of points per section:
Ntp = NS ×Nφ,

• the block’s displacement with respect to the beginning of the first line

gap = fi mod Nφ,

• the 1D-global index associated with the thread:

gi = blockIdx×NTPB + threadIdx,

• the thread’s section index

si =

⌊
gap + threadIdx

Nφ

⌋
.

2. Compute the 5D indices of the point that the thread will compute:

gi 7→ (ν, p, i, `,m) .

3. Load data from global memory to the shared memory vector sm:

for M = 0, . . . , Ntp − 1

sm
3+6×

⌊
M
Nφ

⌋
+M

= Φ[fi− gap +M]

(same for the negative flux)

4. Introduce boundary conditions into the shared memory vector sm:

for s = 0, . . . , NS − 1

for M = 1, 2, 3

sm3+6×s−M ←− bound. cond.

(same for the negative flux)

sm3+6×s+Nφ−1+M ←− bound. cond.

(same for the negative flux)

5. Synchronize the threads in the block

6. Compute the partial derivative using the data in sm:

for M = 0, . . . , NTPB − 1

compute

(
∂Φs

∂φ

)
ν,p,i,`,m

.

3.1.3 The Runge-Kutta calculations

Each thread takes care of one (ν, p, i, `,m) point. Computations are structured so as to have coalescence in
reading and writing from and to the global device memory.

21

3.2 The DENS phase

We remind that this phase performs the two computations (24) and (25).
Angle-averaged pdf. We create 3×Nsbn×Nx×Nw threads, each of them performing the calculation (24)
to compute a particular Φ̃ν,p,i,`.
In order to exploit the on-chip memory to perform the local computations, we employ a shared memory
vector to load the pdf Φsν,p,i,`,m from the global memory.
Hence, in order to fully exploit the shared-memory bandwidth and the global memory coalescent reading,
we perform the global–to–shared-memory load by an external for -loop where consecutive threads in a warp
read consecutive values in the DRAM that are written in contiguous positions of the shared memory (see
Figure 9).
Once the data have been loaded, integration must be performed. Each thread wants to sum Nφ consecutive
values of the sm shared memory vector. In particular, the thread indexed I wants to compute:

Nφ−1∑
m=0

sm [I ×Nφ +m] .

We have to be careful to avoid bank conflicts, the shared memory is arranged by banks, as sketched in Figure
9. As a consequence, although 32 consecutive doubles can be accessed simultaneously in one clock cycle, if
the 32 threads of a warp try to access 32 different positions that are congruent modulo 32 (belonging to the
same bank), this operation might require up to 32 cycles (might be fewer depending on the capabilities of
the GPU).
Considering that as soon as Nφ > 32 bank conflicts are inevitable, we can at least reach the minimum
number of conflicts by shifting the starting point “diagonally” and summing “circularly”. More clearly, this
means that thread which computes the I-th element of the output vector Φs performs the following sum
instead:

I+Nφ−1∑
m=I

sm [I ×Nφ + (m mod Nφ)] .

Surface densities. For each (ν, p, i) we have to perform the integration in (25). Each CUDA thread takes
care of one point. As in the pdf vector Φ̃ν,p,i,` the `-index comes last in the ordering, this guarantees a good
coalescence in reading.

3.3 The ITER phase

This phase is currently computed entirely on the CPU, and is, at the state of the art, the more complex part
of the parallel code.

3.3.1 Schrödinger diagonalization

The computations described in 2.5.2 are performed on the host (CPUs) using a parallel description based
on OpenMP directives. The 3×Nx eigenvalue problems are evenly divided into the available threads. Each
thread solves the assigned eigenvalue problems by using the LAPACK routine dsgetr [Anderson et al. (1999)].

22

ILUT (1 core) ILUT (16 cores)

BiCG 0.764657 0.196927 (3.8x)
BiCGSTAB 0.659210 0.148999 (4.4x)

GPBiCG 0.686384 0.199920 (3.4x)
BiCGSafe 0.660219 0.176699 (3.7x)

IDR 0.645309 0.165456 (3.9x)
BiCR 0.772417 0.207286 (3.7x)
CRS 0.689740 0.158914 (4.3x)

BiCRSTAB 0.675243 0.158104 (4.2x)
GPBiCR 0.705240 0.207514 (3.3x)

BiCRSafe 0.667985 0.184428 (3.8x)

Table 2: Linear system. The cost-per-step of solving the linear system, in LIS implementation using
OpenMP, for different preconditioner/solver couplings, using 16 cores, with the standard meshes Nx = Nz =
65. Tolerance parameter is set 10−8.

3.3.2 Newton-Raphson steps

The magnitude (30)

A(k)
i,j,j′ = 2

2∑

ν=0

Nsbn−1∑
p=0

Nsbn−1∑
p′

%sν,p,i − %sν,p′,i
ε
(k)
ν,p′,i − ε

(k)
ν,p,i

×ψ(k)
ν,p′,i,j′ · ψ

(k)
ν,p′,i,j · 1I [p′ 6= p]

)
×ψ(k)

ν,p,i,j′ · ψ
(k)
ν,p,i,j

]}
. (32)

is 3-dimensional. The computations are performed on the CPU with an OpenMP parallel environment.
Preconditioning and solution of the linear system The linear system is of order Nx × NZ , thus the
order is 4225 in our experiments with standard meshes (Nx = Nz = 65), the matrix is banded and out of
17, 850, 625 entries only ≈250, 000 are non-zero on 129 diagonals; the system is, therefore, more than 98 %
sparse.
We have performed an extensive battery of tests coupling several preconditioners and solvers as implemented
in the LIS (Library of Iterative Solvers) [Nishida (2010), Kotakemori (2005)], which allows for multi-core
building using OpenMP. We have empirically chosen the strategy that fits best the problem for standard
meshes. From the tests, it is clear that the only suitable preconditioners are those of the Incomplete LU
factorization (ILU) family [Saad (2003)], the others being unstable or slow.
In Table 2, we only report the times obtained through the ILUT preconditioner [Saad (2003)], because it
performs better than ILU. We see that while on a sequential execution ILUT-IDR is the best strategy, the
coupling of ILUT with the BiCGSTAB solver [Saad (2003)] exploits better a 16-core configuration being
faster than a 16-core execution of the ILUT preconditioner in conjunction with an IDR (Induced Dimension
Reduction) solver [Sonneveld (2008)].

3.4 Overlapping the computations

In order to take advantage of the CPU and the GPU operating in parallel on independent calculations, it is
best to re-organize the computations by decomposing the BTE phase (in particular, the computation of the
partial derivatives though FD-WENO-5) in order to make it partially overlap with the other phases.
As the a1-flux in the x-derivative

∂

∂x

[
a1
ν,`,m · Φs+1

ν,p,·,`,m

]

23

is constant, this computation can be performed for the next Runge-Kutta stage (s + 1) while the the
computation of the the eigenstates

{
εs+1
ν,p,i, ψ

s+1
ν,p,i,j , V

s+1
i,j

}
(the ITER phase corresponding to the s-th Runge-

Kutta stage) is performed on the host.
Moreover, in order to optimize the data transfer between the host to the device DRAM, the memory for %ν,p,i

and the eigenstates
{
εν,p,i,

(
∂ε
∂xν,p,i

)
, ψν,p,i,j

}
is allocated as page-locked (aka pinned), though the copies

cannot be made asynchronous.
This optimized scheme is summarized in Figure 10.

4 Numerical experiments

In the following we analyze the performances of our hybrid parallel code.

4.1 Heterogeneous platform

All experiments were performed on a server with dual Intel Xeon ES-2630 CPUs (16 cores total) with 64 GB
RAM, and a 1 TB solid state hard drive. The system includes one Nvidia Tesla K40(c) GPU [NVIDIA(2012)]
with 2880 CUDA cores and 12 GB of GDDR5 memory. The operating system is Linux Centos 7.3 with GCC
version 4.8.5 and the CUDA 7.5 runtime.

4.2 Source code structure

We distinguish the CUDA code to be executed on GPU from the OpenMP code which run on CPU:

• GPU code. The code contains 16 CUDA kernels, 12 of which listed in Table 3, ordered by their
decreasing computational weight. The remaining 4 are either only executed once for initialization, or
seldom just for computing some macroscopic data to be stored in files for visualization.

• OpenMP code. Inside the ITER block, three functions exploit OpenMP for shared-memory parallel
environment, they are listed in Table 3 in their execution order.

4.3 Overview

In Figure 11 we sketch the absolute (in seconds) and relative weight (in percentage) of the three main
computational phases (BTE, ITER and DENS). This study has been obtained by executing one time step
of three versions of the solver for an standard mesh (Nsbn = 6, Nx = 65, Nz = 65, Nw = 300, Nφ = 48) on
the above-mentioned platform:

• sequential: a sequential version using one CPU thread.

• omp: an OpenMP parallel version of the full solver using 16 CPU threads.

• omp+cuda: the parallel hybrid solver using 16 CPU threads.

From now on, we will assume this configuration for the runtime experiments (one time step with the standard
mesh and 16 CPU threads) unless we indicate explicitly variations in this configuration. As can be seen, the
per-step cost of the hybrid solver is dominated by the ITER phase, followed by the BTE with a lesser but
comparable cost. Although the BTE phase is the costliest part in the sequential and OpenMP solvers, the
complete adaptation to GPU of this phase in the hybrid solver allows to reduce considerably its weight in
the runtime. As a consequence, in the hybrid parallel solver the ITER phase is the costliest part because
this block involves complex computations which despite of having been parallelized on CPU, they have not
been adapted to the GPU. On the other hand, the weight of DENS phase is not very relevant in any version
of the solver.

24

rank kernel/function name phase computation times/step

1 GPU integrate PHONONS loss BTE (19), (21), (23) 3
2 GPU approx partf PHI BTE (15) 3
3 GPU approx partf W BTE (14) 3
4 GPU approx partf X BTE (13) 3
5 GPU set fluxes a3 BTE (6) 3
6 GPU compute integrated pdf energy DENS (24) 3
7 GPU integrate PHONONS gain BTE (18), (20), (22) 3
8 GPU perform RK 2 3 BTE (11) 1
9 GPU perform RK 3 3 BTE (12) 1
10 GPU perform RK 1 3 BTE (10) 1
11 GPU compute Wm1 BTE (17) 3
12 GPU integrated phitilde DENS (25) 3
13 compute eigenstates ITER (2) ?
14 compute kernel ITER (30) ?
15 lis solve ITER (28) ?

Table 3: Hybrid GPU-CPU parallelization. CUDA kernels are listed 1-12, OpenMP-based methods are
13-15. The Library for Iterative Solvers (LIS) is built using OpenMP. Right column: the number of calls
inside one time step; symbol ? is used to mean unpredictability.

4.4 The CUDA kernels (BTE and DENS phases)

In Figure 12 we sketch the absolute weight of the main computational steps (in seconds) for the BTE phase
and also the relative weight (regarding the total execution time obtained with each solver) for these steps.
The integration of the loss part is clearly the most weighted computing phase in all the solvers (strongly in the
sequential solver) but it is also the phase which benefits to a greater extent from an efficient parallelization
(strongly in the omp+cuda solver). On the other hand, the effect of the parallelization of the remaining
phases is very similar.
Table 4 provides data to evaluate the quality of the implementation for the most important kernels. These
data have been obtained by using the nvprof utility [NVIDIA CUDA(2018)] when the parallel CUDA-
OpenMP solver completed one time step.
Efficiency measures are split into two big categories: the computational throughput measures the throughput
of FLoating-point OPerations per Second (FLOPS) they perform, while the data throughput measures the
throughput of data between the SM’s and the various memories (registers, local, shared, L1 and L2 cache,
global). A good behavior in both these aspects is needed.

• Computational throughput. As shown in columns ii and iii, the heaviest kernels (kernels 1-4)
achieve a good performance (GFlops per second) in comparison with the peak double-precision floating
point performance of the device (1.43 TeraFlops per second).

• Data throughput. We recall that the GPU possesses several memory regions, accessing which is as
much costlier as the memory region is physically distant from the ALU’s. Thus, in increasing order of
distance, we have: registers, shared memory/L1 cache L2 cache and finally the off chip DRAM memory.
Obviously, the closer the data exploited for computation, the faster the access to them. Follow some
comments on the data in Table 4.

– Column iv-v. The L2 cache is used to cache access to global (and local) memory. Kernels with
large L2 hit are those reading several times from the DRAM the same values of some variable: in
particular, in kernel 5 Nw ×Nφ threads read εν,p,i, in kernel 7 reads Nφ threads read Φ̃ν,p,i,`, in
kernel 11, values of ψν,p,i,j are recycled several times. Empirical tests show that for these kernels
it is best to avoid loading these vectors from global memory to shared memory, and rather let the
L2 cache operate.

25

i ii iii iv v vi vii viii

avg. time GFlops/s L2 hit L2 RT GMLE RGLT/peak LMEM

1 32.8 ms 539 11.15 % 8.75 GB/s 27.86 % 4.8 % 0 B
2 10.7 ms 598 1.01 % 35.77 GB/s 74.99 % 13.4 % 0 B
3 10.6 ms 284 1.56 % 69.18 GB/s 66.59 % 8 % 7304 B
4 6.66 ms 389 3.83 % 79.55 GB/s 94.52 % 13.3 % 1144 B
5 2.92 ms 226 93.42 % 47.22 MB/s 6.25 % 0.4 % 0 B
6 1.81 ms 9 0 % 69.75 GB/s 100 % 24.2 % 0 B
7 2.47 ms 275 94.72 % 26.02 GB/s 61.00 % 60 % 0 B
8 3.59 ms 28 0 % 104.53 GB/s 100 % 36.2 % 0 B
9 3.59 ms 28 0 % 104.56 GB/s 100 % 36.3 % 0 B
10 2.90 ms 11 0 % 86.45 GB/s 100 % 30 % 0 B
11 .297 ms 16 96.74 % 221.72 GB/s 6.17 % 7.6 % 0 B
12 .160 ms 2 63.21 % 42.96 GB/s 6.22 % 5.5 % 0 B

Table 4: Measures of the CUDA kernels’ efficiency. The kernels are listed in decreasing computational
weight.

Column i: The kernels’ numbering, as in Table 3.

Column ii-iii: Computational throughput. Column ii expresses the total per-step computational time needed
and column iii expresses the achieved gigaflops per second (peak is 1430 GFlops/s).

Columns iv-vii: Data throughput. Here, L2 RT stands for L2 Read Throughput, GMLE stands for Global
Memory Load Efficiency, RGLT stands for Requested Global Load Throughput (peak is 288 GB/s).

Column viii: Spilling to Local Memory (LMEM).

– Column vi. GMLE measures the how much bandwidth is wasted for a non-coalescent reading
from the global memory. The Tesla K40(c) uses a 384-bit-wide memory interface; this means that
at least 6 double-precision floating-point values are accessed in DRAM each time a read request
is sent, even if just one value were wanted. Our code achieves reasonable performances from this
point of view.

– Column viii. The maximum register size (255) is never exceeded, nevertheless LMEM (Local
MEMory) is used to allocate arrays, that cannot reside on on-chip memory. Also, this affects the
exploitability of the L2 cache for “hits”.

4.5 The OpenMP methods (ITER phase)

In Figure 13, we sketch the absolute weight of the main computational steps (in seconds) for the ITER
phase and also the relative weight (regarding the total execution time for each solver) for these steps. We
can observe that the omp+cuda solver obtains slightly worst execution times than the the omp solver because
of the effect of the data transfers between the host and the device. The Figure remarks again the relevant
relative weight of the ITER phase in the omp+cuda solver.
Schrödinger. In Figure 15 (lower right corner), we can see the speedup obtained in the Schrödinger
diagonalization step by the omp solver with respect to the sequential solver for the standard meshes Nx =
Nz = 65 with several number of threads. As can be seen, the CPU-parallel part scales properly, though it
does not attain the theoretical speedup of 16x (for 16 cores), rather close to 11x.

4.6 Scaling with respect to the meshes

In Figure 14, we sketch the weight of each computational phase for 1D sweeps with respect to the meshes
taken as reference Nsbn = 6, Nx = 65, Nz = 65, Nw = 300, Nφ = 48.

26

Version step BTE DENS ITER FD-WENO-5 scatt. lin. sys. Schröd. NR kernel

sequential 19.82 18.56 0.044 1.22 3.69 13.70 0.59 0.23 0.37

OMP 2-core 10.05 9.35 0.024 0.67 1.87 6.89 0.34 0.12 0.19

OMP 4-core 5.60 5.18 0.0146 0.40 1.03 3.82 0.207 0.066 0.106

OMP 6-core 4.05 3.72 0.011 0.317 0.74 2.74 0.167 0.048 0.076

OMP 8-core 3.32 3.04 0.0103 0.27 0.61 2.24 0.145 0.04 0.063

OMP 10-core 2.83 2.58 0.0086 0.24 0.618 1.8 0.136 0.032 0.051

OMP 12-core 2.39 2.16 0.0075 0.21 0.53 1.5 0.119 0.026 0.042

OMP 14-core 2.07 1.85 0.0068 0.208 0.46 1.28 0.121 0.022 0.036

OMP 16-core 1.73 1.53 0.0062 0.199 0.31 1.12 0.119 0.02 0.032

OMP 16-core/GPU 0.47 0.21 0.00618 0.26 0.087 0.105 0.15 0.03 0.05

Table 5: Execution time. Execution time of each parallel computational phase for one time step using a
standard mesh.

Multiplying by 2 the number of points in either dimension produces a different result:

• For Nsbn, it increases the relative weight of the scatterings: this is because Nsbn has quadratic influence
on the integration formula. Moreover, it increases the cost of the Newton-Raphson kernel (30) and is
a parameter for all the transport part.

• For Nx, not only is it a parameter for the transport part and the Schrödinger equation, it increases
the order of the linear system.

• For Nz, it does not affect the transport part at all, but it increases the order of both the linear system
and the eigenvalue problem

−1

2

d

dz

(
1

mz,ν

dψν,p
dz

)
− V ψν,p = εν,p ψν,p.

• Nw and Nφ are essentially parameters which affect the execution time of the FS-WENO-5 computation
in the BTE phase.

4.7 Speedup

In Figure 15 we examine the speedup achieved by our strategies. We compare the performances of the
CUDA/OpenMP hybrid code to those of a pure OpenMP code. The details are given in Table 5.
In order to evaluate the benefits of using the GPU, we compare the last two lines in Table 5, i.e. a pure
OpenMP 16-core parallelization (without GPU) and a OpenMP 16-core/GPU parallelization. We remind
that, in our hybrid code, BTE and DENS phases are parallelized on the GPU, while for ITER nothing
changes.
For the average cost of one time step, we achieve a speedup of 3.6x, due to the BTE phase achieving a
speedup of 7.1x. Inside that phase, the most beneficial parallelization is the one referring the integration
of the scattering operator, with a factor 10.6x, while the FD-WENO-5 computation achieves a factor 3.5x.
This is somehow expected, because the scatterings require much more computations and hence the GPU can
be exploited better.
As for the DENS and the ITER parts, they do not enjoy benefits by sending the BTE computations to the
GPU, because some data transfer between the host and the device memories slow them down.

5 Conclusions and perspectives

We have proposed a successful implementation for an extremely heavy code from the computational point
of view. While a purely sequential code on CPU takes many days, the computations can now be performed
within some hours, and the code can be used to obtain reference results for other macroscopic solvers.

27

The computation of the eigenstates (the ITER block) is, at the state of the art, what is most time-consuming
in the code. Any effort of improvement should, therefore, be focused on implementing it fully on the GPU.
Moreover, this would would also avoid any memory transfer between the host and the device memories.
In particular, the construction, preconditioning and solution of the linear system should be the first part to
port to GPU computing. The second task is the port to GPU of the eigenvalue problem.
From the modelling point of view, an eighth scattering phenomenon should be added, namely the surface
roughness, aiming at taking into account the irregularities in the silicon thickness of a real device. These
deviations make more charge appear near the interfaces, and at such small size can significantly modify the
device’s behavior.
Acknowledgements. Francesco Vecil and J. M. Mantas acknowledges the project MTM2014-52056-P
funded by the Spanish Ministerio de Economı́a y Competitividad (MINECO) and the European Regional
Development Fund (ERDF/FEDER).

References

[Vecil et al. (2014)] F. Vecil and J. M. Mantas and M. .J Cáceres and C. Sampedro and A. Godoy and
F. Gámiz (2014) A parallel deterministic solver for the Schrödinger–Poisson–Boltzmann system in ultra-
short DG-MOSFETs: Comparison with Monte-Carlo, Computers and Mathematics with Applications
67 (9) 1703–1721. doi:http://dx.doi.org/10.1016/j.camwa.2014.02.021.

[Ben Abdallah et al. (2009)] Ben Abdallah N, Cáceres MJ, Carrillo JA, Vecil F (2009) A deterministic solver
for a hybrid quantum-classical transport model in nanoMOSFETs, Journal of Computational Physics
228 (17) 6553–6571. doi:10.1016/j.jcp.2009.06.001.

[Mantas et.al. (2009)] J. M. Mantas, M. J. Cáceres(2009), Efficient deterministic parallel simulation of 2D
semiconductor devices based on WENO-Boltzmann schemes, Computer Methods in Applied Mechanics
and Engineering 198 (5–8) 693 – 704.

[Carrillo et al. (2003)] J. A. Carrillo, I. M. Gamba, A. Majorana, C.-W. Shu, A WENO-solver for the tran-
sients of Boltzmann-Poisson system for semiconductor devices: performance and comparisons with
Monte Carlo methods, Journal of Computational Physics 184 (2) (2003) 498–525. doi:10.1016/

S0021-9991(02)00032-3.

[Suzuki (2015)] A. Suzuki, T. Kamioka, Y. Kamakura, T. Watanabe (2015), Particle-based Semiconductor
Device Simulation Accelerated by GPU computing, Journal of Advanced Simulation in Science and
Engineering 2 (1)1, 211–224.

[Li (2005)] Y. Li, S-M. Yu (2005) A parallel adaptive finite volume method for nanoscale double-gate MOS-
FETs simulation, Journal of Computational and Applied Mathematics 175 , 87–99.

[Li (2003)] Y. Li, T.-S. Chao, S.M. Sze (2003) A Novel Parallel Approach for Quantum Effect Simulation in
Semiconductor Devices, International Journal of Modelling and Simulation 23:2 94–102.

[Kumar (2016)] G. Kumar, M. Singh, A. Bulusu, G. Trivedi (2016) A Framework to Simulate Semiconductor
Devices Using Parallel Computer Architecture, Journal of Physics: Conference Series 759:1.

[Anderson et al. (1999)] E. Anderson, Z. Bai et al (1999), LAPACK Users’ Guide, Society for Industrial and
Applied Mathematics. Third Edition.

[Camiola (2013)] V. D. Camiola, G. Mascali, V. Romano (2013), Simulation of a double-gate MOSFET
by a non-parabolic energy-transport subband model for semiconductors based on the maximum entropy
principle, Mathematical and Computer Modelling 58 (1-2) 321–343.

28

http://dx.doi.org/http://dx.doi.org/10.1016/j.camwa.2014.02.021
http://dx.doi.org/10.1016/j.jcp.2009.06.001
http://dx.doi.org/10.1016/S0021-9991(02)00032-3
http://dx.doi.org/10.1016/S0021-9991(02)00032-3

[Suhag (2017)] Ashok Kumar Suhag, Rakesh Sharma (2017), Design and Simulation of Nanoscale Double
Gate MOSFET using high K Material and Ballistic Transport Method , Materials Today: Proceedings
4 10412–10416.

[Prasher (2013)] Rakesh Prasher, Devi Dass, Rakesh Vaid (2013), Performance of a double gate nanoscale
MOSFET (DG-MOSFET) based on novel channel materials , Journal of Nano- and Electronic Physics
5(1).

[Mascali et.al. (2012)] G. Mascali, V. Romano (2012), A non parabolic hydrodynamical subband model for
semiconductors based on the maximum entropy principle, Mathematical and Computer Modelling 55 (3-
4) 1003–1020.

[Ben et.al. (2004)] N. Ben Abdallah, F. Méhats, N. Vauchelet (2004), A note on the long time behavior for
the drift-diffusion-Poisson system, C. R. Math. Acad. Sci. Paris 339 (10) 683–688.

[Ungel (2010)] A. Ungel (2010), Energy transport in semiconductor devices, Mathematical and Computer
Modelling of Dynamical Systems 16(1).

[Ringhofer (2001)] C. Ringhofer, C. Schmeiser, A. Zwirchmayr (2001) Moment Methods for the Semiconduc-
tor Boltzmann Equation on Bounded Position Domains, SIAM Journal on Numerical Analysis , 39:3,
1078-1095,

[Rupp (2011)] K. Rupp, T. Grasser, A. Jungel (2011), On the feasibility of spherical harmonics expansions of
the Boltzmann transport equation for three-dimensional device geometries, in: Electron Devices Meeting
(IEDM), 2011 IEEE International, 2011, 34.1.1–34.1.4.

[Hong (2011)] S.-M. Hong, A. T. Phòam, C. Jungemann (2011), Deterministic solvers for the Boltzmann
transport equation, Springer.

[Brodtkorb (2013)] A.R. Brodtkorb, T.R. Hagen, M.L. Sætra (2013), Graphics processing unit (GPU) pro-
gramming strategies and trends in GPU computing. J. Parallel Distrib. Comput. 73(1), 4–13.

[Ujaldon (2012)] M. Ujaldon (2012), High performance computing and simulations on the GPU using CUDA.
In: 2012 International Conference on High Performance Computing & Simulation, HPCS 2012, Madrid,
Spain, July 2-6, 1–7

[Owens (2008)] J.D. Owens, M. Houston, D. Luebke, S. Green, J.E. Stone., J.C. Phillips (2008) GPU com-
puting. Proceedings of the IEEE 96(5), 879–899.

[NVIDIA CUDA Home(2018)] NVIDIA: CUDA Zone. https://developer.nvidia.com/cuda-zone (ac-
cessed March 2018).

[NVIDIA CUDA(2018)] NVIDIA: CUDA Toolkit Documentation. Profiler User’s Guide.. https://docs.

nvidia.com/cuda/profiler-users-guide/ (accessed March 2018).

[NVIDIA CUDA C (2018)] NVIDIA: CUDA C Programming Guide. http://docs.nvidia.com/cuda/

cuda-c-programming-guide/ (accessed March 2018).

[Asunción (2011)] M. de la Asunción, J.M. Mantas, M.J. Castro (2011) Simulation of one-layer shallow
water systems on multicore and CUDA architectures. Journal of Supercomputing 58(2), 206–214

[Castro (2011)] M.J. Castro, S. Ortega, M. de la Asunción, J.M. Mantas, J.M. Gallardo (2011) GPU
computing for shallow water flow simulation based on finite volume schemes. Comptes Rendus Mécanique
339(2–3), 165–184.

[Asunción (2013)] M. de la Asunción, M.J. Castro, E.D. Fernández-Nieto, J.M. Mantas, S. Ortega, J.M.
González (2013) Efficient GPU implementation of a two waves TVD-WAF method for the two-
dimensional one layer shallow water system on structured meshes. Computers & Fluids 80, 441 – 452.

29

https://developer.nvidia.com/cuda-zone
https://docs.nvidia.com/cuda/profiler-users-guide/
https://docs.nvidia.com/cuda/profiler-users-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/

[Abdi (2017)] D.S. Abdi, L. C. Wilcox, T. C. Warburton, F. X. Giraldo (2017) A GPU-accelerated continu-
ous and discontinuous Galerkin non-hydrostatic atmospheric model. The International Journal of High
Performance Computing Applications 1 – 29.

[Norouzi (2017)] Y. Ye, K. Li, Y. Wang, T. Dengz (2017) New hybrid CPU-GPU solver for CFD-DEM
simulation of fluidized beds. Powder Technology 316, 233–244.

[DeVries (2013)] B. DeVries, J. Iannelli, C. Trefftz, K. A. O’Hearn, G. Wolffez (2013) Parallel implementa-
tions of FGMRES for solving large, sparse non-symmetric linear systems. Procedia Computer Science
18 491–500.

[Ye (2015)] Y. Ye, K. Li, Y. Wang, T. Dengz (2015) Parallel computation of Entropic Lattice Boltzmann
method on hybrid CPU–GPU accelerated system. Computers & Fluids 110 114–121.

[Rupp (2012)] K. Rupp, A. Jüngel , T. Grasser (2012) A GPU-Accelerated Parallel Preconditioner for the
Solution of the Boltzmann Transport Equation for Semiconductors. Lecture Notes in Computer Science,
vol 7174, 147–157. Springer, Berlin, Heidelberg

[Karaivanova (2013)] A. Karaivanova, E. Atanassov, T. Gurov (2013) Monte Carlo Simulation of Ultrafast
Carrier Transport: Scalability Study. Procedia Computer Science, 18 2298–2306.

[Rupp (2016)] K. Rupp, Ph. Tillet, F. Rudolf, J. Weinbub, A. Morhammer, T. Grasser, A. Jüngel, S.
Selberherr (2016) ViennaCL - Linear Algebra Library for Multi- and Many-Core Architectures SIAM
Journal on Scientific Computing, 38 (5), S412 – S439.

[Chapman (2008)] B. Chapman, G. Jost, R. van der Pas (2008) Using OpenMP: Portable Shared Memory
Parallel Programming The MIT Press.

[NVIDIA(2012)] NVIDIA. NVIDIA’s Next Generation CUDA TM Compute Ar-
chitecture: Kepler GK110. https://www.nvidia.com/content/PDF/kepler/

NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf (accessed March 2018).

[Nishida (2010)] A. Nishida (2010) Experience in Developing an Open Source Scalable Software Infrastructure
in Japan. Lecture Notes in Computer Science, 6017, 448–462.

[Kotakemori (2005)] H. Kotakemori, H. Hasegawa, A. Nishida (2005) Performance Evaluation of a Paral-
lel Iterative Method Library using OpenMP Proceedings of the 8th International Conference on High
Performance Computing in Asia Pacific Region (HPC Asia 2005). Beijing: IEEE, 432–436.

[Saad (2003)] Y. Saad. (2003) Iterative Methods for Sparse Linear Systems. SIAM.

[Sonneveld (2008)] P. Sonneveld and M. B. van Gijzen. (2008) IDR(s): a family of simple and fast algorithms
for solving large nonsymmetric linear systems. SIAM J. Sci. Comput., 31(2), p.1035—1062.

30

https://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf

Figure 6: The ITER block. The matrix L(k) of the linear system matrix (28).

φ φ φ φ φ φ φm−3 m−2 m−1 m m+1 m+2 m+3

Figure 7: Point stencil in FD-WENO-5 to compute the φ-derivative.

31

TPBthread N −1thread 1 thread 3thread 2thread 0

B
gap

SECTIONS
sec 0 sec 1 sec N −1

(for just the

positive flux)

ν p li
0 0 0 0 ν p i l

1 1 1 1

0 1 2 0 1 2 0 1 2......0 1 2 Ν−1 Ν−1 Ν−1 Ν−1

D
R

A
M

M
E

M
O

R
Y

S
H

A
R

E
D

H
A

L
F

Figure 8: mapping from global to shared memory to compute the φ-derivative

32 33 34 ...0 1 2 ...

0 1 2

32 33 34

...

...

...

......

...

...

......

φ32Ν −1

φ32Ν −1

φ

...

...

...

32 points 32 points 32 points 32 points

line 0 line 1 line 2 line N −1

...

line 0

line 1

line N −1
φ

bank 1

bank 0

bank 31

one line
can be accessed
simultaneously

in one clock cycle

sh
ar

ed
−

m
em

o
ry

ar
ra

n
g
em

en
t

thread 0 thread 1 thread 31

N points N points N pointsφ φ φ

Figure 9: Shared memory and banks.

32

Φ
s+1

set fluxes

RK Φ Φ
s+1s

DENS: Φ
~

ρ
s+1 s+1

x−derivative on ITER: ε ψ
s+1 s+1

V
s+1

w−derivative on

φ −derivative on

Φ

Φ

s

s

scatterings on Φ
s

Φ
s

Φ
~ s

ρ
s

ε
s

ψ
s

V
s

x−der. on Φ
s

BTE
phase

Figure 10: Overlapping the computations. The computation of the partial derivative ∂(a1·Φs+1)
∂x (on the

GPU) can be overlapped to the ITER phase (on the dual CPU host).

33

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

sequential

om
p

om
p+cuda

a
b
s
o

lu
te

 w
e
ig

h
t

(i
n

 s
e

c
o

n
d
s
)

BTE
ITER

DENS
other

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

sequential

om
p

om
p+cuda

re
la

ti
v
e
 w

e
ig

h
t

o
v
e

r
o
n
e
 s

te
p
 (

p
e
rc

e
n
ta

g
e
)

BTE
ITER

DENS
other

Figure 11: Absolute (above) and relative (below) weight of the main computational phases. We
draw the relative weights of the phases consistent with the scheme in Figure 2.

34

 0

 2

 4

 6

 8

 10

 12

 14

sequential

om
p

om
p+cuda

a
b
s
o

lu
te

 w
e
ig

h
t

(i
n

 s
e

c
o

n
d
s
)

ph. loss
w-WENO
φ-WENO
x-WENO

fluxes
ph. gain

 0

 10

 20

 30

 40

 50

 60

 70

sequential

om
p

om
p+cuda

re
la

ti
v
e
 w

e
ig

h
t

o
v
e

r
o
n
e
 s

te
p
 (

p
e
rc

e
n
ta

g
e
)

ph. loss
w-WENO
φ-WENO
x-WENO

fluxes
ph. gain

Figure 12: Absolute (above) and relative (below) weight of the main kernels in the BTE phase.
The blocks are represented ordered as for the computational weight.

35

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

sequential

om
p

om
p+cuda

a
b
s
o

lu
te

 w
e
ig

h
t

(i
n

 s
e

c
o

n
d
s
)

prec+solve
NR kernel
Schroed.

constr.

 0

 5

 10

 15

 20

 25

 30

 35

sequential

om
p

om
p+cuda

re
la

ti
v
e
 w

e
ig

h
t

o
v
e

r
o
n
e
 s

te
p
 (

p
e
rc

e
n
ta

g
e
)

prec+solve
NR kernel
Schroed.

constr.

Figure 13: Absolute (above) and relative (below) weight of the main computing steps in the
ITER phase. The blocks are represented ordered as for the computational weight.

36

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

6x65x65x300x48

12x65x65x300x48

6x129x65x300x48

6x65x129x300x48

6x65x65x600x48

6x65x65x300x96

s
e

c
o
n
d

s

by phases

BTE
DENS
ITER
other

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

6x65x65x300x48

12x65x65x300x48

6x129x65x300x48

6x65x129x300x48

6x65x65x600x48

6x65x65x300x96

s
e

c
o
n

d
s

by kernels

WENO
scatt.

prec+solv
Schroed.

NR kernel
other

Figure 14: Computational load of the hybrid parallel code. The cost of each computational phase,
for different meshes. The reference meshes are Nsbn ×Nx ×Nz ×Nw ×Nφ = 6× 65× 65× 150× 48.

37

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 GPU
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

number of cores

step

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 GPU
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

number of cores

BTE
DENS
ITER

 0

 20

 40

 60

 80

 100

 120

 140

1 3 5 7 9 11 13 15 GPU
 0

 20

 40

 60

 80

 100

 120

 140

number of cores

weno
scatts

 0

 2

 4

 6

 8

 10

 12

1 3 5 7 9 11 13 15 GPU
 0

 2

 4

 6

 8

 10

 12

number of cores

linsys
Schroedinger

Figure 15: Speedups. In these figures the speedups are meant with respect to a purely sequential code
executed by one CPU thread on the execution platform.

38

	1 Introduction
	2 Summary of the mathematical model and the numerical scheme
	2.1 Mathematical model
	2.2 Numerical scheme
	2.2.1 The discretization
	2.2.2 The magnitudes
	2.2.3 General view

	2.3 The BTE phase
	2.3.1 Partial derivatives
	2.3.2 Scatterings

	2.4 The DENS phase
	2.5 The ITER phase
	2.5.1 The Newton-Raphson scheme
	2.5.2 Schrödinger diagonalization
	2.5.3 Updating the potential V (construction and solution of the linear system)

	3 Implementation strategies
	3.1 The BTE phase
	3.1.1 Implementation of the scattering operator
	3.1.2 Implementation of FD-WENO-5
	3.1.3 The Runge-Kutta calculations

	3.2 The DENS phase
	3.3 The ITER phase
	3.3.1 Schrödinger diagonalization
	3.3.2 Newton-Raphson steps

	3.4 Overlapping the computations

	4 Numerical experiments
	4.1 Heterogeneous platform
	4.2 Source code structure
	4.3 Overview
	4.4 The CUDA kernels (BTE and DENS phases)
	4.5 The OpenMP methods (ITER phase)
	4.6 Scaling with respect to the meshes
	4.7 Speedup

	5 Conclusions and perspectives

