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Abstract 27 

Distress calls are an acoustically variable group of vocalizations ubiquitous in mammals and 28 

other animals. Their presumed function is to recruit help, but there has been much debate on 29 

whether the nature of the disturbance can be inferred from the acoustics of distress calls. We 30 

used machine learning to analyse episodes of distress calls of wild infant chimpanzees. We 31 

extracted exemplars from those distress call episodes and examined them in relation to the 32 

external event triggering them and the distance to the mother. In further steps, we tested 33 

whether the acoustic variants were associated with particular maternal responses. Our results 34 

suggest that, although infant chimpanzee distress calls are highly graded, they can convey 35 

information about discrete problems experienced by the infant and about distance to the 36 

mother, which in turn may help guide maternal parenting decisions. The extent to which 37 

mothers rely on acoustic cues alone (versus integrate other contextual-visual information) to 38 

decide upon intervening should be the focus of future research. 39 

Keywords: crying, whimpers, Pan troglodytes, support vector machine, machine learning 40 

41 

Declarations 42 

Funding 43 

We are grateful to the Royal Zoological Society of Scotland for providing core funding to the 44 

Budongo Conservation Field Station. This research was supported by funding from the 45 

European Union’s Seventh Framework Programme for research, technological development 46 

and demonstration (grant agreement no 283871), a Fyssen Foundation post-doctoral 47 

fellowship awarded to GD, the Swiss National Science Foundation (PZ00P3_154741) and 48 

Start up-funding of the Taipei Medical University (108-6402-004-112) awarded to CDD. 49 



3 

50 

Authors’ contributions 51 

GD, KZ and MDR designed the research; GD collected the data; GD analysed the behavioural 52 

data; CDD implemented the acoustic extraction and the machine learning procedure; all 53 

Authors contributed to the writing of the manuscript. 54 

55 

Conflict of interests 56 

None. 57 

58 

Code availability 59 

Code is available at: https://github.com/ChristophDahl/Chimpanzee-Distress-Calls 60 



 4 

Introduction 61 

Distress calls are the most primitive mammalian vocalizations (MacLean 1985; Newman 62 

2007). They appear early in ontogeny (Illingworth 1955) and are highly preserved in 63 

phylogeny, with a simple structure (tonal sound with a chevron or descending shape) also 64 

present in species beyond the class Mammalia (Lingle et al. 2012). Their function is most 65 

likely to recruit help (Soltis 2004; Lingle et al. 2012; Lingle and Riede 2014), but it is 66 

uncertain whether caregivers can base their reactions and inferences about the nature of the 67 

disturbance on the acoustics of the calls alone, or whether they must also rely on contextual 68 

cues. 69 

 70 

In humans, at least three types of distress vocalization elicitors have been delineated: after 71 

birth, human infants produce cries when hungry (Gilbert and Robb 1996), when separated 72 

from their main caregiver (Christensson et al. 1995), and when in pain (Fuller 1991). 73 

Research consisting of testing whether caregivers and experienced professionals can 74 

differentiate between cries associated with a diversity of demands and respond accordingly 75 

has produced inconclusive results (Wasz-Höckert et al. 1964; Müller et al. 1974). Overall, the 76 

current view is that, in humans and other mammals, distress calls represent an acoustically 77 

graded system, with no clear acoustic boundaries (Zeskind et al. 1985; Porter et al. 1986; 78 

Lingle et al. 2012). However, the fact that a signal is graded does not automatically disqualify 79 

it from categorical perception (May et al. 1989; Fischer 1998; Green et al. 2020).  80 

 81 

In this study, we used automated acoustical feature extraction and machine learning to 82 

evaluate whether infant chimpanzee distress calling could be associated with specific 83 

contextual features (notably: the problem infants experience, the distance to their mother, and 84 

the maternal response). 85 
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 86 

In chimpanzees, distress calls (typically: ‘whimpers’) are mainly produced by infants (Plooij 87 

et al. 1984; Goodall 1986; Bard 2000). Distress calls are different in form and function from 88 

alarm calls (typically alarm hoos and barks; see Crockford et al. 2012, 2017, 2018; Schel et al. 89 

2013). This difference is already potent in infants and juveniles (Dezecache et al. 2019). One 90 

useful functional distinction (at least in chimpanzees) is that distress calls attract social 91 

partners to one’s particular situation, whereas alarm calls are used to warn social partners 92 

about a common danger in the environment (Dezecache et al., 2019).  93 

 94 

Infant chimpanzee distress calls are short tonal and low-pitched sounds, which can be given in 95 

series (see Electronic Supplementary Material [ESM] for video and acoustical examples; see 96 

ESM Figure 1 for spectrogram), potentially reflecting a difference in arousal and other 97 

internal states (Briefer 2012). After previous longitudinal research with free-ranging 98 

chimpanzees (Plooij et al. 1984), rough distinctions (based on ear) have been made between 99 

(a) whimpers (sequences of relatively pure tones), (b) whimper-hoos (soft and low-pitched 100 

sounds rarely produced in sequences), and (c) ‘crying’ (loud vocalizations marked by rapid 101 

fluctuations in frequency, resembling adult screams). Apart from work on idiosyncratic 102 

distress calls (with features of the fundamental frequency contributing to individual 103 

distinctiveness, see Levréro and Mathevon 2013), no acoustic analyses have been conducted 104 

on these vocalisations in chimpanzees. Distress calls thus seem to be a rather broad yet 105 

distinct acoustic phenomenon in young chimpanzees.  106 

 107 

Recent developments in machine learning have proved critical in the study of animal vocal 108 

communication (Mielke and Zuberbühler 2013; Fedurek et al. 2016; Turesson et al. 2016; 109 

Versteegh et al. 2016) and human crying (Barajas-Montiel and Reyes-Garcia 2006; 110 
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Saraswathy et al. 2012; Chang and Li 2016), but classification based on machine learning 111 

algorithms has not yet been applied to distress calls of chimpanzees. They can yet help reveal 112 

fine differences in acoustical information that discriminates between a number of 113 

characteristics of calling episodes, such as the characteristics of the context of calling. 114 

 115 

In order to evaluate the extent to which the distress calls of infant chimpanzees contain 116 

information about the situation in which calls occur, the distance between mother and infant, 117 

and can be associated with particular maternal responses, we applied automated acoustical 118 

information extraction and machine-learning classification methods. We indeed analysed 119 

distress call episodes from infants of a cohort of wild chimpanzees (Pan troglodytes 120 

schweinfurthii) (N=8) in the Sonso community of Budongo Forest, Uganda. We extracted and 121 

analysed acoustical information from a total of 178 distress call episodes. We subjected 122 

acoustic exemplars from a recording sequence to an automated feature extraction algorithm 123 

before training a supervised learning algorithm for subsequent categorisation. The procedure 124 

consisted of training a model to segregate exemplars given in a particular context. This model 125 

was then used to categorise new exemplars (Mohri et al. 2018), which enabled us to evaluate 126 

whether the acoustics of graded distress call series encode information about the context of 127 

emission. Following prior reports in other primates, we also evaluated whether the distress 128 

calls encoded information about the distance between the infant and the mother (Bayart et al. 129 

1990; Wiener et al. 1990). Finally, we looked at whether maternal responses could, in 130 

principle, be predicted from the acoustic exemplars alone (although other cues are also 131 

inevitably used by the mother).  132 

 133 

We predicted that, if distress calls contain information about either the situation and problem 134 

triggering infant calling, the distance between mother and infant and can be associated with 135 



 7 

maternal response, we would observe significant above-baseline level classifications of 136 

exemplars unknown to a model previously trained to discriminate exemplars across the 137 

various contextual categories.  138 

 139 

Such a discovery could encourage further research to look for a common acoustical code 140 

potentially used by the chimpanzee infants and mothers, a code that could contribute to 141 

coordinate their activities, notably when parental protective behaviour is most needed. 142 

 143 

 144 

Methods  145 

Ethical note 146 

We received permission from the Uganda Wildlife Authority (UWA) and the Uganda 147 

National Council for Science and Technology (UNCST) to conduct this study. 148 

 149 

Subjects 150 

Data were collected from infants (N=8) of the well-habituated wild chimpanzees (N≈70) of 151 

the Sonso community (Reynolds 2005) of Budongo Forest, Uganda, during February-June 152 

2014, December 2014, March-June 2015 and April-May 2016 (see Table 1 for details). For 153 

further information about the study site, see Eggeling (1947) and Reynolds (2005). We 154 

collected data from those specific infants because they could easily be followed in the forest, 155 

as they were born from well-habituated mothers, unwary of human observers. 156 

 157 

Data collection 158 

Distress calling episodes were continuously videotaped in all-occurrence sampling (Altmann 159 

1974). Despite their acoustic variability, the short, tonal, and sometimes sequential production 160 
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pattern of distress calls enables trained listeners to clearly identify these calls as distinct from  161 

other infant vocalizations such as grunts or barks (see ESM Figure 1 for a spectrogram and 162 

ESM for video and audio examples). The entire dataset, part of which was used in this study, 163 

was gathered by the first author and is composed of 271 call episodes (i.e., a series of distress 164 

calls interspaced by no more than 10s). They were video-recorded using a Panasonic HC 165 

X909/V700 video-camera, with the sound captured by a Sennheiser MKE-400 shotgun 166 

microphone. To account for any missing information in the videos, all potential causes of 167 

infant distress calling, as well as other contextual information, were recorded.  168 

 169 

Infants’ perceived needs were classified according to so-called ‘situations’ (‘Separation’, 170 

‘Threat’ and ‘No threat’) and more specific ‘problems’ using a typology established in the 171 

field (see ESM Table 1 for details).  172 

 173 

In some of the ‘Separation’ situations, physical distance was initiated by the mother and the 174 

infant was calling in response to the movement of the mother (problem: ‘Active separation’; 175 

ESM Table 1). In other episodes of the ‘Separation’ situations, the infant was already away 176 

from the mother and started calling in the absence of specific travelling movements from the 177 

mother (problem: ‘Passive separation’; ESM Table 1).  178 

 179 

Similarly, ‘Threat’ situations involved different problems. In some cases of ‘Threat’, infants 180 

could be engaged in an activity or action that appeared to trigger physical pain such as due to 181 

the mother moving abruptly, or during rough social play (problem: ‘Pain’; ESM Table 1). In 182 

others, infants found themselves in a threatening environment, such as when there was 183 

aggression in the vicinity (problem: ‘Danger’; ESM Table 1). 184 

 185 
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Finally, the situation of ‘No threat’ could mean conflicts of interests for the infants (problem: 186 

‘Conflict’; ESM Table 1), such as when the mother and the infant appeared to disagree on 187 

travel decisions or food provisioning (e.g., mother refusing infant’s access to the nipple). In 188 

other instances of ‘No threat’, there was no obvious trigger that induced distress calls in the 189 

infant, and no specific reason could be identified (problem: ‘No reason’; ESM Table 1). 190 

 191 

Physical distance between mother and infant was determined at the onset of the distress call 192 

episodes. We coded ‘supported’ if most of the weight of the infant was then supported by the 193 

mother; ‘contact’ if there was physical contact with mother but without full support (e.g., 194 

standing on the ground); ‘arms-reach’ if the infant was within the arm’s reach of the mother, 195 

and ‘beyond’ if the infant was beyond the arm’s reach of the mother. Classification of the 196 

distances in this manner proved to be more meaningful and probably reliable than the 197 

estimation of distance using a metric system (such as measurement in meters or inches). We 198 

also determined the nature of the mothers’ reaction starting from the onset of the calling 199 

episode until up to 10 seconds after the offset of the calling episode. We coded for whether 200 

the mother gazed towards the infant (based on facial orientation), approached the infant, 201 

collected the infant or vocalized. Note that these are not mutually exclusive categories in that 202 

mothers may, for instance, approach and call simultaneously.  203 

 204 

While the coding of ‘situations’ and ‘problems’ largely relied on live commentaries by the 205 

cameraman, the coding of distance and maternal response was mostly based on video. The 206 

coding of distance and maternal response was intra-reliably validated on 19.5% of the entire 207 

dataset (κ configuration of responses = 0.93; κ distance = 1; κ gaze = 0.90; κ approach = 0.87; 208 

κ collection = 0.96; κ vocalization = 0.92).  209 
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 210 

Quantification and statistical analysis  211 

First, we pre-processed the raw audio files (wav format, 44100 Hz) by applying a band pass 212 

filter (filter order 10) from 100 to 700 Hz. We also filtered out background noise using a 213 

Vuvuzela denoising algorithm, implementing noise spectrum extraction, signal-to-noise ratio 214 

estimation, attenuation map and inverse short-time Fourier transform computation (Boll 1979; 215 

Ephraim and Malah 1984). The dedicated MATLAB functions are freely available at 216 

MathWorks FileExchange (Choqueuse 2020). Distress calls could be above 700 Hz but this 217 

was the maximal value of the peak fundamental frequency at mid-call of the first distress call 218 

of the episodes composing the entire dataset. Despite being very conservative, this pass band 219 

was appropriate for the localization of exemplars and to avoid false positives. We subdivided 220 

the audio files into 10ms segments, determined the prominence of each exemplar time 221 

element’s energy and applied a cut-off threshold at the 80th percentile of the energy-222 

prominence distribution. We then sorted out those extractions that were shorter than 40ms or 223 

longer than 120ms (corresponding to the range of durations extracted manually from distress 224 

calls, based on the first call of the distress call episodes of the entire dataset) and subjected the 225 

remaining extractions to a human-based validation process, leaving 1330 exemplar on- and 226 

offsets. We extracted the full frequency spectrum ranging from 50 to 4000 Hz of a given 227 

exemplar on- and offsets. 228 

 229 

We conducted a four-stage analysis, consisting of ‘feature extraction’, ‘feature selection’, 230 

‘classification’ and ‘feature evaluation’: 231 

 232 
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Feature extraction  233 

Feature extraction is the extraction of a subset of relevant features from each exemplar to 234 

minimize data size, redundancy in information and computational efforts. It also increases the 235 

generalization ability of a classifier (i.e., its ability to distinguish between classes, such as the 236 

situation in which the exemplars were found) (Tajiri et al. 2010). We extracted mel frequency 237 

cepstral coefficients (MFCCs), representing the envelope of the short-time power spectrum 238 

(that is, the distribution of power into the different frequency components) as determined by 239 

the shape of the vocal tract (Logan 2000; Mielke and Zuberbühler 2013; Fedurek et al. 2016). 240 

The basic idea behind the extraction of MFCCs is to obtain a comprehensive representation of 241 

the frequencies that compose an audio excerpt, while emphasising certain frequency bands. 242 

Larger filters are used to extract acoustic features in higher frequencies. Then, the Mel-scale-243 

related function enlarges filters as frequencies get higher. Additionally, the cepstral 244 

representation enables extracting precise information that is less dependent from the 245 

characteristics of the vocalizer. 246 

 247 

We subdivided acoustic exemplars into windows of 25ms segments, with 10ms steps between 248 

two successive segments, to account for signal changes in time. We warped 26 spectral bands 249 

and returned 13 cepstra, resulting in feature dimensions of 13 values each. We then calculated 250 

the mean and co-variances of each cepstrum over the collection of feature segments, resulting 251 

in a 13-value vector and a 13 x 13-value matrix, concatenated to 104-unit vectors. We also 252 

applied feature scaling to values between 0 and 1.  253 

 254 

Feature selection  255 

Prior to classification, we conducted a feature selection procedure by reducing the number of 256 

features to a set of reliable features to explain the maximum variance in a given data set. We 257 
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applied a t-test on each feature dimension by comparing values of the feature dimensions that 258 

were sorted by predefined class labels (e.g., situation ‘Threat’ vs. situation ‘No threat’). For 259 

each comparison, we used randomly determined 75% of the samples and re-ran the procedure 260 

five times. MATLAB’s MathWorks webpage provides a tutorial on feature selection and all 261 

associated functions. Such feature selection procedure is called a filter approach, where 262 

general characteristics are evaluated for the selection without subjecting the dimensions to a 263 

classifier. The feature variance and feature relevance (i.e., additional improvement for each 264 

added feature) determine the importance of features. Since this is done in the pre-processing 265 

steps prior to classification, it is a procedure that is uncorrelated to the classification 266 

algorithm. In our case, we chose the feature dimensions that resulted in the highest t-values.  267 

 268 

Classification  269 

We implemented support vector machines (SVMs) using the LIBSVM toolbox (Chang and 270 

Lin 2011). Classification consisted of training and testing phases: first, 80% of the exemplars 271 

were selected to constitute a training dataset. Those exemplars were given attributes that 272 

indicated their ‘class’ (i.e., exemplars are marked with an attribute that tells whether the 273 

exemplar was taken, for example, from situation ‘Threat’ = 1 or situation ‘No threat’ = 0) and 274 

the model was trained to separate optimally between classes. Next, the trained model was 275 

tested on the remaining 20% of the exemplars (i.e., the test dataset) for which the attribute 276 

was unknown to the model. The performance of the model (i.e., its capacity to assign the 277 

correct class or attribute to this exemplar of the test dataset) was then evaluated and compared 278 

to a baseline level (the proportion of exemplars pertaining to a particular class in the whole set 279 

of exemplars). Training and testing were always done on two classes. 280 

 281 
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We used a radial basis function (RBF) kernel and 5-fold cross-validated the parameters C and 282 

Gamma with separate smaller data sets (for details see Fedurek et al. 2016). We used the top 283 

40 feature dimensions for classification (see ‘feature selection’ above), omitting all others. 284 

We obtained performance scores from the models that were trained and tested on the same 285 

labels (basic classification procedure) and from cross-comparisons of conditions, such as 286 

training on situation ‘Threat’ and testing on one type of maternal response. Previous work has 287 

shown that this method provides useful insights into the nature of information coding 288 

(Caldara and Abdi 2006; Fedurek et al. 2016; Dahl et al. 2018).  289 

 290 

We compared the scores of correct classifications (i.e., the proportion of exemplars being 291 

assigned their true attribute [or ‘class’]) to a baseline level (i.e., the actual proportion of 292 

exemplars that correspond to a given attribute or class in the set of exemplars) using one-293 

tailed two-sample t-tests. Because tests multiple tests are being carried out using the same 294 

dataset, two methods (Holm and Benjamini-Hochberg) were used to correct for multiple 295 

comparisons (Holm 1979; Benjamini and Hochberg 1995). To ensure that no single individual 296 

unduly influenced the outcome of the classification, a leave-one-out method was used, in 297 

which the general classification procedure was re-run eight times by omitting exemplars 298 

attributed to one infant in each run. We tested for a significant interaction between leave-one-299 

out runs and the individual comparisons using a two-way ANOVA test.  300 

 301 

Feature evaluation  302 

In order to evaluate the features with highest contribution to the classification of certain 303 

attributes, we determined the extent to which comparisons shared similar feature dimensions 304 

for situations (‘No threat’ vs. ‘Threat’; ‘No threat’ vs. ‘Separation’; ‘Threat’ vs. ‘Separation’). 305 

We additionally determined the top 10 feature dimensions of each comparison, as outlined 306 
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above, and correlated the feature numbers of those feature dimensions in a pairwise fashion 307 

using Spearman’s rank correlation tests. Feature numbers refer to the topological organization 308 

of the mel-frequency space, such that close feature numbers are indicative of similar 309 

underlying structures accounting for both comparisons. To determine the feature dimensions 310 

that are critical for the classification of exemplars, we assessed whether feature dimensions 311 

have been repeatedly used by the classifier overall in the classification. We therefore 312 

considered the 15 types of comparisons regarding infants’ problems (e.g., ‘Conflict’ vs ‘No 313 

reason’). As for the distance between the infant and the mother, we considered the six types of 314 

comparisons (e.g., ‘Supported’ vs. ‘Contact’). Regarding maternal response, we considered 315 

four yes-no comparisons, namely for ‘Gaze’, ‘Approach’, ‘Collection’ and ‘Vocalization’. We 316 

then examined the empirical distribution of the 40 feature dimensions used in the feature 317 

selection algorithms to determine the top ten contributors. Note that the choice of 10 features 318 

was arbitrary. As a baseline, a random distribution of “best features” for each comparison was 319 

determined by randomly selecting 10 out of 104 features. The frequency distribution across 320 

all comparisons was determined and 95% confidence intervals were calculated by running the 321 

procedure 1,000 times. We then reconstructed the underlying frequency bands of significant 322 

feature dimensions, resulting in feature maps. In a further step, we calculated differences in 323 

feature importance by pairwise contrasting feature maps. We contrasted two feature maps by 324 

subtracting corresponding frequency values, reflecting the occurrence of one particular mean 325 

cepstrum or co-variance of two cepstra, if at least one of the corresponding two values from 326 

the two feature maps was significant. 327 
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 328 

Results 329 

Classification of exemplars across situations  330 

Infants produced distress calls when separated from their mother (situation: ‘Separation’), 331 

when seemingly exposed to threat such as aggression or the experience of pain (situation: 332 

‘Threat’) or for contexts we deemed non-threatening (situation: ‘No threat’). Classification 333 

accuracy for all 3 situations was high and significantly higher than baseline (see Figure 1A 334 

and ESM Table 2).  335 

 336 

The results of the leave-one-out procedure was not consistent with the effects observed due to 337 

single subjects, as indicated by an insignificant interaction between situations and the leave-338 

one out runs (F(14,720) = 1.36, MS = 17.16, p = 0.17). This suggests our results are not 339 

unduly influenced by single individuals. 340 

 341 

Classification of exemplars across problems  342 

The classification accuracy for all problems (but ‘Active separation’ and ‘No reason’) was 343 

significantly higher than baseline (see Figure 1B and ESM Table 3). As shown in ESM Figure 344 

4A, age did not appear to be driving the observed pattern, as the majority of exemplars were 345 

found around the same ages. 346 

 347 

Feature analysis (meant to evaluate the features with highest contributions to the 348 

classification) revealed similar rankings for contrasts of ‘Threat’ vs. ‘No threat’ and ‘Threat’ 349 

vs. ‘Separation’. The correlation of feature numbers at a given rank in both contrasts yielded a 350 

positive correlation (rs = .93, n = 10, p < .001, Figure 1C). This was not the case for pairs of 351 

contrasts involving either ‘Separation’ (rs = .47, n = 10, p = .18) or ‘No threat’ (rs = .61, n = 352 
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10, p = .07; Figure 1C). This indicates that the classification between pairs of situations 353 

involving ‘Threat’ relied on similar feature dimensions. 354 

 355 

When examining feature dimensions most strongly accounting for the classification of 356 

exemplars according to the specific problems the infants were exposed to, we found key 357 

contributions from the first, third and fourth mean cepstra, accompanied by covariances of 358 

cepstra corresponding with frequency bands around 342.59 to 1074.07 Hz and 50 to 781.48 359 

Hz.  360 

 361 

Classification of exemplars across distances between the infant and the mother 362 

Our model classified distances at levels higher than baseline (see Figure 2A and ESM Table 363 

4). The leave-one-out procedure revealed no interaction between distances and leave-one-out 364 

runs (F(5,288) = 0.92, MS = 17.44, p = 0.47).  365 

 366 

We contrasted distance classes by assigning categorical units of distance (1 = most proximal 367 

[‘Supported’] and 4 = most distal [‘Beyond’]) and by computing the relative distance between 368 

classes. Classification accuracy significantly increased as relative distance increased (F(2,59) 369 

= 35.12, MS = 16.21, p < .001; Figure 2B). This suggests that variation in classification 370 

performance reflects coding of distance in the exemplars. The acoustics of calls produced 371 

when the relative distance between the mother and the infant was more similar at episode 372 

onset were harder to discriminate than those produced when the mother and the infant were 373 

relatively more distant to each other. 374 

 375 

Examination of feature dimensions that most contribute to the classification of distances 376 

revealed that features that are of significance for two or more comparisons were significantly 377 
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different from the baseline. Indeed, the empirical number count 2 significantly surpassed a 378 

random distribution of number counts, relative to the total number of comparison (here 6) 379 

(Figure 2C). The third and fifth mean cepstra, accompanied by covariances of cepstra 380 

corresponding with frequency bands in the lower to mid-range of the Hz-spectrum, 381 

contributed most to classification (Figure 2D). 382 

 383 

Classification of exemplars and maternal response 384 

Our model discriminated the probability of the mother to gaze towards, approach, collect the 385 

infant and vocalize contingently to the infant’s distress calls accurately and above baseline 386 

values (see Figure 3A; ESM Table 5). The leave-one-out procedure revealed no significant 387 

interaction between individual runs (N = 8) and maternal response (F(3,192) = 0.67, MS = 388 

1.87, p = 0.570). 389 

 390 

To evaluate the features most contributing to determining whether the mother did or did not 391 

gaze, approach, collected the infant or vocalized contingently to the infant’s calling, we 392 

plotted the mean expression of each feature dimension for both the presence (‘Yes’) and the 393 

absence (‘No’) of a given maternal response. Selected features were often located at the outer 394 

edge of the distribution (ESM Figure 2B-E), suggesting that they account for one class 395 

significantly stronger than for the other class.  396 

 397 

The contrasts that yielded high performance scores showed more distinct feature separation 398 

(e.g., ‘Gaze’ plot - ESM Figure 2B) than the contrasts that yielded lower classification (e.g., 399 

‘Collection’ plot - ESM Figure 2D). We also examined which feature dimensions accounted 400 

for the classification of exemplars the most according to maternal response. This analysis 401 

revealed that features that are of significance for two or more comparisons were significantly 402 
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different from the baseline. The empirical number count 2 significantly surpassed a random 403 

distribution of number counts, relative to the total number of comparisons (here 4; Figure 3B). 404 

Notably, the first, third, fourth and the 12th mean cepstra, accompanied by accompanied by 405 

covariances of cepstra corresponding with frequency bands around 342.59 to 1074.07 Hz and 406 

50 to 781.48 Hz, contributed significantly to the classification (Figure 3C). The feature 407 

distribution of maternal response classification resembles the feature distribution of problems 408 

faced by the infants (Figure 1E). 409 

 410 

Mother-infant interactions 411 

To further understand how information-coding of the situation in the exemplars is associated 412 

with a particular configuration of maternal response, we trained a model on discriminating 413 

situations and infants’ problems, and tested its performance in classifying the presence of the 414 

various types of maternal response.  415 

 416 

Our model’s discrimination accuracy was significantly higher than baseline levels for 417 

contrasts of the ‘Threat’ and ‘No threat’ situations across all maternal response types (Memp = 418 

69.38, SDemp = 9.39; Mbase = 54.65, SDbase = 2.87; t(78) = 9.48, p < 0.001), as well as of the 419 

‘Threat’ and ‘Separation’ situations (Memp = 72.31, SDemp = 8.87; Mbase = 55.33, SDbase = 420 

2.67; t(78) = 11.57, p < 0.001; Figure 4A). However, contrasts of the other two other 421 

situations (‘No threat’ and ‘Separation’) were not successfully discriminated based on 422 

maternal response (Memp = 55.33, SDemp = 4.33; Mbase = 54.90, SDbase = 2.87; t(78) = 0.52, p = 423 

0.300).  424 

 425 

Testing the model with problems, we found all comparisons to be significant (p < .05; ESM 426 

Table 6) except for the contrasts of the ‘No reason’ vs. ‘Active separation’ problems, and of 427 
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the ‘Conflict’ vs. ‘No reason’ problems (Figure 4B). Gazing was a relatively reliable action of 428 

the mother, particularly during problems associated with Situation ‘Threat’. On the other 429 

hand, ‘Collection’ and ‘Vocalization’ were found to be more modest in discriminating 430 

between problems. 431 

 432 

To address the extent to which structural differences of exemplars reflect structural 433 

differences encoding distance and predicting maternal response, we conducted pairwise 434 

contrasts of the feature maps for situation, distance and maternal response. We found that, 435 

when comparing situation and distance, certain features were selective for situation that 436 

related strongly to the first frequency band ranging from 50 to 342.59 Hz and co-varied with 437 

frequency bands ranging from 488.89 to 927.78 Hz. In addition, the frequency band centring 438 

at 1366.70 Hz co-varied with the second frequency band ranging from 196.30 to 488.89 Hz 439 

and the fifth ranging from 635.19 to 927.78 Hz (Figure 4C). On the other hand, distance was 440 

selectively coded in the second frequency band ranging from 196.30 to 488.89 Hz, co-varying 441 

with multiple feature dimensions (Figure 4C). When comparing situation and maternal 442 

response (Figure 4D), we found similar components involved, however, to a marginal degree, 443 

indicating that there are similar main features accounting for most of the classification of 444 

exemplars for both situation and maternal response. Comparison between distance and 445 

maternal response revealed similar results to the comparison between situation and distance 446 

(Figure 4E). 447 

 448 

Discussion 449 

Distress calls have been described as acoustically continuous or graded in various mammals, 450 

but studies (notably in humans) have raised the possibility that these calls may convey 451 

discrete information (Müller et al. 1974; Wiesenfeld et al. 1981; Brennan and Kirkland 1982; 452 
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Fuller 1991; Soltis 2004). Here, we used a supervised machine learning approach to 453 

investigate distress calls of wild infant chimpanzees and evaluate whether they carry 454 

information about the nature of the external events experienced by the caller and whether they 455 

can be associated with particular maternal responses, which the calls may elicit. 456 

 457 

We extracted exemplars from distress call episodes and used machine learning classification 458 

techniques. We found that a model trained on discriminating exemplars between a threatening 459 

situation (‘Threat’) from others was better at predicting the mother’s response, suggesting that 460 

distress calls during threatening situations rely on specific acoustic features. This is further 461 

exemplified by the fact that discriminations between exemplars found in situations ‘Threat’ 462 

vs. ‘Separation’ on the one hand, and ‘Threat vs. No threat’ on the other hand, relied on 463 

common features. Our results suggest that the acoustic information present in distress call 464 

episodes contain information about the type of external events triggering calling as well as the 465 

nature of the problem. In fact, distress calls encode certain information, at the situation level 466 

(threat versus no threat), at the problem level, and are associated with maternal responses. 467 

These results do not appear to be driven by the inclusion of particular individuals in the 468 

dataset (as indicated by insignificant leave-one-out procedures) or by the prominence of 469 

particular age classes for specific problems. 470 

 471 

Interestingly, the discrimination of problems that belonged to the same situation (e.g., 472 

problems ‘Pain’ and ‘Danger’, both of which occurred in the situation ‘Threat’) lead to less 473 

accurate classification, despite being significantly different from the baseline. The classifier’s 474 

discrimination of the problems was most accurate when contrasting the problems that 475 

occurred in the ‘Threat’ situation to problems that occurred in the ‘No threat’ situation. 476 

Similarly, contrasts, in which one of the problems occurred in the ‘Threat’ situation and the 477 
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other in the ‘Separation’ situation yielded high classification scores. Classification of 478 

contrasts involving problems in the ‘Separation’ vs. ‘No threat’ situations appeared to be 479 

lower than that comparing problems in the ‘Threat’ vs. other situations. This suggests that 480 

threatening contexts are associated with particularly salient acoustical features. 481 

 482 

We also found that the distance between infants and their mothers at the onset of distress call 483 

episodes is associated with the particular structure of the exemplars, with exemplars being 484 

acoustically most distinctive as the distance between the infants and mothers increases. 485 

Another relevant finding was that whether the mothers would gaze at, approach, collect or 486 

vocalize at their infant during the call episode could be predicted by the acoustic 487 

characteristics of the exemplars. Further, we found that feature maps supporting the 488 

classifications of situations and maternal responses were relatively similar. 489 

 490 

Our results suggest that, in principle, chimpanzee mothers could rely on the acoustic 491 

information contained in distress calls to make intervention decisions. Such decisions may be 492 

based on acoustic cues that are linked to the affective state of the infant and that reflect the 493 

intensity and severity of the problem (Weary et al. 1996; Briefer 2012). The ability to process 494 

these acoustic cues and react accordingly can enhance the fitness of both the infants vocally 495 

conveying their specific needs and the fitness of their close relatives, namely their mothers. 496 

This potentially fitness enhancing ability can be particularly important in a species in which 497 

infanticide by both males and females is commonly reported (Arcadi and Wrangham 1999; 498 

Watts and Mitani 2000; Townsend et al. 2007; Lowe et al. 2019, 2020). 499 

 500 

However, it is not clear that mothers solely rely on acoustical cues. A number of other cues 501 

(infants’ facial features, movements and gestures; reaction of other conspecifics; knowledge 502 
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of past problems experienced by the infant) must also be playing a role in shaping mothers’ 503 

reactions. Our findings only suggest that distress calls encode sufficient information to shape 504 

maternal reaction decisions, not that mothers only take acoustic cues into account. Moreover, 505 

we cannot firmly establish that infant distress calls are the causes of the maternal responses 506 

examined here. It is possible that the mothers were to display the kind of protective response 507 

they showed regardless of whether the infant called or not (because they were to do it 508 

anyway, or simply because they perceived the problems infants were then facing through 509 

other means). The current study does not allow us to disentangle whether, when the mothers 510 

responded to their infants' calling, they did it in response to the calls alone or they relied on 511 

numerous other cues. A potential way of examining this is by recording distress calls in 512 

situations where infants are clearly out of sight of the mothers, a scenario unlikely to happen 513 

with young chimpanzee infants, given their relative dependency to their mothers (Plooij et al. 514 

1984).  515 

 516 

One strength of the current study is its use of robust machine learning approaches to examine 517 

highly complex acoustic phenomena, which would otherwise be intractable. Besides the 518 

technical achievement the development of machine learning has undeniably brought in a 519 

number of fields of research (Riecken 2000; Sebe et al. 2005; Olsson 2009; Deng and Li 520 

2013; Kelleher et al. 2015; Libbrecht and Noble 2015; Nithya and Ilango 2017), its value in 521 

the study of animal cognition is becoming clearer (Gerencsér et al. 2013; Wiltschko et al. 522 

2015; Dahl et al. 2018). In a recent study, Fedurek and colleagues (Fedurek et al. 2016) were 523 

able to show that different phases of the complex pant-hoot calls of male chimpanzees carry 524 

information about particular features of the caller, notably its age and identity, revealing 525 

unprecedented details about how information can be acoustically represented. 526 

 527 
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A potential weakness of machine learning approaches is their technical difficulty. This is 528 

particularly true when used in combination with other technical approaches (such as the 529 

extraction of MFCCs) that are less directly amenable to biological interpretations than 530 

conventional acoustic metrics such as the description of certain frequency parameters, or the 531 

measurement of the fundamental frequency (Briefer 2012). In this study, we also used an 532 

automated routine for the extraction of exemplars representing the distress call episodes, 533 

which further complexified the approach. 534 

 535 

Our results suggest that the distress calls of infant chimpanzees may be acoustically rich 536 

enough to convey information about the external events triggering the calls, and as such, may 537 

help caregivers to make important intervention decisions. Undoubtedly, infant distress calls 538 

are interpreted by the recipients in combination with other signals such as gestures, postures 539 

and other conspecifics’ reactions that often accompany them (Hobaiter and Byrne 2011, 2014; 540 

Fröhlich et al. 2016, 2019; Fröhlich and Hobaiter 2018). Mothers also probably make 541 

inferences about the needs of the infants from past knowledge of problems experienced by the 542 

infant. How the recipients consider and integrate across these different sources of information 543 

needs to be addressed by future research.  544 

 545 
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Tables 709 

Table 1 710 

List of infants, estimated birthdate, minimum and maximum age in months over the course of 711 

the study, sex, number of contributed distress call episodes used in acoustic extraction, and 712 

number of extracted exemplars. 713 

ID Birthdate Min. age Max. age Sex Call episodes (N) Extracted exemplars 

(N)  

KF 26/03/2014 0.13 24.26 M 9 37 

OZ 16/09/2014 1.38 18.16 M 48 700 

MZ 27/10/2015 4.20 5.28 M 32 147 

RY 08/10/2013 4.75 7.74 M 9 22 

HM 26/10/2013 4.98 6.82 F 5 11 

KO 07/09/2014 6.10 19.57 M 21 74 

KJ 07/07/2013 7.02 32.69 M 49 333 

KV 26/11/2014 15.67 17.80 M  5 6 

 714 

  715 
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Figures  716 

Figure 1. Model performance to classify across the situations and infants’ problems, and 717 

evaluation of key features contributing to classification  718 

(A, B) Accuracy values of classification runs are shown for all contrasts between situations 719 

(panel A) and problems (panel B). Wide blue horizontal bars indicate the means and blue 720 

horizontal bars the 95% confidence-intervals. Wide red lines indicate the means of the 721 

baseline and narrow red lines the 95% confidence-intervals. (C) The feature sets accounting 722 

for individual contrasts the most are compared and correlated. Dots show individual samples; 723 

relationships between them are indicated by regression lines. (D) Feature evaluation 724 

procedure, showing the occurrence count (x-axis), reflecting the number of times a particular 725 

feature dimension was among the top 10 feature dimensions across all comparisons, and the 726 

relative frequency of n-counts (y-axis). The empirical distribution is shown in red, a random 727 

distribution (solid line) in black, and 95% confidence-interval in dotted lines. N-counts of 4 or 728 

more are significantly over-represented. (E) X- and Y-axes represent frequency bands. 729 

Significant feature dimensions are colour-coded and structurally aligned in a frequency-730 

transformed representation. Light blue dots indicate significant mean cepstra, orange dots 731 

indicate positive co-variances of cepstra, and mint dots indicate negative co-variances of 732 

cepstra. Grey dots indicate non-significant feature dimensions. The size of dots indicates their 733 

relative importance: the larger the dot the more frequently a feature dimension has been used 734 

across all comparisons. 735 

 736 

Figure 2. Model performance to classify across distances between the mother and the 737 

infant, and evaluation of key contributing features  738 

(A) Accuracy values of classification runs are shown, contrasting various categorical 739 

distances between the infant and the mother. The colour-code is the same as in Figure 1 740 



 31 

panels A & B. (B) Accuracy scores are plotted according to the relative distances compared 741 

(max 3: Supported [Supported] - Beyond arm’s reach [Beyond]). Accuracy values are shown 742 

as z-scores. Red line represents the linear regression fit. (C) Feature evaluation procedure, 743 

showing the occurrence count (x-axis), reflecting the number of times a particular feature 744 

dimension was among the top 10 feature dimensions across all comparisons, and the relative 745 

frequency of n-counts (y-axis). The colour-code is the same as in Figure 1D. N-counts of 2 or 746 

more are significantly over-represented. (D) Significant feature dimensions (see Figure 1E for 747 

colour-codes). 748 

 749 

Figure 3. Classification performance per type of maternal response and evaluation of 750 

contributing features  751 

(A) Accuracy values of classification runs for maternal response. The colour-code is the same 752 

as in Figures 1 panels A & B. (B) Feature comparison, showing the occurrence count (x-axis), 753 

reflecting the number of times a particular feature dimension was among the top 10 feature 754 

dimensions across all comparisons, and the relative frequency of n-counts (y-axis). The 755 

colour-code is the same as in Figure 1D. N-counts of 2 or more are significantly over-756 

represented. (C) Significant feature dimensions are colour-coded and structurally aligned in a 757 

frequency-transformed representation, following Figure 1E. 758 

 759 

Figure 4. Mother-infant interaction classification models  760 

(A & B) Accuracy values of classification runs for models trained on situation (A) or infants’ 761 

problems (B) contrasts (y-axis) and tested on maternal response contrasts (x-axis). The colour 762 

represents the level of statistical significance. (C, D, E) Feature map comparison. Feature 763 

maps were contrasted by subtracting corresponding frequency values, reflecting the 764 

occurrence of one particular mean cepstra or co-variance of two cepstra, if at least one of the 765 
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corresponding two values from the two feature maps was significant. Mint indicates greater 766 

importance for the first term (e.g., ‘situation’ in the extreme-left panel), orange for the second 767 

term of the comparison (e.g., ‘contingent maternal behaviour’ in the extreme-right panel). 768 
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