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Abstract. In this paper we construct an action of the affine Hecke category

(in its “Soergel bimodules” incarnation) on the principal block of representa-

tions of a simply-connected semisimple algebraic group over an algebraically
closed field of characteristic bigger than the Coxeter number. This confirms a

conjecture of G. Williamson and the second author, and provides a new proof

of the tilting character formula in terms of antispherical p-Kazhdan–Lusztig
polynomials.
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1. Introduction

1.1. Representation theory of reductive algebraic groups and the Hecke
category. Let G be a connected reductive algebraic group over an algebraically
closed field k of characteristic p (assumed to be strictly bigger than the Coxeter
number of G), and let Waff be the associated affine Weyl group. A choice of a Borel
subgroup B in G determines a subset Saff ⊂Waff of “simple reflections” such that
(Waff , Saff) is a Coxeter system. It has been expected for long (following ideas of
Verma [Ve] later expanded by Lusztig [Lu] in particular) that the combinatorics of
the category Rep(G) of finite-dimensional algebraicG-modules should be expressible
in terms of the Kazhdan–Lusztig combinatorics of (Waff , Saff). This expectation is
now known to be exact if p is large (thanks to work of Kazhdan–Lusztig, Kashiwara–
Tanisaki and Andersen–Jantzen–Soergel, or a later version of Fiebig), but not for
some smaller p’s (as shown by Williamson); see [RW1] for details and references.

In [RW1], G. Williamson and the second author of the present paper started
advocating the idea that the combinatorics of Rep(G) should rather be expressed
in terms of the p-Kazhdan–Lusztig combinatorics, introduced a few years before by
G. Williamson (partly in collaboration, see [JMW, JeW]) as some “combinatorial
shadow” of the Hecke category DBS over k attached to (Waff , Saff). (Here by “Hecke
category” we mean the diagrammatic category introduced by Elias–Williamson
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in [EW1]; this category is closely related with those of Soergel bimodules and
parity complexes on flag varieties.) In that paper it was in particular observed
that a concrete incarnation of this idea (a character formula for indecomposable
tilting modules in the principal block, in terms of antispherical p-Kazhdan–Lusztig
polynomials) was a consequence of the following conjecture, where for s ∈ Saff we
denote by Bs the object of DBS naturally associated with s.

Conjecture 1.1 ([RW1]). There exists a (k-linear) right action of the monoidal
category DBS on the principal block Rep0(G) of Rep(G) such that for any s ∈ Saff

the object Bs acts via a functor isomorphic to the wall-crossing functor associated
with s.

The formulation of Conjecture 1.1 was motivated in particular by the philosophy
of categorical actions of Lie algebras; it was proved in [RW1, Part II] (and inde-
pendently by Elias–Losev [EL]) in the special case when G = GLn(k) for some n,
using the machinery of 2-Kac–Moody algebras [Ro].

Later the “combinatorial” consequence of Conjecture 1.1 (the tilting character
formula) was proved for general G (in fact, in two very different ways, see [AMRW2]
and [RW2]), but these proofs use other tools, and none of them implies the original
categorical conjecture. The main result of the present paper is a proof of Conjec-
ture 1.1 (which, as explained above, provides in particular a third general proof
of the tilting character formula). Contrarily to the other approaches to such ques-
tions, our proof does not involve constructible sheaves in any way; it uses coherent
sheaves, but mostly over affine schemes, and hence can be considered essentially
algebraic.

1.2. Localization for Harish-Chandra bimodules. The action from Conjec-
ture 1.1 will be constructed from the natural action of Harish-Chandra Ug-bimo-
dules (where Ug is the enveloping algebra of the Lie algebra g of G), i.e. G-
equivariant finitely generated Ug-bimodules on which the diagonal action of Ug is
the differential of the G-action (see §3.4 for details). Namely, the category Rep(G)
can be naturally seen as a full subcategory of the category of G-equivariant Ug-
modules via differentiation. Thus it admits an action of the monoidal category of
Harish-Chandra bimodules; moreover, wall-crossing functors (and, more generally,
translation functors) can be described as the action of certain specific completed
Harish-Chandra bimodules.

More specifically, recall that (under suitable assumptions on p) the center of Ug
identifies with functions on the fiber product

g∗(1) ×t∗(1)/W t∗/(W, •)
where the superscript (1) denotes Frobenius twist, t is the Lie algebra of a maximal
torus T contained in B, and W is the Weyl group of (G,T ), acting on t∗ via the
“dot action” •. The subalgebra O(g∗(1)) is realized as the “Frobenius center” and
the subalgebra O(t∗/(W, •)) as the “Harish-Chandra center.” For λ, µ ∈ X∗(T ),
in §§3.5–3.7 we will construct a certain monoidal category

HCλ̂,µ̂

of “completed Harish-Chandra bimodules,” which are certain G-equivariant finitely
generated modules over

(Ug⊗O(g∗(1)) Ugop)⊗O(t∗/(W,•)×
t∗(1)/W t∗/(W,•)) O(t∗/(W, •)×t∗(1)/W t∗/(W, •))λ̂,µ̂,
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where O(t∗/(W, •)×t∗(1)/W t∗/(W, •))λ̂,µ̂ is the completion of O(t∗/(W, •)×t∗(1)/W

t∗/(W, •)) with respect to the maximal ideal determined by (λ, µ). Once this defi-
nition is in place, to construct the desired action it therefore suffices to construct a

monoidal functor from the Hecke category DBS to the category HC0̂,0̂ sending each
Bs to an object isomorphic to the completed bimodule realizing the corresponding
wall-crossing functor. This will be realized in Theorem 6.3.

The main tool we will use for this construction is a localization theory for Harish-
Chandra bimodules. Even though in the end we are interested in G-modules, which
when seen as Ug-modules have a trivial Frobenius central character, we will localize
our bimodules on the regular part of O(g∗(1)), and more precisely on a Kostant
section S∗ ⊂ g∗(1) to the (co-)adjoint quotient. We will therefore set USg :=
Ug ⊗O(g∗(1)) O(S∗), and consider a certain group scheme over t∗/(W, •) ×t∗(1)/W

t∗/(W, •) constructed out of the universal centralizer group scheme J∗S over S∗ ∼=
t∗(1)/W . For λ, µ ∈ X∗(T ), we will define a certain monoidal category HCλ̂,µ̂S of
finitely generated equivariant modules over

U λ̂,µ̂S := (USg⊗O(S∗) USgop)⊗O(t∗/(W,•)×
t∗(1)/W t∗/(W,•))

O(t∗/(W, •)×t∗(1)/W t∗/(W, •))λ̂,µ̂;

see §3.9 for the precise definition. By construction we have a natural monoidal
functor

HCλ̂,µ̂ → HCλ̂,λ̂S ,

and the main result of Section 3 (Proposition 3.7) states that this functor is fully

faithful on a certain subcategory HCλ̂,µ̂diag of “diagonally induced” bimodules which
contains the objects realizing translation and wall-crossing functors.

It is a classical observation that USg is an Azumaya algebra over its center, see
Proposition 4.1 for details and references; as a consequence, the category of (finitely
generated) bimodules over this algebra such that the left and right actions of its
center coincide is equivalent to the category of (finitely generated) modules over this
center (see §4.1 for details and references). This property is not directly applicable
to our problem, since the two actions of this center on Harish-Chandra bimodules
do not coincide in general; however by using bimodules realizing translation to and
from the “most singular” Harish-Chandra character (namely, the opposite of the
half-sum of the positive roots), we construct in Section 4 an equivariant splitting

bundle for U λ̂,µ̂S in case λ and µ belong to the lower closure of the fundamental
alcove. As a consequence, for such λ, µ we obtain an equivalence of categories

between HCλ̂,µ̂S and the category of coherent representations of the pullback of J∗S
to the spectrum of O(t∗/(W, •)×t∗(1)/W t∗/(W, •))λ̂,µ̂; see Corollary 4.8.

A general theory of localization for modules over Ug has been developed by the
first author with Mirković and Rumynin, see [BMR1, BMR2, BM]. The localization
that we require here is however slightly different, and the present paper does not
formally rely on any substantial result from [BMR1, BMR2, BM]. One difference is
that we are interested not in modules but in bimodules, which are equivariant for the
diagonal G-action. Some of the constructions in [BMR1, BMR2, BM] (in particular,
the non-canonicity of the choice of splitting bundle) make this theory difficult to
use in an equivariant setting, and our construction is slightly different. Finally, as
explained above we only need to consider the regular part of the Frobenius center,
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which simplifies the situation a lot, and in particular allows us to work completely
at the level of abelian categories, without having to consider the more involved
derived categories.

1.3. The Hecke category and representations of the universal centralizer.
The other crucial ingredient of our proof is a new incarnation of the Hecke category
(for any Coxeter system (W,S)) recently found by Abe [Ab1].

The Hecke category is a categorification of the Hecke algebra of (W,S), de-
pending on a choice of extra data (comprising a representation V of W), which
admits several different incarnations. An early definition of this category in terms
of Soergel bimodules [S3] applies to “reflection faithful” representations of Coxeter
systems, which include natural examples of representations over fields of character-
istic 0 (e.g. geometric representations of finite Coxeter systems and representations
appearing in the theory of Kac–Moody Lie algebras for crystallographic Coxeter
systems), but does not include important examples over fields of positive character-
istic (e.g. some natural representations of affine Weyl groups of reductive groups).
Under this assumption Soergel bimodules can be defined as a full subcategory of
the category of graded bimodules over the polynomial algebra O(V ). More recently
Elias and Williamson [EW1] have proposed a definition of the Hecke category in
terms of generators and relations which applies (and behaves as one might expect)
in a much greater generality, encompassing the representation of the affine Weyl
group that we require. It is in terms of this construction that Conjecture 1.1 was
stated. (For more on the Hecke category, see also [Wi, JeW].)

The main drawback of the construction in [EW1], however, is that it is much less
concrete than Soergel’s original definition, and does not involve O(V )-bimodules.
This drawback is exactly compensated by Abe’s work; under minor technical as-
sumptions he proves in [Ab1] that the category of Elias and Williamson identifies
with a category of “enhanced Soergel bimodules,” which are certain graded bimod-
ules over O(V ) endowed with a decomposition of its tensor product with Frac(O(V ))
(on the right) parametrized by W.

Based on Abe’s work, in the case of the affine Weyl group acting on X∗(T )⊗Z k
through the natural action of W , we realize the Hecke category as a full subcategory
in (Gm-equivariant) coherent representations of the pullback of J∗S to t∗(1)×t∗(1)/W

t∗(1); see Theorem 2.10. This construction allows us to define a monoidal functor
from the Hecke category to the category of representations considered in §1.2, and
then (using our localization theorem) a monoidal functor

(1.1) DBS → HC0̂,0̂
S .

(This construction applies more generally for the category HCλ̂,λ̂S when λ belongs
to the fundamental alcove; in this case natural étale maps allow us to identify the
completions of the schemes t∗/(W, •) ×t∗(1)/W t∗/(W, •) and t∗(1) ×t∗(1)/W t∗(1) at

the images of (λ, λ).)

Remark 1.2. Although the concrete incarnation of this idea that is relevant in the
present paper is new, the fact that affine Soergel bimodules are closely related with
representations of the universal centralizer was already known: it dates back (at
least) to [Do]; see also [MR] for an adaptation of these ideas to positive characteristic
coefficients.
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At this point, to conclude our proof it only remains to show that our functor (1.1)
sends the objects of the Hecke category labelled by simple reflections to the images

in HC0̂,0̂
S of the bimodules realizing the wall-crossing functors. (In fact, this property

will also ensure that the functor takes values in the essential image of our fully

faithful functor HC0̂,0̂
diag → HC0̂,0̂

S , which will imply that it “lifts” to a functor from

DBS to HC0̂,0̂.) In the case when the simple reflection belongs to the finite Weyl
group W , this can be checked explicitly, using localization at a character involving
a weight on the corresponding wall of the fundamental alcove; see Proposition 6.6.
The general case is reduced to this one using a standard trick (used e.g. in [R2,
BM]), based on the observation that in the extended affine Weyl group each simple
reflection is conjugate to a simple reflection which belongs to W . The concrete
proof involves the study of an analogue of the affine braid group action from [BR]
in our present context; in this case the situation simplifies however (once again
because we work over the regular part of the Frobenius center) and this action in
fact factors through an action of the extended affine Weyl group.

Remark 1.3. One of the motivations for Abe’s work [Ab1] was an attempt to prove
Conjecture 1.1. What Abe was actually able to construct is rather an action on
the principal block of the category of G1T -modules (where G1 is the first Frobenius
kernel of G), which is interesting but less applicable to character computations;
see [Ab2].

1.4. Towards a coherent realization of the Hecke category. Thanks to work
of Kazhdan–Lusztig [KL] and Ginzburg [CG], it is known that the Hecke algebra
of (Waff , Saff) identifies with the Grothendieck group of the category of equivari-
ant coherent sheaves on the Steinberg variety of triples St.1 The fiber product
t∗(1) ×t∗(1)/W t∗(1) considered in §1.3 identifies with the preimage of the Kostant
section S∗ in the Frobenius twist of St, and the construction of §1.3 can be seen to
provide a fully faithful monoidal functor from the Hecke category to the category
of equivariant coherent sheaves on the regular part of St. In future work we will
upgrade this construction to a fully faithful monoidal functor to the category of
equivariant coherent sheaves on the whole Steinberg variety.2 This construction
will be part of our project (partly joint with L. Rider) of constructing a “modular”
version of the equivalence constructed by the first author in [Be]; see [BRR] for a
first step towards this goal.

1.5. Contents. In Section 2 we recall Abe’s results, and use them to construct
our monoidal functor from the Hecke category to the appropriate category of rep-
resentations of the universal centralizer. In Section 3 we introduce the categories of
completed Harish-Chandra bimodules we will work with, and prove that restriction
to a Kostant section is fully faithful on diagonally-induced bimodules. In Section 4
we develop our localization theory for Harish-Chandra bimodules. In Section 5 we
prove (for later use) some technical results using the relation between Ug and dif-
ferential operators on the flag variety of G. In Section 6 we prove the main result of

1Here, by Steinberg variety of triples we mean the fiber product of two copies of the

Grothendieck resolution over the dual of the Lie algebra, and not the version involving the Springer
resolution. This distinction is not important for the results of [KL, CG], but it is for our consid-

erations here.
2We understand that Ivan Losev has found a different proof of this statement, also based on

the results of the present paper.
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the paper, i.e. we construct the Hecke action on the principal block and prove that
objects associated with simple reflections act via wall-crossing functors. Finally,
Appendix A contains an index of the main notation used in the paper.
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part was done while both authors were members of the Institute for Advanced
Study during the Special Year on Geometric and Modular Representation Theory
organized by G. Williamson.

R.B. was supported by NSF Grant No. DMS-1601953, and his work was partly
supported by grants from the Institute for Advanced Study and Carnegie Corpora-
tion of New York. This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (S.R., grant agreements No. 677147 and 101002592).

2. The affine Hecke category and representations of the regular
centralizer

In this section we explain that the affine Hecke category attached to a connected
reductive algebraic group G can be described as a category of representations of
(a pullback of) the universal centralizer attached to G. Our main tool will be a
description of the Hecke as a category of “enhanced Soergel bimodules” recently
obtained by Abe [Ab1]. In later sections the group G will be chosen as the Frobenius
twist of the group G appearing in Conjecture 1.1; however this constructions applies
in a slightly more general context, and might be of independent interest.

2.1. The affine Weyl group and the associated Hecke category. We let k
be an algebraically closed field of characteristic p (possibly equal to 0), and G be
a connected reductive algebraic group over k. We fix a Borel subgroup B ⊂ G and
a maximal torus T ⊂ B. The Lie algebras of G, B, T will be denoted g, b and
t respectively. We set X := X∗(T), resp. X∨ := X∗(T), and denote by Φ ⊂ X,
resp. Φ∨ ⊂ X∨, the root system, resp. coroot system, of (G,T). The canonical

bijection Φ
∼−→ Φ∨ will be denoted α 7→ α∨. The choice of B determines a subset

Φ+ ⊂ Φ of positive roots, consisting of the T-weights in g/b; the corresponding
basis of Φ will be denoted Φs. In this section we will make the following assumptions:

(1) p is good for G;
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(2) neither X/ZΦ nor X∨/ZΦ∨ has p-torsion;

(3) there exists a G-equivariant isomorphism g
∼−→ g∗.

For simplicity we will fix once and for all a G-equivariant isomorphism κ : g
∼−→ g∗.

By equivariance this also provides an identification of t and t∗ (where t∗ is identified
with the subspace in g∗ consisting of linear forms that vanish on all root subspaces).

Let W = NG(T)/T be the Weyl group of (G,T). The associated affine Weyl
group is the semi-direct product

Waff := W n ZΦ

where ZΦ ⊂ X is the lattice generated by the roots. For λ ∈ ZΦ we will denote
by tλ the image of λ in Waff . It is well known that Waff is generated by the subset
Saff consisting of the reflections sα with α ∈ Φs, together with the products tβsβ
where β ∈ Φ is such that β∨ is a maximal coroot. Moreover, the pair (Waff , Saff) is
a Coxeter system, see [J2, §II.6.3]. We will sometimes need to “enlarge” this group
by considering translations by all elements of X. Namely, the extended affine Weyl
group is the semi-direct product

Wext := W n X.

Then Waff is a normal subgroup in Wext.
We will consider the balanced “realization” of Waff over k (in the sense of [EW1])

defined as follows:

• the underlying k-vector space is t∗;
• if α ∈ Φs and s = sα, then the “root” αs ∈ t (resp. “coroot” α∨s ∈ t∗)

associated with s is the differential of α∨ (resp. of α);
• if β ∈ Φ+ is such that β∨ is a maximal coroot and s = tβsβ then the “root”
αs (resp. “coroot” α∨s ) associated with s is the differential of −β∨ (resp. of
−β).

This realization is an example of a Cartan realization in the sense of [AMRW1,
§10.1]. Our assumption (2) implies that this realization satisfies the “Demazure
surjectivity” condition of [EW1]. There is an associated action of Waff on t∗, which
simply is the natural action of W, seen as an action of Waff via the projection
Waff →W.

We will denote by DBS the “diagrammatic Hecke category” defined by Elias–
Williamson [EW1] for the Coxeter system (Waff , Saff) and this choice of realization.
(For a discussion of this definition, see also [AMRW1, Chap. 2].) The technical con-
ditions necessary for this category to be defined (and well behaved) are somewhat
subtle, and not all of them are made explicit in [EW1]; see [EW2, §5] for a detailed
discussion of this question. As explained in [EW2, §5.1], a sufficient condition (in
addition to the fact that the data define a realization satisfying Demazure surjec-
tivity) that ensures that all the results of [EW1] are applicable is that for any pair
of distinct simple reflections s, t such that st has finite order, the restriction of the
action to the subgroup generated by s and t is faithful. It follows from [AMRW1,
Lemma 8.1.1] that this condition is satisfied in our context, except possibly if p = 2
and st = ts. (The assumptions of [AMRW1, Lemma 8.1.1] are easily checked by
hand for Cartan realizations in good characteristic.) However in this case s and t
act nontrivially by Demazure surjectivity, and st acts nontrivially since α∨s and α∨t
are not colinear thanks to assumption (2).
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The category DBS is a k-linear (non additive) monoidal category. By definition
its objects are pairs (w, n) where w is a word in Saff and n ∈ Z; the product is
given by concatenation of words and addition of integers, and for any words w,w′

the direct sum of morphism spaces⊕
n∈Z

HomDBS
((w, 0), (w′, n))

is a graded bimodule over R := O(t∗) = Sym(t) (where the grading is such that ele-
ments in t have degree 2). Following usual conventions, the object (w, n) will rather
be denoted Bw(n). Then there exists a natural “grading shift” autoequivalence of
DBS such that (Bw(n))(1) = Bw(n+ 1) for any w and any n ∈ Z.

Remark 2.1. The Hecke category DBS (as, more generally, Hecke categories attached
to Cartan realizations of crystallographic Coxeter systems) admits an incarnation
in terms of parity complexes on a flag variety; see [RW1, Part III]. Although impor-
tant for some other purposes, this realization of the Hecke category will not play
any role in the present paper. (The relation between Soergel bimodules and con-
structible sheaves on flag varieties was first obtained, in a characteristic-0 context,
by Soergel [S2] in the case of finite crystallographic groups—using the earlier defi-
nition of Soergel bimodules in this case in [S1]—and by Härterich for Kac–Moody
groups [Hä].)

2.2. Abe’s incarnation of the Hecke category. For our present purposes we
will need a description of DBS in terms of R-bimodules due to Abe [Ab1], which is
close to the definition of Soergel bimodules [S3], and which we now recall. Once
again, in order to apply these results one needs some technical assumptions. A
sufficient condition (in terms of vanishing of quantum binomial coefficients) for
the results of [Ab1] to be applicable is given in [Ab3]. One can check by explicit
computation that this condition is automatically satisfied for Cartan realizations.

We will denote by Q the fraction field of R. Following [Ab1], we denote by C′ the
category defined as follows. Objects are pairs consisting of a graded R-bimodule
M together with a decomposition

(2.1) M ⊗R Q =
⊕

w∈Waff

Mw
Q

as (R,Q)-bimodules such that:

• there exist only finitely many w’s such that Mw
Q 6= 0;

• for any w ∈Waff , r ∈ R and m ∈Mw
Q we have

(2.2) m · r = w(r) ·m.

Morphisms in C′ are defined in the obvious way, as morphisms of graded bimodules
compatible with the decompositions (2.1). We also denote by C the full subcategory
of C′ whose objects are those whose underlying graded R-bimodule M is finitely
generated as an R-bimodule and flat as a right R-module. As explained in [Ab1,
Lemma 2.6], the underlying R-bimodule of any object in C is in fact finitely gener-
ated as a left and as a right R-module; this property shows that the tensor product
over R induces in a natural way a monoidal product on C. We also have a “grad-
ing shift” autoequivalence of C, which only changes the grading of the underlying
graded R-bimodule in such a way that M(1)i = M i+1.
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For s ∈ Saff , we consider the s-invariants Rs ⊂ R, and the graded R-bimodule
BBim
s := R⊗Rs R(1). This object has a natural “lift” as an object in C, which will

also be denoted BBim
s (see [Ab1, §2.4]).

The following result is a special case of [Ab1, Theorem 5.6] (see also [Ab3,
Theorem 1.3]).

Theorem 2.2. There exists a canonical fully faithful monoidal functor

DBS → C

sending Bs to BBim
s for any s ∈ Saff and intertwining the grading shifts (1).

It will be convenient to consider also a slight extension of the category C, adapted
to the groupWext. Namely, the action ofWaff on t∗ extends in a natural way toWext

(using now the projection Wext →W). We will denote by C′ext the category whose
objects are pairs consisting a graded R-bimodule M together with a decomposition

M ⊗R Q =
⊕

w∈Wext

Mw
Q

as (R,Q)-bimodules such that:

• there exist only finitely many w’s such that Mw
Q 6= 0;

• for any w ∈Wext, r ∈ R and m ∈Mw
Q we have m · r = w(r) ·m,

and where morphisms are defined in the obvious way. We will also denote by Cext

the full subcategory of C′ext whose objects are those whose underlying graded R-
bimodule M is finitely generated as an R-bimodule and flat as a right R-module.
It is clear that C′ is a full subcategory in C′ext, that C is a full subcategory in Cext,
and that the tensor product ⊗R defines a monoidal structure on Cext.

Remark 2.3. Some adaptations of the “Soergel calculus” of [EW1] to extended affine
Weyl groups have been discussed in work of Mackaay–Thiel [MT] and Elias [El, §3].
The analogue of Theorem 2.2 in this context is most likely true, but since it is not
needed in this paper we will not investigate this question further.

In addition to the objects BBim
s considered above, the category Cext also possesses

“standard” objects (∆x : x ∈ Wext) defined as follows. For any x ∈ Wext, ∆x is
isomorphic to R as a graded vector space, and the structure of R-bimodule is given
by

r ·m · r′ = rmx(r′)

for r, r′ ∈ R and m ∈ ∆x. The decomposition of ∆x ⊗R Q is defined so that
this object is concentrated in degree x. For any x, y ∈ Wext we have a canonical
isomorphism

(2.3) ∆x ⊗R ∆y
∼−→ ∆xy

in Cext, defined by m⊗m′ 7→ mx(m′).

Lemma 2.4. Let s, t ∈ Saff and x ∈ Wext be such that s = xtx−1. Then there
exists a canonical isomorphism

BBim
s
∼= ∆x ⊗R BBim

t ⊗R ∆x−1 .

Proof. The isomorphism of R-bimodules

∆x ⊗R BBim
t ⊗R ∆x−1

∼−→ BBim
s
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is defined by

r1 ⊗ (r2 ⊗ r3)⊗ r4 7→ (r1x(r2))⊗ (x(r3)x(r4)).

We leave it to the reader to check that this morphism is well defined, and indeed
defines an isomorphism in Cext. �

In Section 6 we will also need the following standard claim, for which we refer
to [EW1, §3.4].

Lemma 2.5. For any s ∈ Saff , there exist exact sequences of R-bimodules

∆s ↪→ R⊗Rs R� ∆e, ∆e ↪→ R⊗Rs R� ∆s.

2.3. Universal centralizer and Kostant section. We will denote by greg ⊂ g
the open subset consisting of regular elements, i.e. elements whose centralizer has
dimension dim(T ). The “regular universal centralizer” is the affine group scheme

Jreg := greg ×greg×greg
(G× greg)

over greg, where the morphism greg → greg × greg is the diagonal embedding, and
the map G × greg → greg sends (g, x) to (g · x, x). For any x ∈ greg, the fiber of
Jreg over x is the scheme-theoretic centralizer of x for the adjoint G-action. By
construction Jreg is a closed subgroup scheme in G×greg, and as explained in [R3,
Corollary 3.3.6] it is smooth over greg. We will also denote by g∗reg the image of
greg under κ, and by J∗reg the smooth affine group scheme over g∗reg obtained by
pushforward from Jreg. (It is easily seen that these objects do not depend on the
choice of κ.)

There exists a canonical morphism

(2.4) t∗ ×t∗/W J∗reg → (t∗ ×t∗/W g∗reg)×T

of group schemes over t∗ ×t∗/W g∗reg, whose construction we now explain. Let n
be the Lie algebra of the unipotent radical U of B. Recall that the Grothendieck
resolution is the G-equivariant vector bundle over G/B given by

g̃ := {(ξ, gB) ∈ g∗ ×G/B | ξ|g·n = 0}.
We have natural maps

π : g̃→ g∗, ϑ : g̃→ t∗.

(The morphism π is induced by the first projection. The morphism ϑ sends a pair
(ξ, gB) to ξ|g·b, seen as an element in (g · b/g · n)∗ ∼= (b/n)∗ ∼= t∗, where the first
isomorphism is induced by conjugation by the inverse of any representative for the
coset gB.) If we denote by g̃reg the preimage of g∗reg in g̃, then these maps induce
an isomorphism of schemes

(2.5) g̃reg
∼−→ g∗reg ×t∗/W t∗,

see [R3, Lemma 3.5.3]. Moreover, under this identification, by [R3, Proposi-
tion 3.5.6] the group scheme t∗ ×t∗/W J∗reg identifies with the universal stabilizer
associated with the action of G on g̃reg (defined by the same procedure as for Jreg

above), which is such that the fiber over (ξ, gB) is the scheme-theoretic stabilizer
of ξ for the action of gBg−1. Now as above in the definition of ϑ, there exists for
any g ∈ G a canonical isomorphism gBg−1/gUg−1 ∼= T, which allows us to define
the wished-for morphism (2.4).

Let grs ⊂ g denote the open subset of semisimple regular elements, and set
g∗rs := κ(grs). We will denote by Jrs, resp. J∗rs, the restriction of Jreg, resp. J∗reg, to
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grs, resp. g∗rs. Recall that the adjoint quotient g/G identifies canonically with t/W,
see [BC, §4.1]; as a consequence, under our assumptions the coadjoint quotient
g∗/G identifies canonically with t∗/W.

Lemma 2.6. The morphism (2.4) restricts to an isomorphism

J∗rs ×t∗/W t∗
∼−→ T× (g∗rs ×t∗/W t∗)

of group schemes over g∗rs ×t∗/W t∗.

Proof. It is sufficient to prove the analogous statement for g in place of g∗. If we
denote by g̃rs the inverse image of grs under π, then by [J3, Lemma 13.4], there
exists a canonical isomorphism

G×T trs
∼−→ g̃rs,

where trs := t ∩ grs. From the comments above and the compatibility of universal
stabilizers with open embeddings, t×t/W Jrs identifies with the universal stabilizer
associated with the action of G on g̃rs. Since the latter scheme identifies with
G×Ttrs = G/T×trs, the universal stabilizer identifies with T×g̃rs, as desired. �

Let us choose a Kostant section to the adjoint quotient, i.e. a closed subscheme
S ⊂ g contained in greg and such that the composition S ↪→ g → g/G (where
the second map is the adjoint quotient morphism) is an isomorphism. (For a con-
struction of such a section in the present generality, see [R3, §3].) We will denote
by S∗ the image of S under κ, so that the composition S∗ ↪→ g∗ → g∗/G is an
isomorphism, and by J∗S the restriction of J∗reg to S∗ (a closed subgroup scheme of
G× S∗, smooth over S∗).

As explained e.g. in [MR, §4.4], there exists a natural action of the multiplicative

group Gm on S∗ such that the isomorphism S∗
∼−→ g∗/G is Gm-equivariant, where

t ∈ k× acts on g∗ by multiplication by t−2, and on g∗/G by the induced action. The

isomorphism t∗/W
∼−→ g∗/G is also Gm-equivariant, where the action on t∗/W

is induced by the action on t∗ where t ∈ k× acts by multiplication by t−2. As
explained in [MR, §4.5, p. 2302] there exists a natural Gm-action on J∗S such that
the structure morphism J∗S → S∗, the multiplication map J∗S ×S∗ J∗S → J∗S and the
inversion morphism J∗S → J∗S are Gm-equivariant.

2.4. Representations of the universal centralizer and Abe’s category. The
actions of Gm on t∗ and t∗/W considered in §2.3 provide an action on the fiber
product t∗ ×t∗/W t∗. Let us now consider the category

RepGm(t∗ ×t∗/W J∗S ×t∗/W t∗)

of Gm-equivariant coherent representations of the smooth affine group scheme

t∗ ×t∗/W J∗S ×t∗/W t∗

over t∗×t∗/Wt∗ (where the morphism J∗S → t∗/W is obtained via the identification

S∗
∼−→ t∗/W), i.e. t∗ ×t∗/W J∗S ×t∗/W t∗-modules equipped with a structure of

Gm-equivariant coherent sheaf on t∗ ×t∗/W t∗, such that the action map is Gm-

equivariant. Since R is finite over RW, this category admits a natural convolution
product ?, such that the O(t∗ ×t∗/W t∗)-module underlying the product M ?N is
the tensor product M ⊗RN (where R = O(t∗) acts on M via the second projection
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t∗×t∗/W t∗ → t∗ and on N via the first projection t∗×t∗/W t∗ → t∗). In this way,

(RepGm(t∗ ×t∗/W J∗S ×t∗/W t∗), ?) is a monoidal category. We will denote by

RepGm

fl (t∗ ×t∗/W J∗S ×t∗/W t∗)

the full subcategory of RepGm(t∗ ×t∗/W J∗S ×t∗/W t∗) whose objects are the rep-
resentations whose underlying coherent sheaves are flat with respect to the second
projection t∗ ×t∗/W t∗ → t∗. It is not difficult to check that this subcategory is
stable under ?, hence also admits a canonical structure of monoidal category.

Proposition 2.7. There exists a canonical fully faithful monoidal functor(
RepGm

fl (t∗ ×t∗/W J∗S ×t∗/W t∗), ?
)
→ (Cext,⊗R).

Proof. We start by constructing a functor

(2.6) RepGm(t∗ ×t∗/W J∗S ×t∗/W t∗)→ C′ext.

By definition, any object in RepGm(t∗ ×t∗/W J∗S ×t∗/W t∗) is in particular a Gm-
equivariant coherent sheaf on t∗ ×t∗/W t∗, hence can be seen as a graded R-
bimodule. To equip this graded bimodule with the structure of an object in C′ext,
we must provide a decomposition of its tensor product with Q parametrized by
Wext. In fact, we will provide such a decomposition for its tensor product with
O(t∗rs), where t∗rs := t∗ ∩ g∗rs (which is sufficient since Q is a further localization of
O(t∗rs)).

First, the open subset t∗rs ⊂ t∗ is the complement of the kernels of the differ-
entials of the coroots. This open subset is stable under the action of W, and the
restriction of this action is free, see [R3, Lemma 2.3.3]. In particular we have an
open subset t∗rs/W ⊂ t∗/W, the morphism t∗rs → t∗rs/W is étale, and the map
(w, x) 7→ (x,w(x)) induces an isomorphism of schemes

W × t∗rs
∼−→ t∗rs ×t∗rs/W

t∗rs,

see [SGA1, Exp. V, §2]. As a consequence, for any coherent sheaf F on t∗×t∗/W t∗,
the tensor product

Γ(t∗ ×t∗/W t∗,F )⊗R O(t∗rs)

admits a canonical decomposition (as an O(t∗rs)-bimodule) parametrized by W,
such that the action on the factor corresponding to w ∈ W factors through the
quotient

O(t∗rs × t∗rs) � O(Gr(w, t∗rs))

(where in the right-hand side Gr(w, t∗rs) denotes the graph of w acting on t∗rs),
i.e. satisfies the condition in (2.2).

Next, let us explain how this decomposition can be refined if F belongs to
Rep(t∗ ×t∗/W J∗S ×t∗/W t∗). For this, we consider the restriction Mw of t∗ ×t∗/W

J∗S×t∗/Wt∗ to Gr(w, t∗rs). Identifying the latter subscheme with t∗rs via the first pro-
jection and using Lemma 2.6, we obtain a canonical isomorphism of group schemes

Mw
∼−→ t∗rs ×T.

This means that the category of representations of Mw on coherent sheaves on
Gr(w, t∗rs) is canonically equivalent to the category of X-graded coherent sheaves
on t∗rs. Starting with an object F in Rep(t∗ ×t∗/W J∗S ×t∗/W t∗), we therefore
obtain a decomposition of Γ(t∗ ×t∗/W t∗,F ) ⊗R O(t∗rs) parametrized by Wext by
defining, for λ ∈ X and w ∈W, the summand associated with tλw as the λ-graded



HECKE ACTION ON THE PRINCIPAL BLOCK 13

part in the summand associated with w (which is a representation of Mw). This
finishes the description of the functor (2.6).

It is clear from construction that this functor sends objects in RepGm

fl (t∗ ×t∗/W

J∗S ×t∗/W t∗) to objects in Cext, which therefore provides the functor of the state-
ment. This functor is also easily seen to be monoidal. Let us now explain why
it is fully faithful. Consider F ,G in RepGm

fl (t∗ ×t∗/W J∗S ×t∗/W t∗), and denote
their images by M,N (so that the underlying graded bimodule of M , resp. N ,
is Γ(t∗ ×t∗/W t∗,F ), resp. Γ(t∗ ×t∗/W t∗,G )). By construction, morphisms in
Cext from M to N are morphisms of graded bimodules from Γ(t∗ ×t∗/W t∗,F ) to
Γ(t∗×t∗/W t∗,G ) whose restriction to t∗×{η} (where η is the generic point of t∗)
commutes with the action of the restriction of t∗×t∗/W J∗S×t∗/W t∗. Now, since by
assumption Γ(t∗×t∗/W t∗,G ) is flat as a right R-module and O(t∗×t∗/W J∗S×t∗/W

t∗) is flat over O(t∗ ×t∗/W t∗), such a morphism is automatically a morphism of
O(t∗×t∗/W J∗S×t∗/W t∗)-comodules. This proves the desired fully faithfulness. �

Lemma 2.8. For any w ∈ Wext, the object ∆w belongs to the essential image of
the functor of Proposition 2.7.

Proof. The isomorphism (2.3) reduces the proof to the case w belongs either to W
or to X. The case w ∈W is obvious: in this case ∆w is the image of its underlying
graded R-bimodule, endowed with the trivial structure as a representation. For the
case w ∈ X, in view of the construction of the functor in Proposition 2.7, the claim
follows from the fact that the isomorphism of Lemma 2.6 is the restriction of the
morphism (2.4). �

For w ∈ Wext, we will denote by ∆J
w the unique object in RepGm

fl (t∗ ×t∗/W

J∗S ×t∗/W t∗) which is sent to ∆w.

2.5. Representations of the universal centralizer and the Hecke category.
By Proposition 2.7 the category RepGm

fl (t∗ ×t∗/W J∗S ×t∗/W t∗) can be seen as a
full monoidal subcategory in Abe’s category Cext, and by Theorem 2.2 the same is
true for the Hecke category DBS. We now investigate the relation between these
two subcategories.

Lemma 2.9. The essential image of the functor of Theorem 2.2 is contained in
the essential image of the functor of Proposition 2.7.

Proof. By definition, the category DBS is generated under convolution and grading
shift by the objects (Bs : s ∈ Saff). Hence to prove the lemma it suffices to prove
each BBim

s belongs to the essential image of the functor of Proposition 2.7.
If s = sα for some α ∈ Φs, then BBim

s is the image of the appropriate shift
of O(t∗ ×t∗/{e,s} t∗), endowed with the trivial structure as a representation of
t∗×t∗/W J∗S×t∗/W t∗. If s ∈ Saff is not of this form, then there exist x ∈Wext and

t ∈ Saff such that t = sα for some α ∈ Φs and s = xtx−1. (In fact, such a statement
is even true in the braid group associated with Wext: see [R2, Lemma 6.1.2] or [BM,
Lemma 2.1.1] for the proof in the setting where G is semisimple and simply con-
nected, from which one can deduce the general case using restriction to the derived
subgroup.) By Lemma 2.4 we then have BBim

s
∼= ∆x⊗RBBim

t ⊗R ∆x−1 ; since BBim
t

is now known to belong to the essential image of our functor, and since ∆x also
satisfies this property by Lemma 2.8, this finishes the proof. �
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From this lemma we deduce the following claim, which will be crucial for our
constructions in Section 6.

Theorem 2.10. There exists a canonical fully faithful monoidal functor

DBS → RepGm

fl (t∗ ×t∗/W J∗S ×t∗/W t∗).

3. Some categories of equivariant Ug-bimodules

3.1. Weights. From now on we assume that p > 0. We consider a simply connected
semisimple algebraic group G over k, and its category

Rep(G)

of finite-dimensional algebraic representations.
For a k-scheme X we will denote by X(1) the associated Frobenius twist, defined

as the fiber product X(1) := X ×Spec(k) Spec(k), where the morphism Spec(k) →
Spec(k) is associated with the map x 7→ xp. (The projection X(1) → X is an
isomorphism of Fp-schemes, but not of k-schemes.) We will assume that

p is very good for G.

Then the group G := G(1) satisfies the assumptions of Section 2. We will denote
by Fr : G → G the Frobenius morphism of G, and will use the same notation for
its restriction to the various subgroups considered below.

The subgroups B, T, U of G, when seen as subschemes in G, determine sub-
groups B, T , U whose Frobenius twists are B, T, U respectively. We will denote
by g, b, t, n the respective Lie algebras of G, B, T , U (so that g = g(1) and similarly
for B, U , T ), and by W the Weyl group of (G,T ). We set X := X∗(T ), and denote
by R ⊂ X the root system of (G,T ). The choice of B determines a system of
positive roots R+ ⊂ R, chosen as the T -weights in g/b. We will denote by Rs ⊂ R
the corresponding subset of simple roots, and by ρ ∈ X the halfsum of the positive
roots. We also set X∨ := X∗(T ), and denote by R∨ ⊂ X∨ the coroot system. The

canonical bijection R
∼−→ R∨ will be denoted as usual α 7→ α∨.

The Frobenius morphism Fr induces an isomorphism

NG(T )/T
∼−→ NG(T)/T,

which allows us to identify the Weyl group W of G with W . It is a standard fact
that the morphism from X = X∗(T (1)) to X induced by Fr : T → T is injective, and
that its image is p · X, which allows us to identify X with p · X. The identification
X = p ·X is W -equivariant, and the root system Φ of (G,T) is Φ = {p ·α : α ∈ R};
similarly we have Φ+ = pR+ and Φs = pRs. In particular, the affine Weyl group
Waff of §2.1 identifies with W n (pZR), and the extended affine Weyl group Wext

identifies with W n(p ·X). Recall also our subset of Coxeter generators Saff ⊂Waff .
The subgroup W ⊂Waff is a parabolic subgroup; its longest element will be denoted
(as usual) by w0. We will consider the “dot” action of Wext (or its subgroup Waff)
on X defined by

(tµw) • λ = w(λ+ ρ)− ρ+ µ

for µ ∈ pX, w ∈W and λ ∈ X.
Given a character λ ∈ X, we will denote by λ ∈ t∗ the differential of λ. We set

t∗Fp := {λ : λ ∈ X} ⊂ t∗.
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In this way, the map λ 7→ λ induces an isomorphism of abelian groups

X/pX ∼−→ t∗Fp .

(In particular, t∗Fp is finite.)

The group W naturally acts on t∗. We also have a “dot” action of W on t∗,
defined by

w • ξ := w(ξ + ρ)− ρ.
With this definition the map X → t∗ sending λ to λ is Wext-equivariant, where
Wext acts on X via the dot-action and on t∗ via the projection Wext →W and the
dot-action of W on t∗. This observation legitimates the use of the same notation for
these actions. It also shows that the subset t∗Fp ⊂ t∗ is stable under the dot-action

of W . Below we will consider the quotient t∗/(W, •) of the dot-action of W on t∗.

For λ ∈ X, we will denote by λ̃ the image of λ in t∗/(W, •).
As mentioned above our assumption that p is very good for G implies in partic-

ular that the quotient X/ZR has no p-torsion, or in other words that

(3.1) ZR ∩ pX = pZR.
This equality has the following consequences.

Lemma 3.1. Let λ ∈ X.

(1) We have
Waff • λ = (Wext • λ) ∩ (λ+ ZR).

(2) The stabilizer of λ for the dot-action of W on t∗ is the image under the
natural surjection Waff →W of the stabilizer of λ for the dot-action of Waff

on X.

Proof. (1) Since W • λ ⊂ λ+ ZR, we have

(Wext • λ) ∩ (λ+ ZR) = (W • λ+ pX) ∩ (λ+ ZR) = W • λ+ (ZR ∩ pX).

In view of (3.1), the right-hand side equals W • λ+ pZR = Waff • λ, as desired.
(2) For w ∈W we have

w • λ = w • λ,
so that w •λ = λ iff w •λ ∈ λ+pX. Since w •λ ∈ λ+ZR, as above this condition is
equivalent to w•λ ∈ λ+pZR, i.e. to the existence of µ ∈ pZR such that tµw ∈Waff

stabilizes λ. �

For any subset I ⊂ Rs, we will denote by WI ⊂ W the subgroup generated by
the reflections {sα : α ∈ I}. Recall that an element of X is called regular if its
stabilizer in Waff (for the dot-action) is trivial. As a consequence of Lemma 3.1,
we obtain in particular the following claim.

Lemma 3.2. Let λ ∈ X, and assume that the stabilizer of λ for the dot-action of
Waff is WI . Then the morphism

t∗/(WI , •)→ t∗/(W, •)
induced by the quotient morphism t∗ → t∗/(W, •) is étale at the image of λ. In
particular, if λ is regular then the quotient morphism t∗ → t∗/(W, •) is étale at λ.

Proof. By Lemma 3.1(2), the stabilizer of λ for the dot-action of W on t∗ is WI .
Hence the claim follows from the general criterion [SGA1, Exp. V, Proposition 2.2].

�



16 R. BEZRUKAVNIKOV AND S. RICHE

3.2. The center of the enveloping algebra. Consider the universal enveloping
algebra Ug of g. Its center Z(Ug) can be described as follows. First we set

ZHC := (Ug)G.

(Here, the subscript “HC” stands for Harish-Chandra.) Next, as the Lie algebra of
an algebraic group over a field of characteristic p, g admits a “restricted p-th power”
operation x 7→ x[p], which stabilizes the Lie algebra of any algebraic subgroup of
G. We will denote by

ZFr

the k-subalgebra of Ug generated by the elements of the form xp − x[p] for x ∈ g.
Then by [MR, Theorem 2] multiplication induces an isomorphism

ZFr ⊗ZFr∩ZHC
ZHC

∼−→ Z(Ug).

It is well known that Ug is finite as a ZFr-algebra (hence a fortiori as a Z(Ug)-
algebra).

These central subalgebras can be described geometrically as follows. First, it is
well known that the map x 7→ xp − x[p] induces a k-algebra isomorphism

(3.2) O(g∗(1))
∼−→ ZFr.

We also have ZFr ∩ ZHC = (ZFr)
G, and the G-action on g∗(1) factors through the

Frobenius morphism Fr, so that we obtain an isomorphism

O(g∗(1)/G(1))
∼−→ ZFr ∩ ZHC.

On the other hand, the “Harish-Chandra isomorphism” provides a k-algebra iso-
morphism

(3.3) O(t∗/(W, •)) ∼−→ ZHC,

see [MR, Theorem 1(2)].
The Artin–Schreier morphism

AS : t∗ → t∗(1)

is the morphism associated with the algebra map O(t∗(1)) → O(t∗) defined by
h 7→ hp − h[p] for h ∈ t. It is well known that AS is a Galois covering with Galois
group t∗Fp (acting on t∗ via addition). The morphism AS is W -equivariant, where

W acts on t∗ via the dot-action and on t∗(1) via the natural action. It therefore
induces a morphism

(3.4) t∗/(W, •)→ t∗(1)/W.

Recall the Chevalley isomorphism

t∗(1)/W
∼−→ g∗(1)/G(1)

already encountered in §2.3. Under this identification, the embedding ZFr∩ZHC ↪→
ZHC is induced by (3.4).

Combining all these descriptions, and setting

C := g∗(1) ×t∗(1)/W t∗/(W, •),
we therefore obtain a k-algebra isomorphism

O(C)
∼−→ Z(Ug),

see [MR, Corollary 3].
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Using this identification one can consider Ug as an O(C)-algebra. The G-action
on C induced by the adjoint G-action on Ug is the action obtained by pullback
via the Frobenius morphism Fr of the G(1)-action on C induced by the coadjoint
G(1)-action on g∗(1). Using this action, one can therefore see Ug as a G-equivariant
O(C)-algebra.

3.3. Central reductions. In view of (3.2), the maximal ideals in ZFr are in a
canonical bijection with elements in g∗(1). Given η ∈ g∗(1), we will denote by
mη ⊂ ZFr the corresponding maximal ideal, and set

Uηg := Ug/mη · Ug.

Similarly, in view of (3.3) the maximal ideals in ZHC are in a canonical bijection
with closed points in t∗/(W, •), i.e. with (W, •)-orbits in t∗. Given a closed point
ξ ∈ t∗/(W, •), we will denote by mξ ⊂ ZHC the corresponding maximal ideal, and
set

Uξg := Ug/mξ · Ug.
If η and ξ have the same image in t∗(1)/W , then mη · Z(Ug) + mξ · Z(Ug) is a
maximal ideal in Z(Ug), and we can also set

Uξηg := Ug/(mη · Ug + mξ · Ug).

In the cases we will encounter more specifically below, the point ξ will often be

the image λ̃ of the differential of a character λ ∈ X. In this setting we will write

mλ, Uλg and Uλη g instead of mλ̃, U λ̃g and U λ̃η g. The image of any element of t∗Fp
under the Artin–Schreier map is 0; therefore, if we denote by

N ∗ ⊂ g∗

the preimage under the coadjoint morphism g∗ → t∗/W of the image of 0, then
given any λ ∈ X the elements η ∈ g∗(1) whose image in t∗(1)/W coincides with that

of λ̃ are exactly those in N ∗(1).

3.4. Harish-Chandra bimodules. We will denote by HC the category whose
objects are the Ug-bimodules V endowed with an (algebraic) action of G which
satisfy the following conditions:

(1) the action morphisms Ug⊗V → V and V ⊗Ug→ V are G-equivariant (for
the diagonal actions on Ug⊗ V and V ⊗ Ug);

(2) the g-action on V obtained by differentiating the G-action is given by
(x, v) 7→ x · v − v · x;

(3) V is finitely generated both as a left and as a right Ug-module.

Morphisms in the category HC are morphisms of bimodules which also commute
with the G-actions. Objects in this category are called Harish-Chandra bimodules.
It is easily seen that the tensor product ⊗Ug of bimodules endows HC with the
structure of a monoidal category, where the G-action on the tensor product is the
diagonal action.

If M belongs to HC, the Ug-action obtained by differentiating the G-action must
vanish on ZFr ∩ (g · Ug). In view of condition (2) above, this implies that the two
actions of ZFr on M obtained by restriction of the left and right Ug-actions coincide;
in other words, the action of Ug ⊗k Ugop on M must factor through an action of
Ug ⊗ZFr

Ugop. However, the two actions of ZHC on a Harish-Chandra bimodule
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might differ. Note that Ug ⊗ZFr
Ugop is in a natural way a finite algebra over the

commutative ring

Z := Z(Ug)⊗ZFr
Z(Ug) = ZHC ⊗ZFr∩ZHC

ZFr ⊗ZFr∩ZHC
ZHC

∼= O(C×g∗(1) C).

Note also that since Ug⊗ZFr Ugop is finitely generated both as a left and as a right
Ug-module, condition (3) above can be equivalently replaced by the condition that
the object is finitely generated as a Ug-bimodule (or as a left Ug-module, or as a
right Ug-module). It is easily seen that forgetting the right, resp. left, action of Ug
defines an equivalence of categories

(3.5) HC
∼−→ ModGfg(Ug), resp. HC

∼−→ ModGfg(Ugop),

where ModGfg(Ug) is the category of G-equivariant finitely generated Ug-modules,

and similarly for ModGfg(Ugop). For instance, for the first functor, one can re-
construct the right action of Ug on a G-equivariant Ug-module M by setting
m · x := x · m − %(x)(m) for m ∈ M and x ∈ g, where % denotes the differen-
tial of the G-action.

We will also denote by ModGfg(Ug⊗ZFr
Ugop) the category of G-equivariant finitely

generated (left) modules over Ug⊗ZFr
Ugop. As above, since Ug⊗ZFr

Ugop is finitely
generated both as a left and as a right Ug-module, the tensor product ⊗Ug endows
this category with a monoidal structure, and as explained above we have a fully
faithful monoidal functor

(3.6) HC→ ModGfg(Ug⊗ZFr
Ugop).

If M belongs to ModGfg(Ug⊗ZFr
Ugop), then one obtains an extra U0g-action on M by

setting x·m = (x⊗1−1⊗x)m for x ∈ g and m ∈M . Since U0g identifies canonically
with the distribution algebra Dist(G1) of the kernel G1 of Fr, M becomes in this way
a GnG1-equivariant Ug⊗ZFr Ugop-module, where the action of GnG1 on Ug⊗ZFr

Ugop is obtained from the G-action by composition with the product morphism
G n G1 → G. As for (3.5), forgetting the right, resp. left, action of Ug defines an
equivalence of categories

ModGfg(Ug⊗ZFr
Ugop)

∼−→ ModGnG1

fg (Ug),

resp. ModGfg(Ug⊗ZFr
Ugop)

∼−→ ModGnG1

fg (Ugop).

From the point of view of these equivalences and those in (3.5), the essential image
of (3.6) consists of equivariant modules on which the action of G n G1 factors
through the product morphism GnG1 → G.

One can construct interesting objects in HC from G-modules as follows. Given
V in Rep(G) we consider the Harish-Chandra bimodule

V ⊗ Ug,

where the left Ug-action is diagonal (with respect to the action on V obtained by
differentiation, and the action on Ug by left multiplication), the right Ug-action is
induced by right multiplication on Ug, and the G-action is diagonal (with respect to
the given action on V and the adjoint action on Ug). In particular, for x, y, z ∈ Ug
and v ∈ V we have

x · (v ⊗ z) · y = (x(1) · v)⊗ (x(2)zy),
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where we use Sweedler’s notation for the comultiplication in the Hopf algebra Ug.
It is easily seen that the map (x⊗y)⊗v 7→ (x(1) ·v)⊗(x(2)y) induces an isomorphism
of G-equivariant Ug-bimodules

(Ug⊗ Ugop)⊗Ug V
∼−→ V ⊗ Ug,

where the tensor product over Ug in the left-hand side is taken with respect to the
morphism Ug→ Ug⊗Ugop defined by x 7→ x(1)⊗S(x(2)), where S is the antipode.
In particular, the modules V ⊗ Ug are “induced from the diagonal.” For V, V ′ in
Rep(G), we have a canonical isomorphism of Harish-Chandra bimodules

(3.7) (V ⊗ Ug)⊗Ug (V ′ ⊗ Ug)
∼−→ (V ⊗ V ′)⊗ Ug.

One can similarly consider, again for V in Rep(G), the Harish-Chandra bimodule

Ug⊗ V

where now the actions of Ug are defined by

x · (z ⊗ v) · y = (xzy(1))⊗ (S(y(2)) · v)

for x, y, z ∈ Ug and v ∈ V (and the G-action is still diagonal). As above we have
an isomorphism of G-equivariant Ug-bimodules

(Ug⊗ Ugop)⊗Ug V
∼−→ Ug⊗ V,

now given by (x ⊗ y) ⊗ v 7→ (xy(1)) ⊗ (S(y(2)) · v) for x, y ∈ Ug and v ∈ V . In
particular, the objects V ⊗Ug and Ug⊗V are isomorphic; explicitly the isomorphism
is given by

v ⊗ x 7→ x⊗ (S(x) · v)

for x ∈ Ug and v ∈ V .

3.5. Completed Harish-Chandra bimodules. Now, we need to adapt the con-
siderations of §3.4 to the setting of completed Harish-Chandra characters.

Let us set

D := Spec(ZHC ⊗ZHC∩ZFr ZHC) ∼= t∗/(W, •)×t∗(1)/W t∗/(W, •),

so that Z = O(g∗(1) ×t∗(1)/W D). For λ, µ ∈ X, we will also set

Iλ,µ := mλ ⊗ZHC∩ZFr ZHC + ZHC ⊗ZHC∩ZFr m
µ · ZHC,

and will denote by Dλ̂,µ̂ the spectrum of the completion of O(D) with respect to
the maximal ideal Iλ,µ. Finally, we set

U λ̂,µ̂ :=
(
Ug⊗ZFr

Ugop
)
⊗Z O(g∗(1) ×t∗(1)/W Dλ̂,µ̂)

∼=
(
Ug⊗ZFr Ugop

)
⊗O(D) O(Dλ̂,µ̂).

(Note that U λ̂,µ̂ is not the completion of Ug ⊗ZFr Ugop with respect to the ideal
generated by Iλ,µ, since Ug⊗ZFr Ugop is not of finite type as an O(D)-module.)

The algebra O(Dλ̂,µ̂) is Noetherian, see [SP, Tag 05GH], hence O(g∗(1)×t∗(1)/W

Dλ̂,µ̂) is Noetherian too, being finitely generated over O(Dλ̂,µ̂), see [SP, Tag 00FN].

Finally, since U λ̂,µ̂ is finitely generated as an O(g∗(1) ×t∗(1)/W Dλ̂,µ̂)-module it is

left and right Noetherian (as a noncommutative ring), and a U λ̂,µ̂-module is finitely

generated if and only if it is finitely generated as an O(g∗(1)×t∗(1)/W Dλ̂,µ̂)-module.

https://stacks.math.columbia.edu/tag/05GH
https://stacks.math.columbia.edu/tag/00FN
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The G-action on Ug⊗ZFr
Ugop induces an algebraic G-module structure on U λ̂,µ̂,

and we can consider the category of G-equivariant finitely generated modules over

this algebra; this (abelian) category will be denoted ModGfg(U λ̂,µ̂). The full subcat-
egory whose objects are the modules M such that the differential of the G-action
coincides with the action given by x ·m = xm−mx for x ∈ g and m ∈ M will be

denoted HCλ̂,µ̂; its objects will be called completed Harish-Chandra bimodules.
Given λ, µ ∈ X, we have a natural exact functor

Cλ,µ : ModGfg(Ug⊗ZFr Ugop)→ ModGfg(U λ̂,µ̂),

defined by

Cλ,µ(M) = O(Dλ̂,µ̂)⊗O(D) M,

which restricts to a functor HC → HCλ̂,µ̂. (Exactness of this functor follows from

the fact that O(Dλ̂,µ̂) is flat over O(D), see [SP, Tag 00MB].) We will denote by

HCλ̂,µ̂diag

the full additive subcategory of HCλ̂,µ̂ whose objects are direct summands of objects
of the form Cλ,µ(V ⊗ Ug) with V in Rep(G). (In view of the comments at the
end of §3.4, objects in this category will sometimes be referred to as completed
diagonally induced Harish-Chandra bimodules.) In case λ = µ, we will set

U λ̂ = Cλ,λ(k⊗ Ug),

where here k is the trivial G-module.
For later use, we also introduce some completed bimodules which are closely

related to the translation functors for G-modules (see §6.3 below for details). Recall
that a weight λ ∈ X is said to belong to the fundamental alcove, resp. to the closure
of the fundamental alcove, if it satisfies

0 < 〈λ+ ρ, α∨〉 < p, resp. 0 ≤ 〈λ+ ρ, α∨〉 ≤ p,

for any positive root α. With this notation, the set of weights which belong to the
closure of the fundamental alcove is a fundamental domain for the (Waff , •)-action
on X. Moreover, if λ ∈ X belongs to the closure of the fundamental alcove, then
its stabilizer in Waff is the parabolic subgroup generated by the elements s ∈ Saff

such that s • λ = λ; see [J2, §II.6.3].

Remark 3.3. The weight lattice X contains weights which belong to the fundamental
alcove iff p ≥ h, where h is the Coxeter number of G, see [J2, §6.2]. Even though
this condition will be imposed only in Section 6, some of our statements in Section 5
involve weights in the fundamental alcove; these statements will simply be empty
in case p < h.

Let X+ ⊂ X be the subset of dominant weights determined by R+. For any
ν ∈ X+, we will denote by L(ν) the simple G-module with highest weight ν, i.e. the

unique simple submodule in IndGB(ν). Given two weights λ, µ ∈ X which belong to
the closure of the fundamental alcove, we set

Pλ,µ := Cλ,µ(L(ν)⊗ Ug) ∈ HCλ̂,µ̂diag,

where ν is the unique dominant W -translate of λ− µ.

https://stacks.math.columbia.edu/tag/00MB
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3.6. Comparison of completions. For notational simplicity, let us now fix a

subset Λ ⊂ X such that the map λ 7→ λ̃ restricts to a bijection Λ
∼−→ t∗Fp/(W, •). (In

other words, Λ is a set of representatives for the •-action of Wext on X.)
We will denote by I ⊂ O(t∗(1)/W ) = ZHC∩ZFr the maximal ideal corresponding

to the image of 0 ∈ t∗(1). Then in the notation of §3.2 I ·ZFr is the ideal of definition
of N ∗(1) ⊂ g∗(1), and each ideal Iλ,µ contains I ·O(D). We will denote by D∧ the
spectrum of the completion of O(D) with respect to the ideal I ·O(D). Note that
since O(D) is finite as an O(t∗(1)/W )-module (because the morphisms t∗ → t∗(1)

and t∗(1) → t∗(1)/W are finite), if we denote by O(t∗(1)/W )∧ the completion of
O(t∗(1)/W ) with respect to I we have a canonical isomorphism

(3.8) O(t∗(1)/W )∧ ⊗O(t∗(1)/W ) O(D)
∼−→ O(D∧),

see [SP, Tag 00MA].

Lemma 3.4. The natural morphism

O(D∧)→
∏
λ,µ∈Λ

O(Dλ̂,µ̂)

is a ring isomorphism.

Proof. The lemma will basically follow from the observation that the closed points
in the fiber of the morphism (3.4) over the (closed) point corresponding to I are
those corresponding to the ideals mλ with λ ∈ X, which itself follows from the fact
that the fiber of AS : t∗ → t∗(1) over 0 is t∗Fp .

More precisely, the morphism considered in this statement is the product of

the morphisms O(D∧) → O(Dλ̂,µ̂) induced by the natural morphisms O(D)/(In ·
O(D)) � O(D)/(Iλ,µ)n. This morphism is clearly a ring morphism; to prove that
it is invertible we will construct its inverse.

Let us fix some n ≥ 1, and consider the quotient O(D)/(In · O(D)). Here
as explained above O(D) = ZHC ⊗ZHC∩ZFr

ZHC is a finite O(t∗(1)/W )-module;
therefore this algebra is finite-dimensional. Its maximal ideals are in bijection
with the maximal ideals of O(D) containing I · O(D), hence with Λ × Λ through
(λ, µ) 7→ Iλ,µ/In ·O(D). In view of the general theory of Artin rings (see e.g. [AM,
Chap. 8]), for any λ, µ ∈ Λ the quotient

O(D)/(In · O(D) + (Iλ,µ)m)

does not depend on m for m� 0, and the natural morphism from O(D)/(In ·O(D))
to the product of these rings (over Λ× Λ) is an isomorphism.

Now we are ready to define the wished-for inverse morphism∏
λ,µ∈Λ

O(Dλ̂,µ̂)→ O(D∧).

For this it suffices to define, for any n ≥ 1, a ring morphism

(3.9)
∏
λ,µ∈Λ

O(Dλ̂,µ̂)→ O(D)/(In · O(D)).

We fix m such that the natural morphism

(3.10) O(D)/(In · O(D))→
∏
λ,µ∈Λ

O(D)/(In · O(D) + (Iλ,µ)m)

https://stacks.math.columbia.edu/tag/00MA
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is an isomorphism. Then we have natural ring morphisms∏
λ,µ∈Λ

O(Dλ̂,µ̂)→
∏
λ,µ∈Λ

O(D)/(Iλ,µ)m →
∏
λ,µ∈Λ

O(D)/(In · O(D) + (Iλ,µ)m).

Composing with the inverse of (3.10) we deduce the desired map (3.9).
It is easy (and left to the reader) to check that the two morphisms considered

above are inverse to each other. �

Remark 3.5. If we denote by Z∧HC the completion of ZHC with respect to the ideal

I ·ZHC, then as in (3.8) we have a canonical isomorphism O(t∗(1)/W )∧⊗O(t∗(1)/W )

ZHC
∼−→ Z∧HC, and therefore a canonical isomorphism

O(D∧)
∼−→ Z∧HC ⊗O(t∗(1)/W )∧ Z

∧
HC.

Denoting by Z λ̂HC the completion of ZHC with respect to the ideal mλ, for λ ∈ X, the
same considerations as for Lemma 3.4 show that we have a canonical isomorphism

Z∧HC
∼−→
∏
λ∈Λ

Z λ̂HC,

from which we obtain a decomposition

O(D∧)
∼−→

∏
λ,µ∈Λ

Z λ̂HC ⊗O(t∗(1)/W )∧ Z
µ̂
HC.

This decomposition is in fact “the same” as the decomposition of Lemma 3.4, in
the sense that for any λ, µ ∈ Λ we have an identification

(3.11) O(Dλ̂,µ̂)
∼−→ Z λ̂HC ⊗O(t∗(1)/W )∧ Z

µ̂
HC.

We will also set

U∧ :=
(
Ug⊗ZFr Ugop

)
⊗O(D) O(D∧) ∼=

(
Ug⊗ZFr Ugop

)
⊗O(t∗(1)/W ) O(t∗(1)/W )∧,

where the isomorphism uses (3.8). Then, as in §3.5, U∧ is a left and right Noetherian
ring, endowed with a structure of algebraic G-module, and Lemma 3.4 implies that
the natural morphism

(3.12) U∧ →
∏
λ,µ∈Λ

U λ̂,µ̂

is an algebra isomorphism. Below we will consider various categories of U∧-modules;
in fact we have

U∧ ∼=
(
Ug⊗O(t∗(1)/W ) O(t∗(1)/W )∧

)
⊗ZFr⊗O(t∗(1)/W )

O(t∗(1)/W )∧(
Ug⊗O(t∗(1)/W ) O(t∗(1)/W )∧

)op
;

a U∧-module is therefore the same as a (Ug⊗O(t∗(1)/W ) O(t∗(1)/W )∧)-bimodule on

which the left and right actions of ZFr ⊗O(t∗(1)/W ) O(t∗(1)/W )∧ coincide.

We will denote by ModGfg(U∧) the abelian category of G-equivariant finitely gen-
erated U∧-modules. In view of (3.12), we have a canonical equivalence of categories

(3.13) ModGfg(U∧) ∼=
⊕
λ,µ∈Λ

ModGfg(U λ̂,µ̂).

We also have a canonical exact functor

(3.14) C∧ : ModGfg(Ug⊗ZFr
Ugop)→ ModGfg(U∧)
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defined by C∧(M) = O(D∧) ⊗O(D) M . For the same reasons as above, for any M

in ModGfg(Ug⊗ZFr
Ugop) we have a canonical isomorphism

C∧(M) ∼=
⊕
λ,µ∈Λ

Cλ,µ(M).

An object M in ModGfg(U∧) will be called a completed Harish-Chandra bimodule
if the differential of the G-action coincides with the action given by x·m = xm−mx
for x ∈ g and m ∈M , and we will denote by HC∧ the full subcategory of ModGfg(U∧)
consisting of such objects; this terminology is compatible with that of §3.5 in the
sense that (3.13) restricts to an equivalence of categories

HC∧ ∼=
⊕
λ,µ∈Λ

HCλ̂,µ̂.

We will denote by HC∧diag the full additive subcategory of ModGfg(U∧) whose objects
are the direct summands of objects of the form C∧(V ⊗ Ug) with V in Rep(G).
With this definition, (3.13) restricts further to an equivalence of categories

HC∧diag
∼=
⊕
λ,µ∈Λ

HCλ̂,µ̂diag.

3.7. Monoidal structure. We now want to define some analogue of the monoidal

structure on ModGfg(Ug⊗ZFrUgop) for the categories ModGfg(U λ̂,µ̂). More specifically,
given λ, µ, ν in X we want to define a canonical bifunctor

(3.15) (−) ⊗̂Ug (−) : ModGfg(U λ̂,µ̂)×ModGfg(U µ̂,ν̂)→ ModGfg(U λ̂,ν̂)

right exact on both sides, which restricts to a bifunctor

HCλ̂,µ̂ × HCµ̂,ν̂ → HCλ̂,ν̂ ,

these bifunctors satisfying natural unit and associativity axioms. Explicitly, we
require that:

• in case µ = λ we have a canonical isomorphism of functors

U λ̂ ⊗̂Ug (−) ∼= id,

and in case ν = µ we have a canonical isomorphism

(−) ⊗̂Ug U µ̂ ∼= id;

• for four weights λ, µ, ν, η ∈ X we have an isomorphism(
(−) ⊗̂Ug (−)

)
⊗̂Ug (−)

∼−→ (−) ⊗̂Ug
(
(−) ⊗̂Ug (−)

)
of functors from

ModGfg(U λ̂,µ̂)×ModGfg(U µ̂,ν̂)×ModGfg(U ν̂,η̂)

to ModGfg(U λ̂,η̂).

In particular, in case λ = µ = ν, this construction will equip ModGfg(U λ̂,λ̂) with the
structure of a monoidal category.

For this we can assume that all the weights involved belong to the subset Λ
chosen in §3.6. It therefore suffices to construct a monoidal structure of the cate-
gory ModGfg(U∧), with monoidal unit C∧(k⊗ Ug); the bifunctor (3.15) will then be
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deduced by restriction to the factor ModGfg(U λ̂,µ̂)×ModGfg(U µ̂,ν̂) in the decomposi-
tion (3.13).

Recall that we have

U∧ =
(
Ug⊗ZFr Ugop

)
⊗O(t∗(1)/W ) O(t∗(1)/W )∧.

Given M,N in ModGfg(U∧), we set

M ⊗̂Ug N := M ⊗Ug⊗
O(t∗(1)/W )

O(t∗(1)/W )∧ N,

where the right action of Ug⊗O(t∗(1)/W ) O(t∗(1)/W )∧ on M is induced by the action
of the second copy of Ug, and the left action on N is induced by the action of the
first copy of Ug. This tensor product admits compatible actions of Ug ⊗ZFr

Ugop

(induced by the action of the first copy of Ug on M , and of the second copy of Ug on
N) and of O(t∗(1)/W )∧, hence of U∧. This modules is moreover finitely generated,
since it is finitely generated over O(g∗(1)) ⊗O(t∗(1)/W ) O(t∗(1)/W )∧, and it admits

a canonical (diagonal) G-module structure. In this way we obtain a bifunctor

ModGfg(U∧)×ModGfg(U∧)→ ModGfg(U∧),

which is easily seen to provide a monoidal structure with monoidal unit C∧(k⊗Ug).
It is easily seen also that the functor (3.14) has a canonical monoidal structure;
using (3.7) we deduce that the full subcategory HC∧diag is a monoidal subcategory.

If λ, µ, ν ∈ X and if M belongs to ModGfg(U λ̂,µ̂) and N belongs to ModGfg(U µ̂,ν̂),

then seeing M and N as objects in ModGfg(U∧) via (3.13) the product M⊗̂UgN
belongs to the factor ModGfg(U λ̂,ν̂), which provides the desired bifunctor (3.15). (In

fact, the action of the left copy of ZHC factors through an action of Z λ̂HC, and that
of the right copy factors through an action of Z ν̂HC, which justifies the claim in

view of (3.11).) From the corresponding property for ModGfg(U∧) we deduce that

the subcategories HCλ̂,µ̂ and HCλ̂,µ̂diag are stable (in the obvious sense) under this

bifunctor. In this setting the functor Cλ̂,µ̂ satisfies

Cλ̂,µ̂(M ⊗Ug N) ∼=
⊕
ν∈Λ

Cλ̂,ν̂(M) ⊗̂Ug Cν̂,µ̂(N)

for any M,N in ModGfg(Ug⊗ZFr
Ugop).

3.8. Restriction to the Kostant section. Recall the constructions of §2.3 ap-
plied to the group G = G(1). In particular, we have a Kostant section S∗ ⊂ g∗ =

g∗(1), and group schemes J∗reg over g
∗(1)
reg and J∗S over S∗.

We also set

I∗S := (G× S∗)×G(1)×S∗ J∗S.
where the map G × S∗ → G(1) × S∗ is the product of the Frobenius morphism
of G and the identity of S∗. Since G is smooth its Frobenius morphism is flat
(see e.g. [BK, §1.1]), and therefore I∗S is a flat affine group scheme over S∗. By
construction I∗S contains G1×S∗ as a normal subgroup, and the quotient identifies
with J∗S. Note also that the morphism (2.4) induces (after restriction to S and
composition with the projection I∗S → J∗S) a group-scheme morphism

(3.16) t∗(1) ×t∗(1)/W I∗S → (t∗(1) ×t∗(1)/W S∗)× T (1).
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Finally, we set

USg := Ug⊗ZFr
O(S∗),

where O(S∗) is seen as a ZFr-algebra via the identification (3.2). If we set

CS := S∗ ×t∗(1)/W t∗/(W, •),

then the projection CS → t∗/(W, •) is an isomorphism, and USg is an O(CS)-algebra.
Recall that the algebra Ug can be seen as a G-equivariant O(C)-algebra (see §3.2).
Using the general construction recalled in [MR, §2.2], from this we deduce on USg
a natural structure of module for the flat affine group scheme CS ×S∗ I∗S over CS,
such that the multiplication morphism is equivariant.

3.9. (Completed) Harish-Chandra bimodules for USg. We now want to de-

fine, given λ, µ ∈ X, categories analogous to ModGfg(U λ̂,µ̂) and HCλ̂,µ̂ but for the
algebra USg in place of Ug. We start with the non-completed version.

Let us consider the category ModIfg(USg ⊗O(S∗) USgop) of finitely generated
USg⊗O(S∗)USgop-modules endowed with a compatible structure of I∗S-module. Since
I∗S is flat over S∗, this category is abelian. Here USg ⊗O(S∗) (USg)op is an algebra
over

ZS := O(t∗/(W, •))⊗O(t∗(1)/W ) O(S∗)⊗O(t∗(1)/W ) O(t∗/(W, •)),
which identifies with O(D) via the composition of natural algebra morphisms

O(D)→ O(g∗(1) ×t∗(1)/W D) = Z → ZS.

As in §3.4 the tensor product ⊗USg defines a monoidal structure on this category,
and using the construction of [MR, §2.2] considered above the functor O(S∗)⊗ZFr

(−) defines a monoidal functor

(3.17) ModGfg(Ug⊗ZFr
Ugop)→ ModIfg(USg⊗O(S∗) USgop).

An object M in ModIfg(USg ⊗O(S∗) USgop) will be called a Harish-Chandra USg-
bimodule if the restriction of the action of I∗S to G1 × S∗, seen as an action of
the algebra Dist(G1) = U0g, coincides with the action determined by the rule
x ·m = xm−mx for x ∈ g and m ∈M . We will denote by HCS the full subcategory
of ModIfg(USg ⊗O(S∗) USgop) consisting of such objects; then the functor (3.17)
restricts to a functor

HC→ HCS.

As in §3.4, for any M in ModIfg(USg ⊗O(S∗) USgop) the action of I∗S on M extends
to an action of the semi-direct product

I∗S nG1 = I∗S nS (G1 × S);

the Harish-Chandra USg-bimodules are those objects on which this action factors
through the multiplication morphism I∗S nG1 → I∗S.

Now we add completions to the picture. Given λ, µ ∈ X, we will denote by Z λ̂,µ̂S

the completion of ZS with respect to the maximal ideal Iλ,µS := Iλ,µ · ZS, so that

we have a canonical isomorphism O(Dλ̂,µ̂)
∼−→ Z λ̂,µ̂S . We also set

U λ̂,µ̂S := Z λ̂,µ̂S ⊗ZS

(
USg⊗O(S∗) USgop

)
.

In this setting USg ⊗O(S∗) USgop is finitely generated as a ZS-module, so that

U λ̂,µ̂S identifies with the completion of USg ⊗O(S∗) USgop with respect to the ideal
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Iλ,µ · (USg⊗O(S∗) USgop). If we denote by Iλ̂,µ̂S the pullback of I∗S under the natural

morphism Spec(Z λ̂,µ̂S )→ S∗, then Iλ̂,µ̂S is a flat group scheme over Spec(Z λ̂,µ̂S ), and

the I∗S-module structure on USg induces a natural Iλ̂,µ̂S -module structure on U λ̂,µ̂S .

The algebra U λ̂,µ̂S is left and right Noetherian, and we will denote by ModIfg(U λ̂,µ̂S )

the abelian category of Iλ̂,µ̂S -equivariant finitely generated U λ̂,µ̂S -modules. Note that
we have

U λ̂,µ̂S = U λ̂,µ̂ ⊗ZFr
O(S∗);

in particular, the functor O(S∗)⊗ZFr
(−) defines a natural functor

(3.18) ModGfg(U λ̂,µ̂)→ ModIfg(U λ̂,µ̂S ).

(Standard arguments show that this functor is exact, but this will not play any role
below.) If λ, µ ∈ X belong to the closure of the fundamental alcove, we will also set

Pλ,µS := O(S∗)⊗O(g∗(1)) P
λ,µ.

One defines the notion of completed Harish-Chandra USg-bimodules by imposing

the same condition as for HCS. The full subcategory of ModIfg(U λ̂,µ̂S ) consisting of

such objects will be denoted HCλ̂,µ̂S ; it is clear that the functor (3.18) restricts to a
functor

HCλ̂,µ̂ → HCλ̂,µ̂S .

Using considerations similar to those of §3.7 one constructs, again for λ, µ, ν ∈ X,
a canonical bifunctor

(3.19) (−) ⊗̂USg (−) : ModIfg(U λ̂,µ̂S )×ModIfg(U µ̂,ν̂S )→ ModIfg(U λ̂,ν̂S )

which factors through a bifunctor

HCλ̂,µ̂S × HCµ̂,ν̂S → HCλ̂,ν̂S ,

this construction being unital, associative, and compatible in the natural way with
the bifunctors (−)⊗̂Ug(−) via the functors (3.18). More explicitly, one remarks
that if Z∧S is the completion of ZS with respect to the ideal I · ZS, then if we set

U∧S := Z∧S ⊗ZS

(
USg⊗O(S∗) USgop

)
= O(S∗(1))⊗O(g∗(1)) U∧,

as in (3.12) we have a canonical algebra isomorphism

U∧S
∼−→

∏
λ,µ∈Λ

U λ̂,µ̂S .

If we denote by I∧S the pullback of I∗S to Spec(Z∧S ), then one can consider the

abelian category ModIfg(U∧S ) of finitely generated I∧S-equivariant U∧S -modules, and
the bifunctor

(3.20) (−) ⊗̂USg (−) : ModIfg(U∧S )×ModIfg(U∧S )→ ModIfg(U∧S )

defined by

M ⊗̂USg N = M ⊗USg⊗O(t∗(1)/W )
O(t∗(1)/W )∧ N

defines a monoidal structure on this category. Note that any finitely generated U∧S -
module M is also finitely generated as a Z∧S -module, so that the natural morphism
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M → lim←−nM/In·M is an isomorphism (see [SP, Tag 00MA]); the monoidal product

considered above therefore satisfies

M ⊗̂USg N ∼= lim←−
n≥1

(M/In ·M)⊗USg (N/In ·N)

as U∧S -modules, for any M,N in ModIfg(U∧S ). The functor O(S∗) ⊗ZFr (−) also
induces a functor

(3.21) ModGfg(U∧)→ ModIfg(U∧S )

which admits a canonical monoidal structure. The composition of this functor with
the functor C∧ of (3.14) will be denoted C∧S .

As in (3.13) we have

(3.22) ModIfg(U∧S ) ∼=
⊕
λ,µ∈Λ

ModIfg(U λ̂,µ̂S ),

and the bifunctor (3.19) is then obtained by restriction of (3.20) to the appropriate

summands. In case λ = µ = ν, this bifunctor equips ModIfg(U λ̂,λ̂S ) with a structure
of monoidal category, with unit object

U λ̂S := O(S∗)⊗O(g∗(1)) U λ̂.

With this definition, it is clear that the functor (3.18) is compatible with the bi-
functors (−)⊗̂Ug(−) and (−)⊗̂USg(−) in the obvious way.

Lemma 3.6. For any λ, µ ∈ X which belong to the closure of the fundamental
alcove and any ν ∈ X, the functor

Pλ,µS ⊗̂USg (−) : ModIfg(U µ̂,ν̂S )→ ModIfg(U λ̂,ν̂S )

is both left and right adjoint to the functor

Pµ,λS ⊗̂USg (−) : ModIfg(U λ̂,ν̂S )→ ModIfg(U µ̂,ν̂S ).

A similar property holds for the functors (−)⊗̂USgP
λ,µ
S and (−)⊗̂USgP

µ,λ
S .

Proof. We prove the case of convolution on the left; convolution on the right can
be treated similarly. We remark that for any V ∈ Rep(G), the functor

C∧S(V ⊗ Ug) ⊗̂USg (−) : ModIfg(U∧S )→ ModIfg(U∧S )

is both left and right adjoint to the functor

C∧S(V ∗ ⊗ Ug) ⊗̂USg (−) : ModIfg(U∧S )→ ModIfg(U∧S ).

(In fact, these functors can be realized more concretely as tensor product with V
and V ∗ respectively.) On the other hand, the inclusion functor

ModIfg(U λ̂,ν̂S )→ ModIfg(U∧S )

(see (3.22)) is both left and right adjoint to the corresponding projection functor

ModIfg(U∧S )→ ModIfg(U λ̂,ν̂S ),

and similarly for µ in place of λ. The desired claim follows, since the functors

Pλ,µS ⊗̂USg(−) and Pµ,λS ⊗̂USg(−) are isomorphic to compositions of functors of this
form. (More specifically, if ν ∈ X is the only dominant W -translate of µ − λ,

the functor Pλ,µS ⊗̂USg(−) involves the module L(ν), and the functor Pµ,λS ⊗̂USg(−)

https://stacks.math.columbia.edu/tag/00MA
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involves the module L(−w0(ν)); here we fix an isomorphism L(ν)∗ ∼= L(−w0(ν)).)
�

3.10. Restriction to the Kostant section for diagonally induced bimod-
ules. In this subsection we aim at proving the following claim.

Proposition 3.7. For any λ, µ ∈ X, the functor (3.18) is fully faithful on the

subcategory HCλ̂,µ̂diag.

The proof of this proposition will use some standard properties stated in the
following lemma. Here, k is a commutative ring, A is a left Noetherian k-algebra,
and H is an affine k-group scheme. For any commutative k-algebra k′ we set
Hk′ := Spec(k′)×Spec(k)H. If A admits an action of H by algebra automorphisms,

we denote by ModH(A) the category of H-equivariant A-modules. (This category
is abelian if H is flat over k.)

Lemma 3.8. (1) If M,N are A-modules with M finitely generated, for any
flat k-module V we have a canonical isomorphism

HomA(M,N ⊗k V )
∼−→ HomA(M,N)⊗k V

where N ⊗k V is regarded as an A-module for the action on the first factor.
(2) If H is flat over k, and if M,N are H-equivariant A-modules, with M

finitely generated as an A-module, then the k-module HomA(M,N) admits
a canonical structure of H-module, and we have a canonical isomorphism

HomModH(A)(M,N)
∼−→
(
HomA(M,N)

)H
.

(3) If k′ is a flat commutative k-algebra, for any H-module we have a canonical
isomorphism

(k′ ⊗kM)Hk′
∼−→ k′ ⊗kMH .

Proof. (1) We consider a presentation A⊕n → A⊕m →M → 0; we then have exact
sequences

0→ HomA(M,N ⊗k V )→ HomA(A⊕m, N ⊗k V )→ HomA(A⊕n, N ⊗k V )

and

0→ HomA(M,N)⊗k V → HomA(A⊕m, N)⊗k V → HomA(A⊕n, N)⊗k V,
where we use the flatness of V . It is clear that the second and third terms in these
exact sequences identify, and we deduce an identification of the first terms.

(2) We first consider the morphism

HomA(M,N)→ HomA(M,N ⊗k O(H))

which sends a morphism ϕ : M → N to the composition

M
(id⊗S)⊗∆M−−−−−−−−→M ⊗k O(H)

ϕ⊗id−−−→ N ⊗k O(H)→ N ⊗k O(H)

where the third morphism sends n⊗g to n(1)⊗f(2)g in Sweedler’s notation. By (1)
we have HomA(M,N ⊗k O(H)) ∼= HomA(M,N) ⊗k O(H), so that this morphism
can be seen as a morphism HomA(M,N)→ HomA(M,N)⊗k O(H), which can be
checked to provide an O(H)-comodule structure (i.e. an H-module structure) on

HomA(M,N). The isomorphism HomModH(A)(M,N)
∼−→ (HomA(M,N))H is then

clear from definitions.
(3) See [J2, §I.2.10, Equation (3)]. �
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With these tools we can give the proof of the proposition.

Proof of Proposition 3.7. To prove the proposition, it suffices to prove that the
functor (3.21) is fully faithful on the subcategory HC∧diag, which will follow if we
prove that it induces an isomorphism

HomModGfg(U∧)(C
∧(M),C∧(V ⊗ Ug))

∼−→ HomModIfg(U∧S )(C
∧
S(M),C∧S(V ⊗ Ug))

for any M in ModGfg(Ug⊗ZFr
Ugop) and V ∈ Rep(G).

For N in ModGfg(Ug⊗ZFr
Ugop), we have

HomModGfg(U∧)(C
∧(M),C∧(N)) ∼=

(
HomU∧(C∧(M),C∧(N))

)G
∼=
(
HomUg⊗ZFr

Ugop(M,C∧(N))
)G ∼= (HomUg⊗ZFr

Ugop(M,N)⊗O(D) O(D∧)
)G
,

where the first isomorphism uses Lemma 3.8(2), and the third one uses Lem-
ma 3.8(1). Using Lemma 3.8(3), we deduce isomorphisms

HomModGfg(U∧)(C
∧(M),C∧(N)) ∼=

(
HomUg⊗ZFr

Ugop(M,N)
)G ⊗O(D) O(D∧)

∼= HomModG(Ug⊗ZFr
Ugop)(M,N)⊗O(D) O(D∧).

Assuming now that N = V ⊗ Ug, we claim that the functor O(S∗) ⊗ZFr
(−)

induces an isomorphism

(3.23) HomModGfg(Ug⊗ZFr
Ugop)(M,V ⊗ Ug)

∼−→

HomModIfg(USg⊗O(S∗)USgop)(O(S∗)⊗ZFr M,V ⊗ USg).

In fact, the algebra Ug⊗ZFr Ugop is a G-equivariant finite O(g∗(1))-algebra. There-
fore, it identifies with the global sections of a G-equivariant coherent sheaf of Og∗(1)-

algebras U on g∗(1). Moreover, the restriction US of U to S∗ is an I∗S-equivariant
sheaf of OS∗ -algebras on S∗, whose global sections are USg ⊗O(S∗) (USg)op. Con-

sider the open embedding j : g
∗(1)
reg ↪→ g∗(1), and set Ureg := j∗(U ). Let us de-

note by QCohG(g
∗(1)
reg ,Ureg) the category of G-equivariant quasi-coherent sheaves on

g
∗(1)
reg equipped with a structure of Ureg-module, compatible with the G-equivariant

structure in the natural way, and by CohG(g
∗(1)
reg ,Ureg) the subcategory of coherent

modules. Then we have a restriction functor

j∗ : ModG(Ug⊗ZFr Ugop)→ QCohG(g∗(1)
reg ,Ureg)

which admits a right adjoint

j∗ : QCohG(g∗(1)
reg ,Ureg)→ ModG(Ug⊗ZFr

Ugop)

coinciding with the usual pushforward functor at the level of quasi-coherent sheaves

on g
∗(1)
reg and g∗(1). Since the complement of g

∗(1)
reg has codimension ≥ 2, the natural

morphism Og∗(1) → j∗j
∗Og∗(1) is an isomorphism. Since Ug is free over ZFr it follows

that the morphism V ⊗Ug→ j∗j
∗(V ⊗Ug) is also an isomorphism, and then that

the functor j∗ induces an isomorphism

HomModGfg(Ug⊗ZFr
Ugop)(M,V ⊗ Ug)

∼−→ Hom
CohG(g

∗(1)
reg ,Ureg)

(j∗M, j∗(V ⊗ Ug)).
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It is a standard observation (see [R3, Proposition 3.3.11]) that restriction to S∗

induces an equivalence of abelian categories

CohG
(1)

(g∗(1)
reg )

∼−→ Rep(J∗S),

where the right-hand side denotes the category of representations of the affine group
scheme J∗S (see §3.8) on coherent OS∗ -modules. The same considerations provide
an equivalence of categories

CohG(g∗(1)
reg )

∼−→ Rep(I∗S).

(Here we use the fact that the Frobenius morphism of G is flat and surjective,
hence faithfully flat.) This equivalence is monoidal with respect to the natural
tensor product on each side, and the image of the algebra Ureg is US; therefore it
induces an equivalence of abelian categories

CohG(g∗(1)
reg ,Ureg)

∼−→ ModIfg(USg⊗O(S∗) USgop).

From this we finally obtain that (3.23) is an isomorphism.
Combining (3.23) with the preceding isomorphisms we obtain a canonical iso-

morphism

HomModGfg(U∧)(C
∧(M),C∧(V ⊗ Ug)) ∼=

HomModIfg(USg⊗O(S∗)USgop)(O(S∗)⊗ZFr M,V ⊗ USg)⊗O(D) O(D∧).

Considerations similar to those of the beginning of the proof allow to identify the
right-hand side with

HomModIfg(U∧S )(C
∧
S(M),C∧S(V ⊗ Ug)),

which finishes the proof. �

4. Localization for Harish-Chandra bimodules

4.1. Azumaya algebras. We start by recalling the basic theory of Azumaya al-
gebras.

Let R be a commutative ring. Recall that an R-module P is called faithfully
projective if it is projective of finite type and if moreover the only R-module M
such that P ⊗R M = 0 is M = 0. By [KO, Chap. I, Lemme 6.2] this condition
is equivalent to requiring that P is projective of finite type and faithful (i.e. its
annihilator in R is trivial). An R-module P is finitely generated and projective
iff it is finitely presented and moreover the localization Pp is free over Rp for any
p ∈ Spec(R), see [KO, Chap. I, Lemme 5.2] or [SP, Tag 00NX]. In this setting, P is
faithful iff the rank of Pp is positive for any p, see [KO, Chap. I, Lemme 6.1]. This
notion is important in Morita theory since if P is a faithfully projective R-module,
then we obtain quasi-inverse equivalences of categories

Mod(R) // Mod(EndR(P ))oo

given by M 7→ P ⊗R M and N 7→ HomR(P,R) ⊗EndR(P ) N where Mod(A) is the
category of left A-modules for any ring A; see [KO, Chap. I, Lemme 7.2]. In case
R is Noetherian, the ring EndR(P ) is left Noetherian (as a noncommutative ring),
and these equivalences restrict to equivalences

(4.1) Modfg(R) // Modfg(EndR(P ))oo

https://stacks.math.columbia.edu/tag/00NX
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between subcategories of finitely generated modules. (Here, a left EndR(P )-module
is finitely generated iff it is finitely generated as an R-module.)

Let A be an R-algebra.3 Recall (see [KO, §III.5]) that A is called an Azumaya
R-algebra if it satisfies one of the following equivalent conditions:

• A is faithfully projective as an R-module, and the morphism sending a⊗ b
to the map x 7→ axb is an isomorphism of R-algebras

A⊗R Aop ∼−→ EndR(A);

• A is finite as an R-module, the ring morphism R → A is injective, and
moreover for any maximal ideal m ⊂ R the finite-dimensional R/m-algebra
A/mA is a central simple algebra.

In particular, the first characterization and the facts recalled above show that in
this case we have canonical equivalences of categories

Mod(R) // Mod(A⊗R Aop).oo

4.2. Azumaya property of USg. The following property is standard (see [BG,
BGor]); we recall its proof for the reader’s convenience.

Proposition 4.1. The O(CS)-algebra USg is Azumaya.

Proof. We will use the second characterization of Azumaya algebras recalled in §4.1.
Since Ug is finite over Z(Ug) = O(C), USg is finite over O(CS). To prove that the
morphism O(CS)→ USg is injective, we consider the composition

G× S∗ → G(1) × S∗ → g∗(1)
reg → g∗(1).

Here the first morphism is flat since G is smooth (see §3.8), the second morphism
is smooth by [R3, Lemma 3.3.1], and the third one is an open embedding; this
composition is therefore flat. The algebras Z(Ug) and Ug can be considered as
G-equivariant coherent sheaves on g∗(1), and the induced morphism O(CS)→ USg
is obtained from the embedding Z(Ug)→ Ug by the pullback functor

CohG(g∗(1))→ CohG(G× S∗)

associated with the flat morphism considered above, followed by the obvious equiv-
alences CohG(G× S∗) ∼= Coh(S∗) ∼= Modfg(O(S∗)); it is therefore injective.

What is left to prove is that if m ⊂ Z(Ug) is a maximal ideal which belongs
to CS = S∗(1) ×t∗(1)/W t∗/(W, •), then Ug/mUg is a central simple algebra. In

fact, this property holds more generally if m belongs to Creg := g
∗(1)
reg ×t∗(1)/W

t∗/(W, •). Indeed, let N be the maximal dimension of a simple Ug-module. By [BG,
Proposition 3.1], if m ⊂ Z(Ug) is a maximal ideal such that Ug/mUg admits a
simple module V of dimension N , then Ug/mUg is a central simple algebra; more
specifically, the algebra morphism Ug/mUg → Endk(V ) is an isomorphism. Now

by [PS, Theorem 4.4] we have N = p#R+

. And by [PS, Theorem 5.6], if m belongs

to Creg then any simple Ug/mUg-module has dimension divisible by p#R+

hence
equal to N . �

3Let us insist that by an R-algebra we mean a (not necessarily commutative) ring A endowed
with a ring morphism from R to the center of A.
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It follows in particular from Proposition 4.1 that USg is faithfully projective as
an O(CS)-module.

Below we will use a slightly more concrete version of Proposition 4.1, as follows.
First we need to recall the definition of baby Verma modules. Consider some
element η ∈ g∗(1), and some Borel subgroup B′ ⊂ G with unipotent radical U ′ such
that η vanishes on Lie(U ′)(1). (Such a Borel subgroup exists for any η, see [J1,
Lemma 6.6].) Then η defines an element η′ in (Lie(B′)/Lie(U ′))∗(1). Let ξ ∈ t∗ be
an element whose image under the map

t∗ ∼= (Lie(B)/Lie(U))∗
∼−→ (Lie(B′)/Lie(U ′))∗ → (Lie(B′)/Lie(U ′))∗(1)

is η′, where the second map is induced by conjugation by an element g ∈ G such
that gBg−1 = B′ (it is well known that the isomorphism does not depend on the
choice of g), and the second one is the Artin–Schreier map associated with the torus
B′/U ′. Then we can consider the associated baby Verma module

Zη,B′(ξ) := Uηg⊗UηLie(B′) kξ,

where UηLie(B′) is the central reduction (with respect to the Frobenius center)

of the enveloping algebra of Lie(B′) at the image of η in Lie(B′)∗(1), and kξ is
its 1-dimensional module defined by the image of ξ in (Lie(B′)/Lie(U ′))∗. This

module has dimension p#R+

; if we assume furthermore that η ∈ g
∗(1)
reg , then the

considerations in the proof of Proposition 4.1 therefore imply that this module is
simple, and that the algebra morphism

(4.2) Uξ
′

η g→ Endk(Zη,B′(ξ))

is an isomorphism, where we denote by ξ′ the image of ξ in t∗/(W, •).

4.3. Splitting bundles for the algebras U λ̂,µ̂S . Our goal in this section is to con-

struct some tools that will allow us to study the categories ModGfg(U λ̂,µ̂) and HCλ̂,µ̂

via geometric methods. First we introduce the categories of modules that will be
involved in these constructions. Our model will be the category CohG(C ×g∗(1) C)
of G-equivariant coherent sheaves on C×g∗(1) C, or in other words of G-equivariant
finitely generated Z-modules, which is a monoidal category for the operation send-
ing a pair (M,N) to

M ⊗Z(Ug) N,

where in the tensor product Z(Ug) acts on M via the right action and on N via
the left action. The Z-action on M ⊗Z(Ug) N comes from the left action of Z(Ug)
on M and the right action on N . In practice however, we will have to restrict to
S∗, and add generalized characters to this picture.

First, recall the group scheme I∧S over Spec(Z∧S ) introduced in §3.9. We consider

the abelian category ModIfg(Z∧S ) of representations of the flat affine group scheme
I∧S on finitely generated Z∧S -modules. Here a Z∧S -module is a ZHC ⊗O(t∗(1)/W )

O(t∗(1)/W )∧-bimodule on which the left and right actions of O(t∗(1)/W )∧ coincide;
the category of such modules therefore admits a canonical tensor product, which
preserves finitely generated modules, and induces a monoidal product

(−) ?̂S (−) : ModIfg(Z∧S )×ModIfg(Z∧S )→ ModIfg(Z∧S )
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with unit object ZHC⊗O(t∗(1)/W ) O(t∗(1)/W )∧, with diagonal Z∧S -module structure

and trivial action of I∧S . If we set

J∧S := Spec(Z∧S )×S J∗S,

then one can also consider the abelian category ModJfg(Z∧S ) of representations of J∧S
on on finitely generated Z∧S -modules; the quotient morphism I∧S → J∧S induces an
exact and fully faithful functor

ModJfg(Z∧S )→ ModIfg(Z∧S )

whose image is stabilized by the convolution product ?̂S.

Next, for λ, µ ∈ X we have the affine group scheme Iλ̂,µ̂S over Spec(Z λ̂,µ̂S ) also

introduced in §3.9, and we can consider the abelian category ModIfg(Z λ̂,µ̂S ) of rep-

resentations of this affine group scheme on finitely generated Z λ̂,µ̂S -modules. As
in (3.22) we have a decomposition

ModIfg(Z∧S ) ∼=
⊕
λ,µ∈Λ

ModIfg(Z λ̂,µ̂S ).

Given M in ModIfg(Z λ̂,µ̂S ) and N in ModIfg(Z µ̂,ν̂S ), seen as objects in ModIfg(Z∧S ), the

object M ?̂S N belongs to ModIfg(Z λ̂,ν̂S ); in other words, the bifunctor ?̂S restricts
to a bifunctor

(4.3) ModIfg(Z λ̂,µ̂S )×ModIfg(Z µ̂,ν̂S )→ ModIfg(Z λ̂,ν̂S )

for any λ, µ, ν ∈ X. In particular, each category ModIfg(Z λ̂,λ̂S ) admits a monoidal

structure; the unit object Z λ̂S for this structure is Z λ̂HC, endowed with the natural

structure of Z λ̂,λ̂S -module (induced by the product morphism ZHC⊗ZHC∩ZFr ZHC →
ZHC) and the trivial structure as a representation of Iλ̂,λ̂S .

One can also play the same game starting with J∗S in place of I∗S; one obtains in

this way affine group schemes Jλ̂,µ̂S , categories ModJfg(Z λ̂,µ̂S ) and exact fully faithful
functors

ModJfg(Z λ̂,µ̂S )→ ModIfg(Z λ̂,µ̂S )

whose essential images are stabilized by the bifunctor (4.3) in the obvious sense.

Remark 4.2. In view of (3.11), for any λ, µ we have an algebra isomorphism

Z λ̂,µ̂S
∼−→ Z λ̂HC ⊗O(t∗(1)/W )∧ Z

µ̂
HC.

From this point of view, the bifunctor (4.3) is induced by the tensor product
(−)⊗

Zµ̂HC
(−).

Recall that a weight λ ∈ X is said to belong to the lower closure of the funda-
mental alcove if it satisfies

0 ≤ 〈λ+ ρ, α∨〉 < p

for any positive root α. Recall also the completed bimodules introduced in §3.5.
In particular, given λ, µ ∈ X which belong to the lower closure of the fundamental
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alcove, we have the objects

Pλ,−ρ = Cλ,−ρ
(
L(λ+ ρ)⊗ Ug

)
∈ HCλ̂,−̂ρdiag ,

P−ρ,µ = C−ρ,µ
(
L(−w0µ+ ρ)⊗ Ug

)
∈ HC−̂ρ,µ̂diag .

We set

Mλ,µ := Pλ,−ρ ⊗̂Ug P−ρ,µ ∈ HCλ̂,µ̂diag.

We also set Mλ,µ
S := O(S∗)⊗O(g∗(1)) M

λ,µ, so that

Mλ,µ
S = Pλ,−ρS ⊗̂USg P

−ρ,µ
S

where we use the notation of §3.9.
The main technical result of this section is the following theorem. Its proof will

be given in §4.5, after some preliminaries treated in §4.4.

Theorem 4.3. For any λ, µ ∈ X in the lower closure of the fundamental alcove,

the Z λ̂,µ̂S -module Mλ,µ
S is faithfully projective, and the natural algebra morphism

U λ̂,µ̂S → End
Zλ̂,µ̂S

(Mλ,µ
S )

is an isomorphism.

4.4. Study of some stalks. Recall that Spec(ZS) identifies naturally with

D = t∗/(W, •)×t∗(1)/W t∗/(W, •),

see §3.9. We also set

D̃ := t∗ ×t∗(1) t
∗.

Since the Artin–Schreier map t∗ → t∗(1) is a Galois covering with Galois group
t∗Fp , we have a canonical isomorphism

t∗Fp × t∗
∼−→ D̃

defined by (η, ξ) 7→ (η + ξ, ξ). For λ ∈ X we will denote by D̃(λ) the image

of {λ+ ρ} × t∗ in D̃; if Λ̃ ⊂ X is a subset of representatives for the quotient
t∗Fp = X/pX, we then have

D̃ =
⊔
λ∈Λ̃

D̃(λ).

Recall that if A is a finitely generated k-algebra, by [SP, Tag 02J6] Spec(A) is
a Jacobson space in the sense of [SP, Tag 005T]; in other words, closed points are
dense in any closed subset of Spec(A). Here we have a natural finite morphism

(4.4) D̃→ D,

and it is easily seen that the image of this morphism contains all the closed points
of D; this morphism is therefore surjective. For any λ ∈ X we denote by D(λ) the

scheme-theoretic image of D̃(λ) in D; in other words O(D(λ)) is the image of the
composition

O(D)→ O(D̃) � O(D̃(λ)),

https://stacks.math.columbia.edu/tag/02J6
https://stacks.math.columbia.edu/tag/005T
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see [SP, Tag 056A]. The morphism (4.4) then factors through a finite morphism

D̃(λ)→ D(λ), which is surjective since its image is closed and dense, see [SP, Tag

01R8]. Since D̃(λ) is integral, so is D(λ). Moreover, one can check that

D(λ) = D(µ) iff λ̃ = µ̃,

where the operation λ 7→ λ̃ is as in §3.1. If Λ ⊂ X is (as in §3.6) a subset of
representatives for t∗Fp/(W, •), we therefore have

D =
⋃
λ∈Λ

D(λ),

and this constitues the decomposition of D into its irreducible components.
Let us consider the open subset

t∗◦ := {ξ ∈ t∗ | ∀w ∈W, w • ξ − ξ /∈ t∗Fp r {0}} ⊂ t∗.

Then t∗◦ is stable under the (W, •)-action, and is in fact the pullback of an open
subset of t∗/(W, •), which therefore identifies with the quotient t∗◦/(W, •).

Recall the Grothendieck resolution g̃4 (for the reductive group G = G(1)) and

the morphism ϑ : g̃ → t∗(1), see §2.3 and §3.8. If we denote by S̃∗ the (scheme-
theoretic) preimage of S∗ in g̃, then by [R3, Proposition 3.5.5] the morphism ϑ

restricts to an isomorphism S̃∗
∼−→ t∗(1). In concrete terms, this means that given

ζ ∈ t∗(1)/W identified with an element in S∗, the datum of a preimage of ζ in t∗(1)

is equivalent to the datum of a Borel subgroup B′ ⊂ G such that ζ|Lie(U ′)(1) = 0,

where U ′ is the unipotent radical of B′.

Proposition 4.4. Let λ ∈ X be a weight which belongs to the lower closure of the
fundamental alcove. Consider some element ξ ∈ t∗◦, and denote by (ζ1, ζ2) ∈ D(λ)

the image of (ξ + λ+ ρ, ξ) ∈ D̃(λ) in D and by η ∈ S∗ the element correspond-
ing to the images of ζ1 and ζ2 in t∗(1)/W . As explained above the image of ξ
in t∗(1) determines a Borel subgroup B′ ⊂ G with unipotent radical U ′ such that
η|Lie(U ′)(1) = 0.

If we denote by i : Spec(k) → D the morphism defined by (ζ1, ζ2), there exists
an isomorphism of Uζ1η g⊗ (Uζ2η g)op-modules

i∗
(
L(λ+ ρ)⊗ USg

) ∼= Zη,B′(ξ + λ+ ρ)⊗ Zη,B′(ξ)
∗.

Proof. By definition we have

i∗
(
L(λ+ ρ)⊗ USg

) ∼= kζ1 ⊗ZHC

(
L(λ+ ρ)⊗ Uζ2η g

)
.

By construction, the image of ξ in t∗(1) corresponds to the element in the space
(Lie(B′)/Lie(U ′))∗(1) defined by η; by (4.2), we therefore have a canonical isomor-
phism

Uζ2η g
∼−→ Endk(Zη,B′(ξ)) ∼= Zη,B′(ξ)⊗ Zη,B′(ξ)

∗,

under which the action of Ug induced by left multiplication on the left-hand side
corresponds to the natural action on Zη,B′(ξ). We deduce an isomorphism

i∗
(
L(λ+ ρ)⊗ USg

) ∼= kζ1 ⊗ZHC

(
L(λ+ ρ)⊗ Zη,B′(ξ)

)
⊗ Zη,B′(ξ)

∗,

4Of course, g̃ is the Frobenius twist of the Grothendieck resolution attached to the group G.

https://stacks.math.columbia.edu/tag/056A
https://stacks.math.columbia.edu/tag/01R8
https://stacks.math.columbia.edu/tag/01R8
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which shows that to conclude the proof it suffices to construct an isomorphism of
Uζ1η -modules

(4.5) kζ1 ⊗ZHC

(
L(λ+ ρ)⊗ Zη,B′(ξ)

) ∼= Zη,B′(ξ + λ+ ρ).

As above we have a canonical isomorphism

Uζ1η g
∼−→ Endk(Zη,B′(ξ + λ+ ρ));

therefore, any Uζ1η g-module is isomorphic to a direct sum of copies of Zη,B′(ξ +

λ+ ρ). To analyze how many copies we have for the specific module in the left-
hand side of (4.5), we observe that

HomUζ1η g
(kζ1 ⊗ZHC

(
L(λ+ ρ)⊗ Zη,B′(ξ)

)
,Zη,B′(ξ + λ+ ρ)) =

HomUηg(L(λ+ ρ)⊗ Zη,B′(ξ),Zη,B′(ξ + λ+ ρ)) ∼=
HomUηg(Zη,B′(ξ), L(−w0λ+ ρ)⊗ Zη,B′(ξ + λ+ ρ)).

We now consider the Uηg-module L(−w0λ + ρ) ⊗ Zη,B′(ξ + λ+ ρ), and more
specifically the direct summand on which ZHC acts with a generalized character
corresponding to ζ2. We have a canonical isomorphism of Uηg-modules

L(−w0λ+ ρ)⊗ Zη,B′(ξ + λ+ ρ) ∼= Uηg⊗UηLie(B′)

(
L(−w0λ+ ρ)|B′ ⊗ kξ+λ+ρ

)
.

The B′-module L(−w0λ+ ρ)|B′ admits a filtration

0 ⊂M1 ⊂ · · · ⊂Mn = L(−w0λ+ ρ)|B′

where each Mi/Mi−1 is 1-dimensional; moreover these modules are associated with
the characters of B′/U ′ ∼= B/U ∼= T corresponding to the T -weights of L(−w0λ+ρ),
counted with multiplicities. This filtration induces a filtration of L(−w0λ+ ρ)|B′ ⊗
kξ+λ+ρ, and then of L(−w0λ + ρ) ⊗ Zη,B′(ξ + λ+ ρ), whose subquotients are of

the form Zη,B′(ξ + λ+ ρ+ µ), where µ runs over the T -weights of L(−w0λ + ρ),
counted with multiplicities.

We claim that there exists exactly one subquotient in this filtration on which
ZHC acts via the character ζ2, corresponding to the multiplicity-1 weight −λ − ρ
of L(−w0λ + ρ). Indeed, assume that ZHC acts with character ζ2 on Zη,B′(ξ +

λ+ ρ+ µ). Then there exists w ∈ W such that ξ + λ+ ρ+ µ = w • ξ. Since ξ
belongs to t∗◦, this condition implies that ξ + λ+ ρ+ µ = ξ, hence that λ + ρ +
µ ∈ pX. On the other hand, µ is a weight of L(−w0λ + ρ), hence it belongs to
−w0λ + ρ + ZR = −λ − ρ + ZR. In view of (3.1) these conditions imply that
λ+ ρ+ µ ∈ pZR, i.e. that λ+ µ ∈ −ρ+ pZR = Waff • (−ρ). By [J2, Lemma II.7.7]
(applied to the pair of elements (λ,−ρ)), there must then exist w ∈Waff such that
w • λ = λ and λ+ µ = w • (−ρ). Here, since λ belongs to the lower closure of the
fundamental alcove, the first condition implies that w ∈ W (see §3.5); it follows
that w • (−ρ) = −ρ, hence that λ+ µ = −ρ, which finishes the proof of our claim.

This claim implies that the direct summand of L(−w0λ+ ρ)⊗ Zη,B′(ξ + λ+ ρ)
corresponding to the generalized character of ZHC given by ζ2 is isomorphic to
Zη,B′(ξ); it follows that

HomUζ1η g

(
kζ1 ⊗ZHC

(
L(λ+ ρ)⊗ Zη,B′(ξ)

)
,Zη,B′(ξ + λ+ ρ)

)
is 1-dimensional, which finally proves (4.5). �
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The statement of Proposition 4.4 is not symmetric, in that the conditions we
impose imply that ζ2 necessarily belongs to t∗◦/(W, •), whereas ζ1 might not. Below
we will also need the other variant of this statement, in which the first component
has to belong to t∗◦/(W, •). Its proof is analogous to that of Proposition 4.4. (More
precisely, in this case the counterpart of (4.5) can be obtained directly, without
recourse to the computation in the paragraph following this equation.)

Proposition 4.5. Let µ ∈ X be a weight which belongs to the lower closure of
the fundamental alcove. Consider some element ξ ∈ t∗◦, and denote by (ζ1, ζ2) ∈
D(−w0µ) the image of (ξ, ξ + µ+ ρ) ∈ D̃(−w0µ) in D and by η ∈ S∗ the element
corresponding to the images of ζ1 and ζ2 in t∗(1)/W . As explained above Proposi-
tion 4.4 the image of ξ in t∗(1) determines a Borel subgroup B′ ⊂ G with unipotent
radical U ′ such that η|Lie(U ′)(1) = 0.

If we denote by i : Spec(k) → D the morphism defined by (ζ1, ζ2), there exists
an isomorphism of Uζ1η g⊗ (Uζ2η g)op-modules

i∗
(
L(−w0µ+ ρ)⊗ USg

) ∼= Zη,B′(ξ)⊗ Zη,B′(ξ + µ+ ρ)∗.

4.5. Proof of Theorem 4.3. The proof of Theorem 4.3 will require two more
preliminary lemmas.

Lemma 4.6. Let X be a reduced scheme locally of finite type over k, and let F be
a coherent sheaf on X. Assume that there exists d ≥ 0 such that for any morphism
i : Spec(k) → X the pullback i∗(F ) ∈ Coh(Spec(k)) = Vectk has dimension d.
Then F is a locally free OX-module of rank d.

Proof. Of course we can assume that X is also affine and of finite type, i.e. that
X = Spec(A) for some finitely generated reduced k-algebra A. With this notation,
recall that closed points are dense in any closed subset of Spec(A), see §4.4.

Let us denote by M the A-module corresponding to F . In this setting the
datum of a morphism i : Spec(k) → X is equivalent to the datum of a maximal
ideal m ⊂ A, and we have i∗(F ) = M/m ·M . In view of [SP, Tag 0FWG], to show
that M is locally free of rank d it suffices to prove that for any p ∈ Spec(A) we
have

dimAp/pAp
(Mp/pMp) = d.

Now by [Pe, Theorem 7.33], the function

p 7→ dimAp/pAp
(Mp/pMp)

is upper semi-continuous. By assumption, this function is constant (equal to d) on
the subset of Spec(A) consisting of maximal ideals, i.e. of closed points. Hence the
open subset

{p ∈ Spec(A) | dimAp/pAp
(Mp/pMp) ≤ d}

contains all closed points, hence is the whole of Spec(A). On the other hand the
open subset

{p ∈ Spec(A) | dimAp/pAp
(Mp/pMp) ≤ d− 1}

does not contain any closed point, hence it is empty. �

Lemma 4.7. The morphism

t∗/(W, •)×t∗(1)/W t∗/(W, •)×t∗(1)/W t∗/(W, •)→ D

induced by projection on the first and third factors is étale at any point of the form

(λ̃, −̃ρ, µ̃) with λ, µ ∈ X.

https://stacks.math.columbia.edu/tag/0FWG
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Proof. To prove this claim it suffices to prove that the morphism t∗/(W, •) →
t∗(1)/W is étale at −̃ρ. The dot-action of W and the natural action of t∗Fp on t∗

combine to provide an action of the semi-direct product t∗Fp oW (where W acts on

t∗Fp through the natural, unshifted, action) defined by (λw) • ξ = w(ξ + ρ)− ρ+ λ

for λ ∈ t∗Fp and w ∈ W . Moreover, the composition t∗ → t∗/(W, •) → t∗(1)/W is

the quotient morphism for this action. Since −ρ is stabilized by W , the claim then
follows from [SGA1, Exp. V, Proposition 2.2]. �

For λ ∈ X, whose image in t∗Fp/(W, •) is that of λ′ ∈ Λ, we set

D◦(λ) :=
(
t∗/(W, •)×t∗(1)/W t∗◦/(W, •)

)
r

 ⋃
µ∈Λr{λ′}

D(µ)

 .

Then D◦(λ) is an open subset of D, contained in D(λ). We will denote by jλ :
D◦(λ)→ D the embedding. Continuing with the same notation, we also set

D′◦(λ) :=
(
t∗◦/(W, •)×t∗(1)/W t∗/(W, •)

)
r

 ⋃
µ∈Λr{λ′}

D(µ)

 ,

and we denote by j′λ : D′◦(λ)→ D the open embedding.

Proof of Theorem 4.3. Let λ, µ ∈ X belong to the lower closure of the fundamental
alcove. The vector −ρ belongs to t∗◦ since this point is stable under the dot-action

of W . On the other hand, if ν ∈ X is such that (λ̃, −̃ρ) ∈ D(ν), then there exists

ξ ∈ t∗ such that the point (ξ + ν + ρ, ξ) ∈ D̃ has image (λ̃, −̃ρ) in D; we then have

ξ ∈W •−ρ = {−ρ} and ξ + ν + ρ ∈W • λ, so that λ̃ = ν̃. We have finally checked

that (λ̃, −̃ρ) ∈ D◦(λ); similar considerations show that (−̃ρ, µ̃) ∈ D′◦(−w0µ).
By construction, D◦(λ) ×t∗/(W,•) D

′
◦(−w0µ) is an open subscheme in the fiber

product t∗/(W, •)×t∗(1)/W t∗/(W, •)×t∗(1)/W t∗/(W, •). Consider the morphism

f : D◦(λ)×t∗/(W,•) D
′
◦(−w0µ)→ t∗/(W, •)

induced by projection on the middle factor. The algebra USg is an O(t∗/(W, •))-
algebra; it therefore defines a coherent sheaf of Ot∗/(W,•)-algebras A on t∗/(W, •).
Consider also the projections

p : D◦(λ)×t∗/(W,•) D
′
◦(−w0µ)→ D◦(λ),

q : D◦(λ)×t∗/(W,•) D
′
◦(−w0µ)→ D′◦(−w0µ).

The sheaves p∗j∗λ(L(λ+ρ)⊗USg) and q∗(j′−w0µ)∗(L(−w0µ+ρ)⊗USg) are naturally
sheaves of (right and left, respectively) modules for f∗A , so that we can consider
the tensor product

(4.6) p∗j∗λ(L(λ+ ρ)⊗ USg)⊗f∗A q∗(j′−w0µ)∗(L(−w0µ+ ρ)⊗ USg).

We claim that this sheaf is a locally free OD◦(λ)×t∗/(W,•)D′◦(−w0µ)-module, of

rank p2#R+

. In fact, by Lemma 4.6, to prove this it suffices to prove that for any
closed point (ζ1, ζ2, ζ3) ∈ D◦(λ) ×t∗/(W,•) D

′
◦(−w0µ), denoting by i : Spec(k) →

D◦(λ)×t∗/(W,•) D
′
◦(−w0µ) the corresponding morphism, the vector space

(4.7) i∗
(
p∗j∗λ(L(λ+ ρ)⊗ USg)⊗f∗A q∗(j′−w0µ)∗(L(−w0µ+ ρ)⊗ USg)

)
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has dimension p2#R+

. If we denote by i1 : Spec(k)→ D and i2 : Spec(k)→ D the
embeddings of the points (ζ1, ζ2) and (ζ2, ζ3) respectively, then this vector space
can be written as

i∗1
(
L(λ+ ρ)⊗ USg

)
⊗Uζ2η g

i∗2
(
L(−w0µ+ ρ)⊗ USg

)
,

where η ∈ S∗ is the image of the ζi’s. Let ξ ∈ t∗ be such that (ζ1, ζ2) is the image
of (ξ + λ+ ρ, ξ), and let B′ ⊂ G be the Borel subgroup with unipotent radical U ′

such that η|Lie(U ′)(1) = 0 determined by the image of ξ in t∗(1) (see the comments

above Proposition 4.4). By Proposition 4.4 we have

i∗1
(
L(λ+ ρ)⊗ USg

) ∼= Zη,B′(ξ + λ+ ρ)⊗ Zη,B′(ξ)
∗.

Similarly, if ξ′ ∈ t∗ is such that (ζ2, ζ3) is the image of (ξ′, ξ′ + µ+ ρ), and if
B′′ ⊂ G is the Borel subgroup with unipotent radical U ′′ such that η|Lie(U ′′)(1) = 0

determined by the image of ξ′ in t∗(1), then by Proposition 4.5 we have

i∗2
(
L(−w0µ+ ρ)⊗ USg

) ∼= Zη,B′′(ξ
′)⊗ Zη,B′′(ξ

′ + µ+ ρ)∗.

Here Zη,B′(ξ) and Zη,B′′(ξ
′) are two simple modules over the matrix algebra Uζ2η g,

see §4.2; they must therefore be isomorphic. Fixing an isomorphism ϕ : Zη,B′(ξ)
∼−→

Zη,B′′(ξ
′), we obtain a pairing

Zη,B′(ξ)
∗ ⊗ Zη,B′′(ξ

′)→ k
defined by f ⊗ v 7→ f(ϕ−1(v)), which induces an isomorphism

Zη,B′(ξ)
∗ ⊗Uζ2η g

Zη,B′′(ξ
′)
∼−→ k.

Combining these observations we obtain that the vector space in (4.7) is isomorphic
to

Zη,B′(ξ + λ+ ρ)⊗ Zη,B′′(ξ
′ + µ+ ρ)∗,

hence has dimension p2#R+

, as desired.
Now we consider the morphism

D◦(λ)×t∗/(W,•) D
′
◦(−w0µ)→ D

obtained from that of Lemma 4.7 by restriction to the open subset

D◦(λ)×t∗/(W,•) D
′
◦(−w0µ) ⊂ t∗/(W, •)×t∗(1)/W t∗/(W, •)×t∗(1)/W t∗/(W, •).

This lemma ensures that this morphism is étale at (λ̃, −̃ρ, µ̃); it therefore identifies

the completion of D◦(λ) ×t∗/(W,•) D
′
◦(−w0µ) at (λ̃, −̃ρ, µ̃) with the completion of

D at (λ̃, µ̃), i.e. with the spectrum of Z λ̂,µ̂S . By construction the completion of the

sheaf (4.6) at (λ̃, −̃ρ, µ̃) is Mλ,µ
S ; since this sheaf is locally free this proves that Mλ,µ

S

is faithfully projective. In fact, since the ring Z λ̂,µ̂S is local, this module is even free

(of rank p2#R+

) by [SP, Tag 00NZ].
Finally we consider the natural morphism

U λ̂,µ̂S → End
Zλ̂,µ̂S

(Mλ,µ
S ).

Here, both sides are finite free as modules over Z λ̂,µ̂S . In fact, for the right-hand

side this follows from the same property for the module Mλ,µ
S , which we have seen

above. For the left-hand side, we observe that USg is finite projective over O(CS)
by Proposition 4.1; it follows that USg⊗O(S∗)USgop is finite projective over ZS, and

https://stacks.math.columbia.edu/tag/00NZ
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finally that U λ̂,µ̂S is finite projective, hence finite free (again by [SP, Tag 00NZ]),

over the local ring Z λ̂,µ̂S . Given this property, to prove that our morphism is an
isomorphism it suffices to prove that it is invertible after application of the functor
k ⊗
Zλ̂,µ̂S

(−). Now if we denote by χ ∈ g∗(1) the point corresponding to the image

of 0 in t∗(1)/W under the identification S∗
∼−→ t∗(1)/W , we have

k⊗
Zλ̂,µ̂S

U λ̂,µ̂S = Uλχg⊗ (Uµχg)op.

On the other hand, since Mλ,µ
S is a free module we have

k⊗
Zλ̂,µ̂S

End
Zλ̂,µ̂S

(Mλ,µ
S ) ∼= Endk(k⊗

Zλ̂,µ̂S

Mλ,µ
S ),

and applying the considerations above with ξ = ξ′ = −ρ we have

(4.8) k⊗
Zλ̂,µ̂S

Mλ,µ
S
∼= Zχ,B′(λ)⊗ Zχ,B′(µ)∗,

where B′ ⊂ G is the unique Borel subgroup with unipotent radical U ′ such that
χ|Lie(U ′)(1) = 0. By (4.2) our morphism is indeed an isomorphism, which finishes
the proof. �

4.6. Localization for Harish-Chandra bimodules. The main consequence of
Theorem 4.3 that will be used below is the following statement. (See §3.9 for the

definition of U λ̂S , and §4.3 for that of Z λ̂S .)

Corollary 4.8. For any λ, µ ∈ X in the lower closure of the fundamental alcove,

the functor Mλ,µ
S ⊗

Zλ̂,µ̂S

(−) induces an equivalence of abelian categories

Lλ,µ : ModIfg(Z λ̂,µ̂S )
∼−→ ModIfg(U λ̂,µ̂S )

which restricts to an equivalence of abelian subcategories

ModJfg(Z λ̂,µ̂S )
∼−→ HCλ̂,µ̂S .

Moreover, in case λ = µ, there exists a canonical isomorphism

(4.9) Lλ,λ(Z λ̂S) ∼= U λ̂S .

Proof. The properties stated in Theorem 4.3 ensure that the functor

Mλ,µ
S ⊗

Zλ̂,µ̂S

(−)

induces an equivalence of abelian categories

Modfg(Z λ̂,µ̂S )
∼−→ Modfg(U λ̂,µ̂S ),

see (4.1). Adding the Iλ̂,µ̂S -actions in the picture we obtain the desired equivalence

ModIfg(Z λ̂,µ̂S )
∼−→ ModIfg(U λ̂,µ̂S ).

Let us now identify the subcategory corresponding to completed Harish-Chandra

USg-bimodules under this equivalence. Recall that any object in ModIfg(U λ̂,µ̂S ) has a

canonical action of Iλ̂,µ̂S nG1, and that such an object is a Harish-Chandra bimodule

iff this action factors through the product morphism Iλ̂,µ̂S n G1 → Iλ̂,µ̂S , i.e. iff the

action of the kernel Kλ̂,µ̂S of this map is trivial. Now if V is in ModIfg(Z λ̂,µ̂S ), the

https://stacks.math.columbia.edu/tag/00NZ
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action of Iλ̂,µ̂S n G1 on Mλ,µ
S ⊗

Zλ̂,µ̂S

V is diagonal, induced by the action on Mλ,µ
S

and the action on V obtained by pullback under the morphism Iλ̂,µ̂S n G1 → Iλ̂,µ̂S

given by projection on the first factor. By construction the module Mλ,µ
S is a

completed Harish-Chandra USg-bimodule, so that the action on this factor does

factor though the product morphism Iλ̂,µ̂S n G1 → Iλ̂,µ̂S , and moreover Mλ,µ
S is free

over Z λ̂,µ̂S . Hence Mλ,µ
S ⊗

Zλ̂,µ̂S

V is a completed Harish-Chandra bimodule iff the

action of Kλ̂,µ̂S on V is trivial, or in other words iff the action of the subgroup scheme

G1 × Spec(Z λ̂,µ̂S ) on V is trivial, or finally iff the action of Iλ̂,µ̂S factor through the

quotient morphism Iλ̂,µ̂S → Jλ̂,µ̂S . This proves that our equivalence restricts to an

equivalence ModJfg(Z λ̂,µ̂S )
∼−→ HCλ̂,µ̂S .

Finally, we consider the special case λ = µ, and construct a canonical isomor-

phism Lλ,λ(Z λ̂S) ∼= U λ̂S . Adjunction (see Lemma 3.6) provides a canonical morphism

Pλ,−ρS ⊗̂USg P
−ρ,λ
S → U λ̂S ,

which factors through a morphism

Lλ,λ(Z λ̂S) = Mλ,λ
S ⊗

Zλ̂,λ̂S

Z λ̂S → U λ̂S .

Here, by the same considerations as in the proof of Theorem 4.3, both sides are finite

free modules over the local ring Z λ̂S ; to prove that this morphism is an isomorphism
it therefore suffices to check that the induced morphism(

Mλ,λ
S ⊗

Zλ̂,λ̂S

Z λ̂S
)
⊗Zλ̂S k→ U λ̂S ⊗Zλ̂S k

is invertible. The right-hand side identifies with Uλχg, where χ is as at the end of

the proof of Theorem 4.3, and by (4.8) the left-hand side identifies with Zχ,B′(λ)⊗
Zχ,B′(λ)∗, where B′ ⊂ G is the unique Borel subgroup with unipotent radical U ′

such that χ|Lie(U ′)(1) = 0; the desired claim is therefore clear from the isomor-

phism (4.2). �

Remark 4.9. We will prove later (at least in the special case when µ belongs to the
fundamental alcove, see §5.5) that for any λ, µ, ν ∈ X in the lower closure of the
fundamental alcove the equivalences of Corollary 4.8 intertwine the bifunctors

⊗̂USg : ModIfg(U λ̂,µ̂S )×ModIfg(U µ̂,ν̂S )→ ModIfg(U λ̂,ν̂S )

(see §3.9) and

?̂S : ModIfg(Z λ̂,µ̂S )×ModIfg(Z µ̂,ν̂S )→ ModIfg(Z λ̂,ν̂S )

(see §4.3).

5. Ug and differential operators on the flag variety

In this section we study the equivalences Lλ,µ of Corollary 4.8 further, using the
relation between the algebra Ug and differential operators on the flag variety of G.



42 R. BEZRUKAVNIKOV AND S. RICHE

5.1. Universal twisted differential operators. Set B := G/B, and consider the
natural projection morphism

ω : G/U → B.
Here G/U admits a natural action of T induced by multiplication on the right
on G, and ω is a (Zariski locally trivial) T -torsor. The sheaf of universal twisted
differential operators on B is the quasi-coherent sheaf of algebras

D̃ := ω∗(DG/U )T ,

where the exponent means T -invariants. The actions of G and T on G/U induce a
canonical algebra morphism

(5.1) Ug⊗ZHC
O(t∗)→ Γ(B, D̃),

see [BMR1, Lemma 3.1.5].
Recall the Grothendieck resolution g̃ for the group G = G(1) and the morphism

ϑ : g̃ → t∗(1), see §2.3 and §3.8. Consider the Frobenius morphism FrB : B → B(1)

and the natural morphism f : g̃ ×t∗(1) t
∗ → B(1). As explained in [BMR1, §2.3],

there exists a canonical algebra morphism

f∗Og̃×
t∗(1) t

∗ → (FrB)∗D̃

which takes values in the center of (FrB)∗D̃ , and which makes (FrB)∗D̃ a locally
finitely generated f∗Og̃×

t∗(1) t
∗ -module. Since all the morphisms involved in this

construction are affine, using this morphism one can consider D̃ as a coherent sheaf
of Og̃×

t∗(1) t
∗ -algebras on g̃×t∗(1) t

∗. (We will not introduce a different notation for

this sheaf of algebras.)

Recall also (see §4.4) that we denote by S̃∗ the preimage of S∗ under the natural
morphism π : g̃ → g∗(1), and that the morphism ϑ restricts to an isomorphism

S̃∗
∼−→ t∗(1); in particular, S̃∗ is an affine scheme. We set

D̃S := D̃|S̃∗×
t∗(1) t

∗ .

We will also set

ŨSg := USg⊗ZHC
O(t∗).

Lemma 5.1. The morphism (5.1) induces an algebra isomorphism

ŨSg
∼−→ Γ

(
S̃∗ ×t∗(1) t

∗, D̃S

)
.

Proof. Consider the natural morphism

h : S̃∗ ×t∗(1) t
∗ → S∗ ×t∗(1)/W t∗/(W, •).

If we still denote by USg the sheaf of OS∗×
t∗(1)/W t∗/(W,•)-algebras associated with

this O(S∗ ×t∗(1)/W t∗/(W, •))-algebra, then as in [BMR1, Proposition 5.2.1] the

morphism (5.1) induces a canonical isomorphism of sheaves of algebras

h∗(USg)
∼−→ D̃S.

Now h induces an isomorphism

S̃∗ ×t∗(1) t
∗ →

(
S∗ ×t∗(1)/W t∗/(W, •)

)
×t∗/(W,•) t

∗

(in fact, both sides identify canonically with t∗) so that the claim follows by taking
global sections. �
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Remark 5.2. One can give a different proof of Lemma 5.1 as follows. By [BMR1,
Proposition 3.4.1], the morphism (5.1) is an isomorphism; in other words, identi-
fying quasi-coherent sheaves on g∗(1) and O(g∗(1))-modules, we have a canonical
isomorphism of sheaves of Og∗(1)-algebras

g∗D̃ ∼= Ug⊗ZHC
O(t∗),

where g : g̃ ×t∗(1) t
∗ → g∗(1) ×t∗(1)/W t∗ is the morphism induced by π. Restricting

this isomorphism first to g
∗(1)
reg ×t∗(1)/W t∗ and then to S∗ ×t∗(1)/W t∗ we deduce the

isomorphism of the lemma, since g restricts to an isomorphism on the preimage of

g
∗(1)
reg ×t∗(1)/W t∗ (see (2.5)).

5.2. Study of some equivariant USg-bimodules. Given any λ ∈ X, we have a
line bundle OB(λ) on B attached naturally to λ. (Our normalization is that of [J2],
so that line bundles attached to dominant weights are ample.) This line bundle
identifies with the direct summand of ω∗OG/U consisting of sections which have
weight λ for the T -action induced by right multiplication on G; it therefore admits

a natural action of the sheaf of algebras D̃ . Using this action and the natural action

on D̃ , we obtain a left action of D̃ on the tensor product

OB(λ)⊗OB D̃ .

As for D̃ itself, this module can be also considered as a sheaf of modules on g̃×t∗(1) t
∗.

We can therefore consider the k-vector space

(5.2) Γ
(
S̃∗ ×t∗(1) t

∗, (OB(λ)⊗OB D̃)|S̃∗×
t∗(1) t

∗

)
,

which in view of Lemma 5.1 admits a natural left action of ŨSg. The tensor product

OB(λ)⊗OB D̃ also admits a natural right action of D̃ , induced by right multiplication
on the second factor. The action of π∗Og̃ on (FrB)∗OB(λ) being trivial, the two

actions of this subalgebra on (FrB)∗(OB(λ) ⊗OB D̃) coincide, and the space (5.2)

therefore also admits a right action of ŨSg; moreover these actions combine to

provide an action of ŨSg⊗O(S∗) (ŨSg)op. By construction the action of the central
subalgebra

O(t∗)⊗O(S∗) O(t∗) ∼= O(t∗ ×t∗(1)/W t∗)

factors through an action of the image of the closed embedding t∗ → t∗ ×t∗(1)/W t∗

given by
ξ 7→ (ξ + λ, ξ).

The object OB(λ) ⊗OB D̃ also admits a natural structure of G-equivariant quasi-
coherent sheaf, compatible with the actions considered above. The module (5.2)
therefore also admits a natural and compatible structure of module for the group
scheme

t∗ ×t∗(1)/W I∗S ×t∗(1)/W t∗,

see §§3.8–3.9.
For λ, µ ∈ X, we will denote by

Ũ λ̂,µ̂S

the completion of the O(t∗ ×t∗(1)/W t∗)-algebra ŨSg ⊗O(S∗) (ŨSg)op at the ideal

corresponding to the point (λ, µ) ∈ t∗×t∗(1)/W t∗. Copying the constructions in §3.9

(replacing U λ̂,µ̂S by Ũ λ̂,µ̂S and t∗/(W, •)×t∗(1)/W I∗S ×t∗(1)/W t∗/(W, •) by t∗ ×t∗(1)/W
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I∗S×t∗(1)/W t∗) we define the category ModIfg(Ũ λ̂,µ̂S ). Copying the definition of ⊗̂USg
we obtain, for λ, µ, ν ∈ X, a bifunctor

(−) ⊗̂ŨSg (−) : ModIfg(Ũ λ̂,µ̂S )×ModIfg(Ũ µ̂,ν̂S )→ ModIfg(Ũ λ̂,ν̂S ).

For any λ, µ ∈ X we have a natural “forgetful” functor

ModIfg(Ũ λ̂,µ̂S )→ ModIfg(U λ̂,µ̂S ),

which we will usually omit from notation. In case λ and µ are regular, this functor

is an equivalence by Lemma 3.2. In case µ is regular, for M ∈ ModIfg(Ũ λ̂,µ̂S ) and

N ∈ ModIfg(Ũ µ̂,ν̂S ) we also have a canonical identification

M ⊗̂USg N
∼−→M ⊗̂ŨSg N.

For λ, µ ∈ X, we will denote by Qλ,µ the completion of the module

Γ
(
S̃∗ ×t∗(1) t

∗, (OB(λ− µ)⊗OB D̃)|S̃∗×
t∗(1) t

∗

)
at the ideal of O(t∗×t∗(1)/W t∗) corresponding to the element (λ, µ). In view of the
remarks above, this object can equivalently be obtained by completing this module
at the ideal of O(t∗) corresponding to λ for the left action, or at the ideal of O(t∗)
corresponding to µ for the right action. This construction provides an object in

ModIfg(Ũ λ̂,µ̂S ), hence a fortiori an object in ModIfg(U λ̂,µ̂S ).

Lemma 5.3. For λ, µ, ν ∈ X, there exists a canonical isomorphism

Qλ,µ ⊗̂ŨSg Qµ,ν
∼−→ Qλ,ν

in ModIfg(Ũ λ̂,ν̂S ). In particular, in case µ is regular there exists a canonical isomor-
phism

Qλ,µ ⊗̂USg Qµ,ν
∼−→ Qλ,ν

in ModIfg(U λ̂,ν̂S ).

Proof. There exist canonical isomorphisms(
OB(λ− µ)⊗OB D̃

)
⊗D̃

(
OB(µ− ν)⊗OB D̃

) ∼−→
OB(λ− µ)⊗OB OB(µ− ν)⊗OB D̃ ∼= OB(λ− ν)⊗OB D̃ ,

where the first map is given locally by f ⊗ ∂ ⊗ f ′ ⊗ ∂′ 7→ f ⊗ (∂ · f ′)⊗ (∂∂′). The

desired isomorphism follows by restriction to S̃∗ ×t∗(1) t
∗ and then completion at

(λ, ν). �

If λ ∈ X is regular, Lemma 3.2 and Lemma 5.1 imply that we have

U λ̂S ∼= Qλ,λ,

where the left-hand side is as in §3.9. Hence the functor of convolution on the

left, resp. right, with Qλ,λ is isomorphic to the identity functor of ModIfg(U λ̂,µ̂S ),

resp. ModIfg(U µ̂,λ̂S ), for any µ ∈ X. Combining this observation with Lemma 5.3,
we see that if λ ∈ X belongs to the fundamental alcove, then for any w ∈ Wext

the object Qλ,w•λ is invertible in the monoidal category ModIfg(U λ̂,λ̂S ), with inverse
Qw•λ,λ.
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Recall from (3.16) that we have a canonical morphism of group schemes

t∗(1) ×t∗(1)/W I∗S → t∗(1) × T (1).

Taking the fiber product with the morphism t∗ ×t∗(1)/W t∗ → t∗
AS−−→ t∗(1) (where

the first morphism is the first projection) we obtain a morphism of group schemes

t∗ ×t∗(1)/W I∗S ×t∗(1)/W t∗ → (t∗ ×t∗(1)/W t∗)× T (1).

Using this morphism, for any character η of T (1) we obtain a structure of represen-
tation of t∗ ×t∗(1)/W I∗S ×t∗(1)/W t∗ on O(t∗ ×t∗(1)/W t∗) defined by this character.

Tensoring with this representation we obtain an autoequivalence of ModIfg(Ũ λ̂,µ̂S ),
which we denote M 7→M〈η〉.

Recall from §3.1 that we identify the lattice of characters of T (1) with p · X.

Lemma 5.4. For any λ, ν ∈ X, there exists a canonical isomorphism

Qλ+pν,λ
∼= Qλ,λ〈pν〉

in ModIfg(Ũ λ̂,λ̂S ).

Proof. By definition, Qλ+pν,λ is the completion at the ideal corresponding to (λ, λ)

of the ŨSg⊗O(S∗) (ŨSg)op-module

Γ
(
S̃∗ ×t∗(1) t

∗, (OB(pν)⊗OB D̃)|S̃∗×
t∗(1) t

∗

)
.

If we denote by U+ the unipotent radical of the Borel subgroup opposite to B,
then U+B/B ⊂ B is an open subvariety isomorphic to U+, and the projection

S̃∗ → B factors through a morphism S̃∗ → U+B/B, see [MR, Lemma 4.8]. As

a consequence, the sheaf (OB(pν) ⊗OB D̃)|S̃∗×
t∗(1) t

∗ can be obtained as a further

restriction of (OB(pν)⊗OB D̃)|U+B/B .

Since D̃ acts on OB(pν), we have an action of the algebra Ug ⊗ZHC
O(t∗) on

Γ(U+B/B,OB(pν)), see (5.1). We have

Γ
(
U+B/B,OB(pν)

)
=

{f : U+B → k | ∀b ∈ B, ∀x ∈ U+B, f(xb−1) = (pν)(b) · f(x)}.

In this space we have a canonical vector, namely the function f : U+B → k defined
by f(u1tu2) = (pν)−1(t) for all u1 ∈ U+, t ∈ T and u2 ∈ U . This section does

not vanish on U+B/B, hence induces an isomorphism of line bundles OU+B/B
∼−→

OB(pν)|U+B/B . We claim that it is furthermore annihilated by the action of g ⊂ Ug
and t ⊂ O(t∗). In fact, the second case is clear. For the action of g, in case ν ∈ X+

the claim follows from the fact that our vector is the restriction of the unique (up to
scalar) vector of weight pν in Γ

(
B,OB(pν)

)
(see [J2, Proof of Proposition II.2.6]),

and that this vector belongs to the G-submodule L(pν), on which the action of g is
well known to vanish. From this we deduce the general case by using the Leibniz
rule for the action on tensor products of line bundles.

Tensoring this section with the unit in D̃ we obtain a section of (OB(pν) ⊗OB

D̃)|U+B/B . The right action on this section provides an isomorphism

D̃|U+B/B → (OB(pν)⊗OB D̃)|U+B/B ,
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which commutes with the natural left and right actions of Ug⊗ZHC
O(t∗). Restrict-

ing further we obtain an isomorphism

D̃|S̃∗×
t∗(1) t

∗
∼−→ (OB(pν)⊗OB D̃)|S̃∗×

t∗(1) t
∗ ,

and then taking global sections and completing an isomorphism of Ũ λ̂,λ̂S -modules

Qλ,λ
∼−→ Qλ+pν,λ. Taking the action of t∗ ×t∗(1)/W I∗S ×t∗(1)/W t∗ into account, this

provides the desired isomorphism Qλ,λ〈pν〉
∼−→ Qλ+pν,λ. �

5.3. Relation with translation bimodules. Recall from §3.5 the notation D =
t∗/(W, •) ×t∗(1)/W t∗/(W, •). In our constructions below we will also have to work

with variants of this scheme where one of the two copies of t∗/(W, •) is replaced by
t∗. We therefore introduce the notation

E := t∗ ×t∗(1)/W t∗/(W, •), E′ := t∗/(W, •)×t∗(1)/W t∗.

We now explain the relation between the objects Qλ,µ and the “translation bi-
modules” introduced in §3.5.

Lemma 5.5. Let λ, µ ∈ X in the closure of the fundamental alcove, with one of
them in the fundamental alcove itself. Then for any w ∈Wext we have

Pµ,λS
∼= Qw•µ,w•λ

in ModIfg(U µ̂,λ̂S ).

Proof. To fix notation we assume that λ is in the fundamental alcove; the other case
can be obtained similarly. It is clear that we can assume that w ∈ W . Let ν ∈ X
be the unique dominant weight which belongs to W (µ − λ). Then by definition,

Pµ,λS is the completion of the module

L(ν)⊗ USg

at the ideal corresponding to the point (µ̃, λ̃) ∈ t∗/(W, •) ×t∗(1)/W t∗/(W, •). Now

by Lemma 3.2 the quotient morphism t∗ → t∗/(W, •) is étale at w • λ. It follows

that Pµ,λS can also be obtained as the completion of the USg⊗O(S∗) (ŨSg)op-module

L(ν)⊗ ŨSg

with respect to the ideal of O(E′) corresponding to (µ̃, w • λ).
By Lemma 5.1 we have canonical isomorphisms

L(ν)⊗ ŨSg ∼= L(ν)⊗ Γ
(
S̃∗ ×t∗(1) t

∗, D̃S

) ∼= Γ(S̃∗ ×t∗(1) t
∗, L(ν)⊗ D̃S).

It is a classical fact that the coherent sheaf L(ν)⊗OB on B admits a filtration whose
subquotients have the form OB(η) where η runs over the weights of L(ν) (counted

with multiplicities). We deduce a similar filtration for the sheaf L(ν)⊗ D̃ , and then

for its restriction to S̃∗ ×t∗(1) t
∗. (Here we use the fact that restriction along the

closed embedding S̃∗ ↪→ g̃ is exact on the category QCohG(g̃), which follows from
the same arguments as those used at the beginning of the proof of Proposition 4.1.)

In other words, we have obtained a filtration of L(ν)⊗ ŨSg with subquotients

(5.3) Γ
(
S̃∗ ×t∗(1) t

∗, (OB(η)⊗OB D̃)|S̃∗×
t∗(1) t

∗

)
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where η runs over the weights of L(ν) (counted with multiplicities). This filtration is

clearly compatible with the action of USg⊗O(S∗) (ŨSg)op and the natural structure
of module over the group scheme t∗/(W, •)×t∗(1)/W I∗S ×t∗(1)/W t∗.

Let us denote by $ : t∗ → t∗/(W, •) the quotient morphism. The irreducible
components of E′ are parametrized by t∗Fp , with the component corresponding to

γ being the image of the closed embedding t∗ → E′ given by ξ 7→ ($(ξ + γ), ξ).
The components containing the point (µ̃, w •λ) correspond to the elements γ ∈ t∗Fp
such that w • λ + γ ∈ W • µ, i.e. λ + w−1γ ∈ W • µ. On the other hand, the
module (5.3) is supported on the component corresponding to η. Hence, after
completion at (µ̃, w•λ), the only subquotients that survive are those corresponding
to the weights η such that λ + w−1η ∈ W • µ, i.e. λ + w−1η ∈ Wext • µ. Since
w−1η is a weight of L(ν), it belongs to µ − λ + ZR, so that λ + w−1η ∈ µ + ZR.
By Lemma 3.1(1) the condition that λ + w−1η ∈ Wext • µ is therefore equivalent
to λ+ w−1η ∈ Waff • µ. Now by [J2, Lemma II.7.7] this condition is satisfied only
when λ+ w−1η = µ, i.e. η = w(µ− λ). We deduce the desired isomorphism, since
w • µ− w • λ = w(µ− λ). �

Remark 5.6. Let λ, µ ∈ X belonging to the closure of the fundamental alcove,
and assume that the stabilizer of λ for the dot-action of Waff is contained in the

stabilizer of µ. Then, if we denote by O(E)λ̂,µ̂ the completion of O(E) at the ideal
corresponding to (λ, µ̃), the same considerations as in the proof of Lemma 5.5 show
that there exists an isomorphism

Qλ,µ ∼= O(E)λ̂,µ̂ ⊗
Zλ̂,µ̂S

Pλ,µS .

Recall that given a simple reflection s ∈ Saff , a weight λ ∈ X belonging to the
closure of the fundamental alcove is said to be on the wall corresponding to s if
s • λ = λ.

Lemma 5.7. Let λ, µ ∈ X, with λ belonging to the fundamental alcove and µ on
exactly one wall of the fundamental alcove, attached to the simple reflection s. Let
also w ∈W .

(1) If ws • λ > w • λ, then there exists an exact sequence

Qw•λ,w•λ ↪→ Pλ,µS ⊗̂USg P
µ,λ
S � Qws•λ,w•λ

in ModIfg(U λ̂,λ̂S ).
(2) If ws • λ < w • λ, then there exists an exact sequence

Qws•λ,w•λ ↪→ Pλ,µS ⊗̂USg P
µ,λ
S � Qw•λ,w•λ

in ModIfg(U λ̂,λ̂S ).

Proof. By Lemma 5.5 we have

Pλ,µS ⊗̂USg P
µ,λ
S
∼= Pλ,µS ⊗̂USg Qw•µ,w•λ.

Hence, if we denote by ν the unique dominant weight in W (λ− µ), this object can
be obtained by completing the bimodule

L(ν)⊗ Γ
(
S̃∗ ×t∗(1) t

∗, (OB(w • µ− w • λ)⊗OB D̃)|S̃∗×
t∗(1) t

∗

) ∼=
Γ
(
S̃∗ ×t∗(1) t

∗, L(ν)⊗ (OB(w • µ− w • λ)⊗OB D̃)|S̃∗×
t∗(1) t

∗

)
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with respect to the ideal of O(E′) corresponding to (λ̃, w•λ). Hence, as in the proof
of Lemma 5.5, if we choose an enumeration η1, · · · , ηn of the T -weights of L(ν)
(counted with multiplicities) such that ηi < ηj implies i < j, then this bimodule
admits a filtration

{0} = M0 ⊂M1 ⊂ · · ·

⊂Mn = Γ
(
S̃∗ ×t∗(1) t

∗, (OB(w • µ− w • λ)⊗OB D̃)|S̃∗×
t∗(1) t

∗

)
such that

Mi/Mi−1
∼= Γ

(
S̃∗ ×t∗(1) t

∗, (OB(w • µ− w • λ+ ηi)⊗OB D̃)|S̃∗×
t∗(1) t

∗

)
for any i. The subquotient Mi/Mi−1 survives after completion at the ideal corre-

sponding to (λ̃, w • λ) iff

w • µ− w • λ+ ηi ∈W • λ− w • λ,
i.e. iff

µ+ w−1ηi ∈Wext • λ.
Here w−1ηi is a weight of L(ν), hence µ + w−1ηi belongs to λ + ZR; in view of
Lemma 3.1(1), this condition is therefore equivalent to µ+w−1ηi ∈Waff •λ. Since
the stabilizer of µ for the dot-action of Waff is {e, s}, by [J2, Lemma II.7.7] this
condition is satisfied for two values of ηi, corresponding to

µ+ w−1ηi = λ and µ+ w−1ηi = s • λ,
i.e.

w • µ+ ηi = w • λ and w • µ+ ηi = ws • λ.
Hence Pλ,µS ⊗̂USgP

µ,λ
S admits a two-step filtration, with subquotients isomorphic

respectively to Qw•λ,w•λ and Qws•λ,w•λ. The order in which these subquotients
appear depends on wether ws • λ > w • λ or ws • λ < w • λ, and are as indicated
in the statement. �

5.4. Convolution with translation bimodules. Let λ, µ ∈ X, and assume that
λ is regular. Then there exists a canonical algebra morphism

(5.4) Z µ̂,λ̂S → Z λ̂,λ̂S

which can be defined as follows. The algebra Z µ̂,λ̂S is by definition the completion of

O(D) at the ideal corresponding to (µ̃, λ̃). Hence it admits a canonical morphism

to the completion O(E)µ̂,λ̂ of O(E) at the ideal corresponding to (µ, λ̃). Now the
morphism t∗ → t∗ defined by ξ 7→ ξ+µ−λ induces an automorphism of E sending

(λ, λ̃) to (µ, λ̃), which therefore induces an isomorphism

(5.5) O(E)µ̂,λ̂
∼−→ O(E)λ̂,λ̂,

where the right-hand side is the completion of O(E) at the ideal corresponding to

(λ, λ̃). Finally, the natural morphism

(5.6) Z λ̂,λ̂S → O(E)λ̂,λ̂

is an isomorphism by Lemma 3.2, since λ is regular; combining these constructions
we obtain the wished-for morphism (5.4).

Our goal in this subsection is to prove the following claim, which involves the
equivalence constructed in Corollary 4.8.
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Proposition 5.8. Let λ, µ ∈ X, with λ belonging to the fundamental alcove and
µ on exactly one wall of the fundamental alcove, attached to a simple reflection s
which belongs to W . Then there exists an isomorphism

Pλ,µS ⊗̂USg P
µ,λ
S
∼= Lλ,λ

(
Z λ̂,λ̂S ⊗

Zµ̂,λ̂S

Z λ̂S
)

in ModIfg(U λ̂,λ̂S ), where Z λ̂S is regarded as a Z µ̂,λ̂S -module via the morphism (5.4) and

Z λ̂,λ̂S ⊗
Zµ̂,λ̂S

Z λ̂S is endowed with the trivial structure as a representation.

Remark 5.9. From the proof below one can check that the isomorphism in Propo-
sition 5.8 is “canonical” in that it depends only on the choice of an adjunction

(Pλ,µS ⊗̂USg(−),Pµ,λS ⊗̂USg(−)), which can be defined by a choice of an isomorphism
L(ν)∗ ∼= L(−w0(ν)) where ν is the only W -translate of µ − λ; see the proof of
Lemma 3.6. From this proof it is clear also that the morphism

Pλ,µS ⊗̂USg P
µ,λ
S → U λ̂S

defined by this adjunction corresponds under Lλ,λ to the morphism

Z λ̂,λ̂S ⊗
Zµ̂,λ̂S

Z λ̂S → Z λ̂S

given by the action of Z λ̂,λ̂S on Z λ̂S .

The proof of this proposition will use two preliminary lemmas.

Lemma 5.10. If s is a simple reflection in W , then O(t∗) is free of rank 2 as a
module over O(t∗/({e, s}, •)).

Proof. First, translating by ρ we can reduce the •-action to the standard action;
it therefore suffices to prove that O(t∗) is free of rank two over the subalgebra
O(t∗)s of s-invariants. Next, recall that we have a W -equivariant isomorphism

t
∼−→ t∗, induced by a choice of G-equivariant isomorphism g

∼−→ g∗. We are
therefore reduced to proving that O(t) is free of rank two over O(t)s. Now, standard
arguments show that (1, ρ) is a basis of O(t) over O(t)s; see e.g. [EW1, Claim 3.11].

�

Lemma 5.11. Let λ, µ ∈ X, with λ belonging to the fundamental alcove and µ on
exactly one wall of the fundamental alcove, attached to a simple reflection s which
belongs to W . Then there exist isomorphisms of functors which make the following
diagrams commutative, where the upper horizontal arrow in the left-hand side is the
restriction-of-scalars functor associated with the morphism (5.4):

ModIfg(Z λ̂,λ̂S )

Lλ,λ

��

// ModIfg(Z µ̂,λ̂S )

Lµ,λ

��

ModIfg(U λ̂,λ̂S )
Pµ,λS ⊗̂USg(−)

// ModIfg(U µ̂,λ̂S ),

ModIfg(Z µ̂,λ̂S )

Lµ,λ

��

Zλ̂,λ̂S ⊗
Zµ̂,λ̂
S

(−)

// ModIfg(Z λ̂,λ̂S )

Lλ,λ

��

ModIfg(U µ̂,λ̂S )
Pλ,µS ⊗̂USg(−)

// ModIfg(U λ̂,λ̂S ).

Proof. By definition we have

Pµ,λS ⊗̂USg Lλ,λ(−) ∼=
(
Pµ,λS ⊗̂USg P

λ,−ρ
S ⊗̂USg P

−ρ,λ
S

)
⊗
Zλ̂,λ̂S

(−).
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Using Lemma 5.3 and Lemma 5.5, we deduce that

Pµ,λS ⊗̂USg Lλ,λ(−) ∼=
(
Qµ,−ρ ⊗̂USg P

−ρ,λ
S

)
⊗
Zλ̂,λ̂S

(−).

Hence to prove the commutativity of the diagram of the left it suffices to construct
an isomorphism(

Pµ,−ρS ⊗̂USg P
−ρ,λ
S

)
⊗
Zµ̂,λ̂S

Z λ̂,λ̂S
∼−→ Qµ,−ρ ⊗̂USg P

−ρ,λ
S

or in other words (in view of (5.5) and (5.6)) an isomorphism

(5.7)
(
Pµ,−ρS ⊗̂USg P

−ρ,λ
S

)
⊗
Zµ̂,λ̂S

O(E)µ̂,λ̂
∼−→ Qµ,−ρ ⊗̂USg P

−ρ,λ
S .

To construct a morphism as in (5.7) it suffices to construct a morphism

(5.8) Pµ,−ρS ⊗̂USg P
−ρ,λ
S → Qµ,−ρ ⊗̂USg P

−ρ,λ
S

in ModIfg(U µ̂,λ̂S ). By Remark 5.6 we have

(5.9) Qµ,−ρ ∼= O(E)µ̂,−̂ρ ⊗
Zµ̂,−̂ρS

Pµ,−ρS ;

in particular there exists a natural morphism Pµ,−ρS → Qµ,−ρ, which allows to define
the wished-for morphism (5.8), hence the morphism (5.7).

Now we claim that O(E)µ̂,λ̂, resp. O(E)µ̂,−̂ρ, is free of rank 2 over the algebra

Z µ̂,λ̂S , resp. Z µ̂,−̂ρS , which in view of (5.9) will imply that the morphism (5.7) is

an isomorphism. The two cases are similar, so that we only consider O(E)µ̂,λ̂. It

follows from Lemma 3.2 that Z µ̂,λ̂S identifies with the completion

O(t∗/({e, s}, •)×t∗(1)/W t∗/(W, •))µ̂,λ̂

of O(t∗/({e, s}, •)×t∗(1)/W t∗/(W, •)) with respect to the ideal corresponding to the

image of (µ, λ̃). Now O(E) is free of rank 2 over O(t∗/({e, s}, •)×t∗(1)/W t∗/(W, •))
by Lemma 5.10, and its completion with respect to the ideal corresponding to (µ, λ̃)
coincides with its completion with respect to the ideal of O(t∗/({e, s}, •) ×t∗(1)/W

t∗/(W, •)) corresponding to the image of (µ, λ̃) (because (µ, λ̃) is the only closed
point in the fiber over its image in t∗/({e, s}, •) ×t∗(1)/W t∗/(W, •)). The desired
claim follows.

We have finally proved the commutativity of the left diagram of the lemma. The
commutativity of the right diagram follows from that of the left one by adjunction,
in view of Lemma 3.6. �

Proof of Proposition 5.8. Lemma 5.11 provides isomorphisms

Pλ,µS ⊗̂USg P
µ,λ
S
∼= Lλ,λ(Z λ̂,λ̂S ⊗

Zµ̂,λ̂S

L −1
µ,λ(Pµ,λS )) ∼= Lλ,λ(Z λ̂,λ̂S ⊗

Zµ̂,λ̂S

L −1
λ,λ(U λ̂S )).

The desired claim follows, using the isomorphism (4.9). �
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5.5. Monoidality of the functors Lλ,λ. Our goal in this subsection is to prove
the following claim, announced in Remark 4.9.

Proposition 5.12. Let λ, ν ∈ X in the lower closure of the fundamental alcove,

and let µ ∈ X be in the fundamental alcove. Then for M ∈ ModIfg(Z λ̂,µ̂S ) and

N ∈ ModIfg(Z µ̂,ν̂S ) there exists a canonical (in particular, bifunctorial) isomorphism

Lλ,ν(M ?̂S N) ∼= Lλ,µ(M) ⊗̂USg Lµ,ν(N).

In case λ = µ = ν, this isomorphism and (4.9) define on Lλ,λ the structure of a
monoidal functor.

Proof. Recall the completion O(t∗(1)/W )∧ introduced in §3.6. By definition and
Remark 3.5, if we set USg∧ := USg⊗O(t∗(1)/W ) O(t∗(1)/W )∧ we have

Lλ,µ(M) = Mλ,µ
S ⊗

Zλ̂,µ̂S

M =
(
Pλ,−ρS ⊗USg∧ P

−ρ,µ
S

)
⊗
Zλ̂HC⊗O(t∗(1)/W )∧Z

µ̂
HC
M

and

Lµ,ν(N) = Mµ,ν
S ⊗Zµ̂,ν̂S

M =
(
Pµ,−ρS ⊗USg∧ P

−ρ,ν
S

)
⊗
Zµ̂HC⊗O(t∗(1)/W )∧Z

ν̂
HC
N.

We deduce that

Lλ,µ(M) ⊗̂USg Lµ,ν(N) ∼=(
Pλ,−ρS ⊗USg∧ P

−ρ,µ
S ⊗USg∧ P

µ,−ρ
S ⊗USg∧ P

−ρ,ν
S

)
⊗
Zλ̂HC⊗O(t∗(1)/W )∧Z

µ̂
HC⊗O(t∗(1)/W )∧Z

ν̂
HC

(M ⊗
Zµ̂HC

N).

(Here, Z λ̂HC ⊗O(t∗(1)/W )∧ Z
µ̂
HC ⊗O(t∗(1)/W )∧ Z

ν̂
HC identifies with the completion of

O(t∗/(W, •) ×t∗(1)/W t∗/(W, •) ×t∗(1)/W t∗/(W, •)) with respect to the ideal corre-

sponding to (λ̃, µ̃, ν̃).) By Lemma 5.5 and Lemma 5.3 we have

P−ρ,µS ⊗̂USg P
µ,−ρ
S

∼= Q−ρ,µ ⊗̂USg Qµ,−ρ ∼= Q−ρ,−ρ.

By Lemma 5.1, Q−ρ,−ρ identifies with the completion of ŨSg with respect to the

ideal of O(t∗) corresponding to −ρ. Via this identification, the action of Zµ̂HC is
given by the composition

Zµ̂HC → O(t∗)µ̂
∼−→ O(t∗)−̂ρ

where O(t∗)µ̂ and O(t∗)−̂ρ are the completions of O(t∗) with respect to the ideals
corresponding to λ and −ρ respectively, the first map is induced by the embedding
ZHC

∼= O(t∗/(W, •))→ O(t∗), and the second one is defined in terms of translation,
in a way similar to that considered at the beginning of §5.4. Here the first map is
an isomorphism by Lemma 3.2, from which we obtain an isomorphism

Lλ,µ(M) ⊗̂USg Lµ,ν(N) ∼=(
Pλ,−ρS ⊗USg∧ P

−ρ,ν
S

)
⊗
Zλ̂HC⊗O(t∗(1)/W )∧Z

−̂ρ
HC⊗O(t∗(1)/W )∧Z

ν̂
HC

(M ⊗
Zµ̂HC

N).

Finally we use the fact that the morphism O(t∗(1)/W )∧ → Z−̂ρHC is an isomorphism
(see the proof of Lemma 4.7) to deduce the wished-for isomorphism

Lλ,µ(M) ⊗̂USg Lµ,ν(N) ∼= Lλ,ν(M ?̂S N).
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In case λ = µ = ν, the fact that the relevant isomorphisms define a monoidal
structure on Lλ,λ is clear from constructions. �

Remark 5.13. Proposition 5.12 also holds in case µ is singular (in the lower closure
of the fundamental alcove). This case can be treated using the methods of §5.6
below; since it is not needed in this paper, we omit the details.

5.6. Singular analogues. Let I ⊂ Rs be a subset, and let PI ⊂ G be the associ-
ated standard (i.e., containing B) parabolic subgroup of G. (In practice, only the
case #I = 1 will be considered below.) Let UI ⊂ PI be the unipotent radical of PI ,
and let LI be the Levi factor containing T , so that PI ∼= LI nUI . Let PI := G/PI ,
and consider the natural projection

ωI : G/UI → PI .

The group LI acts naturally on G/UI on the right, via the action induced by
multiplication on the right on G; this action makes ωI a (Zariski locally trivial)
LI -torsor. We set

D̃I := (ωI)∗(DG/UI )
LI ,

where the exponent means LI -invariants. The actions of G and LI on G/UI induce
a canonical algebra morphism

(5.10) Ug⊗ZHC
O(t∗/(WI , •))→ Γ(PI , D̃I),

see [BMR2, Proposition 1.2.3].

Let also PI := P
(1)
I , a parabolic subgroup of G = G(1) with unipotent radical

UI := U
(1)
I . Let g̃I be the parabolic Grothendieck resolution (for the group G)

associated with I, defined as

g̃I := G×PI (g/Lie(UI))
∗.

Here g̃I is a vector bundle over G/PI = P(1)
I , and if LI := L

(1)
I there is a natural

morphism

g̃I → Lie(LI)
∗/LI ∼= t∗(1)/WI ,

where WI ⊂W is as in §3.1 (seen here as the Weyl group of (LI ,T)).

Consider the induced morphism fI : g̃I ×t∗(1)/WI
t∗/(WI , •) → P(1)

I , and the

Frobenius morphism FrPI : PI → P(1)
I . As explained in [BMR2, §1.2.1], there

exists a canonical algebra morphism

(fI)∗Og̃I×t∗(1)/WI
t∗/(WI ,•) → (FrPI )∗D̃I ,

where the morphism t∗/(WI , •)→ t∗(1)/WI is induced by the Artin–Schreier map.

This morphism takes values in the center of (FrPI )∗D̃I , and makes (FrPI )∗D̃I a lo-
cally finitely generated (fI)∗Og̃I×t∗(1)/WI

t∗/(WI ,•)-module. Since all the morphisms

involved in this construction are affine, using this morphism one can consider D̃I as
a coherent sheaf of Og̃I×t∗(1)/WI

t∗/(WI ,•)-algebras on g̃I ×t∗(1)/WI
t∗/(WI , •). (We

will not introduce a different notation for this sheaf of algebras.)

We also have a canonical morphism g̃I → g∗(1), and we denote by S̃∗I the (scheme-
theoretic) inverse image of S∗ under this morphism. As in the case I = ∅, using [R3,
Remark 3.5.4] one can check that the morphism g̃I → t∗(1)/WI considered above
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restricts to an isomorphism S̃∗I
∼−→ t∗(1)/WI ; in particular, this scheme is affine. We

set

D̃I,S := (D̃I)|S̃∗I×t∗(1)/WI
t∗/(WI ,•).

The following lemma is a parabolic analogue of Lemma 5.1, for which the same
proof applies.

Lemma 5.14. The morphism (5.10) induces an algebra isomorphism

USg⊗ZHC
O(t∗/(WI , •))

∼−→ Γ(S̃∗I ×t∗(1)/WI
t∗/(WI , •), D̃I,S).

Let

XI := {λ ∈ X | ∀α ∈ I, 〈λ, α∨〉 = 0},
so that XI identifies with the character lattice of LI . Then any λ ∈ XI defines a
line bundle OPI (λ) on PI , from which one can define the space

(5.11) Γ
(
S̃∗I ×t∗(1)/WI

t∗/(WI , •), (OPI (λ)⊗ D̃I)|S̃∗I×t∗(1)/WI
t∗/(WI ,•)

)
.

This object admits a natural action of the algebra

(USg⊗ZHC
O(t∗/(WI , •)))⊗O(S∗) (USgop ⊗ZHC

O(t∗/(WI , •)))
and of the group scheme

t∗/(WI , •)×t∗(1)/W I∗S ×t∗(1)/W t∗/(WI , •).

Since λ is WI -invariant, the map ξ 7→ λ+ ξ factors through an isomorphism

τ Iλ : t∗/(WI , •)
∼−→ t∗/(WI , •),

and the action of the subalgebra O(t∗/(WI , •)×t∗(1)/W t∗/(WI , •)) on (5.11) factors
through the morphism induced by the closed embedding

τ Iλ × id : t∗/(WI , •)→ t∗/(WI , •)×t∗(1)/W t∗/(WI , •).
Given λ, µ ∈ X such that λ− µ ∈ XI , one can then define the object

QIλ,µ ∈ ModIfg(U λ̂,µ̂S )

as the completion of the module

Γ
(
S̃∗I ×t∗(1)/WI

t∗/(WI , •), (OPI (λ− µ)⊗ D̃I)|S̃∗I×t∗(1)/WI
t∗/(WI ,•)

)
at the ideal of O(t∗/(WI , •)×t∗(1)/W t∗/(WI , •)) corresponding to the image of (λ, µ).
As for Qλ,µ, this object can be obtained by completing the module at the ideal of

O(t∗/(WI , •)) corresponding to the image of λ with respect to the left action, or
at the ideal of O(t∗/(WI , •)) corresponding to the image of µ with respect to the
right action.

Lemma 5.15. Let λ, µ, ν ∈ X.

(1) Assume that the stabilizer of µ for the dot-action of Waff is WI , and that
ν ∈ −ρ+ XI . Then there exists a canonical isomorphism

Qλ,µ ⊗̂USg QIµ,ν
∼−→ Qλ,ν

in ModIfg(U λ̂,ν̂S ). Similarly, if the stabilizer of µ for the dot-action of Waff

is WI , and λ ∈ −ρ+ XI , then there exists a canonical isomorphism

QIλ,µ ⊗̂USg Qµ,ν
∼−→ Qλ,ν
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in ModIfg(U λ̂,ν̂S ).
(2) Assume that the stabilizer of µ for the dot-action of Waff is WI , and that

λ, ν ∈ −ρ+ XI . Then there exists a canonical isomorphism

QIλ,µ ⊗̂USg QIµ,ν
∼−→ QIλ,ν

in ModIfg(U λ̂,ν̂S ).

Proof. (1) We only prove the first isomorphism; the proof of the second one is simi-
lar. Our assumptions ensure that µ−ν ∈ XI , so that the object QIµ,ν is well defined.
Consider the natural morphism aI : B → PI . By [BMR2, Proposition 1.2.3] there
exists a canonical morphism of sheaves of algebras

(5.12) D̃I → (aI)∗D̃ .

By the projection formula, and since (aI)∗OB ∼= OPI , we also have

(aI)∗OB(µ− ν) ∼= OPI (µ− ν),

and via this isomorphism the action of D̃I on OPI (µ− ν) is obtained by restriction

of scalars along (5.12) from the natural action of (aI)∗D̃ on (aI)∗OB(µ − ν). We
deduce a natural isomorphism

(aI)∗
(
OB(λ− µ)⊗OB D̃

)
⊗D̃I

(
OPI (µ− ν)⊗OPI

D̃I

) ∼−→
(aI)∗(OB(λ− ν)⊗OB D̃),

defined by a formula similar to that considered in the proof of Lemma 5.3. The

desired isomorphism follows by restricting to S̃∗I ×t∗(1)/WI
t∗/(WI , •) and then com-

pleting, using Lemma 5.14 and the fact that the natural morphism t∗/(WI , •) →
t∗/(W, •) is étale at the image of µ, see Lemma 3.2.

(2) The proof is similar to that of Lemma 5.3. �

5.7. Conjugation of wall-crossing bimodules. The following proposition will
eventually reduce the question of the description of the bimodules realizing wall-
crossing functors for G to the case of wall-crossing functors attached to simple
reflections which belong to W .

Proposition 5.16. Consider elements s ∈ Saff , s′ ∈ Saff ∩W and w ∈ Wext such
that s′ = wsw−1. Let λ, µ, µ′ ∈ X, with λ belonging to the fundamental alcove, and
µ, resp. µ′, belonging to the wall of the fundamental alcove attached to s, resp. s′,
and on no other wall. Then there exists an isomorphism

Pλ,µ
′

S ⊗̂USg P
µ′,λ
S
∼= Qλ,w•λ ⊗̂USg

(
Pλ,µS ⊗̂USg P

µ,λ
S

)
⊗̂USg Qw•λ,λ

in ModIfg(U λ̂,λ̂S ).

Proof. By Lemma 5.5 we have isomorphisms

Pλ,µS
∼= Qw•λ,w•µ, Pµ,λS

∼= Qw•µ,w•λ.

Using Lemma 5.3, we deduce isomorphisms

Qλ,w•λ ⊗̂USg
(
Pλ,µS ⊗̂USg P

µ,λ
S

)
⊗̂USg Qw•λ,λ

∼= Qλ,w•λ ⊗̂USg Qw•λ,w•µ ⊗̂USg Qw•µ,w•λ ⊗̂USg Qw•λ,λ ∼= Qλ,w•µ ⊗̂USg Qw•µ,λ.
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Now the stabilizers of both µ′ and w • µ for the dot-action of Waff is W{α}, where
α ∈ Rs is the simple reflection such that s′ = sα. By Lemma 5.15(1), it follows
that we have isomorphisms

Qλ,w•µ ∼= Qλ,µ′ ⊗̂USg Q
{α}
µ′,w•µ, Qw•µ,λ ∼= Q

{α}
w•µ,µ′ ⊗̂USg Qµ′,λ,

from which we obtain an isomorphism

Qλ,w•µ ⊗̂USg Qw•µ,λ ∼= Qλ,µ′ ⊗̂USg Q
{α}
µ′,w•µ ⊗̂USg Q

{α}
w•µ,µ′ ⊗̂USg Qµ′,λ.

Then by Lemma 5.15(2) we have

Q
{α}
µ′,w•µ ⊗̂USg Q

{α}
w•µ,µ′

∼= Q
{α}
µ′,µ′ ,

which implies (using again Lemma 5.15(1)) that

Qλ,w•µ ⊗̂USg Qw•µ,λ ∼= Qλ,µ′ ⊗̂USg Qµ′,λ.
The desired claim follows, using again Lemma 5.5. �

6. Hecke action on the principal block

In this section we assume that p > h where h is the Coxeter number of G (see
Remark 3.3). In particular, this ensures that p is very good for G, so that the
results of the previous sections are applicable.

6.1. Categories of G-modules and G-equivariant Ug-modules. We now take
a closer look at the category Rep(G) of finite-dimensional algebraic G-modules, and
review its decomposition into “blocks.” This will involve the notation introduced
in §§3.1–3.3.

Recall (see §3.5) that for any λ ∈ X+ we have a simple G-module L(λ) of highest
weight λ, and that all simple G-modules are of this form. The linkage principle
(see [J2, Corollary II.6.17]) states that for λ, µ ∈ X+ we have

Ext1
Rep(G)(L(λ), L(µ)) 6= 0 ⇒ Waff • λ = Waff • µ.

As a consequence, if for a Waff -orbit c ⊂ X we denote by Repc(G) the Serre sub-
category of Rep(G) generated by the simple objects L(λ) with λ ∈ c∩X+, then we
have a direct sum decomposition

(6.1) Rep(G) =
⊕

c∈X/(Waff ,•)

Repc(G).

For λ ∈ X, we will write [λ] for the Waff -orbit of λ. We will also set

Rep〈λ〉(G) =
⊕

c∈X/(Waff ,•)
c⊂Wext•λ

Repc(G).

Consider the category ModGfg(Ug) ofG-equivariant finitely generated Ug-modules.
For ξ ∈ t∗/(W, •), we will denote by

ModG,ξfg (Ug)

the full subcategory of ModGfg(Ug) whose objects are the modules annihilated by a

power of the ideal mξ ⊂ ZHC. As for other similar notations, in case ξ = λ̃ for some

λ ∈ X, we will write ModG,λfg (Ug) for ModG,λ̃fg (Ug). If we denote by ModG,∧fg (Ug) the
category of G-equivariant finitely generated Ug-modules annihilated by a power of
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the ideal I ⊂ ZHC ∩ ZFr defined in §3.6, then as e.g. in (3.13) we have a canonical
decomposition

ModG,∧fg (Ug) =
⊕
λ∈Λ

ModG,λfg (Ug),

where Λ ⊂ X is as in (3.13).
There is a natural fully faithful functor

(6.2) Rep(G)→ ModGfg(Ug)

sending a G-module V to itself, with its G-module structure, and with the Ug-
module structure obtained by differentiating the G-action. The essential image of
this functor consists of the finite-dimensional G-equivariant Ug-modules having the
property that their Ug-module structure is obtained from their G-module structure
by differentiation. Since, for any λ ∈ X+, the action of ZHC on L(λ) factors through
the quotient ZHC/m

λ, the functor (6.2) restricts to a functor

Rep[λ](G)→ ModG,λfg (Ug)

for any λ ∈ X. Since mλ only depends on the orbit Wext • λ, in this way we also
obtain a fully faithful functor

(6.3) Rep〈λ〉(G)→ ModG,λfg (Ug).

6.2. Action of completed bimodules. Recall the category ModGfg(U∧) intro-
duced in §3.6. There exists a canonical bifunctor

(−) ⊗̂Ug (−) : ModGfg(U∧)×ModG,∧fg (Ug)→ ModG,∧fg (Ug)

which can be defined as follows. Consider some M in ModGfg(U∧) and some V in

ModG,∧fg (Ug). By definition, there exists m ∈ Z≥1 such that Im acts trivially on V .
Then the tensor product

(M/Im ·M)⊗Ug V

is a finitely generated left Ug-module (where in the tensor product we consider the
right Ug-action on M/Im ·M), which does not depend on the choice of m, and
which admits a natural (diagonal) structure of algebraic G-module. Moreover the
action of I on this module is nilpotent. We can therefore take this as the definition
of M⊗̂UgV .

The bifunctor ⊗̂Ug defines on ModG,∧fg (Ug) a structure of module category for the

monoidal category ModGfg(U∧). It is also easily seen that for λ, µ ∈ X this bifunctor
restricts to a bifunctor

ModGfg(U λ̂,µ̂)×ModG,µfg (Ug)→ ModG,λfg (Ug)

(where the category ModGfg(U λ̂,µ̂) is as in §3.5), which itself restricts to a bifunctor

HCλ̂,µ̂ × Rep〈µ〉(G)→ Rep〈λ〉(G)

under the embeddings HCλ̂,µ̂ → ModGfg(U λ̂,µ̂) and (6.3).
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6.3. Relation with translation functors. Recall the definition of the translation
functors for G-modules from [J2, Chap. II.7]. Fix λ, µ ∈ X, and denote by ν the
only dominant W -translate of λ− µ. Then the translation functor

Tλµ : Rep[µ](G)→ Rep[λ](G)

is the functor sending an object V to the direct summand of L(ν)⊗V which belongs
to Rep[λ](G) in the decomposition provided by (6.1). We will consider these functors
only in case λ and µ both belong to the closure of the fundamental alcove. In this

setting, we have defined in §3.5 an object Pλ,µ ∈ HCλ̂,µ̂diag.

Lemma 6.1. Let λ, µ ∈ X belonging to the closure of the fundamental alcove. The
composition

Rep[µ](G)→ Rep〈µ〉(G)
Pλ,µ⊗̂Ug(−)
−−−−−−−−→ Rep〈λ〉(G)

is canonically isomorphic to the composition

Rep[µ](G)
Tλµ−−→ Rep[λ](G)→ Rep〈λ〉(G).

Proof. By definition, the first functor sends a module V in Rep[µ](G) to the quotient

(L(ν)⊗ V )/(mλ)n · (L(ν)⊗ V )

for n� 0, i.e. to the direct sum of the factors in L(ν)⊗ V corresponding to orbits
included in Wext • λ in the decomposition provided by (6.1). However, all the T -
weights in L(ν)⊗ V belong to λ+ ZR. In view of Lemma 3.1(1), this implies that
[λ] is the only Waff -orbit contained in Wext • λ that can contribute to the direct
sum above. �

Remark 6.2. See [R2, Lemma 4.3.1] for a different proof of this claim, under more
restrictive assumptions which would be sufficient for our present purposes.

6.4. Main result. We now consider the category DBS of §2.1 associated with the
group G = G(1). We also fix a weight λ in the fundamental alcove. (Such a weight
exists since p ≥ h.) For any s ∈ Saff , we choose a weight µs ∈ X in the closure of
the fundamental alcove, which lies on the wall associated with s but on no other
wall. (For the existence of such a weight, see [J2, §II.6.3].) Once these choices have
been made, the wall-crossing functor associated with s ∈ Saff is the composition

Θs := Tλµs ◦ T
µs
λ : Rep[λ](G)→ Rep[λ](G).

The main result of the present section (and of this paper) is the following.

Theorem 6.3. There exists a monoidal functor

Ψλ : DBS → HCλ̂,λ̂

such that
Ψλ(Bs) ∼= Pλ,µs ⊗̂Ug Pµs,λ

for any s ∈ Saff .

The proof of this theorem will be explained in §6.5. Before, we show that (as
explained in the introduction) this theorem implies the main conjecture of [RW1].

Corollary 6.4. There exists a k-linear right action of the monoidal category DBS

on Rep[λ](G) such that for any s ∈ Saff the action of the object Bs is isomorphic to
Θs.
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Proof. As explained in §6.2, there exists a canonical (left) action of the category

HCλ̂,λ̂ on the category Rep〈λ〉(G). The category DBS admits a canonical autoequiva-

lence ı which satisfies ı(X ·Y ) = ı(Y )·ı(X) for any X,Y ∈ DBS, see e.g. [RW1, §4.2].
Using this autoequivalence, the functor of Theorem 6.3 therefore provides a right
action of DBS on Rep〈λ〉(G) such that Bs acts via the bimodule Pλ,µs⊗̂UgPµs,λ, for
any s ∈ Saff . By Lemma 6.1, the action of this bimodule stabilizes the subcategory
Rep[λ](G), and its action on this summand is isomorphic to Θs. We have therefore
constructed the desired action. �

Remark 6.5. It is clear from the proof of Corollary 6.4 that the existence of a right
action of DBS with the required action of each Bs is equivalent to the existence of
a left action with the same property. The reason why Conjecture 1.1 mentions a
right action is that it makes the comparison with the combinatorics of the category
Rep[λ](G) easier.

See §6.6 for a discussion of what can be said about the images under Ψλ of the
generating morphisms of DBS.

6.5. Proof of Theorem 6.3. Recall that Theorem 2.10 provides a monoidal func-
tor

(6.4) DBS → RepGm(t∗(1) ×t∗(1)/W J∗S ×t∗(1)/W t∗(1)).

Since λ belongs to the fundamental alcove, its stabilizer for the dot-action on X is
trivial, so that the quotient morphism

t∗ → t∗/(W, •)

is étale at λ, see Lemma 3.2. Similarly, the Artin–Schreier map

t∗ → t∗(1)

is étale (everywhere, hence in particular at λ), and sends λ to 0. Using these maps
we obtain morphisms

t∗(1) ×t∗(1)/W t∗(1) ← t∗ ×t∗(1)/W t∗ → t∗/(W, •)×t∗(1)/W t∗/(W, •)

étale at (λ, λ), which identify the algebra Z λ̂,λ̂S from §3.9 with the completion

O(t∗(1)×t∗(1)/W t∗(1))0̂,0̂ of O(t∗(1)×t∗(1)/W t∗(1)) with respect to the maximal ideal

corresponding to (0, 0). Using this identification, the pullback functor associated

with the natural morphism Spec(O(t∗(1) ×t∗(1)/W t∗(1))0̂,0̂) → t∗(1) ×t∗(1)/W t∗(1)

induces a monoidal functor

(6.5) RepGm(t∗(1) ×t∗(1)/W J∗S ×t∗(1)/W t∗(1))→ ModJfg(Z λ̂,λ̂S ),

where the category on the right-hand side is as in §4.3. Precomposing this functor
with (6.4), and then composing with the equivalence of Corollary 4.8 we obtain a
monoidal functor

(6.6) Ψλ
S : DBS → HCλ̂,λ̂S .

Proposition 6.6. For any s ∈ Saff ∩W , there exists an isomorphism

Ψλ
S(Bs) ∼= Pλ,µsS ⊗̂USg P

µs,λ
S .
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Proof. In the course of the proof of Lemma 2.9 we have seen that the image of Bs
in RepGm(t∗(1)×t∗(1)/W J∗S×t∗(1)/W t∗(1)) is O(t∗(1)×t∗(1)/{e,s} t

∗(1)), endowed with the
trivial structure as a representation. On the other hand, by Proposition 5.8 the wall-

crossing bimodule Pλ,µsS ⊗̂USgP
µs,λ
S corresponds to the object Z λ̂,λ̂S ⊗

Zµ̂,λ̂S

Z λ̂S (again

endowed with the trivial structure as a representation) under the equivalence Lλ,λ.

Recall that Z λ̂,λ̂S identifies with the completion of O(t∗ ×t∗(1)/W t∗) at the ideal

corresponding to (λ, λ). The considerations in the proof of Lemma 5.11, together
with the fact that the quotient morphism t∗ → t∗/(W, •) is étale at λ, imply that

the algebra Z µ̂,λ̂S identifies with the completion of O(t∗/({e, s}, •) ×t∗(1)/W t∗) at

the ideal corresponding to the image of (µ, λ), and that via this identification the

morphism Z µ̂,λ̂S → Z λ̂,λ̂S is induced by the natural morphism

t∗ ×t∗(1)/W t∗ → t∗/({e, s}, •)×t∗(1)/W t∗

sending (λ, λ) to the image of (µ, λ). This morphism fits in a natural commutative
diagram

t∗ ×t∗(1)/W t∗ //

��

t∗(1) ×t∗(1)/W t∗(1)

��
t∗/({e, s}, •)×t∗(1)/W t∗ // t∗(1)/{e, s} ×t∗(1)/W t∗(1)

where the right vertical arrow is induced by the natural quotient morphism t∗(1) →
t∗(1)/{e, s} and the horizontal arrows are induced by the Artin–Schreier map. Here
the morphism on the upper row is étale at (λ, λ), and that on the lower row is étale
at the image of (µ, λ) by the same arguments as for Lemma 4.7. This observation

shows that Z λ̂,λ̂S ⊗
Zµ̂,λ̂S

Z λ̂S identifies with the O(t∗(1) ×t∗(1)/W t∗(1))0̂,0̂-module

O(t∗(1) ×t∗(1)/W t∗(1))0̂,0̂ ⊗O(t∗(1)/{e,s}×
t∗(1)/W t∗(1))0̂,0̂ O(t∗(1))0̂,

where O(t∗(1)/{e, s} ×t∗(1)/W t∗(1))0̂,0̂ is the completion of O(t∗(1)/{e, s} ×t∗(1)/W

t∗(1)) at the ideal corresponding to the image of (0, 0), and O(t∗(1))0̂ is the com-
pletion of O(t∗(1)) (seen as an O(t∗(1)/{e, s} ×t∗(1)/W t∗(1))-module in the natural

way) at the ideal corresponding to 0. Using the same considerations as in the proof
of Lemma 5.11, it is easily seen that this module identifies with the completion of
O(t∗(1) ×t∗(1)/{e,s} t

∗(1)), which finishes the proof of our claim. �

Remark 6.7. The isomorphism constructed in the proof of Proposition is essentially
canonical, in the sense that it only depends on the isomorphism of Proposition 5.8
(for the pair (λ, µs)), which itself only depends on a choice of isomorphism L(νs)

∗ ∼=
L(−w0(νs)) where νs is the only dominant W -translate of µs − λ, see Remark 5.9.

Recall the objects (∆J
w : w ∈Wext) introduced at the end of §2.4, and the objects

(Qν,η : ν, η ∈ X) introduced in §5.2.

Lemma 6.8. For any w ∈ Wext, the object L −1
λ,λ(Qλ,w•λ) is isomorphic to the

image of ∆J
w under the functor (6.5).

Proof. Write w = tνx with ν ∈ pX and x ∈W . Then by Lemma 5.3 we have

Qλ,w•λ = Qλ,x•λ+pν
∼= Qλ,x•λ ⊗̂USg Qx•λ,x•λ+pν .
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It follows from Lemma 5.4 and the proof of Lemma 2.8 that L −1
λ,λ(Qx•λ,x•λ+pν) is the

image of ∆J
tν . In view of (2.3) and the monoidality of L −1

λ,λ (see Proposition 5.12),

to conclude it therefore suffices to prove that L −1
λ,λ(Qλ,x•λ) is the image of ∆J

x. In

turn, if x = s1 · · · sr is a reduced expression (with each si in W ∩ Saff) then again
by by Lemma 5.3 we have

Qλ,x•λ ∼= Qλ,s1•λ ⊗̂USg Qs1•λ,s1s2•λ ⊗̂USg · · · ⊗̂USg Q(s1···sr−1)•λ,x•λ.

If we write yj = s1 · · · sj for j ∈ {0, · · · , r} then, by monoidality of Lλ,λ, to conclude

it suffices to prove that L −1
λ,λ(Qyi−1•λ,yi•λ) is the image of ∆J

si for any i ∈ {1, · · · , r}.
Fix i ∈ {1, · · · , r}. We have yi • λ < yi−1 • λ. By Lemma 5.7 we therefore have

an exact sequence

Qyi•λ,yi−1•λ ↪→ P
λ,µsi
S ⊗̂USg P

µsi ,λ

S � Qyi−1•λ,yi−1•λ.

As seen in the course of the proof of Proposition 6.6, L −1
λ,λ(P

λ,µsi
S ⊗̂USgP

µsi ,λ

S ) cor-

responds to the completion of O(t∗(1) ×t∗(1)/{e,si} t
∗(1)) (with the trivial struc-

ture as a representation of the appropriate group scheme), and it is clear that
L −1
λ,λ(Qyi−1•λ,yi−1•λ) is the completion of O(t∗(1)). The object L −1

λ,λ(Qyi•λ,yi−1•λ)
is therefore the kernel of a surjection from the former completion to the latter com-
pletion. However, up to an automorphism of the completion of O(t∗(1)) there exists
only one such surjection, and its kernel corresponds to the completion of ∆J

si by
Lemma 2.5. �

Once Lemma 6.8 is proved, one also obtains that L −1
λ,λ(Qw•λ,λ), which is the

inverse of L −1
λ,λ(Qλ,w•λ) (see §5.2), is isomorphic to the image of ∆J

w−1 under (6.5).

(In fact, one can then check that for any µ ∈Wext • λ, L −1
λ,λ(Qµ,w•µ) is isomorphic

to the image of ∆J
w.)

We can finally complete the proof of Theorem 6.3.

Proof of Theorem 6.3. Consider the functor Ψλ
S from (6.6). We claim that for any

s ∈ Saff we have

(6.7) Ψλ
S(Bs) ∼= Pλ,µsS ⊗̂USg P

µs,λ
S .

In fact, if s ∈ W this is the content of Proposition 6.6. Otherwise, as already seen
in the course of the proof of Lemma 2.9, there exist x ∈Wext and t ∈ Saff ∩W such
that s = xtx−1. Then by Lemma 2.4 the image of Bs in Cext is

BBim
s
∼= ∆x ⊗R BBim

t ⊗R ∆x−1 ;

using Lemma 6.8 (together with the remark following it) and the known description
of Ψλ

S(Bt), we deduce that

Ψλ
S(Bs) ∼= Qx−1•λ,λ ⊗̂USg P

λ,µt
S ⊗̂USg P

µt,λ
S ⊗̂USg Qλ,x−1•λ.

In view of Proposition 5.16, this implies (6.7).
Since each object of DBS is isomorphic to a shift of a product of objects Bs, and

since both of the involved functors are monoidal, our claim implies that Ψλ
S takes

values in the essential image of the fully faithful functor

HCλ̂,λ̂diag → HCλ̂,λ̂S .
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(see Proposition 3.7). It follows that Ψλ
S factors in a canonical way through a

monoidal functor

Ψλ : DBS → HCλ̂,λ̂

sending Bs to Pλ,µs⊗̂UgPµs,λ for any s ∈ Saff , which finishes the proof. �

6.6. Images of generating morphisms. The category DBS is defined in [EW1]
in terms of generators and relations. In Theorem 6.3 we have explained what are
the images of the generating objects under Ψλ (at least, up to isomorphism); by
monoidality this determines the image of any object in DBS (again, up to isomor-
phism). We finish the paper with a discussion of what can be said about the image
under Ψλ of the generating morphisms of DBS.

Remark 6.9. As explained in [RW1, Remark 5.1.2(3)], although the original version
of Conjecture 1.1 contained information about these images, this information is
not needed for the applications considered in [RW1, Part I], and in particular the
character formula for tilting modules in Rep[λ](G).

Recall that these generating morphisms fall into four families:

• the polynomials (morphisms from B∅ to a shift of B∅, determined by
homogeneous elements in R = O(t∗(1)));

• the “dot” morphisms for s ∈ Saff

•
s

and •
s

(morphisms from Bs to a shift of B∅ and from B∅ to a shift of Bs);
• the “trivalent” morphisms for s ∈ Saff

s

s s

and
s

ss

(morphisms from Bs to a shift of Bss and from Bss to a shift of Bs);
• the “2ms,t-valent” morphisms, for pairs (s, t) of distinct elements of Saff

generating a finite subgroup of Waff .

The information we can give only concerns the first two families of morphisms.

The image of polynomials is easy to describe: we have Ψλ(B∅) = U λ̂. If Z λ̂HC is

as in Remark 3.5, any element in Z λ̂HC determines an endomorphism of U λ̂. Now
the natural morphisms

t∗/(W, •)← t∗ → t∗(1)

are étale at λ; they therefore determine an isomorphism between Z λ̂HC and the

completion O(t∗(1))0̂ of O(t∗(1)) with respect to the ideal of 0. The image under

Ψλ of a homogenous polynomial in R is the endomorphism of U λ̂ determined by

the corresponding element in Z λ̂HC.
To describe the image of the other morphisms, we must be more specific about

the isomorphism Ψλ(Bs) ∼= Pλ,µs⊗̂UgPµs,λ. First, assume that s ∈W . In this case,
after choosing an isomorphism L(νs)

∗ ∼= L(−w0(νs)) we obtain a canonical such
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isomorphism, see Remark 6.7. Using this isomorphism, Remark 5.9 shows that the
image of the upper dot morphism

•
s

is the morphism ϕs : Pλ,µs⊗̂UgPµs,λ → U λ̂ determined by the adjunction

(Pλ,µs ⊗̂Ug (−), Pµs,λ ⊗̂Ug (−))

defined by our choice of isomorphism L(νs)
∗ ∼= L(−w0(νs)). (Here we use an obvious

variant of Lemma 3.6 for Ug in place of USg.)
Proposition 3.7, Corollary 4.8 and Proposition 5.8 (together with the various

étale maps considered above) show that the O(t∗(1))0̂-modules

Hom
HCλ̂,λ̂

(U λ̂,U λ̂) and Hom
HCλ̂,λ̂

(U λ̂,Pλ,µs ⊗̂Ug Pµs,λ)

are both free of rank 1; from this one can check that there exists a unique morphism

ψs : U λ̂ → Pλ,µs ⊗̂Ug Pµs,λ

whose composition with ϕs is the differential of the coroot of (G,T) associated

with s (seen as an endomorphism of U λ̂), and that this morphism is a generator of

Hom
HCλ̂,λ̂

(U λ̂,Pλ,µs⊗̂UgPµs,λ). In view of the “barbell relation” in DBS, the image
of the lower dot morphism

•
s

is ψs.
In case s /∈Waff , we do not have any canonical choice of isomorphism Ψλ(Bs) ∼=

Pλ,µs⊗̂UgPµs,λ. What we can say is that there exists a choice of such an isomor-
phism (not unique) such that the images of the dot morphisms are described by
the same rules as above.

Appendix A. Index of notation

Below is a list of the main notation used in the paper, listed by section of
appearance. (We sometimes omit notation used only in one specific subsection.)

A.1. Section 2. k: algebraically closed field of characteristic p, §2.1.
G: connected reductive algebraic group over k, §2.1.
B, T: Borel subgroup and maximal torus in G, §2.1.
g, b, t: Lie algebras of G, B, T, §2.1.
X, X∨: weight and coweight lattices of T, §2.1.
Φ, Φ∨, Φ+, Φs: roots, coroots, positive roots, simple roots of (G,B,T), §2.1.

κ: choice of isomorphism g
∼−→ g∗, §2.1.

W: Weyl group of (G,T), §2.1.
Waff , Wext: affine and extended affine Weyl groups of (G,T), §2.1.
Saff , Wext: simple reflections in Waff , §2.1.
DBS: diagrammatic Hecke category attached to G, §2.1.
Bw: object of DBS attached to w, §2.1.
R = O(t∗), §2.1.
Q: fraction field of R, §2.2.
C, C′, Cext, C

′
ext: Abe’s categories, §2.2.

BBim
s : bimodule in C attached to s, §2.2.
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∆x: “standard” object in Cext attached to x, §2.2.
U: unipotent radical in B, §2.3.
n: Lie algebra of U, §2.3.
greg, g∗reg: regular parts in g and g∗, §2.3.
Jreg, J∗reg: universal centralizers over greg and g∗reg, §2.3.
g̃: Grothendieck resolution attached to G, §2.3.
g̃reg: regular part in g̃, §2.3.
π: natural morphism g̃→ g∗, §2.3.
ϑ: natural morphism g̃→ t∗, §2.3.
grs, g∗rs: regular semisimple parts in g and g∗, §2.3.
Jrs, J∗rs: restrictions of Jreg, J∗reg to grs, g∗rs, §2.3.
S, S∗: Kostant sections in g and g∗, §2.3.
J∗S: restriction of J∗reg to S∗, §2.3.

RepGm(t∗ ×t∗/W J∗S ×t∗/W t∗): category of Gm-equivariant representations of
t∗ ×t∗/W J∗S ×t∗/W t∗ on coherent sheaves on t∗ ×t∗/W t∗, §2.4.

?: monoidal product on RepGm(t∗ ×t∗/W J∗S ×t∗/W t∗), §2.4.

RepGm

fl (t∗ ×t∗/W J∗S ×t∗/W t∗): subcategory of RepGm(t∗ ×t∗/W J∗S ×t∗/W t∗)
consisting of modules flat w. r. t. the second projection t∗ ×t∗/W t∗ → t∗, §2.4.

∆J
w: object in RepGm(t∗ ×t∗/W J∗S ×t∗/W t∗) corresponding to ∆w, §2.4.

A.2. Section 3. G: connected reductive algebraic group such that G = G(1), §3.1.
Fr: Frobenius morphism of G, §3.1.
B, T , U : subgroups of G corresponding to B, T, U, §3.1.
g, b, t, n: Lie algebras of G, B, T , U , §3.1.
W : Weyl group of (G,T ), §3.1.
X, X∨: weight and coweight lattices of T , §3.1.
R, R∨, R+, Rs: roots, coroots, positive roots, simple roots of (G,B, T ), §3.1.
w0: longest element in W , §3.1.
ρ: halfsum of the positive roots, §3.1.
•: dot action of Wext on X and W on t∗, §3.1.
λ: element of t∗ associated with λ ∈ X, §3.1.

λ̃: image of λ in t∗/(W, •), §3.1.
t∗Fp : “integral” part of t∗, §3.1.

WI : subgroup of W associated with I ⊂ Rs, §3.1.
Ug: universal enveloping algebra of g, §3.2.
ZHC, ZFr: Harish-Chandra and Frobenius centers of Ug, §3.2.
AS: Artin–Schreier morphism, §3.2.
C: spectrum of Z(Ug), §3.2.
mη: ideal in ZFr associated with η ∈ g∗(1), §3.3.
mξ: ideal in ZHC associated with ξ ∈ t∗/(W, •), §3.3.
Uηg, Uξg, Uξηg: central reductions of Ug, §3.3.
N ∗: nilpotent cone in g∗, §3.3.
HC: category of Harish-Chandra bimodules for G, §3.4.
Z = Z(Ug)⊗ZFr Z(Ug), §3.4.

ModGfg(Ug⊗ZFr
Ugop): category of G-equivariant f.g. Ug⊗ZFr

Ugop-modules, §3.4.
D = t∗/(W, •)×t∗(1)/W t∗/(W, •), §3.5.

Iλ,µ: ideal in O(D) associated with λ, µ ∈ X, §3.5.
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Dλ̂,µ̂: spectrum of the completion of O(D) w.r.t. Iλ,µ, §3.5.

U λ̂,µ̂ = (Ug⊗ZFr
Ugop)⊗O(D) O(Dλ̂,µ̂), §3.5.

ModGfg(U λ̂,µ̂): category of G-equivariant f.g. U λ̂,µ̂-modules, §3.5.

HCλ̂,µ̂: subcategory of ModGfg(U λ̂,µ̂) of Harish-Chandra bimodules, §3.5.

HCλ̂,µ̂diag: subcategory of HCλ̂,µ̂ of diagonally induced bimodules, §3.5.

Cλ,µ(−) = O(Dλ̂,µ̂)⊗O(D) (−), §3.5.

U λ̂ = Cλ,λ(k⊗ Ug), §3.5.
h: Coxeter number of G, §3.5.
Pλ,µ: translation bimodule attached to λ, µ ∈ X, §3.5.
Λ: set of representatives for the (Wext, •)-orbits on X, §3.6.
I: ideal of O(t∗(1)/W ) corresponding to the image of 0, §3.6.
D∧: spectrum of the completion of O(D) w.r.t. I · O(D), §3.6.
O(t∗(1)/W )∧: completion of O(t∗(1)/W ) w.r.t. I, §3.6.
Z∧HC: completion of ZHC w.r.t. I · ZHC, §3.6.

Z λ̂HC: completion of ZHC w.r.t. mλ, §3.6.
U∧ = (Ug⊗ZFr Ugop)⊗O(D) O(D∧), §3.6.

ModGfg(U∧): category of G-equivariant f.g. U∧-modules, §3.6.

HC∧: subcategory of ModGfg(U∧) of Harish-Chandra bimodules, §3.6.

HC∧diag: subcategory of HC∧ of diagonally induced bimodules, §3.6.
C∧(−) = O(D∧)⊗O(D) (−), §3.6.

(−)⊗̂Ug(−): monoidal product for the categories ModGfg(U λ̂,µ̂), §3.7.
I∗S: group scheme over S∗, §3.8.
USg := Ug⊗ZFr O(S∗), §3.8.
CS := S∗ ×t∗(1)/W t∗/(W, •), §3.8.

ZS = Z ⊗ZFr O(S∗), §3.9.

ModIfg(USg ⊗O(S∗) USgop): category of I∗S-equivariant f.g. USg ⊗O(S∗) USgop-
modules, §3.9.

HCS: subcategory of ModIfg(USg ⊗O(S∗) USgop) of Harish-Chandra bimodules,
§3.9.

Iλ,µS = Iλ,µ · ZS, §3.9.

Z λ̂,µ̂S : completion of ZS w.r.t. Iλ,µS , §3.9.

U λ̂,µ̂S = Z λ̂,µ̂S ⊗ZS
(USg⊗O(S∗) USgop), §3.9.

Iλ̂,µ̂S = Spec(Z λ̂,µ̂S )×S∗ I∗S, §3.9.

ModIfg(U λ̂,µ̂S ): category of Iλ̂,µ̂S -equivariant f.g. U λ̂,µ̂S -modules, §3.9.

HCλ̂,µ̂S : subcategory of ModIfg(U λ̂,µ̂S ) of Harish-Chandra bimodules, §3.9.

Pλ,µS = O(S∗)⊗O(g∗(1)) P
λ,µ, §3.9.

(−)⊗̂USg(−): monoidal product for the categories ModIfg(U λ̂,µ̂S ), §3.9.
Z∧S : completion of ZS w.r.t. I · ZS, §3.9.
U∧S = Z∧S ⊗ZS

(USg⊗O(S∗) USgop), §3.9.
I∧S = Spec(Z∧S )×S∗ I∗S, §3.9.

ModIfg(U∧S ): category of I∧S-equivariant f.g. U∧S -modules, §3.9.
C∧S(−) = O(S∗)⊗ZFr

C∧(−), §3.9.

U λ̂S = O(S∗)⊗O(g∗(1)) U λ̂, §3.9.



HECKE ACTION ON THE PRINCIPAL BLOCK 65

A.3. Section 4. Zη,B′(ξ): baby Verma module, §4.2.

ModIfg(Z∧S ): category of representations of I∧S on finitely generated Z∧S -modules,
§4.3.

(−) ?̂S (−): monoidal product on ModIfg(Z∧S ), §4.3.
J∧S = Spec(Z∧S )×S∗ J∗S, §4.3.

ModJfg(Z∧S ): category of representations of J∧S on finitely generated Z∧S -modules,
§4.3.

ModIfg(Z λ̂,µ̂S ): category of representations of Iλ̂,µ̂S on finitely generated Z λ̂,µ̂S -
modules, §4.3.

Jλ̂,µ̂S = Spec(Z λ̂,µ̂S )×S∗ J∗S, §4.3.

ModJfg(Z λ̂,µ̂S ): category of representations of Jλ̂,µ̂S on finitely generated Z λ̂,µ̂S -
modules, §4.3.

Mλ,µ = Pλ,−ρ⊗̂UgP−ρ,µ, §4.3.

Mλ,µ
S = O(S∗)⊗O(g∗(1)) M

λ,µ, §4.3.

D̃ = t∗ ×t∗(1) t
∗, §4.4.

D̃(λ), D(λ): irreducible components associated with λ ∈ X, §4.4.

Λ̃: set of representatives for X/pX, §4.4.
t∗◦, open subset in t∗, §4.4.

S̃∗: preimage of S∗ in g̃, §4.4.
Lλ,µ: localization equivalence, §4.6.

A.4. Section 5. B = G/B, §5.1.
ω: natural morphism G/U → B, §5.1.

D̃ : universal twisted differential operators on B, §5.1.

D̃S := D̃|S̃∗×
t∗(1) t

∗ , §5.1.

ŨSg := USg⊗ZHC
O(t∗), §5.1.

OB(λ): line bundle on B attached to λ ∈ X, §5.2.

Ũ λ̂,µ̂S : completion of ŨSg ⊗O(S∗) (ŨSg)op at the ideal corresponding to (λ, µ) ∈
t∗ ×t∗(1)/W t∗, §5.2.

ModIfg(Ũ λ̂,µ̂S ): category of equivariant f.g. Ũ λ̂,µ̂S -modules, §5.2.

(−)⊗̂ŨSg(−): monoidal product for the categories ModIfg(Ũ λ̂,µ̂S ), §5.2.

Qλ,µ: completion of Γ
(
S̃∗ ×t∗(1) t

∗, (OB(λ− µ)⊗OB D̃)|S̃∗×
t∗(1) t

∗

)
, §5.2.

〈η〉: twist functor on ModIfg(Ũ λ̂,µ̂S ), §5.2.
E = t∗ ×t∗(1)/W t∗/(W, •), §5.3.

E′ := t∗/(W, •)×t∗(1)/W t∗, §5.3.

O(E)λ̂,µ̂: completion of O(E) at the ideal corresponding to (λ, µ̃), §5.3.
PI , PI : standard parabolic subgroups in G and G associated with I ⊂ Rs, §5.6.
LI , LI , UI , UI : Levi factor and unipotent radical of PI and PI , §5.6.
PI = G/PI , §5.6.
ωI : natural morphism G/UI → PI , §5.6.

D̃I : twisted differential operators on PI , §5.6.
g̃I : parabolic Grothendieck resolution for G, §5.6.

S̃∗I : preimage of S∗ in g̃I , §5.6.
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D̃I,S = (D̃I)|S̃∗I×t∗(1)/WI
t∗/(WI ,•), §5.6.

QIλ,µ: completion of Γ
(
S̃∗I×t∗(1)/WI

t∗/(WI , •), (OPI (λ−µ)⊗D̃I)|S̃∗
I
×

t∗(1)/WI
t∗/(WI ,•)

)
,

§5.6.

A.5. Section 6. Repc(G): subcategory of Rep(G) associated with a Waff -orbit
c ⊂ X, §6.1.

[λ]: Waff -orbit of λ ∈ X, §6.1.
Rep〈λ〉(G): sum of the categories Repc(G) with c ⊂Wext • λ, §6.1.

ModGfg(Ug): category of G-equivariant f.g. Ug-modules, §6.1.

ModG,ξfg (Ug): full subcategory of ModGfg(Ug) of modules annihilated by a power

of mξ, §6.1.

ModG,∧fg (Ug): full subcategory of ModGfg(Ug) of modules annihilated by a power
of I, §6.1.

(−)⊗̂Ug(−): bifunctor defining the action of ModGfg(U∧) on ModG,∧fg (Ug), §6.2.

Tµλ : translation functor (for G-modules) associated with λ, µ ∈ X, §6.3.
Θs: wall-crossing functor associated with s ∈ Saff , §6.4.

Ψλ: functor from DBS to HCλ̂,λ̂, §6.4.

Ψλ
S: functor from DBS to HCλ̂,λ̂S , §6.5.
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