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Abstract 25 

Preliminary interpretation of geological processes during field measurement campaigns 26 

require fast data analysis to adapt ongoing target strategies. It is the case of soil 27 

investigations where coupling geochemical and geophysical records favor a better 28 

understanding of subsurface processes. This task requires (i) statistical analysis is 29 

needed to identify areas of interest during spatial surveys and (ii) signal processing is 30 

required to analyze temporal series.   31 

Here we present SoilExp, an open-source Python-based Graphical User 32 

Interface (GUI) that permits to process spatial and temporal surveys of soil gases (e.g. 33 

soil CO2 flux) combined with common physical parameters (e.g. self-potential, 34 

temperature) that are synchronously recorded on the field. SoilExp mixes innovative 35 

algorithms with the more common tools used for the analysis of both spatial surveys or 36 

temporal series. It offers the possibility to display distribution plots, maps, comparative 37 

plots, spectra and spectrograms, as well as data statistical analysis, in order to deal 38 

efficiently with datasets acquired on the field. Field measurements performed at 39 

Stromboli (Italy) supports that such software solution facilitates a quick visualization 40 

of the data output and is a powerful tool on the geochemical and geophysical analysis.  41 

 42 
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 45 

1. Introduction 46 

Identifying hidden geologic structures and studying gas and hydrothermal fluid 47 

circulation within the ground is of first interest in many disciplines as agriculture 48 

(Kucera & Kirkham, 1971), mineral resources (Hinkle & Dilbert, 1984; Lovell et al., 49 
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1983),  geothermy (Chiodini et al., 2001, 2005), geological storage (Sandig et al., 2014) 50 

and natural hazards (Allard et al., 1991; Finizola et al., 2002; Hernandez et al., 2001; 51 

Irwin & Barnes, 1980). Coupling geochemical and geophysical records has 52 

demonstrated a real complementarity to characterize soil heterogeneities and related 53 

fluid circulations (Aubert et al., 1984; Boudoire et al., 2018; Elskens et al., 1964; 54 

Finizola et al., 2003; Gaudin et al., 2015; Giammanco et al., 1997). In particular, 55 

diffusive CO2 degassing (CO2), self-potential (SP) and temperature (T) measurements 56 

are among the most common methods used by the scientific and industrial community 57 

to perform both spatial surveys or temporal records for monitoring purposes (Boudoire 58 

et al., 2018; Byrdina et al., 2012; Finizola et al., 2003; Gresse et al., 2016; Pearson et 59 

al., 2008).  60 

These measurements often require (i) the use of self-alone instruments and (ii) 61 

a preliminary data treatment to be used reliably. For instance, (i) measurements of 62 

diffusive CO2 degassing (CO2) may require the use of a stainless steel probe (active 63 

method) or an accumulation chamber (passive method) connected to infrared 64 

spectrometers, self-potential may require the use of non-polarizable Cu/CuSO4 65 

electrodes coupled with a high impedance voltmeter and temperature (T) measurements 66 

may be performed with K-type thermal probes and a digital thermometer or with a 67 

pyrometer (Finizola et al., 2010). Additionally (ii), spatial surveys often need a quick 68 

first idea of results during the daily performed acquisitions in order to identify the main 69 

areas of interests and eventually adapt or correct the ongoing fieldwork strategy 70 

(Chatterjee et al., 2019). Meanwhile, temporal series are often subjected to an 71 

environmental influence that needs to be corrected before an accurate use of the signals 72 

as regression, moving average or cut-band filter for the most common ones (Boudoire 73 

et al., 2017a; Liuzzo et al., 2013; Padron et al., 2008; Viveiros et al., 2008). Many 74 

industrial software packages or homemade codes are able to deal efficiently with this 75 
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kind of data but often required to be used additionally to cover the whole range of 76 

expected common data treatment tools (with various file formatting). It is often time 77 

consuming and limit a fast and efficient evaluation of the datasets. 78 

Here we present a new user-friendly Python-based GUI (Graphical User 79 

Interface) software: Soil Exploration (SoilExp). SoilExp is able to analyze both spatial 80 

and temporal datasets obtained  on the field and respecting some file formatting rules. 81 

The final aim of SoilExp is to provide to the geologic-environmental researchers 82 

community both innovative and classical tools for a first data processing: (i) data 83 

correction (linear regression, moving average, cut-band filter), (ii) data analysis 84 

(statistical analysis, populations identification), (iii) data comparison (correlations, 85 

cross-correlations) and, (iv) graphical representation (distribution plots, comparative 86 

plots, spectra, spectrograms, maps). To illustrate the potentiality of SoilExp to sustain 87 

field surveys and to address scientific issues, both soil CO2 flux and self-potential 88 

measurements were performed at Stromboli (Italy). Results are presented in a final 89 

section and discussed with respect to those obtained from previous field surveys. 90 

 91 

2. Overview on the SoilExp software 92 

The SoilExp 1.0 software distribution is written in Python 2.7 (Fig. 1). The Graphical 93 

User Interface (GUI) is based on the Tkinter library. It requires the following libraries: 94 

Pandas, Numpy, SciPy, Matplotlib, Scikit-Learn, PySerial is required. Thus, as 95 

processed during SoilExp 1.0 development, we recommend to the user to install the 96 

Anaconda distribution on their machines in order to benefit of the Spyder open source 97 

cross-platform integrated development environment (IDE) with scientific libraries. Full 98 

details are provided in the user guide. Information related to the installation of the 99 

software distribution (SoilExp 1.0), to its step-by-step use and to potential script 100 

modifications are reported in the associated user manual. 101 
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 Indeed, in this study, we focus on the main functionalities provided by the 102 

SoilExp 1.0 distribution. These main functionalities are exposed through three 103 

independent scripts described in the following parts (Fig. 2). The first script is dedicated 104 

to save/reset field data from the MEGA (Multisensors Electrical and Gas Analyzer) 105 

instrument and calibrate its sensors using an USB-Serial connection (so-called “Serial” 106 

option in the following parts) (Fig. 3a). The second script is dedicated to the analysis 107 

of spatial surveys (so-called “Space” option in the following parts) (Fig. 3b). The third 108 

script is dedicated to time series processing (so-called “Time” option in the following 109 

parts) (Fig. 3c).  110 

The “Serial” option is dedicated for applications based on the use of the MEGA 111 

instrument that has been entirely conceived and designed at the INGV of Palermo by 112 

two of the current authors (Liuzzo & Cappuzzo). The MEGA instrument is not the focus 113 

of this paper and will be better presented to the community in future specific 114 

contributions. The other two options are composed of four panels (Fig. 3): (i) the first 115 

one (e.g. ‘1. File Treatment’) is used to treat raw data files and create intermediate 116 

formatted files; (ii) the second one (e.g. ‘2. Data Processing’) is used to select a 117 

parameter of interest from an intermediate formatted file, modify its corresponding 118 

series (correction, filtering, average) and, display resulted plots (for the “Time” option); 119 

(iii) the third one (e.g. ‘3. Data Analysis’) is dedicated to show the results of the data 120 

analysis as correlations, cross-correlations, statistics, populations identification and 121 

plots (for the “Space” option); (iv) the last one (e.g. ‘4. Save’) is used to save final 122 

processed datasets and related information (as populations) in .csv files. 123 

 124 

3. Main functionalities 125 

3.1. Initialization 126 
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The initialization step (first panel of the “Time” and “Space” options)  aims at 127 

converting raw data files to intermediate files that may be manipulated in the other 128 

panels (Fig. 3b, c). Raw data files are “.csv” files downloaded from the MEGA 129 

instrument or created by the user in a compatible format to be correctly processed (see 130 

the user manual).  131 

In the “Space” and “Time” options (Fig. 3b, c) the user can choose either the 132 

instrumental calibration by default or new calibration parameters to recalculate data 133 

series. Data reduction then performed in order to identify internal errors (typographical 134 

errors) or unreliable measurements, i.e. out of the range of values defined for the battery 135 

voltage, the pump flux and the horizontal dilution of precision (HDOP) of the global 136 

positioning system (GPS). These limit values used to define outliers are set by default 137 

but may be changed by the user directly in the GUI. Rows containing bad values are 138 

either linearly interpolated with the “Time” option in order to correctly apply further 139 

time series analysis (in this case interpolated rows are kept in memory in order to be 140 

removed in final .csv files) or left as empty rows with the “Space” option. Additionally, 141 

as soil CO2 measurements may be acquired with the accumulation chamber method in 142 

the “Space” option, an additional filter is applied on the r-squared value of computed 143 

soil CO2 flux. In this case, values of soil CO2 flux out of the r-squared range will be 144 

considered as outliers values and thus set at 0 gm-2d-1 (no flux). In the case where soil 145 

CO2 flux has to be calculated from the dynamic concentration method, the software 146 

integrates the possibility in both options to convert the CO2 %molar contents in flux 147 

(Camarda et al., 2006; Gurrieri and Valenza, 1988; Liuzzo et al., 2015). The conversion 148 

is made by the use of the equation of Camarda et al. (2006) that takes into account the 149 

soil permeability value defined by the user. 150 

Once the raw data file is cleaned, the last step will generate intermediate files 151 

that are of first interests to keep processing the data thanks to the other panels of the 152 
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GUI. The definition of the time-lag period (in seconds) is here fundamental. We define 153 

the time-lag as the period in seconds separating two independent series of 154 

measurements (i.e. the period during which the used instrument will be in stand-by). 155 

With the “Time” option, a new intermediate file will be created each time that two 156 

consecutive rows are separated by a duration greater than the time-lag. With the 157 

“Space” option, an unique intermediate file will be created with the median values of 158 

each independent series (the median value being here considered as representative of 159 

the acquisition to avoid the effect of potential spikes on the average). The time-lag must 160 

not be confused with the sampling rate that is necessary shorter and defines the period 161 

(in seconds) between two measurements within the same series. The sampling rate is 162 

used to correctly adapt the scale and the legend of plots (spectra, spectrogram) by 163 

converting a range of measurements (number of records) into a time range (number of 164 

seconds). 165 

  166 

3.2. The “Space” option: dealing with spatial surveys 167 

The “Space” option aims to propose innovative and classical tools to deal with spatial 168 

surveys, i.e. with datasets where each point of measurements is defined by distinct 169 

geographical coordinates (Fig. 3b).  170 

 171 

3.2.1. Correlations and preliminary data correction 172 

The “Space” option allows coefficients of linear correlations to be identified (slope, 173 

offset, r-squared) between the parameter of interest (e.g. CO2) and other records (e.g. 174 

temperature, pressure, wind speed) obtained by the user (Fig. 3b). In particular, these 175 

coefficients are often useful during soil surveys, where records can be affected by 176 

external parameters. For instance, soil CO2 flux may be slightly dependent on pressure 177 
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(Barde-Cabusson et al., 2009; Liuzzo et al., 2013; Viveiros et al., 2008). The equation 178 

used for the linear regression is the following: 179 

 180 

𝑆𝑖𝑔𝑛𝑎𝑙'()(𝑥, 𝑦) = 𝑆𝑖𝑔𝑛𝑎𝑙012(𝑥, 𝑦) − (𝑎	 ×	(𝑃𝑎𝑟𝑎𝑚012(𝑥, 𝑦) − 𝑃𝑎𝑟𝑎𝑚9:;)		 181 

 182 

where SignalClr (x,y) is the value of the parameter of interest at the geographical position 183 

(x,y) after the correction by linear regression, SignalRaw (x,y) is the value before the 184 

correction, a is the slope of the linear correlation, ParamRaw (x,y) is the parameter used 185 

to performed the regression at the geographical position (x,y) and, ParamAvg is the 186 

average of this parameter for the whole dataset in order to correct the offset linked to 187 

the correction. After the correction, coefficients of linear correlations are reprocessed 188 

and automatically updated in order to verify the efficiency of the correction and identify 189 

potential needs of further steps of correction. 190 

  191 

3.2.2. Statistical analysis 192 

In order to better constrain the data distribution of the parameter of interest, the “Space” 193 

option allows the user to display also a probability histogram together with the best fit 194 

line of the potential normal distribution (see Supplementary Material). The normality 195 

of the data series is tested via the Anderson-Darling normality test (SciPy library; 196 

Anderson and Darling, 1952; Stephens, 1974, 1976). In our case, i.e. making the 197 

assumption that both mean and variance are initially unknown, the Anderson-Darling 198 

normality test rejects the hypothesis of normality with a 95% significance level if A2 199 

(the squared of the test statistic A) exceeds 0.752 for data series owning more than 8 200 

samples (D’Agostino, 1986).  201 

 Together with the Anderson-Darling normality test, the “Space” option gives 202 

the opportunity to calculate some classical statistical values: mean, standard deviation, 203 
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median, minimum, maximum, kurtosis, skewness (Fig. 3b). Here we focus on the last 204 

two indicators less common for non-regular users of statistical tools. The kurtosis is a 205 

measure of the tailedness of the probability distribution of a random variable, i.e. 206 

describing the shape of the probability distribution (Zwillinger and Kokoska, 2000). 207 

Using the Fisher’s definition, normally distributed data should provide a result of 0. 208 

Skewness is the measure of the asymmetry of the probability distribution of a random 209 

variable with respect to its mean. The skewness, which could be either positive or 210 

negative, should be about 0 for normally distributed data (Zwillinger and Kokoska, 211 

2000).  212 

If the indicators described above (skewness, kurtosis, Anderson-Darling 213 

normality test) do not argue in favor of a normal distribution, it may be due to the 214 

presence of more than one population in the data series. Indeed, during spatial survey, 215 

one subject of major interest is often to discriminate the different populations that 216 

contribute to the data series. This is crucial in order to recognize the existence of distinct 217 

sources as, for example, biogenic or magmatic ones for soil CO2 flux in volcanic context 218 

(Boudoire et al., 2017b; Liuzzo et al., 2015; Viveiros et al., 2008). In order to address 219 

this specific issue, we have developed a new algorithm in SoilExp able to combine the 220 

two statistical methods more used in environmental scientific research, which can  221 

distinguish various populations from log-normally distributed data (Fig. 4a, b). The first 222 

is the graphical method based on probability plots known as Sinclair method (Chiodini 223 

et al., 1998; Giammanco et al., 2010; Sinclair, 1974); the second is the maximum-224 

likelihood numerical method based on the use of Gaussian Mixture Model (GMM) 225 

implementing an expectation-maximization (EM) algorithm (Benaglia et al., 2009; 226 

Boudoire et al., 2018; Elio et al., 2016). The Sinclair method provides an user-friendly 227 

view of the populations and mixed values, however, it has two main shortcomings. One 228 

is related to the low accuracy for datasets counting less than 100 values (Sinclair, 1974). 229 
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The second limitation is related to the difficulty to precisely estimate the confidence 230 

intervals. These problems are solved using the maximum-likelihood (ML) method that 231 

fits finite mixtures of normal distributions: we have implemented a Scikit-Learn-based 232 

algorithm that simulates such fitting with 1 to 10 populations with 1000 iterations for 233 

each simulation. The best simulation is then selected based on the value of the Bayesian 234 

Information Criterion (BIC) developed for model selection among finite set of 235 

simulations (Ghosh et al., 2006) and displayed on the GUI (Fig. 3b) . Finally, for each 236 

value of the data serie, the algorithm predicts the probability that the value belongs to 237 

one of the defined populations. In our case, we have considered that if one value shows 238 

a probability to be defined by a single population greater than 95% thus it will be 239 

considered as part of this population. If not, this value is considered as an intermediate 240 

value (or mixed value) between the two neighboring populations. A the end, the 241 

algorithm allows the user to automatically see the result of this ML-based partitioning 242 

of the values on probability plots (Fig. 4a, b). Furthermore, the users can simulate 243 

different partitioning by modifying the number of inferred populations directly on the 244 

GUI (Fig. 3b), if the first step of differentiation is not satisfying.  245 

 246 

3.2.3. Mapping 247 

After having performed data correction and statistical analysis, it is possible to obtain 248 

a first idea of the two-dimensions (2D) distribution of the data (Fig. 4c, d). Our aim is 249 

not to develop complex interpolating algorithms for which many software are already 250 

built. Here we propose a simple graphical representation of the data through two distinct 251 

maps. The first one uses a simple color gradient to show the 2D evolution of the values. 252 

The second one is more innovative (presented on Fig. 4 for SP and CO2 data obtained 253 

at Stromboli), meaning that the map-builder takes into consideration the results of the 254 

population analysis described above, generating and displaying a repartition of the 255 
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values between the different populations (and related mixing values). If an internet 256 

connection and an API key are available 257 

(https://developers.google.com/maps/documentation/javascript/get-api-key), a 258 

background satellite map will be automatically downloaded and georeferenced from 259 

the Google Maps Platform. If not, the background will remain neutral. However, the 260 

upper left box (Fig. 4c, d) highlights the coordinates of the corners to facilitate the 261 

extraction of an adequate background map from other sources. 262 

 263 

3.3. The “Time” option: processing time series 264 

The “Time” option aims to propose classical tools to deal with time series, i.e. with 265 

datasets where the measurements have specific frequency (here defined as the sampling 266 

rate) (Fig. 3c).  267 

 268 

3.3.1. Correlations and cross-correlations 269 

“Time” option allows to identify coefficients of linear correlations (slope, offset, r-270 

squared) between the parameter of interest and other records, where the control panel 271 

(Fig. 3c) is similar  to the one in "Space" option. Sometimes some signals may have a 272 

time delay between them, which can be attributed either to an instrumental lag or to an 273 

effect caused by a natural phenomenon. To take into account these effects, we have 274 

implemented a SciPy-based algorithm to calculate the cross-correlations between each 275 

parameters. The algorithm couples complex-valued functions with conjugates and Fast 276 

Fourier Transform (FFT) to numerically determine both lags and r-squared values 277 

between time series. Best results are shown in the table of the “Time” option GUI (Fig. 278 

3c).  279 

 280 

3.3.2. Signal processing 281 
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The “Time” option gives the possibility to the user to apply three of the most common 282 

signal processing tools used in the geo-scientific community: (i) linear regression, (ii) 283 

moving average and, (iii) cut band filter. 284 

 The linear regression method is the same than in the “Space” option and only 285 

require to select the parameter used for the regression and to compute the corresponding 286 

coefficients. This method is used to remove short-term environmental influence on 287 

geochemical and geophysical signals (Boudoire et al., 2017a; Liuzzo et al., 2013). 288 

The moving average method is a type of finite impulse response filter used to 289 

smooth out short-term signal variations. This method performs an average on a defined 290 

subset of the data series, then shifts forward to repeat the calculations, excluding the 291 

first value of the previous subset and including the next one. Using the convolution 292 

operator of the Numpy library, we have implemented a simple moving average method, 293 

i.e. giving the same weight to each value aj: 294 

 295 

𝑚𝑜𝑣𝑎𝑣	(𝑎>) = ?@
A
B 	×C 𝑎D	

>EA/G

DH>IA/G
 for  𝑖	 ∈	]	A

G
	 , LIA

G
	[ 296 

 297 

where i is the position of the value ai in the data series on which the moving average is 298 

applied, n the length of the data series and k the size of the subset. To deal with border 299 

effects (i.e. when the number of available values to perform the moving average is 300 

lower than the size of the defined subset), we have adapted the convolution to the 301 

number of available values: 302 

 303 

𝑚𝑜𝑣𝑎𝑣	(𝑎>) = ?@
>
B 	×C 𝑎D	

>

DHN
 for  𝑖	 ∈ [	0	, A

G
		] 304 

 305 
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𝑚𝑜𝑣𝑎𝑣	(𝑎>) = ? @
LI>
B 	×C 𝑎D	

L

DH>
 for  𝑖	 ∈ [		LIA

G
	 , n	] 306 

 307 

To enhance the reliability of the calculations linked to correlations and cross-308 

correlations, the moving average method is applied to all data series when computed. 309 

 Finally, to treat long-term signal variations, we have used the Fast Fourier 310 

Transform (FFT) package of the SciPy library to develop a cut (or block) band filter. 311 

This filter removes from the signal spectra (cf. ‘fft’) the frequencies belonging to an 312 

interval defined by the user before making the inverse operation to rebuild the signal 313 

(cf. ‘ifft’). 314 

 315 

3.3.3. Graphical representation 316 

When pressing the plot-related buttons of the “Time” option, the user automatically 317 

applies the correction and filtering methods that has been defined previously (Fig. 2).  318 

Consequently, the user may decide to perform several combination between the 319 

signals which is intended to compare: 320 

(i) Compare the raw signal with the new corrected and filtered signal, and 321 

eventually reinitialize the signal to apply a distinct protocol (Fig. 5a). Based 322 

on the same statistical algorithm used with the “Space” option to 323 

characterize populations, we have implemented an option allowing the user 324 

to directly show on the plot the values belonging to the “highest” population 325 

(often considered as representative of anomalous values with respect to the 326 

background; Boudoire et al., 2017a; Liuzzo et al., 2013, Liuzzo et al., 2015); 327 

(ii) Compare the treated signal with another signal of interest (Fig. 5b). This 328 

plot may be particularly useful to investigate well correlated or cross-329 

correlated signals; 330 
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(iii) See the FFT spectrum on which are displayed the three greatest frequencies 331 

(Fig. 5c). Thanks to the labels indicating the corresponding number of 332 

measurements, the user may define the frequency interval on which 333 

applying the cut-band filter; 334 

(iv) See the corresponding spectrogram that is a different visual representation 335 

of the FFT spectrum, extensively used in geophysical signal processing (Fig. 336 

5d). It is particularly useful to detect periodic components and signal 337 

perturbations that may affect all frequencies. Here we use the ‘specgram’ 338 

function of the Matplotlib library with a linear detrend and a magnitude 339 

mode of 256 NFFT of default (Nonequispaced Fast Fourier Transform: the 340 

number of points in each processed block) and a 128 noverlap (the number 341 

of points of overlap between processed blocks). The user is free to modify 342 

these parameters directly in the Python 2.7 script (see user manual). 343 

The signal analysis depends on the sampling rate, therefore we cannot use an unique 344 

legend for spectrum and spectrogram axes. Consequently, we have adapted the 345 

algorithms to show both the results of the raw signal analysis (in term of number of 346 

measurements) and their meaning using more classical units. For the last one, we have 347 

coupled the number of measurements and the sampling rate to have a real temporal 348 

scale (i) in seconds (between parenthesis) on the spectrum and (ii) in hertz on the 349 

spectrogram.  350 

 351 

3.4. Saving and exporting results 352 

The SoilExp software gives the opportunity to save every graphical object with 353 

different extensions (.png, .eps …), which can be easily further modified later.  354 

Additionally both “Space” and “Time” GUI options have dedicated buttons to 355 

save .csv files. In the “Space” option, the final .csv file is similar to the intermediate 356 
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file but takes into account the results of the linear regressions that could be applied to 357 

correct the dataset. Additionally, it is possible to save a .csv file recording the data 358 

repartition between the defined populations and mixing groups. Both files aim to be 359 

eventually further processed through software dedicated to complementary and more 360 

specific tools as e.g. data interpolation, kriging, sequential Gaussian simulation (SGS). 361 

In the “Time” option, the final .csv file is also similar to the intermediate file but (i) has 362 

one supplemental column for the corrected and filtered data series and (ii) shows empty 363 

rows for missing values, which have been interpolated for the needs of signal 364 

processing. Such final file may be then processed through other complementary 365 

software for measurements of volcanic gas in plume or other environmental 366 

applications in atmospheric measurements (Fig. 1e, f). 367 

 368 

4. SoilExp application: an example at Stromboli (Italy) 369 

In volcanic environment, two of the main goals of soil surveys are (i) the identification 370 

of volcano-tectonic structures (Giammanco et al., 1997; Finizola et al., 2002, 2010) and 371 

(ii) the characterization of hydrothermal fluid circulation (Revil et al., 2011; ; Boudoire 372 

et al., 2018). Once, because these low permeable structures may favor the ascent of 373 

magmatic fluids leading to fissural eruptions (Boudoire et al., 2017b). Moreover, such 374 

structural interfaces may raise important issues concerning soil stability and thus 375 

landslide outbreak (Neri et al., 2004). To test the ability of SoilExp to deal with such 376 

goals, we have performed a spatial soil survey at Stromboli (Sicily, Italy) by the mean 377 

of the MEGA instrumental kit (Fig. 1). Three transects were performed with a 20 m-378 

spacing for a total of 45 measurements of soil CO2 flux and self-potential (dataset 379 

available with our distribution as “intermediate” test file). Here, we focused on the first 380 

transect (14 measurements), the one on the northern flank of the volcano which is the 381 

closest to populated areas (Fig. 1c). 382 
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Data analysis performed with the “Space” option of SoilExp reveals (i) the 383 

absence of correlation between soil CO2 ‘dynamic’ concentration (‘CO2_10’) and the 384 

environmental parameter (pressure ‘P_atm’, temperature ‘T_atm’, humidity ‘Rh’) 385 

during the transect and (ii) an important correlation (R2 = 0.79) between soil CO2 386 

‘dynamic’ concentration (‘CO2_10’) and self-potential measurements (‘SP’). 387 

Consequently, no correction from the environmental influence was applied (Viveiros 388 

et al., 2008) and we focus on both soil CO2 flux and self-potential measurements in the 389 

following parts. The analysis performed by SoilExp shows that soil CO2 ‘dynamic’ 390 

concentration (‘CO2_10’) varies from 0.07 to 0.95 %. Self-potential (‘SP’) varies from 391 

-155 to +77 mV. The Anderson-Darling normally test gives A2 equal to 14.3 and 3.3 392 

for ‘CO2_10’ and ‘SP’, respectively. These values are well above 0.752, and testify 393 

that both datasets do not present a normal distribution (at 95% of significance level). It 394 

means that these datasets are better explained by the presence of two or more 395 

populations. Actually, the new statistical algorithm developed in SoilExp highlights the 396 

presence of two populations of values for both parameters (Fig. 4a, b). Soil CO2 397 

‘dynamic’ concentration shows the presence of two populations: one with high values 398 

(>0.20 % for 7.1% of the dataset; Fig. 4a) and the other with low values (<0.20 % for 399 

92.9% of the dataset). We applied the equation of Camarda et al. (2006) to convert soil 400 

CO2 ‘dynamic’ concentration in soil CO2 flux for a range of soil permeability between 401 

15 and 50, i.e. the most common values for volcanic soils (Camarda et al., 2006). The 402 

calculated upper limit of the population of low soil CO2 flux does not exceed 42 gm-2d-403 

1. This value is in accordance with the definition of a “background” population 404 

characterized by low soil CO2 flux and generally ascribed to the biological soil activity 405 

(Liuzzo et al., 2015; Boudoire et al., 2017b). Conversely, the population of higher soil 406 

CO2 flux (up to 233 gm-2d-1) is consistent with a magmatic-hydrothermal origin of the 407 

released fluids (Giammanco et al., 1997; Liuzzo et al., 2015). Self-potential shows also 408 
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the presence of one population of high values (from -9 up to +77 mV for 14.3% of the 409 

dataset; Fig. 4b) whereas most of the dataset is defined by a population of more negative 410 

values (from -169 up to -100 mV for 85.7% of the dataset). 411 

Interestingly, the map-building of the soil CO2 ‘dynamic’ concentration (Fig. 412 

4c) and self-potential (Fig. 4d), based on this population analysis, shows that the 413 

population of high soil CO2 ‘dynamic’ concentration spatially correlates with the high 414 

self-potential measurements. This positive correlation between the two parameters is 415 

consistent with an upward migration of hydrothermal fluids in a restricted part of the 416 

transect (<40 m-wide) as documented for other volcanic systems (Barde-Cabusson et 417 

al., 2009; Bennati et al., 2011).  Actually, this restricted part of the transect is cut by the 418 

Nel Cannestrà eruptive fissure that is known representing a low permeability structure, 419 

in relation with N41° inferred regional faults, (Finizola et al., 2002, 2010; Carapezza et 420 

al., 2009). The identification and characterization of such structure that favors the 421 

ascent of magmatic fluids raise important civil protection issues (Boudoire et al., 422 

2017b). Current monitoring is performed in this area by the Istituto Nationale di 423 

Geofisica e Vulcanologia (INGV) (Carapezza et al., 2009).  424 

 425 

5. Conclusion 426 

In this work we presented an open-source Graphical User Interface (GUI) software, 427 

SoilExp, which is written in Python language and is able to provide statistical and 428 

spectrum analysis as well as  several options on filtering and correcting analysis on 429 

records acquired during  spatial/temporal surveys. The software is based on two main 430 

options. Firstly, the “Space” option, aims to display the main statistical indicators used 431 

to study spatial surveys, to test the normality of data series, to identify and define the 432 

populations constituting the dataset through an innovative algorithm, and to show 433 

results on satellite maps. The second one, the “Time” option, aims to process time series 434 
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through classical tools used in signal processing (linear regression, moving average, 435 

cut-band filter, cross-correlations) and in signal representations (scatter plots, spectra, 436 

spectrogram).  Beyond facilitating the fast outcome from field surveys by offering 437 

filtering tools, graphical results and statistical analyses, SoilExp gives to the users the 438 

possibility to integrate all the results in a unique tool of elaboration, improving the 439 

research potential of the scientific community dealing with spatial and temporal soil 440 

surveys. 441 
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 662 

Fig. 1. (a) The MEGA instrument and the SoilExp software, in evidence the USB-Serial 663 

communication between the instrument and the software. (b) Tests of soil surveys at 664 

Stromboli (Sicily, Italy) (c) based on soil CO2 flux, self-potential and ground temperature. 665 

These tests aim to illustrate the use of the SoilExp software in this study.  666 
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 667 

Fig. 2. General scheme of use of the SoilExp software applied either to dataset acquired 668 

with the MEGA instrument or though external sources. 669 
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 30 

Fig. 3. Graphical User Interface (GUI) of the “Serial” (a), “Space” (b) and “Time” (c) 671 

option of the SoilExp software. The GUI is divided in 4 panels. Panel (1) is dedicated to 672 

format the raw file in intermediate formatted files after applying potential distinct 673 

calibrations and conversions, and cleaning the dataset. Panel (2) aimed to process the data 674 

obtained from the intermediate formatted files either from the previous step or formatted 675 

independently by the user (conversion, moving average, linear regression, cut band filter). 676 

Panel (3) shows the result of the datasets processing and analysis (correlations, cross-677 

correlations, statistics, analysis of populations, distribution, maps). Panel (4) allows to 678 

save the dataset transformed with the above operations in final .csv file. 679 
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Fig. 4. Example of data analysis obtained by using the “Space” option at Stromboli (soil 697 

CO2 flux and self-potential measurements along a transect with a 20 m-spacing; cf. Test 698 

“Spatial” on Fig. 1c, d). Probability plot of (a) soil CO2 flux measurements obtained using 699 

a 0-10 %molar IR spectrometer (e.g. CO2_10 by “dynamic” concentration; Gurrieri & 700 

Valenza, 1988; Camarda et al., 2006) and (b) self-potential measurements carried out with 701 

a pair of non-polarizable Cu/CuSO4 electrodes (e.g. SP; Finizola et al., 2010). The 702 

identification of distinct populations is based on the maximum-likelihood numerical 703 

method (see text). Map highlighting the corresponding (c) soil CO2 flux and (d) self-704 

potential transect performed at Stromboli (cf. Fig. 1). The satellite map is obtained from 705 

Google Map. In case of absence of API key 706 

(https://developers.google.com/maps/documentation/javascript/get-api-key), the 707 

background will stay white. However, the (decimal) coordinates of the corners are 708 

reported in the upper left box in order to let the user free to download a map from distinct 709 

sources. In this example, the “Space” option allows to identify a soil CO2 anomaly coupled 710 

with a positive SP anomaly that highlight an upward migration of hydrothermal fluids 711 

along the Nel Cannestrà eruptive fissure. This result is in accordance with previous study 712 

(Finizola et al., 2002, 2010; Carapezza et al., 2009). 713 
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 34 

Fig. 5. Example of data analysis obtained by using the “Time” option at Stromboli (soil 725 

CO2 flux measured during about 2 hours at 0.1 Hz at the same site; cf. Test “Temporal” 726 

on Fig. 1b). (a) Comparison between raw and treated data (after applying the moving 727 

average). The threshold analysis allows us to detect the highest population of values (often 728 

considered as “anomalous” values) during the acquisition. (b) Comparison between 729 

treated soil CO2 flux (e.g. CO2_10) and self-potential (e.g. SP) time series. Here the 730 

detected soil CO2 flux anomaly is synchronous with low self-potential records. (c) Fast 731 

Fourier Transform (FFT) spectrum of the treated soil CO2 signal. The 3 greatest 732 

frequency peaks are labelled with the corresponding period that may be cut using the cut 733 

band filter. (d) Spectrogram of the treated soil CO2 signal (linear detrend; magnitude 734 

mode; NFFT=256; noverlap=128). In this example, with about 1200 measurements, there 735 

are not enough data available to obtain a smoothed spectrogram considering a NFFT of 736 

256. 737 


