
HAL Id: hal-02884948
https://uca.hal.science/hal-02884948v1

Submitted on 30 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Advanced Approach for Choosing Security Patterns
and Checking their Implementation

Sébastien Salva, Loukmen Regainia

To cite this version:
Sébastien Salva, Loukmen Regainia. An Advanced Approach for Choosing Security Patterns and
Checking their Implementation. International Journal On Advances in Security, 2019. �hal-02884948�

https://uca.hal.science/hal-02884948v1
https://hal.archives-ouvertes.fr

An Advanced Approach for Choosing Security Patterns and Checking their
Implementation

Sébastien Salva∗, Loukmen Regainia†
LIMOS - UMR CNRS 6158

University Clermont Auvergne, France
Email: ∗ sebastien.salva@uca.fr, † loukmen.regainia@uca.fr

Abstract—This paper tackles the problems of generating
concrete test cases for testing whether an application is vulner-
able to attacks, and of checking whether security solutions are
correctly implemented. The approach proposed in the paper
aims at guiding developers towards the implementation of
secure applications, from the threat modelling stage up to
the testing one. This approach relies on a knowledge base
integrating varied security data, e.g., attacks, attack steps, and
security patterns that are generic and re-usable solutions to
design secure applications. The first stage of the approach
consists in assisting developers in the design of Attack De-
fense Trees expressing the attacker possibilities to compromise
an application and the defenses that may be implemented.
These defenses are given under the form of security pattern
combinations. In the second stage, these trees are used to
guide developers in the test case generation. After the test
case execution, test verdicts show whether an application is
vulnerable to the threats modelled by an ADTree. The last
stage of the approach checks whether behavioural properties
of security patterns hold in the application traces collected
while the test case execution. These properties are formalised
with LTL properties, which are generated from the knowledge
base. Developers do not have to write LTL properties not to
be expert in formal models. We experimented the approach on
10 Web applications to evaluate its testing effectiveness and its
performance.

Keywords-Security Pattern; Security Testing; Attack-Defense
Tree; Test Case Generation.

I. INTRODUCTION

Today’s developers are no longer just expected to code
and build applications. They also have to ensure that ap-
plications meet minimum reliability guarantees and security
requirements. Unfortunately, choosing security solutions or
testing software security are not known to be simple or
effortless activities. Developers are indeed overloaded of
new trends, frameworks, security issues, documents, etc.
Furthermore, they sometimes lack skills and experience for
choosing security solutions or writing concrete test cases.
They need to be guided on how to design or implement
secure applications and test them, in order to contribute in
a solid quality assurance process.

This work focuses on this need and proposes an approach
that guides developers devise more secure applications from
the threat modelling stage, which is a process consisting in
identifying the potential threats of an application, up to the
testing one. The present paper is an extended version of [1],

which provides additional details on the security test case
generation, the formalisation of behavioural properties of
security patterns with Linear Temporal Logic (LTL) proper-
ties, and on their automatic generation. We also provide an
evaluation of the approach and discuss the threats to validity.

In order to guide developers, our approach is based
upon several several digitalised security bases or documents
gathered in a knowledge base. In particular, the latter in-
cludes security solutions under the form of security patterns,
which can be chosen and applied as soon as the application
design. Security patterns are defined as reusable elements
to design secure applications, which will enable software
architects and designers to produce a system that meets
their security requirements and that is maintainable and
extensible from the smallest to the largest systems [2].
Our approach helps developers chose security patterns with
regard to given security threats. Then, it builds security test
cases to check whether an application is vulnerable, and test
whether security patterns are correctly implemented in the
application. More precisely, the contributions of this work
are summarised in the following points:

• the approach assists developers in the threat modelling
stage by helping in the generation of Attack Defense
Trees (ADTrees) [3]. The latter express the attacker
possibilities to compromise an application, and give the
defenses that may be put in place to prevent attacks.
Defenses are here expressed with security patterns.
We have chosen this tree model because it offers the
advantage of being easy to understand even for novices
in security;

• the second part of the approach supports developers
in writing concrete security test cases. A test suite is
automatically extracted from an ADTree. The test suite
is made up of test case stubs, which are completed
with comments or blocs of code. Once completed,
these are used to experiment an application under
test (shortened AUT), seen as a black-box. The test
case execution provides verdicts expressing whether
the AUT is vulnerable to the threats modelled in the
ADTree;

• the last part of the approach allows developers to check
whether security patterns are correctly implemented in

the application. Kobashi et al. dealt with this task by
asking users to manually translate security pattern be-
haviours into formal properties [4]. Unfortunately, few
developers have the required skills in formal modelling.
We hence prefer proposing a practical way to generate
them. After the security pattern choice, our approach
provides generic UML sequence diagrams, which can
be adapted to better match the application context.
From these diagrams, the approach automatically gen-
erate LTL properties. After the test case execution, we
check if these properties hold in the application traces.
The developer is hence not aware of the LTL property
generation.

We have implemented this approach in a tool prototype
available in [5]. This tool was used to conduct several
experiments on 10 Web applications to evaluate the security
testing and security pattern testing effectiveness of the tool
as well as its performance.

Paper Organisation: Section II outlines the context of this
work. We recall some basic concepts and notations about
security patterns and ADTrees. We also discuss about the
related work and our motivations. Section III briefly presents
the architecture of the knowledge base used by our approach.
The approach steps are described in Section IV. These steps
are gathered into 3 stages called threat modelling, security
testing, and security pattern testing. Subsequently, Section
V describes our prototype implementation, and Section VI
evaluates the approach. Finally, Section VII summarizes our
contributions and presents future work.

II. BACKGROUND

This section recalls the basic concepts related to security
patterns and Attack Defense trees. The related work is
presented thereafter.

A. Security Patterns

Security patterns provide guidelines for secure system
design and evaluation [6]. They also are considered as
countermeasures to threats and attacks [7]. Security pat-
terns have to be selected in the design stage, integrated
in application models, and eventually implemented. Their
descriptions are usually given with texts or schema. But,
they are often characterised by UML diagrams capturing
structural or behavioural properties.

Several security pattern catalogues are available in the lit-
erature, e.g., [8], [9], themselves extracted from other papers.
In these catalogues, security patterns are systematically or-
ganised according to features and relationships among them.
Among these features, we often find the solutions called
intents, or the interests called forces. A security pattern
may have different relationships with other patterns. These
relations may noticeably help combine patterns together and
not to devise unsound composite patterns. Yskout et al.
proposed the following annotations between two patterns

Figure 1. Class layout of the security pattern “Intercepting Validator”.

[10]: “depend”, “benefit”, “impair” (the functioning of the
pattern can be obstructed by the implementation of a second
one), “alternative”, “conflict”.

Figure 1 depicts the UML structural diagram of the
security pattern “Intercepting Validator”, which is taken
as example is the remainder of the paper. Its purpose is
to provide the application with a centralized validation
mechanism, which applies some filters (Validator classes)
declaratively based on URL, allowing different requests to be
mapped to different filter chains. This validation mechanism
is decoupled from the other parts of the application and each
data supplied by the client is validated before being used.
The validation of input data prevents attackers from passing
malformed input in order to inject malicious commands.

B. Attack Defense Trees

ADTrees are graphical representations of possible mea-
sures an attacker might take in order to compromise a
system and the defenses that a defender may employ to
protect the system [3]. ADTrees have two different kinds of
nodes: attack nodes (red circles) and defense nodes (green
squares). A node can be refined with child nodes and can
have one child of the opposite type (linked with a dashed
line). Node refinements can be disjunctive or conjunctive.
The former is recognisable by edges going from a node
to its children. The latter is graphically distinguishable by
connecting these edges with an arc. We extend these two
refinements with the sequential conjunctive refinement of
attack nodes, defined by the same authors in [11]. This
operator expresses the execution order of child attack nodes.
Graphically, a sequential conjunctive refinement is depicted
by connecting the edges, going from a node to its children,
with an arrow.

For instance, the ADTree of Figure 2 identifies the ob-
jectives of an attacker or the possible vulnerabilities related
to the supply of untrusted inputs to an application. The root
node is here detailed with disjunctive refinements connecting
three leaves, which are labelled by attack referenced in a
base called the Common Attack Pattern Enumeration and
Classification (CAPEC) [12]. The node CAPEC-66 refers
to “SQL Injection”, CAPEC-250 refers to XML injections
and CAPEC-244 to “Cross-Site Scripting via Encoded URI
Schemes”.

Figure 2. ADTree example modelling injection attacks

An ADTree T can be formulated with an algebraic
expression called ADTerm and denoted ι(T). In short, the
ADTerm syntax is composed of operators having types given
as exponents in {o, p} with o modelling an opponent and p
a proponent. ∨s,∧s,−→∧ s, with s ∈ {o, p} respectively stand
for the disjunctive refinement, the conjunctive refinement
and the sequential conjunctive refinement of a node. A
last operator c expresses counteractions (dashed lines in the
graphical tree). cs(a, d) intuitively means that there exists
an action d (not of type s) that counteracts the action a (of
type s). The ADTree of Figure 2 can be represented with the
ADTerm ∨p(∨p(CAPEC-66, CAPEC-250), CAPEC-244).

C. Related Work

The literature proposes several papers dealing with the
test case generation from Attack trees (or related models)
and some other ones about security pattern testing. As these
topics are related to our work, we introduce them below and
give some observations.

1) Security Testing From Threat Models: the generation
of concrete test cases from models has been widely studied
in the last decade, in particular to test the security level
of different kinds of systems, protocols or software. Most
of the proposed approaches take specifications expressing
the expected behaviours of the implementation. But, other
authors preferred to bring security aspects out and used
models describing attacker goals or vulnerability causes of
the system. Such models are conceived during the threat
modelling phase of the system [13], which is considered
as a critical phase of the software life cycle since ”you
cannot build a secure system until you understand your
threats!” [14]. Schieferdecker et al. presented a survey paper
referencing some approaches in this area [15]. For instance,
Xu et al. proposed to test the security of Web applications
with models as Petri nets to describe attacks [16]. Attack
scenarios are extracted from the Reachability graphs of the
Petri nets. Then, test cases written for the Selenium tool
are generated by means of a MIM (Model- Implementation
Mapping) description, which maps each Petri net place
and transition to a block of code. Bozic et al. proposed a
security testing approach associating UML state diagrams to
represent attacks, and combinatorial testing to generate input

values used to make executable test cases derived from UML
models [17].

Other authors adopted models as trees (Attack trees,
vulnerability Cause Graphs, Security Activity Graphs, etc.)
to represent the threats, attacks or vulnerability causes that
should be prevented in an application. From these models,
test cases are then written to check whether attacks can be
successfully executed or whether vulnerabilities are detected
in the implementation. Morai et al. introduced a security
testing approach specialised for network protocols [18].
Attack scenarios are extracted from an Attack tree and
are converted to Attack patterns and UML specifications.
From these, attack scripts are manually written and are
completed with the injection of (network) faults. In the
security testing method proposed in [19], data flow diagrams
are converted into Attack trees from which sequences are
extracted. These sequences are composed of events com-
bined with parameters related to regular expressions. These
events are then replaced with blocks of code to produce
test cases. The work published in [20] provides a manual
process composed of eight steps. Given an Attack tree,
these steps transform it into a State chart model, which
is iteratively completed and transformed before using a
model-based testing technique to generate test cases. In [21],
test cases are generated from Threat trees. The latter are
previously completed with parameters associated to regular
expressions to generate input values. Security scenarios are
extracted from the Threat trees and are manually converted
to executable test scripts. Shahmehri et al. proposed a passive
testing approach, which monitors an AUT to detect vul-
nerabilities [22]. The undesired vulnerabilities are modelled
with security goal models, which are specialised directed
acyclic graphs showing security goals, vulnerabilities and
eventually mitigations. Detection conditions are then semi-
automatically extracted and given to a monitoring tool.

We observed that the above methods either automatically
generate abstract test cases from (formal) specifications or
help write concrete test cases from detailed threat models.
On the one hand, as abstract test cases cannot be directly
used to experiment an AUT , some works proposed test case
transformation techniques. However, this kind of technique
is at the moment very limited. On the other hand, Only
a few of developers have the required skills to write threat
models or test cases, as a strong expertise on security is often
required. Besides, the methods neither guide developers in
the threat modelling phase nor provide any security solution.
We focused on this problem and laid the first stone of the
present approach in [23], [24], [25]. We firstly presented
a semi-automatic data integration method [23] to build
security pattern classifications. This method extracts security
data from various Web and publicly accessible sources
and stores relationships among attacks, security principles
and security patterns into a knowledge base. Section III
summarises the results of this work used in this paper, i.e.,

the first meta-model version of the data-store. In [24], we
proposed an approach to help developers write ADTrees and
concrete security test cases to check whether an application
is vulnerable to these attacks. This work was extended in
[25] to support the generation of test suites composed of
lists of ordered GWT test cases, a list being devoted to
check whether an AUT is vulnerable to an attack, which
is segmented into an ordered sequence of attack steps. This
test suite organisation is used to reduce the test costs with
the deduction of some test verdicts under certain conditions.
However, it does not assist developers to ensure that security
patterns have been correctly implemented in the application.
This work supplements our early study by covering this part.

2) Security Pattern Testing: the verification of patterns
on models was studied in [26], [27], [28], [4], [29]. In these
papers, pattern goals or intents or structural properties are
specified with UML sequence diagrams [26] with expres-
sions written with the Object Constraint Language (OCL)
[27], [28], [4] or with LTL properties [29]. The pattern
features are then checked on UML models.

Few works dealt with the testing of security patterns,
which is the main topic of this paper. Yoshizawa et al.
introduced a method for testing whether behavioural and
structural properties of patterns may be observed in ap-
plication traces [28]. Given a security pattern, two test
templates (Object Constraint Language (OCL) expressions)
are manually written, one to specify the pattern structure
and another one to encode its behaviour. Then, developers
have to make templates concrete by manually writing tests
for experimenting the application. The latter returns traces
on which the OCL expressions are verified.

We observed that these previous works require the mod-
elling of security patterns or vulnerabilities with formal
properties. Instead of assuming that developers are expert
in the writing of formal properties, we propose a practical
way to generate them. Intuitively, after the choice of security
patterns, our approach provides generic UML sequence
diagrams, which can be modified by a developer. From these
diagrams, we automatically generate LTL properties, which
capture the cause-effects relations among pairs of method
calls. After the test case execution, we check if these prop-
erties hold in the application traces, obtained while the test
case execution. The developer is hence not aware of the LTL
property generation. As stated in the introduction, this work
provides more details on test case generation and on the
formalisation of behavioural properties of security patterns
with LTL properties. We also complete the transformation
rules allowing to derive more LTL properties from UML
sequence diagrams. We also provide an evaluation of the
approach targeting the security pattern testing stage and
discuss the threats to validity.

III. KNOWLEDGE BASE OVERVIEW

Our approach relies on a knowledge base, denoted KB in
the remainder of the paper. It gathers information allowing
to help or automate some steps of the testing process. We
summarise its architecture in this section but we refer to [23]
for a complete description of its associations and of the data
integration process.

A. Knowledge Base Meta-Model

Figure 3 exposes the meta-model used to structure the
knowledge base KB. The entities refer to security properties
and the relations encode associations among them. The
entities in white are used to generated ADTrees, while those
in grey are specialised for testing. The meta-model firstly as-
sociates attacks, techniques, security principles and security
patterns. This is the result of observations we made from
the literature and some security documents, e.g., the CAPEC
base or security pattern catalogues [8], [9]: we consider that
an attack can be documented with more concrete attacks,
which can be segmented into ordered steps; an attack step
provides information about the target or puts an application
into a state, which are reused by a potential next step. Attack
steps are performed with techniques and can be prevented
with countermeasures. Security patterns are characterised
with strong points, which are pattern features extractable
from their descriptions. The meta-model also captures the
inter-pattern relationships defined in [10], e.g., ”depend” or
”conflict”. Countermeasures and strong points refer to the
same notion of attack prevention. But finding direct relations
between countermeasures and strong points is tedious as
these properties have different purposes. To solve this issue,
we used a text mining and a clustering technique to group the
countermeasures that refer to the same security principles,
which are desirable security properties. To link clusters and
strong points, we chose to focus on these security principles
as mediators. We organised security principles into a hierar-
chy, from the most abstract to the most concrete principles.
We provide a complete description of this hierarchy in [24].
In short, we collected and organised 66 security principles
covering the security patterns of the catalogue given in [9].
The hierarchy has four levels, the first one being composed
of elements labelled by the most abstract principles, e.g.,
“Access Control”, and the lower level exhibiting the most
concrete principles, e.g., “File Authorization”.

Furthermore, every attack step is associated to one test
case structured with the Given When Then (GWT) pattern.
We indeed consider in this paper that a test case is a
piece of code that lists stimuli supplied to an AUT and
responses checked by assertions assigning (local) verdicts.
To make test cases readable and re-usable, we use the
behaviour driven approach using the pattern “Given When
Then” (shortened GWT) to break up test cases into several
sections:

Figure 3. Data-store meta-model

• Given sections aim at putting the AUT into a known
state;

• When sections trigger some actions (stimuli);
• Then sections are used to check whether the conditions

of success of the test case are met with assertions. In the
paper, the Then sections are used to check whether an
AUT is vulnerable to an attack step st. In this case, the
Then section returns the verdict “Passst”. Otherwise,
it provides the verdict “Failst”. When a unexpected
event occurs, we also assume that “Inconclusivest”
may be returned.

The meta-model of Figure 3 associates an attack step with
a GWT test case by adding three entities (Given When and
Then section) and relations. In addition, a test case section
is linked to one procedure, which implements it. A section
or a procedure can be reused with several attack steps or
security patterns. The meta-model also reflects the fact that
an attack step is associated with one “Test architecture”
and with one “Application context”. The former refers to
textual paragraphs explaining the points of observation and
control, testers or tools required to execute the attack step
on an AUT . An application context refers to a family, e.g.,
Android applications, or Web sites. As a consequence, a
GWT test case section (and procedure) is classified accord-
ing to one application context and one attack step or pattern
consequence.

We finally updated the meta-model in such a way that

a security pattern is also associated to generic UML se-
quence diagrams, themselves arranged in Application con-
texts. Security pattern catalogues often provide UML se-
quence diagrams expressing the security pattern behaviours
or structures. These diagrams often help correctly implement
a security pattern with regard to an application context.

B. Data Integration
We integrated data into KB by collecting them from

heterogeneous sources: the CAPEC base, several papers
dealing with security principles [30], [31], [32], [33], [34],
the pattern catalogue given in [35] and the inter-pattern
relations given in [10]. We details the data acquisition and
integration steps in [23]. Six manual or automatic steps are
required: Steps 1 to 5 give birth to databases that store
security properties and establishing the different relations
presented in Figure 3. Step 6 consolidates them so that
every entity of the meta-model is related to the other ones as
expected. The steps 1,2 and 6 are automatically done with
tools.

The current knowledge base KB includes information
about 215 attacks (209 attack steps, 448 techniques), 26 se-
curity patterns, 66 security principles. We also generated 627
GWT test case sections (Given, When and Then sections)
and 209 procedures. The latter are composed of comments
explaining: which techniques can be used to execute an
attack step and which observations reveal that the application
is vulnerable. We manually completed 32 procedures, which

cover 43 attack steps. Security patterns are associated to at
least one UML diagram. This knowledge base is available
in [5].

It is worth noting that KB can be semi-automatically
updated if new security data are available. If a new threat or
type of attack is discovered and added to the CAPEC base,
the steps 1, 2 and 5 have to be followed again. Likewise, if
a new security pattern is proposed in the literature, the steps
3,4 and 5 have to be reapplied.

IV. SECURITY TESTING AND SECURITY PATTERN
VERIFICATION

A. Approach Overview

We present in this section our testing approach whose
steps are illustrated in Figure 4. As illustrated in the figure,
the purpose of this approach is threefold:

1) Threat modelling: it firstly aims at guiding developers
through the elaboration of a threat model (left side
of the figure). The developer gives an initial ADTree
expressing attacker capabilities (Step 1). By means
of KB, this tree is automatically detailed and com-
pleted with security patterns combinations expressing
security solutions that may be put in place in the
application design (Step 2). The tree may be modified
to match the developer wishes (Step 3). The resulting
ADTree, which is denoted Tf , captures possible attack
scenarios and countermeasures given under the form
of security pattern combinations. The set of security
patterns chosen by the developer is denoted SP (Tf).

2) Security testing: from Tf , the approach generates test
case stubs, which are structured with the GWT pattern
(Step 4). These stubs guide developers in the writing
of concrete test cases (Step 8). The final test suite
is executed on the AUT to check whether the AUT
is vulnerable to the attack scenarios expressed in the
ADTree Tf (Step 9).

3) Security pattern verification: the last part of the
approach is devoted to checking whether security
pattern behaviours hold in the AUT traces. A set of
generic UML sequence diagrams are extracted, from
KB, for every security pattern in SP (Tf) (Step 5).
These show how security patterns classes or compo-
nents should behave and help developers implement
them in the application. These diagrams are usually
adapted to match the application context (Step 6).
The approach skims the UML sequence diagrams
and automatically generates LTL properties encoding
behavioural properties of the security patterns (Step 7).
While the test case execution, the approach collects the
AUT method-call traces on which it checks whether
the LTL properties are satisfied (Step 10).

The remaining of this section describes more formally the
steps depicted in Figure 4.

B. Threat Modelling, Security Pattern Choice (Step 1 to 3)

Step 1: Initial ADTree Design
The developer draws a first ADTree T whose root node

represents some attacker’s goals. This node may be refined
with several layers of children to refine these goals. Different
methods can be followed, e.g., DREAD [36], to build this
threat model. We here assume that the leaves of this ADTree
are exclusively labelled by CAPEC attack identifiers, since
our knowledge base KB is framed upon the CAPEC base.
Figure 2 illustrates an example ADTree achieved for this
step. The leaves of this tree are labelled by CAPEC attacks
related to different kinds of injection-based attacks. Its
describes in general terms attacker goals, but this model is
not sufficiently detailed to generate test cases or to choose
security solutions.
Step 2: ADTree Generation

KB is now queried to complete T with more details about
the attack execution phase and with defense nodes labelled
by security patterns. For every leave of T labelled by an
attack A, an ADTree T (A), is generated from KB. We refer
to [24] for the description of the ADTree generation.

We have implemented the ADTree generation with a tool,
which takes attacks of KB and yields XML files. These can
be edited with the tool ADTool [3]. For instance, Figures 6
and 7 show the ADTrees generated for the attacks CAPEC-
66 and CAPEC-244. The ADTrees generated by this step are
composed of several levels of attacks, having different levels
of abstraction. The attack steps have child nodes referring to
attack techniques, which indicate how to carry out the step.
For instance the technique 1.1.1 is “Use a spidering tool
to follow and record all links and analyze the web pages to
find entry points. Make special note of any links that include
parameters in the URL”. An attack step node is also linked
to a defense node expressing security pattern combinations.
Some nodes express inter-pattern relations. For instance,
the node labelled by “Alternative” has children expressing
several possible patterns to counter the attack step.

Figures 6 and 7 also reveal that our generated ADTrees
follow the structure of our meta-model of Figure 3. This
structure has the generic form given in Figure 5: ADTrees
have a root attack node, which may be disjunctively refined
with other attacks and so forth. The most concrete attack
nodes are linked to defense nodes labelled by security
patterns. We formulate in the next proposition that these
nodes or sub-trees also are encoded with specific ADTerms,
which shall be used for the test case generation:

Proposition 1 An ADTree T (A) achieved by the previous
steps has an ADTerm ι(T (A)) having one of these forms:

1) ∨p(t1, . . . , tn) with ti(1 ≤ i ≤ n) an ADTerm also
having one of these forms:

2) −→∧ p(t1, . . . , tn) with ti(1 ≤ i ≤ n) an ADTerm having
the form given in 2) or 3);

ADTree generation

Initial ADTree modelling

ADTree for each CAPEC attack

Security pattern choice &
ADTree edition

Threat modelling stage

GWT test case
completion

Test case
execution

Security Testing verdits
Vulnerable(Tf)

1

2

3

GWT test case
generation

4

8

9

Automatic stepManual step

UML seq. Diag.
extraction

5

UML seq. Diagram
Optional edition

6

LTL property
generation

7

)

verification
10

Security pattern
verification verdits

Unsat(SP(Tf))

Final ADTree Tf
Security patterns SP(Tf)

GWT Test case stubs
(Eclipse project) UML Seq. Diag.

Method-call
Traces

Traces(AUT

Security testing stage Security pattern verification stage

Figure 4. Overview of the 10 steps of the approach

Figure 5. Genenal form of the generated ADTrees

3) cp(st, sp), with st an ADTerm expressing an attack
step and sp an ADTerm modelling a security pattern
combination.

The first ADTerm expresses child nodes labelled by more

concrete attacks. The second one represents sequences of
attack steps. The last ADTerm is composed of an attack
step st refined with techniques, which can be counteracted
by a security pattern combination sp = ∧o(sp1, . . . , spm).
In the remainder of the paper, we denote the last expres-
sion cp(st, sp) a Basic Attack Defence Step, shortened as
BADStep:

Definition 2 (Basic Attack Defence Step (BADStep)) A
BADStep b is an ADTerm of the form cp(st, sp), where st
is a step only refined with techniques and sp an ADTerm of
the form:

1) sp1, with sp1 a security pattern,
2) ∧o(sp1, . . . , spm) modelling the conjunction of the

security patterns sp1, . . . ,
spm(m > 1).

defense(b) =def {sp1} iff sp = sp1, or defense(b) =def

{sp1, . . . , spm} iff sp = ∧o(sp1, . . . , spm).
BADStep(T) denotes the set of BADSteps of the ADTree
T .

Step 3: Security Pattern Choice and ADTree Edition

Figure 6. ADTree of the Attack CAPEC-66

Figure 7. ADTree of the Attack CAPEC-244

The developer may now edit every ADTree T (A) gen-
erated by the previous step and choose security patterns
when several possibilities are available. We assume that
the defense nodes linked to attack nodes have conjunctive
refinements of nodes labelled by security patterns only.
Figure 8 depicts an example of modified ADTree of the
attack CAPEC-244.

Every attack node A of the initial ADTree T is now
automatically replaced with the ADTree T (A). This step
is achieved by substituting every term A in the ADTerm

ι(T) by ι(T (A)). We denote ι(Tf) the resulting ADTerm
and Tf the final ADTree. It depicts a logical breakdown of
the options available to an attacker and the defences, materi-
alised with security patterns, which have to be inserted into
the application model and then implemented. The security
pattern set found in Tf is denoted SP (Tf).

This step finally builds a report by extracting from KB
the test architecture descriptions needed for executing the
attacks on the AUT and observing its reactions.

Figure 8. Final ADTree of the Attack CAPEC-244

C. Security Testing
We now extract attack-defense scenarios to later build test

suites that will check whether attacks are effective on the
AUT . An attack-defense scenario is a minimal combination
of events leading to the root attack, minimal in the sense
that, if any event of the attack-defense scenario is omitted,
then the root goal will not be achieved.

The set of attack-defense scenarios of Tf are extracted by
means of the disjunctive decomposition of ι(Tf):

Definition 3 (Attack scenarios) Let Tf be an ADTree and
ι(Tf) be its ADTerm. The set of Attack scenarios of Tf ,
denoted SC(Tf) is the set of clauses of the disjunctive
normal form of ι(Tf) over BADStep(Tf).
BADStep(s) denotes the set of BADSteps of a scenario

s.

An attack scenario s is still an ADTerm. Its satisfiability
means that the main goal of the ADTree Tf is feasible
by achieving the scenario formulated by s. BADStep(s)
denotes the set of BADSteps of s.

Step 4: Test Suite Generation
Let s ∈ SC(Tf) be an attack-defense scenario and

b = cp(st, sp) ∈ BADStep(s) a BADSteps of s. Step 4
generates the GWT test case TC(b) composed of 3 sections
extracted from KB with the relations testG, testW and
testT : we have one Given section, one When section and
one Then section, each related to one procedure. This Then
section aims to assert whether the AUT is vulnerable to the
attack step st executed by the When section.

The final test suite TS, derived from an ADTree Tf ,
is obtained after having iteratively applied this test case
construction on the scenarios of SC(Tf). This is captured
by the following definition:

Definition 4 (Test suites) Let Tf be an ADTree, s ∈
SC(Tf) and b ∈ BADStep(s).
TS = {TC(b) | b = cp(st, sp) ∈ BADStep(s) and s ∈
SC(Tf)}.

@capec244
Feature: CAPEC-244: Cross-Site Scripting via

Encoded URI Schemes
#1. Explore
Scenario: Step1.1 Survey the application
Given prepare to Survey the application
When Try to Survey the application
assertion for attack step success
Then Assert the success of Survey the

application

Figure 9. The test case stub of the first step of the attack CAPEC 244

We have implemented these steps to yield GWT test case
stubs compatible with the Cucumber framework [37], which
supports a large number of languages. Figure 9 gives a test
case stub example obtained with our tool from the first
step of the attack CAPEC-244 depicted in Figure 7. The
test case lists the Given When Then sections in a readable
manner. Every section is associated to a generic procedure
stored into another file. The procedure related to the When
and Then sections are given in Figure 10. The comments
come from KB and the CAPEC base. In this example, the
procedure includes a generic block of code, which may be
reused with several applications; the “getSpider()” method
relates to the call of the ZAProxy1 tool, which crawls a
Web application to get its URLs.

Step 8: Test Case Stub Completion
In the beginning of this step, the test case procedures are

generic, which means that they are composed of comments
or generic block of codes that help developers complete
them. In the previous test case example, it only remains for
the developer to write the initial URL of the Web application
before testing whether it can be explored. Unfortunately,
with other test cases, the developer might have to implement
it completely.

After this step, we assume that the test cases are correctly

1https://www.owasp.org/index.php/OWASP Zed Attack Proxy Project

@When("Try to Survey the application for user
-controllable inputs")

public void trysurvey(){
// Try one of the following techniques :
//1. Use a spidering tool to follow and record

all links and analyze the web pages to find
entry points. Make special note of any
links that include parameters in the URL.

//2. Use a proxy tool to record all user input
entry points visited during a manual
traversal of the web application.

//3. Use a browser to manually explore the
website and analyze how it is constructed.
Many browsers’ plugins are available to
facilitate the analysis or automate the
discovery.

String url ="";
ZAProxyScanner j = new

ZAProxyScanner("localhost", 8080, "zap");
j.spider(url);
}
@Then("Assert the success of Survey the

application for user-controllable inputs")
public void asssurvey(){
// Assert one of the following indications :
// -A list of URLs, with their corresponding

parameters (POST, GET, COOKIE, etc.) is
created by the attacker.

ZAProxyScanner j = new
ZAProxyScanner("localhost", 8080, "zap");

int x =
j.getSpiderResults(j.getLastSpiderScanId())

.size();
Assert.assertTrue(x>0);
}}

Figure 10. The procedure related to the When and Then sections of Figure
9

developed with assertions in Then sections as stated in
Section III: a Then section of a test case TC(b) returns the
verdict ”Passst” if an attack step st has been successfully
applied on the AUT and ”Failst” otherwise; when TC(b)
returns an unexpected exception or fault, we get the verdict
”Inconclusivest”.

Step 9: Test Case Execution
The experimentation of the AUT with the test suite TS is

carried out in this step. A test case TC(b) of TS, which aims
at testing whether the AUT is vulnerable to an attack step
st leads to a local verdict denoted Verdict(TC(b)||AUT):

Definition 5 (Local Test Verdicts) Let AUT be an appli-
cation under test, b = cp(st, sp) ∈ BADStep(Tf), and
TC(b) ∈ TS be a test case.
Verdict(TC(b)||AUT) =

• Passst, which means AUT is vulnerable to the attack
step st;

• Failst, which means AUT does not appear to be
vulnerable to the attack step st;

• Inconclusivest, which means that various problems
occurred while the test case execution.

We finally define the final verdicts of the security test-
ing stage with regard to the ADTree Tf . These ver-
dicts are given with the predicates Vulnerable(Tf) and
Inconclusive(Tf) returning boolean values. The interme-
diate predicate Vulnerable(b) is also defined on a BAD-
Step b to evaluate a substitution σ : BADStep(s) →
{true, false} on an attack-defense scenario s. A scenario
s holds if the evaluation of the substitution σ to s, i.e.,
replacing every BADStep term b with the evaluation of
Vulnerable(b), returns true. The predicate Vulnerable(s)
expresses whether an attack-defense scenario of Tf holds.
In that case, the threat modelled by Tf can be achieved on
AUT . This is defined with the predicate Vulnerable(Tf):

Definition 6 (Security Testing Verdicts) Let AUT be an
application under test, Tf be an ADTree, s ∈ SC(Tf) and
b = cp(st, sp) ∈ BADStep(s).

1) Vulnerable(b) =def true if Verdict(TC(b)||AUT) =
Passst; otherwise, Vulnerable(b) =def false;

2) Vulnerable(s) =def true if eval(sσ) returns
true, with σ : BADStep(s) → {true, false}
the substitution {b1 → Vulnerable(b1), . . . , bn →
Vulnerable(bn)}; otherwise, Vulnerable(s) =def

false;
3) Inconclusive(s) =def true if ∃b ∈ BADStep(s):

Verdict(TC(b)|| AUT) = Inconclusivest; other-
wise, Inconclusive(s) =def false.

4) Vulnerable(Tf) =def true if ∃s ∈ SC(Tf) :
Vulnerable(s) = true; otherwise, Vulnerable(
Tf) =def false;

5) Inconclusive(Tf) =def true if ∃s ∈ SC(Tf),
Inconclusive(s) = true; otherwise, Inconclusive(Tf)
=def false.

D. Security Pattern Verification

Our approach also aims at checking whether security
patterns are correctly implemented in the application. The
security testing stage is indeed insufficient because the
non-detection of vulnerability in the AUT does not imply
that a security pattern is correctly implemented. As stated
earlier, we propose to generate LTL properties that express
the behavioural properties of a security pattern. Then, these
are used to check whether they hold on the AUT traces.
The originality of our approach resides in the fact that we
do not ask developers for writing formal properties, we
propose to generate them by means of KB.

Steps 5 and 6: UML Sequence Diagram Extraction and
Modification

After the threat modelling stage, this step starts by ex-
tracting from KB a list of generic UML sequence diagrams
for each security pattern in SP (Tf). These diagrams show
how a security pattern should behave once it is correctly
implemented, i.e., how objects interact in time. We now

Figure 11. UML sequence diag. of the pattern Intercepting Validator

suppose that the developer implements every security pattern
in the application. At the same time, he/she may adapt the
behaviours illustrated in the UML sequence diagrams. In this
case, we assume that the diagrams are updated accordingly.

Figure 11 illustrates an example of UML sequence
diagram for the security pattern “Intercepting Validator”.
The diagram shows the interactions between an external
Client, the pattern and the application, but also the
interactions among the objects of the pattern. Here,
the Intercepting Validator Object is called to validate
requests. These are given to another object ValidatorURL,
which filters the request with regard to the URL type.
If the request is valid, it is processed by the application
(Controller object), otherwise an error is returned to the
client side.

Step 7: Security Pattern LTL Property Generation
This step automatically generates LTL properties from

UML sequence diagrams by detecting the cause-effect re-
lations among method calls and expressing them in LTL.
Initially, we took inspiration in the method of Muram
et al. [38], which transforms activity diagrams into LTL
properties. Unfortunately, security patterns are not described
with activity diagrams, but with sequence diagrams. This
is why we devised 20 conversion schemas allowing to
transform UML sequence diagram constructs, composed of
two or three successive actions, into UML activity diagrams.
Table I gives 6 of these schemas. Intuitively, these translate
two consecutive method calls found in a sequence diagram
by activity diagrams composed of action states. The other
schemas (not all given in Table I) are the results of slight
adaptations of the five first ones, where the number of
objects or the guards have been modified. For instance, the
last schema of Table I is an adaptation of the first one, which
depicts interactions between two objects instead of three.

Then, we propose 20 rules to translate these activity
diagrams into LTL properties. The last column of Table I
lists 6 of these rules. Some of these rules are based on those
proposed by Muram et al, but we devised other rules related
to our own activity diagrams, which are more detailed. For
instance, we take into account the condition state in the

second rule to produce more precise LTL properties.
At the end of this step, we consider having a set of LTL

properties P (sp) for every security pattern sp ∈ SP (Tf).
Although the LTL properties of P (sp) do not necessarily
cover all the possible behavioural properties of a security
pattern sp, this process offers the advantages of not asking
developers for writing LTL formula or to instantiate generic
LTL properties to match the application model or code.

Table I
UML SEQUENCE DIAGRAMS TO LTL PROPERTIES TRANSFORMATION

RULES.

Sequence Diag. Activity Diag. LTL properties

�(B.1 −→ ♦C.2)

�(B.1 −→ ♦
B.2) xor (¬B.1
−→ ♦C.3))

�(B.1 −→
(♦B.2)and(♦C.3))

�(B.1xorC.3 −→
♦B.3)

�(B.1andC.3 −→
♦B.3)

�(B.1 −→ ♦B.2)

From the example of UML sequence diagram given in
Figure 11, 4 LTL properties are generated. Table II lists
them. These capture the cause-effect relations of every pair
of methods found in the UML sequence diagram.
Step 10: Security Pattern Verification

As stated earlier, we consider that the AUT is instru-
mented with a debugger or similar tool to collect the methods
called in the application while the execution of the test cases
of TS. After the test case execution, we hence have a set
of method call traces denoted Traces(AUT).

Table II
LTL PROPERTIES FOR THE PATTERN INTERCEPTING VALIDATOR.

p1 �(SecureBaseAction.invokes −→
♦InterceptingV alidator.validate

p2 �(InterceptingV alidator.validate −→
♦V alidatorURL.create)

p3 �(V alidatorURL.create −→ ♦V alidatorURL.validate)
p4 �((V alidatorURL.validate −→ ♦Controller.call) xor

(¬V alidatorURL.validate −→ ♦SecureBaseAction.error))

Table III
TEST VERDICT SUMMARY AND RECOMMENDATIONS.

Vulnera-
ble(Tf)

Unsatb(
SP (Tf))

Incon
(Tf)

Corrective actions

False False False No issue detected
True False False At least one scenario is successfully applied on AUT .

Fix the pattern implementation. Or the chosen patterns
are inconvenient.

False True False Some pattern behavioural properties do not hold. Check
the pattern implementations with the UML seq. diag. Or
another pattern conceals the behaviour of the former.

True True False The chosen security patterns are useless or incorrectly
implemented. Review the ADTree, fix AUT .

T/F T/F True The test case execution crashed or returned unexpected
exceptions. Check the Test architecture and the test case
codes.

A model-checking tool is now used to detect the non-
satisfiability of LTL properties on Traces(AUT). Given a
security pattern sp, the predicate Unsatb(sp) formulates the
non-satisfiability of a LTL property of sp in Traces(AUT).
The final predicate Unsatb(SP (Tf)) expresses whether all
the LTL properties of the security patterns given in Tf hold.

Definition 7 (Security Pattern Verification Verdicts) Let
AUT be an application under test, Tf be an ADTree, and
sp ∈ SP (Tf) be a security pattern.

1) Unsatb(sp) =def true if ∃p ∈ P (sp),∃t ∈
Traces(AUT), t 2 p; otherwise, Unsatb(sp) =def

false;
2) Unsatb(SP (Tf)) =def true if ∃sp ∈

SP (Tf),Unsat
b(sp) = true; otherwise,

Unsatb(SP (Tf)) =def false;

Table III informally summarises the meaning of some test
verdicts and some corrections that may be followed in case
of failure.

V. IMPLEMENTATION

Our approach is implemented in Java and is released
as open source in [5]. At the moment, the AUT must be
a Web application developed with any kind of language
provided that the AUT may be instrumented to collect
method call traces. The prototype tool consists of three
main parts. The first one comes down to a set of command
lines allowing to build the knowledge base KB. The data
integration is mostly performed by calling the tool Talend,
which is specialised into the extract, transform, load (ETL)
procedure. An example of knowledge base is available in
[5].

A second software program semi-automatically generates
ADTrees and GWT test cases. ADTrees are stored into
XML files, and may be edited with ADTool [3]. GWT test
cases are written in Java with the Cucumber framework,
which supports the GWT test case pattern. These test cases
can be imported as an Eclipse project to be completed
and executed. This software program also provides UML
sequence diagrams stored in JSON files, which have to be
modified to match the AUT functioning. LTL properties are
extracted from these UML sequence diagrams.

The last part of the tool is a tester that experiments Web
applications with test cases and returns test verdicts. While
the test case execution, we collect log files including method
call traces. The LTL property verification on these traces is
manually done by these steps: 1) the log files usually have to
be manually filtered to remove necessary events 2) the tool
Texada [39] is invoked to check the satisfiability of every
LTL property on the log files. This tool takes as inputs a
log file, a LTL property composed of variables and a list of
events specifying variables in the formula to be interpreted
as a constant event. Texada returns the number of times that
a property holds in a log file. We have chosen the Texada
tool as it offers good performance and can be used on large
trace sets. But other tools could also be used, e.g., the LTL
checker plugin of the ProM framework [40] or Eagle [41].

VI. PRELIMINARY EVALUATION

First and foremost, it is worth noting that we carried out
in [24] a first evaluation of the difficulty of using security
patterns for designing secure applications. This evaluation
was conducted on 24 participants and allowed us to conclude
that the Threat modelling stage of our approach makes the
security pattern choice and the test case development easier
and makes users more effective on security testing. In this
paper, we propose another evaluation of the security testing
and security pattern testing parts of our approach. This
evaluation addresses the following research questions:

• Q1: Can the generated test cases detect security issues?
• Q2: Can the generated LTL properties detect incorrect

implementation of patterns?
• Q3: How long does it take to discover errors (Perfor-

mance)?

A. Empirical Setup

We asked ten teams of two students to implement Web
applications written in PHP as a part of their courses.
They could choose to develop either a blog, or a todo
list application or a RSS reader. Among the requirements,
the Web applications had to manage several kinds of users
(visitors, administrators, etc.), to be implemented in object-
oriented programming, to use the PHP Data Objects (PDO)
extension to prevent SQL injections, and to validate all the
user inputs. As a solution to filter inputs, we proposed them

to apply the security pattern Intercepting Validator. But its
use was not mandatory.

Then, we applied our tool on these 10 Web applications
in order to:

• test whether these are vulnerable to both SQL and XSS
injections (attacks CAPEC-66 and CAPEC-244). With
our tool, we generated the ADTrees of Figures 6 and 7,
along with GWT test cases. We completed them to call
the penetration testing tool ZAProxy (as illustrated in
Figure 10). All the applications were vulnerable to the
steps “Explore” of the ADTrees (application survey),
therefore we also experimented them with the test cases
related to the steps “Experiment” (attempt SQL or XSS
injections);

• test whether the behaviours of the pattern Intercepting
Validator are correctly implemented in the 10 Web
applications. We took the UML sequence diagram of
Figure 11 and adapted it ten times to match the context
of every application. Most of the time, we had to change
the class or method names, and to add as many validator
classes as there are in the application codes. When a
class or method of the pattern was not implemented, we
leaved the generic name in the UML diagram. Then, we
generated LTL properties to verify whether they hold
in the application traces.

B. Q1: Can the generated test cases detect security issues?

Procedure: to study Q1, we experimented the 10 appli-
cations with the 4 GWT test cases of the two Steps Explore
and Experiment of the attacks CAPEC-66 and CAPEC-244.
As these test cases call a penetration testing tool, which
may report false positives, we manually checked the reported
errors to only keep the real ones. We also inspected the
application codes to examine the security flaw causes and
to finally check whether the applications are vulnerable.

Results: Table IV provides the number of tests for both
attacks (columns 2 and 3), the number of security errors
detected by these tests (columns 4 and 5) and execution
times in seconds (column 6). As a penetration testing tool is
called, a large amount of malicious HTTP requests are sent
to the applications in order to test them. The test number
often depends on the application structure (e.g., number of
classes, of called libraries, of URLs, etc.) but also on the
number of forms available in an application.

Table IV shows that errors are detected in half of the
applications. After inspection, we observed that several
inputs are not filtered in App. 1, 5 and 6. On the contrary,
for App. 3 and 7 all the inputs are checked. However,
the validation process is itself incorrectly performed or
too straightforward. For example, in App. 3 the validation
comes down to checking that the input exists, which is
far from sufficient to block malicious code injections. For
the other applications, we observed that they all include a
correct validation process, which is called after every client

request. After the code inspection and the testing process, we
conclude that they seem to be protected against both XML
and SQL injections. These experiments tend to confirm
that our approach can be used to test the security of Web
applications.

Table IV
RESULTS OF THE SECURITY TESTING STAGE: NUMBER OF REQUESTS

PERFORMED, NUMBER OF DETECTED SECURITY ERRORS, AND
EXECUTION TIMES IN SECOND

App. # XSS
tests

SQL
tests

XSS
detection

SQL
detection

time(s)

1 1610 199 1 0 14
2 12358 796 0 0 924
3 8209 398 10 4 29
4 7347 199 0 0 81
5 2527 398 3 0 1137
6 5884 597 1 1 30
7 9954 1194 1 0 49
8 2464 796 0 0 1478
9 1709 796 0 0 47
10 16441 796 0 0 93

C. Q2: Can the generated LTL properties detect incorrect
implementation of patterns?

Procedure: To investigate Q2, the PHP applications were
instrumented with the debugger Xdebug, and we collected
logs composed of method call traces while the test case
execution. Then, we used the tool Texada to check whether
every LTL property holds in these method call traces. When
the pattern is strictly implemented as it is described in the
UML sequence diagram of Figure 11 (1 class Validator), 4
LTL properties are generated, as in Table I. However, the
number of LTL properties may differ from one application
to the other, with regard to the number of classes used to
implement the security pattern. When there are more than 4
LTL properties for an application, the additional ones capture
the call of supplementary Validator classes and only differ
from the properties of Table I by the modification of the
variable ValidatorURL. To keep our results comparable from
one application to another, we denote with the notation pi
the set of properties related to the property pi in I.

Furthermore, both authors independently checked the val-
idation part in every applications to assess how the security
pattern is implemented in order to ensure that a property
violation implies that a security pattern behaviour is not
correctly implemented.

Results: Table V lists in columns 2-5 the violations of
the properties derived from those given in Table I for the 10
applications. These results firstly show that our approach
detects that the security pattern Intercepting Validator is
never correctly implemented. The pattern seems to be almost
implemented in App. 2 because only p4 does not hold
here. An inspection of the application code confirms that
the pattern structure is correctly implemented as well as
most of its method call sequences. But we observed that

the application does not always return an error to the user
when some inputs are not validated. This contradicts one of
the pattern purposes.

App. 3, 4, 7-10 include some sorts of input filtering
processes at least defined in one class. But, these do not
respect the security pattern behaviours. Most of the time,
we observed that the validation process is implemented in
a single class instead of having an Intercepting Validator
calling other Validator classes. This misbehaviour is detected
by the violations of the properties p2 and p3. Besides,
we observed that the input validation is not systematically
performed in App. 1, 5 and 6. This is detected by our
tool with the violation of p1. As a consequence, it is not
surprising to observe that these applications are vulnerable
to malicious injections. We also observed that when App.
5 validates the inputs, it does not define the validation
logic in a class. The fact that the security pattern is not
invoked is detected by the violation of p1. But, this property
violation does not reveal that there is another validation
process implemented.

In summary, our application code inspections confirmed
the results of Table V. In addition to assessing whether
the security pattern behaviours are correctly implemented,
we observed that our approach may also help learn more
information about the validation process, without inspecting
the code. For instance, the properties based on p1 check
whether a validation method defined in a class is called
every time a client request is received. The properties based
on p4 give information about the error management. Their
violations express that users are not always warned when
invalid inputs are provided to the applications.

Table V
RESULTS OF THE SECURITY PATTERN TESTING STAGE: VIOLATION OF

THE LTL PROPERTIES AND EXECUTION TIMES IN SECOND

App. p1 p2 p3 p4 Time(min)
1 X X 4,02
2 X 51,15
3 X X 19,12
4 X X 29,34
5 X X X X 6,5
6 X X X X 14,40
7 X X 24,77
8 X X X 7,24
9 X X X 5,56
10 X X 67,03

D. Q3: How long does it take to discover errors (Perfor-
mance)?

Procedure: We measured the time consumed by the tool
to carry out security testing and security pattern verification
for the 10 applications. Execution times are given in Tables
IV and V. Furthermore, we also measured the number of
LTL properties that are generated for 11 security patterns,
which are often used with Web applications, as the LTL
property number influences execution times.

Figure 12. Execution times of the security testing stage for the ten
applications

Results: The plot chart of Figure 12 shows that security
testing requires less than 2 minutes for 7 applications inde-
pendently on the number of tests, whereas it requires more
than 15 minutes for the 3 others. The security testing stage
depends on several external factors, which makes it difficult
to draw consistent conclusions. It firstly depends on the test
case implementation; in our evaluation, we choose to call
a penetration testing tool, therefore, execution times mostly
depend on it. Another factor is the application structure (nb
of classes, calls of external URLS, etc.). Therefore, we can
only conclude here is that execution times are lower than
25 minutes, which remains reasonable with regard to the
number of requests sent to applications.

The time required to detect property violations in method
call traces is given in Column 6 of Table V. Execution
times vary here between 4 and 67 minutes according to
the number of traces collected from the application and the
number of generated LTL properties. For example, for App.
1O, 17237 security tests have been executed, and 17237
traces of about 30 events have been stored in several log
files. Furthermore, 7 LTL properties have been generated
for this applications. These results, and particularly the size
of the trace set, explain the time required to check whether
the LTL properties hold. In general terms, we consider that
execution times remain reasonable with regard to the trace
set sizes of the applications.

Table VI finally shows the number of LTL properties
generated from generic UML properties (without adapting
them to application contexts) for 11 security patterns whose
descriptions include UML sequence diagrams. For these
patterns, the property number is lower or equal than 13. For
every pattern, the property number is in a range that seems
reasonably well supported by model checkers. However,
if several security patterns have to be tested, the property
number might quickly exceed the model-checker limits. This
is we have chosen in our approach to check the satisfiability
of each LTL property, one after the other, on method call
traces.

Table VI
LTL PROPERTY GENERATION FOR SOME SECURITY PATTERNS

Security pattern # UML diag. # LTL properties
Authentication Enforcer 3 9
Authorization Enforcer 3 13
Intercepting Validator 2 4
Secure Base Action 2 5

Secure Logger 2 5
Secure Pipe 2 10

Secure Service Proxy 2 6
Intercepting Web Agent 2 9

Audit Interceptor 2 7
Container Managed Security 2 7
Obfuscated Transfer Object 2 10
Obfuscated Transfer Object 2 10

E. Threat to Validity

This preliminary experimental evaluation is applied on
10 Web applications, and not on other kinds of software
or systems. This is a threat to external validity, and this
is why we avoid drawing any general conclusion. But, we
believe that this threat is somewhat mitigated by our choice
of application, as the Web application context is a rich field
in great demand in the software industry. Web applications
also expose a lot of well-known vulnerabilities, which helps
in the experiment set-up. In addition, the numbers of secu-
rity patterns considered in the evaluation were insufficient.
Hence, it is possible that our method is not applicable to
all security patterns. In particular, we assume that generic
UML sequence diagrams are provided in the security pattern
descriptions. This is the case for the patterns available in
the catalogue of Yskout et al. [35], but not for all the
patterns listed in [8]. To generalise the approach, we also
need to consider more general patterns and employ large-
scale examples.

The evaluation is based on the work of students, but this
public is sometimes considered as a bias in evaluations.
Students are usually not yet meticulous on the security
solution implementation, and as we wished to experiment
vulnerable applications to check that our approach can detect
security flaws, we consider that applications developed by
students meet our needs.

A threat to internal validity is related to the test case devel-
opment. Our approach aims at guiding developers in the test
case writing and security pattern choice. In the evaluation,
we chose to complete test cases with the call of a penetration
testing tool. The testing results would be different (better or
worse) with other test cases. Significant advances have been
made in these tools, which are more and more employed
in the industry. Therefore, we believe that their use and the
test cases considered in the experiments are close to real use
cases. In the same way, we manually updated UML sequence
diagrams to generate LTL properties that correspond to the
application contexts. But, it is possible that we inadvertently
made some mistakes, which led to false positives. To avoid

this bias, we manually checked the correctness of the results
by replaying the counterexamples returned by the model-
checker and by inspecting the application codes.

VII. CONCLUSION

Securing software requires that developers acquire a lot
of expertise in various stages of software engineering, e.g.,
in security design, or in testing. To help them in these
tasks, we have proposed an approach based on the notion of
knowledge base, which helps developers in the implemen-
tation of secure applications through steps covering threat
modelling, security pattern choice, security testing and the
verification of security pattern behavioural properties. This
paper proposes two main contributions. It assists developers
in the writing of concrete security test cases and ADTrees.
It also checks whether security patterns properties are met
in application traces by automatically generating LTL prop-
erties from the UML sequence diagrams that express the
behaviours of patterns. Therefore, the approach does not
require developers to have skills in (formal) modelling or
in formal methods. We have implemented this approach in
a tool prototype [5]. We conducted an evaluation of our
approach on ten Web applications, which suggests that it
can be used in practice.

Future work should complement the evaluation to confirm
that the approach can be applied on more kinds of applica-
tions. We also mentioned that security pattern descriptions
do not all include UML sequence diagrams, which are yet
mandatory by our approach. We will try to solve this lack
of documentation by investigating whether security pattern
behavioural properties could be expressed differently, e.g.,
with annotations added inside application codes. In addition,
we intend to consider how our ADTree generation could
support the teaching of security testing and security by
design.

REFERENCES

[1] L. Regainia and S. Salva, “A practical way of testing security
patterns,” in Thirteenth International Conference on Software
Engineering Advances (ICSEA’18), Nice, France, Oct. 2018,
pp. 1–7.

[2] E. Rodriguez, “Security Design Patterns,” in 19th An-
nual Computer Security Application Conference (ACSAC’03),
2003.

[3] B. Kordy, S. Mauw, S. Radomirović, and P. Schweitzer,
“Attack–defense trees,” Journal of Logic and Computation,
pp. 1–38, 2012.

[4] T. Kobashi, M. Yoshizawa, H. Washizaki, Y. Fukazawa,
N. Yoshioka, T. Okubo, and H. Kaiya, “Tesem: A tool for
verifying security design pattern applications by model test-
ing,” in 2015 IEEE 8th International Conference on Software
Testing, Verification and Validation (ICST), April 2015, pp.
1–8.

[5] L. Regainia and S. Salva. (2019) Security pattern
classification, companion site. (Date last accessed march
2019). [Online]. Available: http://regainia.com/research/
companion.html

[6] J. Yoder, J. Yoder, J. Barcalow, and J. Barcalow, “Architec-
tural patterns for enabling application security,” Proceedings
of PLoP 1997, vol. 51, p. 31, 1998.

[7] M. Schumacher, Security Engineering with Patterns: Origins,
Theoretical Models, and New Applications. Secaucus, NJ,
USA: Springer-Verlag New York, Inc., 2003.

[8] R. Slavin and J. Niu. (2017) Security patterns repository.
[Online]. Available: http://sefm.cs.utsa.edu/repository/

[9] K. Yskout, R. Scandariato, and W. Joosen, “Do security
patterns really help designers?” in Proceedings of the 37th
International Conference on Software Engineering - Volume
1, ser. ICSE ’15. Piscataway, NJ, USA: IEEE Press, 2015,
pp. 292–302.

[10] K. Yskout, T. Heyman, R. Scandariato, and W. Joosen, “A
system of security patterns,” 2006.

[11] R. Jhawar, B. Kordy, S. Mauw, S. Radomirović, and
R. Trujillo-Rasua, “Attack trees with sequential conjunc-
tion,” in IFIP International Information Security Conference.
Springer, 2015, pp. 339–353.

[12] Mitre corporation. (2019) Common attack pattern
enumeration and classification, url:https://capec.mitre.org/.
(Date last accessed march 2019). [Online]. Available:
https://capec.mitre.org/

[13] P. Torr, “Demystifying the threat modeling process,” IEEE
Security Privacy, vol. 3, no. 5, pp. 66–70, Sept 2005.

[14] M. Howard and D. LeBlanc, Writing Secure Code, M. Press,
Ed., 2003.

[15] I. Schieferdecker, J. Grossmann, and M. A. Schneider,
“Model-based security testing,” in Proceedings 7th Workshop
on Model-Based Testing, MBT 2012, Tallinn, Estonia, 25
March 2012., 2012, pp. 1–12.

[16] D. Xu, M. Tu, M. Sanford, L. Thomas, D. Woodraska,
and W. Xu, “Automated security test generation with formal
threat models,” IEEE Transactions on Dependable and Secure
Computing, vol. 9, no. 4, pp. 526–540, July 2012.

[17] J. Bozic, D. E. Simos, and F. Wotawa, “Attack pattern-based
combinatorial testing,” in Proceedings of the 9th International
Workshop on Automation of Software Test, ser. AST 2014.
New York, NY, USA: ACM, 2014, pp. 1–7.

[18] A. Morais, E. Martins, A. Cavalli, and W. Jimenez, “Se-
curity protocol testing using attack trees,” in 2009 Interna-
tional Conference on Computational Science and Engineer-
ing, vol. 2, Aug 2009, pp. 690–697.

[19] A. Marback, H. Do, K. He, S. Kondamarri, and D. Xu,
“Security test generation using threat trees,” in 2009 ICSE
Workshop on Automation of Software Test, May 2009, pp.
62–69.

[20] O. El Ariss and D. Xu, “Modeling security attacks with
statecharts,” in Proceedings of the Joint ACM SIGSOFT Con-
ference – QoSA and ACM SIGSOFT Symposium – ISARCS
on Quality of Software Architectures – QoSA and Architecting
Critical Systems – ISARCS, ser. QoSA-ISARCS ’11. New
York, NY, USA: ACM, 2011, pp. 123–132.

[21] A. Marback, H. Do, K. He, S. Kondamarri, and D. Xu, “A
threat model-based approach to security testing,” Softw. Pract.
Exper., vol. 43, no. 2, pp. 241–258, Feb. 2013.

[22] N. Shahmehri et al., “An advanced approach for modeling
and detecting software vulnerabilities,” Inf. Softw. Technol.,
vol. 54, no. 9, pp. 997–1013, 2012.

[23] S. Salva and L. Regainia, “Using data integration to help
design more secure applications,” in Proceedings of the 12th
International Conference on Risks and Security of Internet
and Systems. Dinard, France: Springer-Verlag, Aug. 2017.

[24] ——, “Using data integration for security testing,” in Pro-
ceedings 29th International Conference, ICTSS 2017, St.
Petersburg, Russia, Oct. 2017, pp. 178–194.

[25] ——, “An approach for guiding developers in the choice
of security solutions and in the generation of concrete
test cases,” Software Quality Journal, vol. 27, no. 2,
pp. 675–701, January 2019. [Online]. Available: https:
//hal-clermont-univ.archives-ouvertes.fr/hal-02019145

[26] J. Dong, T. Peng, and Y. Zhao, “Automated verification of
security pattern compositions,” Inf. Softw. Technol., vol. 52,
no. 3, pp. 274–295, Mar. 2010.

[27] B. Hamid, C. Percebois, and D. Gouteux, “A methodology for
integration of patterns with validation purpose,” in Proceed-
ings of the 17th European Conference on Pattern Languages
of Programs, ser. EuroPLoP ’12. New York, NY, USA:
ACM, 2012, pp. 8:1–8:14.

[28] M. Yoshizawa et al., “Verifying implementation of security
design patterns using a test template,” in 2014 Ninth Inter-
national Conference on Availability, Reliability and Security,
Sept. 2014, pp. 178–183.

[29] L. Regaigna, C. Bouhours, and S. Salva, “A systematic
approach to assist designers in security pattern integration,”
in Second International Conference on Advances and Trends
in Software Engineering (SOFTENG 2016), Lisbon, Portugal,
Feb. 2016.

[30] J. H. Saltzer and M. D. Schroeder, “The protection of in-
formation in computer systems,” Proceedings of the IEEE,
vol. 63, no. 9, pp. 1278–1308, 1975.

[31] J. Viega and G. McGraw, Building Secure Software: How to
Avoid Security Problems the Right Way, Portable Documents.
Pearson Education, 2001.

[32] J. Scambray and E. Olson, Improving Web Application Secu-
rity, 2003.

[33] V. Dialani, S. Miles, L. Moreau, D. De Roure, and M. Luck,
“Transparent fault tolerance for web services based architec-
tures,” in Euro-Par 2002 Parallel Processing. Springer, 2002,
pp. 889–898.

[34] J. Meier, “Web application security engineering,” Security &
Privacy, IEEE, vol. 4, no. 4, pp. 16–24, 2006.

[35] K. Yskout, R. Scandariato, and W. Joosen. Security
pattern catalog. (Date last accessed march 2019). [Online].
Available: https://people.cs.kuleuven.be/∼koen.yskout/icse15/
catalog.pdf

[36] OWASP. (2019) Owasp testing guide v3.0 project.
(Date last accessed march 2019). [Online]. Avail-
able: http://www.owasp.org/index.php/Category:OWASP\
Testing\ Project\#OWASP\ Testing\ Guide

[37] (2019) The cucumber framework. (Date last accessed march
2019). [Online]. Available: https://cucumber.io/

[38] F. U. Muram, H. Tran, and U. Zdun, “Automated map-
ping of UML activity diagrams to formal specifications
for supporting containment checking,” in Proceedings 11th
International Workshop on Formal Engineering approaches
to Software Components and Architectures, FESCA 2014,
Grenoble, France, 12th April 2014., 2014, pp. 93–107.

[39] C. Lemieux, D. Park, and I. Beschastnikh, “General ltl spec-
ification mining (t),” in 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE), Nov
2015, pp. 81–92.

[40] F. M. Maggi, M. Westergaard, M. Montali, and W. M. P.
van der Aalst, “Runtime verification of ltl-based declarative
process models,” in Runtime Verification, S. Khurshid and
K. Sen, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pp. 131–146.

[41] H. Barringer, A. Goldberg, K. Havelund, and K. Sen, “Pro-
gram monitoring with ltl in eagle,” in 18th International
Parallel and Distributed Processing Symposium, 2004. Pro-
ceedings., April 2004, pp. 264–272.

