
HAL Id: hal-02876740
https://uca.hal.science/hal-02876740v1

Preprint submitted on 21 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hierarchical decompositions of dihypergraphs
Lhouari Nourine, Simon Vilmin

To cite this version:

Lhouari Nourine, Simon Vilmin. Hierarchical decompositions of dihypergraphs. 2020. �hal-02876740�

https://uca.hal.science/hal-02876740v1
https://hal.archives-ouvertes.fr

Hierarchical decompositions of dihypergraphs ?

Lhouari Nourine1 and Simon Vilmin1

LIMOS, Université Clermont Auvergne, Aubière , France
simon.vilmin@ext.uca.fr
lhouari.nourine@uca.fr

Abstract. In this paper we are interested in decomposing a dihypergraph H =
(V,E) into simpler dihypergraphs, that can be handled more e�ciently. We
study the properties of dihypergraphs that can be hierarchically decomposed
into trivial dihypergraphs, i.e., vertex hypergraph. The hierarchical decomposi-
tion is represented by a full labelled binary trees called H-tree, in the fashion
of hierarchical clustering. We present a polynomial time and space algorithm
to achieve such a decomposition by producing its corresponding H-tree. How-
ever, there are dihypergraphs that cannot be completely decomposed into trivial
components. Therefore, we relax this requirement to more indecomposable di-
hypergraphs called H-factors, and discuss applications of this decomposition to
closure systems and lattices.

Keywords: Dihypergraphs · Decomposition · Closure systems · Lattices

1 Introduction

In this paper we are interested in decomposing directed hypergraphs (dihypergraphs
for short). They are a generalization of directed graphs, as hypergraphs generalize
graphs. Dihypergraphs are often used to model implication systems in various �elds of
computer science such as databases [ADS86,AL17], closure systems and lattice theory
[BDVG18,Wil17], propositional and Horn logic [GLPN93,GGPR98,Wil17] for instance.

A dihypergraph consists in a �nite set of vertices V and a collection E of (hy-
per)edges (sometimes called hyperarcs) of the form (B, h) over V, whereB is a subset
and h a singleton of V. In database theory, V corresponds to a relation schema and
edges are functional dependencies; whereas in Horn logic an edge is de�nite Horn
clause on the propositional variables set V. In general, an edge (B, h) depicts a causal-
ity relation between B and h, namely, whenever we deal with B we also have to take
h into consideration. Note however that a more general de�nition of dihypergraph is
given in [GLPN93, GGPR98] where the dihypergraphs we use in this paper are called
B-graphs.

We are interested in decomposing a dihypergraph H = (V,E) into simpler di-
hypergraphs, that can be handled more e�ciently. The hierarchical decomposition (H-
decomposition for short) of a dihypergraph considered in this paper, is a recursive
partitioning of the vertex set of the dihypergraph into smaller subhypergraphs or clus-
ters, in the fashion of hierarchical clustering (see [Das16]). The H-decomposition is a
? The second author is funded by the CNRS, France, ProFan project.

2 Lhouari Nourine and Simon Vilmin

way to represent a dihypergraph as a tree while preserving its vertices and edges. The
notion of a split of a dihypergraph is the principal tool we will use to achieve the
H-decomposition. A split of a dihypergraph H = (V,E) is a partitioning of the dihy-
pergraph’s vertices into two subset (V1,V2) such that the edges of H are the disjoint
union of the edges of the induced subhypergraphs H[V1], H[V2] and the bipartite
dihypergraph H[V1,V2], i.e. for any e = (B, h) ∈ E intersecting both V1 and V2,
we have B ⊆ V1 and h ∈ V2 or vice versa. Clearly, there are dihypergraphs that
cannot have a split. Our motivation is to study properties of dihypergraphs that can
be H-decomposed into trivial dihypergraphs, i.e., hypergraphs with one vertex. The
H-decomposition is represented by a full labelled binary trees called H-tree.

An application for our work arises from the decomposition of closure systems, or
lattices. The concept of splitting lattices or closure systems is an old question and re-
mains an active topic in several areas in mathematics and computer science. Among
the common ways to split a lattice are the subdirect decomposition, the duplication
(or doubling) of convex sets [BC02,VBDM15a], and other summarised decomposition
in [GW99, GW12, Grä11, KVD05]. The former has been early considered by Birkho�
in [Bir44] where his representation theorem “Every algebra is a subdirect product of
its subdirectly irreducible homomorphic images” is stated. Jipsen and Rose [JR92] sum-
marize many results related to subdirect decomposition and give a list of subdirectly
irreducible lattices. From the algorithmic point of view, several works can be found
in [GW99, VBDM15b] where closure systems are represented with binary matrices
(known as contexts) instead of dihypergraphs. Database theory community has how-
ever provided some decomposition schemes for dihypergraphs such as in [DLM92,
SS96] or [Lib93], in view of database normalization. Other works on decomposition of
dihypergraphs are considered in [BJJ03,GGPR98,AL17,PSSS20], but these works di�er
in aims and methods from our work.

In this paper, we present a polynomial time and space algorithm to achieve such
a H-decomposition by producing its corresponding H-tree if it exists. However, there
are dihypergraphs that cannot be completely decomposed into trivial components.
Therefore, we relax this requirement to more indecomposable dihypergraphs called H-
factors. This relaxation allows us to extend the H-decomposition of dihypergraphs to
closure systems and lattices. This approach of H-decomposing closure systems permit
a deep understanding of the subdirect product via the dihypergraphs representation
of closure systems.

The paper is structured as follows. In Section 2 we recall some de�nitions about di-
hypergraphs. In Section 3 we de�ne the hierarchical decomposition of dihypergraphs,
and its representation by a binary labelled tree. We also give a polynomial time and
space algorithm to recognise dihypergraphs having a H-decomposition and produces
the tree decomposition. Section 4 extends the H-decomposition to closure systems and
provide some properties that can be useful for closure systems classi�cation.

Hierarchical decompositions of dihypergraphs 3

2 Preliminaries

All the objects considered in this paper are �nite. For a set V, we denote by 2V its
powerset, and for n ∈ N, we denote by [n] the set {1, . . . , n}. We also sometimes omit
braces for sets, writing v1v2 . . . vn for the set {v1, . . . , vn}.

We mainly refer to papers [AL17,GLPN93] for terminology and de�nitions of dihy-
pergraphs. A (directed) hypergraph (dihypergraph for short) H is a pair (V(H),E(H))
where V(H) is its set of vertices, and E(H) = {e1, . . . , en}, n ∈ N, its set of edges.
An edge e ∈ E(H) is a pair (B(e), h(e)), where B(e) ⊆ V called the body of e and
h(e) ∈ V \B called the head of e.

When it is clear from the context, we write V, E and (B, h) instead of V(H), E(H)
and (B(e), h(e)) respectively. An edge e = (B, h) is written as the set e = B ∪ {h}
when no confusion can arise. Whenever the body B of an edge is reduced to a single
element b, we shall write (b, h) instead of ({b}, h) for clarity. In this case, the edge
(b, h) is called a unit edge. If all the edges of a dihypergraph are unit, then it is called
a digraph.

Let H = (V,E) be a dihypergraph and U a subset of V. The subhypergraph H[U]
induced by U is the pair (U,E(H[U])) where E(H[U]) is the set of edges of E con-
tained in U , namely E(H[U]) = {e ∈ E | e ⊆ U}. A bipartite dihypergraph is
a dihypergraph in which the ground set can be partitioned into two parts (V1,V2)
such that for any (B, h) ∈ E, B ⊆ V1 or B ⊆ V2. We denote a bipartite dihyper-
graph by H[V1,V2]. The size of a dihypergraph H is written |H | and is given by
|H | = |V |+

∑
e∈E |B(e)|+ 1. The number of edges in E is written |E |.

Let T = (V(T),E(T)) be a full rooted binary tree and v ∈ V(T). We denote by
le�(v) its left child and right(v) its right one. The subtree induced by v is written
T [v], and the leaves of T [v] are given by leaves(v). Sometimes, we will write v ∈ T
as a shortcut for v ∈ V(T). We assume that the ground set V(T) is disjoint from the
ground set of any dihypergraph we will deal with.

3 Hierarchical decomposition of a dihypergraph

In this section, we introduce a hierarchical decomposition (H-decomposition) of a di-
hypergraph, as a recursive partition of the edges into bipartite dihypergraphs, from
which it can be fully recovered. We are interested �rst in the class of dihypergraphs
that have a hierarchical decomposition. Given a dihypergraph H = (V,E), we de�ne
the partitioning operation called a split of H. Then we recursively apply the splitting
operation until reaching trivial dihypergraphs. The H-decomposition of a dihyper-
graph H will be represented by a rooted binary tree, called H-tree.

We show that not all dihypergraphs can have such a H-decomposition into trivial
dihypergraphs, and give a polynomial time and space algorithm which takes a dihy-
pergraph as an input, and outputs a H-tree if it exists. Moreover, we relax the re-
quirement of the H-decomposition into trivial dihypergraphs to H-factors which are
body-connected dihypergraphs.

4 Lhouari Nourine and Simon Vilmin

3.1 Split operation

First we de�ne the split operation of a dihypergraph as follows.

De�nition 1 (split). Let H = (V,E) be a dihypergraph. A non-trivial bipartition
(V1,V2) of the groundset V is a split of H, if for any e = (B, h) ∈ E, B ⊆ V1 or
B ⊆ V2.

A split (V1,V2) induces three subhypergraphs H[V1], H[V2] and a bipartite di-
hypergraph
H[V1,V2] = (V1,V2,E12) where E12 = {e ∈ E | e * V1 and e * V2}. Moreover,
the edges of H[V1], H[V2] and H[V1,V2] form a partition of the edges of H. Indeed,
no edge is missed by a split. Intuitively, the split shows that H is fully described by
two smaller distincts dihypergraphs H[V1] and H[V2] acting on each other through
the bipartite dihypergraph H[V1,V2].

Example 1. Consider the dihypergraph H = (V,E) depicted in Figure 1, with V = [7]
and E = {(12, 3), (3, 1), (56, 2), (23, 7), (45, 6), (5, 7)}. The bipartition illustrated by
the full line separates V in two sets {1, 3} and {2, 4, 5, 6, 7}. It is not a split since
the body of the edge (12, 3) intersects the two parts, and will be missed. The biparti-
tion corresponding to the dotted line V1 = {1, 2, 3} and V2 = {4, 5, 6, 7} is a split,
with H[V1] = ({1, 2, 3}, {(12, 3), (3, 1)}), H[V2] = ({1, 2, 3}, {(45, 6), (5, 7)}), and
H[V1,V2] = ({1, 2, 3} ∪ {4, 5, 6, 7}, {(56, 2), (23, 7)}).

5 4

7

6

1 2

3

Fig. 1: The full line illustrates a bipartition which is not a split, whereas the dotted line
corresponds to a split.

Before giving a characterization of dihypergraphs having a split, we consider some
special cases.

– If the dihypergraph H is a digraph or has no edge. Then any bipartition of the
ground set is a split.

– However, there are dihypergraphs that cannot have a bipartition that corresponds
to a split. For example, any bipartition of the dihypergraphH = ({1, 2, 3}, {(12, 3), (13, 2)})
would miss an edge. For instance, if we consider the bipartition V1 = {1, 2}
and V2 = {3}, then we capture (12, 3) but not (13, 2), i.e., H[V1] = ({1, 2}, ∅),
H[V2] = ({3}, ∅), and H[V1,V2] = ({1, 2} ∪ {3}, {(12, 3)}).

Hierarchical decompositions of dihypergraphs 5

In the following, we show that the dihypergraph’s connectivity is important for the
notion of a split. Given a dihypergraph H = (V,E), we de�ne a body-path in H to be
a sequence v1, e1, v2, ..., vk, ek, vk+1 of distinct vertices and edges of H such that: (1)
vi ∈ V, i ∈ [k+1], (2) ei = (Bi, hi) ∈ E, i ∈ [k], and (3) {vi, vi+1} ⊆ Bi, i ∈ [k]. Two
vertices v, v′ ∈ V are said to be body-connected in H if there exists a body-path from v
and v′. A dihypergraph H is body-connected if every pair of vertices v, v′ ∈ V is body-
connected in H. A body-connected component of a dihypergraph H is a maximal
subset of V where any pair of vertices is body-connected. Figure 2 shows a body-
connected dihypergraph.

1

2 3

Fig. 2: A body-connected dihypergraph

First observe that a body reduced to a singleton always satis�es condition of Def-
inition 1. Thus, unit edges of a dihypergraph have no impact on a split. Next, we give
a characterization of dihypergraphs that have a split.

Proposition 1. A dihypergraph H has a split i� it is not body-connected.

Proof. Suppose that H has a non trivial split (V1,V2), and let v ∈ V1 and v′ ∈ V2.
Assume the existence of a body-path v = v1, e1, v2, ..., vk, ek, vk+1 = v′. Such a body-
path exists if there is i ∈ [k] such that ei = (Bi, hi) andBi∩V1 6= ∅ andBi∩V2 6= ∅.
But, the edge ei = (Bi, hi) cannot satisfy the condition of De�nition 1. Then v, v′ are
not body-connected and thus H is not body-connected.

Conversely, suppose that H is not body-connected and C be a body-connected
component of H. We show that (C,V \C) is a split. Let e = (B, h) ∈ E. Since C is a
maximal body-connected component, either B ∩ C = ∅ or (V \C) ∩ B = ∅. Hence
(C,V \C) is a split.

It is important to note that body-connectivity is not inherited. That is, a subhyper-
graph induced by a body-connected component may not be body-connected. Consider
the dihypergraph in Figure ?? with the split V1 = {1, 2, 3} and V2 = {4, 5, 6, 7}.
Then 5 and 6 was body-connected in H but not in H[V2]. Therefore, body-connected
components may be decomposed in turn. The main idea of the H-decomposition is to
recursively apply the split operation until we reach a trivial dihypergraph.

3.2 H-tree of a dihypergraph

Based on the split operation, we de�ne the H-decomposition of a dihypergraph. We
recursively split a dihypergraph into smaller dihypergraphs until we reach a trivial

6 Lhouari Nourine and Simon Vilmin

dihypergraph. This recursive decomposition can be conveniently represented by a full
rooted binary tree. An interior node of the tree corresponds to a split (V1,V2) whose
children correspond to the H-decomposition of H[V1] and H[V2]; the leaves of the
tree represent the ground set. Since the splits (V1,V2) and (V2,V1) are the same, the
order of the children of an interior node is not important.

De�nition 2 (H-tree). Let H = (V,E) be a dihypergraph, T be a full rooted binary
tree. Then (T, λ) is aH-tree ofH if there exists a labelling mapλ : T ! V∪2E satisfying
the following conditions:

1. λ(v) ∈ V if v is a leaf of T ,
2. λ(v) ⊆ E if v is an interior node (possibly λ(v) = ∅),
3. for any (B, h) ∈ λ(v), elements of B are labels of leaves in the subtree of one child

of v and h is the label of a leaf in the subtree of the other child.
4. the set {λ(v) | v ∈ T} is a full partition of V∪E and may contain the emptyset.

If such labelling exists we call the dihypergraph hierarchically decomposable (H-decomposable
for short), and H-indecomposable otherwise.

Figure 3 shows a H-tree for the dihypergraph in Figure 1.

1 2

3

4 5 6 7

∅

(12, 3)

∅∅

(54, 6), (5, 7)

(56, 2), (23, 7)

Fig. 3: A H-decomposition for the dihypergraph in Figure 1

There are two interesting cases where a H-decomposition of a dihypergraph H

can be computed easily (see Figure 4).

– the dihypergraph H has no edges. Here, any full rooted binary tree whose leaves
are labelled by a permutation of V and any interior node by ∅ is a H-tree of H.

– H is a digraph. The same as for the previous case, except that an edge (b, h) will
be in the label of the least common ancestor of the leaves labelled by b and h.

However, there are also some dihypergraphs that cannot be H-decomposed.

Proposition 2. If H is H-decomposable then it is not body-connected.

Proof. Suppose that H is H-decomposable, and let (T, λ) be a H-tree with root r. Let
(Vl,Vr) be the split of V corresponding to r, i.e., Vl corresponds to the leaves of the
left subtree of r and Vr to those of the right subtree. Then according to Proposition 1,
H is not body-connected.

Hierarchical decompositions of dihypergraphs 7

1 2 3 4

∅ ∅

∅

1 2 3 4

(1, 2) (3, 4)

(4, 1), (2, 3)

Fig. 4: Hierarchical decompositions for the empty dihypergraphs H1 = ([4], ∅), and
for the directed graph H2 = ([4], {(1, 2), (2, 3), (3, 4), (4, 1)})

Now, we show that H-decomposability is hereditary, i.e., if a dihypergraph H has
a H-tree then any of its subhypergraphs has a H-decomposition too.

Proposition 3. LetH = (V,E) be a dihypergraph andU ⊆ V. If H is H-decomposable,
so is H[U].

Proof. Let H = (V,E) be a dihypergraph, U ⊆ V and (T, λ) a H-tree. We construct
a subtree not necessarily induced by T which corresponds to a H[U]-tree. We start
from the root r of T and apply the following operation for any interior node v: if the
sets of leaves of the left child and those of the right one intersect both U , then keep v
with label λ(v) = λ(v)∩E(H[U]). Otherwise, there is a child of v whose set of leaves
do not intersect U , in this case replace v by the child whose set of leaves intersects U .
The obtained subtree has U as the set of leaves, and the set of labels of the internal
nodes are exactly E(H[U]).

The following theorem gives the strategy of the algorithm for recognizing which
hypergraphs have a H-decomposition.

Theorem 1. Let H = (V,E) be a non body-connected dihypergraph and C a body-
connected component of H. Then H is H-decomposable if and only if both a H[C] and
H[V \C] are H-decomposable.

Proof. The only if part directly follows from Proposition 3. Let us show the if part. Let
C be a body-connected component of H and let (T1, λ1) be a H[C]-tree and (T2, λ2)
a H[V \C]-tree. We consider a new tree (T, λ) such that T has root r with left subtree
T1 and right subtree T2. As for λ, we put λ(v) = λ1(v) if v ∈ T1, λ(v) = λ2(v) if
v ∈ T2 and λ(r) = {e ∈ E | e /∈ E(H[C])∪E(H[V \C])}. In words, λ(r) contains any
edge which is not fully contained inC or V \C . It is clear that conditions (i), (ii), (iv) of
De�nition 2 are ful�lled for (T, λ) as they are for (T1, λ1), (T2, λ2) andC∪V \C = V.
Hence, we have to check (iii). Let e = (B, h) be an edge in λ(v). If B ∩ C 6= ∅, then
B ⊆ C since C is a body-connected component of H. As e is not an edge of H[C], it
follows that h ∈ V \C . Dually, if B ∩ C = ∅, then h ∈ C since e is not in H[V \C].
Therefore, condition (iii) is satis�ed and (T, λ) is a H-tree, concluding the proof.

Theorem 1 suggests a recursive algorithm which computes aH-tree forH if it is H-
decomposable. IfH is reduced to a vertex v, we simply output a tree which is a leaf with
label v. Otherwise we compute a body-connected component C of H whenever H is
not body-connected; we label the corresponding node by the edges of H[C,V \C], and

8 Lhouari Nourine and Simon Vilmin

then we recursively call the algorithm on the subhypergraphsH[C] andH[V \C]. This
strategy is formalized in Algorithm 1, whose correctness and complexity are studied
in Theorem 2.

Algorithm 1: BuildTree
Input: A dihypergraph H = (V,E)
Output: A H-tree, if it exists, FAIL otherwise

1 if H has one vertex then
2 create a new leaf r with λ(r) the unique vertex in H;
3 return r ;
4 else
5 compute a body-connected component C of H ;
6 if |C| = |V | then
7 stop and return FAIL ;
8 else
9 let r be a new node with λ(r) = E \(E(H[C]) ∪ E(H[V \C])) ;

10 le�(r) = BuildTree(H[C]) ;
11 right(r) = BuildTree(H[V \C]) ;
12 return r ;

Theorem 2. Given a dihypergraph H = (V,E), Algorithm BuildTree computes a
H-tree if it exists and returns FAIL otherwise in polynomial time and space in the size of
H.

Proof. We �rst show using induction on the set of vertices |V | that the algorithm
returns a H-tree i� H is H-decomposable. Clearly, for dihypergraphs containing only
one vertex x, the algorithm returns a H-tree corresponding to a leaf with label x.
Now, assume that the algorithm is correct for dihypergraphs with |V | < n, ∈ N, and
consider a dihypergraph H with |V | = n.

Suppose H is H-decomposable. Then H is not body-connected by Proposition 1.
Let C be a body-connected component of H. Inductively, the algorithm is correct for
H[C] and H[V \C] since 1 ≤ |C| < n. So by Theorem 1, H[C] and H[V \C] are
H-decomposable. By induction the algorithm computes a H[C]-tree (T1, λ1) and a
H[V \C]-tree (T2, λ2). Therefore, the algorithm returns a tree with root r whose label
is λ(r) = E \(E(H[C]) ∪ E(H[V \C])) and children T1 and T2 which satis�es all
conditions for (T, λ) to be a H-tree. Thus the algorithm computes a H-tree for all
dihypergraphs that are H-decomposable.

Now suppose H is not H-decomposable. We have two cases:

1. If H is body-connected then the algorithm returns FAIL in Line 7.
2. If H is not body-connected, the algorithm chooses a body-connected component
C with 1 ≤ |C| < n. By Theorem 1, eitherH[C] orH[V \C] is H-indecomposable.

Hierarchical decompositions of dihypergraphs 9

Thus by induction, the algorithm will return FAIL for the input H[C] or H[V \C]
in Lines 11-12. Since the algorithm stops, the output of the algorithm is FAIL.

Therefore, the algorithm fails whenever the input dihypergraphH is H-indecomposable.
We conclude that the algorithm returns a H-tree if and only if the input dihypergraph
H is H-decomposable.

Now we show that the total time and space complexity of the algorithm are polyno-
mial. The space required for the algorithm is bounded by the size of the dihypergraph
and the size of the H-tree. As the size of the H-tree is bounded byO(|H |), the overall
space is bounded by O(|H |).

The time complexity is bounded by the sum of the costs of all nodes (or calls) of the
search tree. The number of calls is bounded byO(|V |), the size of the search tree. The
cost of a call is dominated by the computation of a body-connected component of the
input H. For this, we use union-�nd data structures in [TR84], which runs in almost
linear time, i.e., O(|H | · α(|H |, |V |)) where α(., .) is the inverse of the Ackermann
function. The almost linear comes from the fact that α(|V |) ≤ 4 for any practical
dihypergraph. Thus the total time complexity is O(|V |(|H | · α(|H |, |V |)).

It is worth noticing, that the obtainedH-tree by Algorithm 1 depends on the choice
the a body-connected component in line 5. Thus, there are many possible H-trees that
represent a hierarchical decomposition of a given dihypergraph. Then, a natural ques-
tion arises: are allH-trees equivalently interesting? Figure 5 shows two possibleH-trees
for the dihypergraphH = (V,E)withV = [8] andE = {(12, 3), (23, 4), (34, 5), (56, 7),
(67, 8)}.

1 2

3

4

56

7

8

∅ ∅

(56, 7)

(67, 8)

(12, 3)

(23, 4)

(34, 5)

5 6

7

4 8 3

2 1

∅

(56, 7)

∅

∅

(12, 3)

(23, 4)

(34, 5), (67, 8)

Fig. 5: Two possible H-trees of the same dihypergraph

3.3 Extension of the H-decomposition

A seen before, there are dihypergraphs that cannot have a split and thus a H-decomposition
into trivial hypergraphs. Such dihypergraphs are body-connected, and will be called
irreducible H-factors (H-factors for short) in the rest of the paper. Now we describe a
slight modi�cation of Algorithm 1 to obtain a H-decomposition of dihypergraphs into

10 Lhouari Nourine and Simon Vilmin

H-factors. Instead of returning FAIL in line 7 in Algorithm BuildTree, we replace it
by the following:

7’ create a new leaf r with λ(r) = E;
return r;

Figure 6 illustrates the H-decomposition of a dihypergraph, where the left most
leaf corresponds to a H-factor which is not trivial.

4 5 6

(3, 4) (5, 6)

(6, 1)

(12, 3), (23, 1)

(13, 2)

Fig. 6: H-decomposition into H-factors

Now, any dihypergraph has a H-decomposition into H-factors, and then it can be
applied to any objects encoded by dihypergraphs, as we will show for closure systems
in the next section.

4 H-decomposition of a closure system into H-factors

Decompositions of closure systems or lattices has been widely studied either from the
lattice itself [Grä11, GW12], from a context [GW99, VBDM15b] or from the database
aspect [Lib93, DLM92].

Decomposition of closure systems is of interest for many applications in Formal
Concept Analysis ([GW12,VBDM15b,KVD05]) such as social networks and datamin-
ing. Closure systems are usualy represented by a binary matrix, also known as con-
text [GW99,Wil17]. In this section, we consider closure systems represented by dihy-
pergraphs, see [Wil17, AL17], and show that the H-decomposition introduced in the
previous section can be applied to closure system decomposition.

We �rst recall some de�nitions for closure systems and lattice theory. The reader
can refer to [Grä11] for a thorough introduction to the topic. A partially ordered set
L = (L,≤) is a re�exive, anti-symmetric and transitive binary relation ≤ on a set L.
For x, y ∈ L, we say that x and y are comparable if x ≤ y or y ≤ x, and incomparable
otherwise. An upper bound of x, y is an element u ∈ L such that x ≤ u, y ≤ u. If for
any upper bound u′ 6= u, u ≤ u′, then u is the least upper bound of x, y, written x∨ y.
Lower bounds and the greatest lower bound x∧ y are de�ned dually. We say that L is
a lattice if for any x, y ∈ L, x∨ y and x∧ y are well de�ned. A meet-sublattice L′ of L
is a subset of elements of L such that for any x, y ∈ L′ x ∧ y ∈ L′. A meet-sublattice
L′ of L is a sublattice of L if x ∨ y ∈ L′. Among elements of L, we say that x is a
join-irreducible if for any y, z ∈ L, x = y ∨ z implies x = y or x = z. The set of
join-irreducible elements of L is denoted by J(L).

Hierarchical decompositions of dihypergraphs 11

A closure system F on a �nite set V is a family of subsets of V which contains V
and is closed under intersection, that is for any F1, F2 in the family F, F1 ∩ F2 also
belongs to F. A subset F of V which is in F is called a closed set. It is well known, that
a closure system with partial ordering by set containment is always a lattice. Dually,
to any lattice L is associated to a closure system on its join-irreducible elements. The
lattice L is isomorphic to the closure system {Jx | x ∈ L} when ordered by set
containment, where Jx = {j ∈ J(L) | j ≤ x}.

The projection of a closure system F over a subset U ⊆ V, named here trace and
noted F : U , is the closure system we obtain by intersecting each F ∈ F with U , i.e.
F : U = {F ∩U | F ∈ F}. The trace F : U is always a sublattice of the lattice (F,⊆).

First, we recall the forward chaining method for computing the closure system
from its associated dihypergraph. Let H be a dihypergraph and X ⊆ V, we construct
a chain of subsets ofVX = X0 ⊂ X1 ⊂ ... ⊂ Xk = XH, whereXi = Xi−1∪{h|B ⊆
Xi−1, (B, h) ∈ E} with i > 0. The subset XH is called a �xed point or a closed set.
Indeed, a subset F of V is closed, if for any edge (B, h), B ⊆ F implies h ∈ F . The
set of all closed sets FH = {XH | X ⊆ V} is a closure system. Notice, that there are
many dihypergraphs that lead to the same closure system.

Naturally, we wish to extend the H-decomposition of a dihypergraph H to a de-
composition of the closure systemFH, also called H-decomposition. The H-decomposition
of the closure system FH is obtained from the H-decomposition of the dihypergraph
H, where the label of a node of its H-tree is replaced by the closure system associ-
ated to the dihypergraph induced by its subtree. The closure systems corresponding
to leaves are the irreducible H-factors of the input closure system.

Figure 7 illustrates the H-decomposition of the closure system associated to the
H-decomposition of the dihypergraph in Figure 6.

Next, we study properties of the three closure systems corresponding to the three
subhypergraphs induced by a split of the dihypergraph.

Theorem 3. Let (V1,V2) be a split of H, F1 and F2 the closure systems corresponding
to H[V1] and H[V2] respectively. Then,

1. If F ∈ FH then Fi = F ∩Vi ∈ Fi, i = {1, 2}. Moreover, FH ⊆ F1 × F2

2. If H[V1,V2] has no edge then FH = F1 × F2.
3. If every edge (B, h) of H[V1,V2], we have B ⊆ V1 then FH : V1 = F1 and

FH : V2 = F2.
4. If every edge (B, h) of H[V1,V2], we have B ⊆ V2 then FH : V2 = F2 and

FH : V1 = F1.

Proof. Consider a split (V1,V2) of H, F1 and F2 the closure systems corresponding
to H[V1] and H[V2]. We will proof (i), (iii) and (ii). The item (iv) is similar to (iii).

(i) LetF ∈ FH withFi = F∩Vi and (B, h) an edge ofH[Vi] for some i ∈ {1, 2}.
Suppose B ⊆ Fi and h 6∈ Fi. Then we also have B ⊆ F and h 6∈ F which
contradicts that F ∈ FH, since (B, h) is an edge of H.
(iii) Without loss of generality, we prove the case for i = 1. Let F ∈ F1, we show
that FH (the forward chaining applied to F in H) satis�es FH ∩ V1 = F . Let
(B, h) an edge of H. We distinguish 3 cases:

12 Lhouari Nourine and Simon Vilmin

∅∅

∅

∅

∅

1 2 3

123 4

5 6∅

6

56

1 2 3

43123

1234 ∅

1 2 3

34123

1234

16

156 1236

1234612356

123456

Fig. 7: The H-decomposition of the closure system corresponding to the dihypergraph
in Figure 6

(a) if B ⊆ V2 then B 6⊆ F . Thus the edge (B, h) has no e�ect in the forward
chaining.

(b) if B ⊆ V1 and h ∈ V1 then B ⊆ F implies F contains h since it is closed in
H[V1].

(c) if B ⊆ V1 and h ∈ V2 then (B, h) is an edge of H[V1,V2]. Then there is no
edge outside H[V1] with head in V1, and thus the forward chaining cannot
add an element from V1.

So F ∈ is in the trace of FH over V1.
The converse is true by the proof of (i).
(ii) Since H has no edge, then it satisfy (iii). We deduce that FH : V1 = F1 and
FH : V2 = F2. Thus FH ⊆ F1 × F2. For the other inclusion, let F1 ∈ F1 and
F2 ∈ F2. We show that F1 ∪ F2 ∈ FH. Let (B, h) be an edge of H such that
B ⊆ F1∪F2. Since H[V1,V2] has no edge, then (B, h) is an edge of H[V1] or an
edge of H[V2]. In any case F1 or F2 contains h. We conclude that F1 ∪F2 ∈ FH.

According to Theorem 3 (i), any closure closure is a subset of the product of its
H-factors closure systems. So the idea is to compute in parallel F1 and F2 for every
split (V1,V2) in the H-tree, and then use the dihypergraph H[V1,V2] to compute
FH. But this objective was mixed, since the size of F1 and F2 may be exponential in
the size of FH. This is the case, when the subhypergraphs H[V1] and H[V2] have no

Hierarchical decompositions of dihypergraphs 13

edge, and the edges of H[V1,V2] are as follows: E1 ∪E2 = {(vv′, u) ∈ V1
2 × U2 |

v 6= v′} ∪ {(uu′, v) ∈ V2
2 × V1 | v 6= v′}. Then, F1 = 2V1 and F2 = 2V2 which

are exponential sizes, whereas the closure system FH has |V1 | × |V2 | + |V | + 2
elements, namely ∅, V, any singleton element v ∈ V, and any pair vu ∈ V1×V2. It is
worth noticing that this combinatorial explosion cannot happen whenever F1 and F2

are traces. In this case, the size of the closure system FH is most twice the maximum
size of F1 and F2.

However, the H-decomposition allows us to go further in the decomposition of
closure systems and lattices approaching the most famous Birkho�’s theorem of the
subdirect decomposition which states "Every algebra is a subdirect product of its sub-
directly irreducible homomorphic". The interpretation in our approach is that "Every
closure system is a sublattice of the direct product of irreducible traces". Irreducible
traces are closure systems that cannot be obtained as a sublattice of the direct product
of its traces. Consider the closure system FH in Figure 8(a) encoded by the unique di-
hypergraphH = ({1, 2, 3}, {(2, 1), (13, 2)}). It is known that it can not be obtained as
a sublattice of the direct product of traces. Clearly H is not body-connected and thus
V1 = {1, 3} et V2 = {2} is the unique split where F1 = {∅, 1, 3, 13} and F2 = {∅, 2}
are traces. But FH is not a sublattice of F1 × F2, since (1, 3) ∈ F1 × F2 the upper
bound of 1 and 3 is not preserved in FH.

Figure 8(b), (c) and (d) are subdirectly irreducible and H-factors too.

∅

1

12

3

123

∅

1 2 3

123

∅

1 2 3

12

123

∅

1

(a) (b) (c) (d)

Fig. 8

We conclude this section with the following.

Corollary 1. Every closure system is a meet-sublattice of the direct product of its H-
factors.

Proof. This follows from Theorem 3 (i) and the fact that a closure system is closed
under intersection.

References

[ADS86] Giorgio Ausiello, Alessandro D’Atri, and Domenico Sacca. Minimal
representation of directed hypergraphs. SIAM Journal on Computing,
15(2):418–431, 1986.

[AL17] Giorgio Ausiello and Luigi Laura. Directed hypergraphs: Introduction
and fundamental algorithms—a survey. Theoretical Computer Science,
658:293–306, 2017.

[BC02] Karell Bertet and Nathalie Caspard. Doubling convex sets in lattices:
characterizations and recognition algorithms. Order, 19(2):181–207, 2002.

[BDVG18] Karell Bertet, Christophe Demko, Jean-François Viaud, and Clément
Guérin. Lattices, closures systems and implication bases: A survey of
structural aspects and algorithms. Theoretical Computer Science, 743:93–
109, 2018.

[Bir44] Garreth Birkho�. Subdirect products in universal algebra. Bull. Amer.
Math. Soc, 50:767–768, 1944.

[BJJ03] Alex R Berg, Bill Jackson, and Tibor Jordán. Edge splitting and con-
nectivity augmentation in directed hypergraphs. Discrete mathematics,
273(1-3):71–84, 2003.

[Das16] Sanjoy Dasgupta. A cost function for similarity-based hierarchical clus-
tering. In Proceedings of the forty-eighth annual ACM symposium on The-
ory of Computing, pages 118–127, 2016.

[DLM92] János Demetrovics, Leonid Libkin, and Ilya B Muchnik. Functional de-
pendencies in relational databases: a lattice point of view. Discrete Ap-
plied Mathematics, 40(2):155–185, 1992.

[GGPR98] Giorgio Gallo, Claudio Gentile, Daniele Pretolani, and Gabriella Rago.
Max horn sat and the minimum cut problem in directed hypergraphs.
Mathematical Programming, 80(2):213–237, 1998.

[GLPN93] Giorgio Gallo, Giustino Longo, Stefano Pallottino, and Sang Nguyen. Di-
rected hypergraphs and applications. Discrete applied mathematics, 42(2-
3):177–201, 1993.

[Grä11] George Grätzer. Lattice theory: foundation. Springer Science & Business
Media, 2011.

[GW99] Bernhard Ganter and Rudolf Wille. Decompositions of concept lattices.
In Formal Concept Analysis, pages 129–181. Springer, 1999.

[GW12] Bernhard Ganter and Rudolf Wille. Formal concept analysis: mathemati-
cal foundations. Springer Science & Business Media, 2012.

[JR92] Peter Jipsen and Henry Rose. Varieties of lattices, volume 1533 of lecture
notes in mathematics, 1992.

[KVD05] Jean François Djoufak Kengue, Petko Valtchev, and Clémentin Tayou
Djamegni. A parallel algorithm for lattice construction. In International
Conference on Formal Concept Analysis, pages 249–264. Springer, 2005.

[Lib93] Leonid Libkin. Direct product decompositions of lattices, closures and
relation schemes. Discrete Mathematics, 112(1-3):119–138, 1993.

Hierarchical decompositions of dihypergraphs 15

[PSSS20] Merten Popp, Sebastian Schlag, Christian Schulz, and Daniel
Seemaier. Multilevel acyclic hypergraph partitioning. arXiv preprint
arXiv:2002.02962, 2020.

[SS96] Hossein Saiedian and Thomas Spencer. An e�cient algorithm to com-
pute the candidate keys of a relational database schema. The Computer
Journal, 39(2):124–132, 1996.

[TR84] van Leeuwen J. Tarjan RE. Worst-case analysis of set union algorithms.
Journal of the ACM, 2:245–281, 1984.

[VBDM15a] Jean-François Viaud, Karell Bertet, Christophe Demko, and Rokia Mis-
saoui. The reverse doubling construction. In 2015 7th International Joint
Conference on Knowledge Discovery, Knowledge Engineering and Knowl-
edge Management (IC3K), volume 1, pages 350–357. IEEE, 2015.

[VBDM15b] Jean-François Viaud, Karell Bertet, Christophe Demko, and Rokia Mis-
saoui. Subdirect decomposition of contexts into subdirectly irreducible
factors. Formal Concept Analysis and Applications FCA&A 2015, page 49,
2015.

[Wil17] Marcel Wild. The joy of implications, aka pure horn formulas: mainly a
survey. Theoretical Computer Science, 658:264–292, 2017.

	Hierarchical decompositions of dihypergraphs
	References

