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Abstract 

In the process of industrialization, relocation of manufacturing industries from urban to rural 
areas may have important implications for the rural environment and agricultural production. 
As a demonstration, the aim of this paper is to estimate the impact of wastewater from 
industrial firms on agricultural yields in rice farming of Jiangsu province, China. Using 
2011-2015 panel data from both the China Rural Fixed Point Survey and the China 
Environmental Statistics Database between 2011 and 2015, we find that industrial 
wastewater significantly reduces rice yields. The econometric strategy implemented 
allows us to assume that this result reflects a causal and detrimental biological effect of 
wastewater on the growing process of the rice. These results highlight the need to 
better understand the conflicts between industry and agriculture at the local level in a 
context of rapid industrialization. 

Keywords 

Industrial water pollution, Rice farming, Rural environment, China. 
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1 Introduction

In the process of industrialization, relocation of manufacturing industries from urban to rural
areas may have important implications for the rural environment and agricultural production.
As a demonstration, the aim of this paper is to estimate the impact of wastewater from industrial
firms on the Chinese rice production of about 600 rural households located in six villages in
Jiangsu province. This province is situated in the heart of the Yangtze Delta region, on China’s
east coast. With a population of about 78 million and an average GDP per capita of 62,173
yuan (about 9,000 US dollars) in 2011, Jiangsu was ranked the second largest economy of the
country, just behind Guangdong province (NBS, 2012). However, its rapid industrialization
and economic growth was accompanied by the development of polluting industries such as
the chemical, paper, textile and dyeing industries, which generated severe water pollution in
the province. According to the Ministry of Environmental Protection, in 2011, 11,291 polluting
manufacturing firms in Jiangsu discharged 2.46 billion tons of industrial wastewater, 0.24 million
tons of Chemical Oxygen Demand (hereafter COD) and 17 thousand tons of ammonia nitrogen
(hereafter NH3-N) (MEP, 2012). The tremendous amount of water pollution stimulated the
abnormal growth of algal in water reserves, which resulted in the eutrophication of rivers and
lakes. This problem was particularly acute in the Jiangsu’s Tai Lake watershed. In 2007, a
severe algal bloom caused the emergency shutdown of the Wuxi City water supply system.
Similar problems in tributaries and canals also caused frequent disruptions to irrigation and
water supply systems in Jiangs’s towns and rural areas. The severe water eutrophication
therefore created a scarcity of adequate quality water for residential and agricultural needs in
the region. As a result, farmers and water plants reverted to using groundwater sources, which
in turn caused the over-extraction and quality deterioration of groundwater, as well as saltwater
intrusion in coastal areas. At the time, the severe industrial pollution and water eutrophication
were recognized to be one of the most critical challenge for the sustainability of the environment
and future development in the province.

Beyond the significance of industrial wastewater issues for farming in Jiangsu province, this
study aims to contribute to the literature on the industrial pollution-agriculture nexus. In
fact, while most of the studies in this literature rely on the analysis of the consequences of air
pollution on agricultural activities, the water pollution issue is very rarely investigated1.

We focus on different measures of industrial wastewater derived from the large adminis-
trative database of Chinese Environmental Statistics (CES), i.e., total industrial wastewater,
untreated industrial wastewater, industrial COD pollution and industrial NH3-N pollution2.
For each of these four types of water pollution, we construct a measure of water pollution
encountered by each farmer in a given village3.

We then link these pollution measures to the rice production of farmers using data derived
from the China Rural Fixed Point Survey between 2011 and 2015. More precisely, we investigate
the impact of wastewater on rice yields (measured in terms of produced quantity per unit area).

4
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The aim of the study is to test the presence of a negative and direct biological link between
wastewater and the growth of the rice. In fact, industrial wastewater can weaken the growth
of roots, seedlings and tillers in crops resulting in lower produced quantities (World Bank,
2007). We use a translog production function that accommodates non-neutral technical change
in order to isolate this direct and negative biological effect of wastewater from other potential
interaction effects of waster with the production process (through input uses and technical
change)4.

Two results are worth noting. First, we find a significant, negative and strong direct biolog-
ical effect of total wastewater, untreated wastewater and COD. These results are robust to the
use of external instruments to control for potential endogeneity of wastewater5. The effect of a
one percent increase of wastewater leads to a 0.06 to 17.41 percent reduction of rice yields with
regards to the model specification (i.e., the types of interactions included) and water pollution
measures (i.e., total wastewater, untreated wastewater and COD). Regarding NH3-N, we find a
strong and negative direct biological effect once we use external instruments. Second, we do not
find robust interaction effects of wastewater with the production process (input uses or tech-
nical change)6. Taking together, our results confirm that wastewater weakens rice production
through a causal, direct and detrimental biological effect.

The remaining of the paper is organized as follows. Section 2 presents the literature related
to the impact of industrial pollution on agriculture and highlights the theoretical links between
wastewater and rice farming expected in this study. Section 3 gives the econometric framework.
Section 4 shows the data and descriptive statistics. Section 5 presents the econometric results
and Section 6 provides concluding remarks.

2 Background

2.1 Literature reviews

Most of the studies on the industrial pollution-agriculture nexus rely on the analysis of the
consequences of air pollution (related to industry or not) on agricultural activities. The water
pollution issue is very rarely investigated. We first present the literature on air pollution before
highlighting the literature on water pollution.

2.1.1 Air pollution and agriculture

The investigation of the link between air pollution and agriculture relies on two main ap-
proaches: natural science methods using dose-response functions with data from field experi-
ments and social science methods based on econometric models and empirical analysis.

There are many studies on the impact of total (not directly related to industrial pollution)
air pollution (e.g., fine particulate matter (PM), surface ozone (O3), sulfur dioxide (SO2)) and
agriculture. First, several papers conclude that air pollution, mainly surface O3 and SO2, lead
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to a reduction of crop yields in China. For instance, an earlier paper by Cao (1989) looks at
the relationship between SO2 and its effects on plants and finds that ambient concentrations of
SO2 reduce growth and crops and plants yields by 5-25 percent. On surface O3 pollution, more
recent studies find a negative impact of O3 on crop yields. Aunan et al. (2000) use exposure-
response functions to show that surface O3 leads to substantial but different crop yields losses
according to the concurrence of peak levels of O3 and the growth season of crops. Also, Feng
et al. (2003) use open-top chambers to show that an increase of O3 concentrations leads to
stronger decreases of winter wheat and rice. In the same vein, Wang and Mauzerall (2004),
Feng et al. (2015), Zhu et al. (2015) and Miao et al. (2017) also conclude that O3 pollution
induces a reduction of crop yields. Moreover, while Yi et al. (2016) also find a significant and
negative impact of surface O3 pollution on the productivity of winter wheat, they differ from
others studies by using an econometric approach rather than natural science methods.

Other studies focused outside China reach the same conclusion of a negative impact of air
pollution on crop yields (for instance, Avnery et al. (2011) at the global level, Emberson et al.
(2001) in several developing countries, Wahid et al. (1995); Maggs et al. (1995) in Pakistan,
Tai and Martin (2017) in the US and Europe, and Benton et al. (2000) in Europe).

While previous studies focus on biological effects of air pollution on crops, some papers in-
vestigate the impact of air pollution on crops through labor productivity. Using an econometric
model with daily data on labor and ozone pollution, Graff Zivin and Neidell (2012) conclude
that a 10 parts per billion change in O3 concentration leads to a significant and robust 5.5
percent change in agricultural worker productivity in the Central Valley of California in the
US. In the same vein, Hanna and Oliva (2015) use an econometric model and exploit exoge-
nous variations in SO2 pollution resulting from the closure of a large oil refinery in Mexico
City. They find that neighborhoods located near the refinery experienced on average an eight
percent reduction in SO2 and about a five percent increase in hours worked relative to other
neighborhoods.

However, few studies have explored the specific impact of industrial pollution on agriculture,
although many pollutants such as SO2, O3 or PM are related to industry. In China, Wei
et al. (2014) look at 2,069 state-monitored enterprises and find negative effect of industrial
SO2 pollution on agricultural yields in the 899 Chinese counties where these firms are located.
Finally, Aragón and Rud (2016) examine how mining, a highly polluting industry, can affect
agricultural productivity in Ghana. Using a consumer-producer household framework and
an econometric model, they find that expansion of mining activities is associated with an
economically significant reduction in agricultural productivity.

2.1.2 Water pollution and agriculture

There are very few papers that investigate the impact of water pollution on agricultural activ-
ities.

From a comparison between two villages (a pollution-affected village and a non-affected
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control village) located in South India, Reddy and Behera (2006) find that industrial water pol-
lution has substantial negative monetary impacts on agricultural yields, land under cultivation,
livestock (through contaminated water), rural employment and human health of inhabitants
of the affected village compared to inhabitants living in the non-affected village. In the same
vein, Khai and Yabe (2012) find that wastewater irrigation is associated with yields losses, cost
increases and profit loss in rice farming in Vietnam.

In China, Lindhjem et al. (2007) use the same methodology (comparison between wastewater-
irrigated and clean water-irrigated areas) to quantify the value of reduced crop quantity and
quality due to wastewater irrigation in four villages in Shijiazhuang district in Hebei Province.
A World Bank (2007) report shows that wastewater irrigation areas in China began increasing
in the 1980s to represent about 4.05 million hectares in 2003. From dose-response functions,
the report also estimates that the economic costs of wastewater irrigation on yields and produce
quality (rice, wheat, vegetables and corn) amount to 7 billion yuan. This report also points out
that the increase of wastewater irrigation in China is mainly the consequence of water scarcity.
Yongguan et al. (2001) provide a global estimation of the cost of industrial water pollution in
Chongqing. This city, located in Sichuan basin, is one of the most heavily polluted mega cities
in China. From a resource cost analysis (resources spent to mitigate the impact of pollution
and the potential loss of GDP because of pollution), they find that damages in monetary value
due to water pollution on crops (grain and vegetables) production (quantity and quality) are
greater than damages to industry (water shortages), human health (medical costs, premature
death or water treatment measures) and animals (livestock, poultry and fish).

2.2 Theoretical links between industrial water pollution and rice farm-

ing

The link between industry and rice farming relies on the assumption that industrial activities
influence rice farming activities through their effects on the farmer’s environment. In this
scenario, industry releases wastewater into the environment shared with farmers. In this study,
we assume that industrial wastewater will influence rice yields, measured in terms of produced
quantities per unit area, through both a direct effect and through interaction effects with
technical change (TC) and input uses.

First, wastewater can reduce rice yields through a direct biological effect7. The underlying
idea is that industrial wastewater can weaken the growth of roots and rice seedlings as well as
the development of the rice’s tillers. A World Bank (2007) report explains that the height, leaf
area, and dry matter of the crop can be reduced because of water pollution.

Second, we assume that wastewater may influence rice yields through TC. Here, wastewater
can be viewed as a technology “shifter”. The theoretical effect of wastewater on TC is not
easy to predict and depends on the composition of TC. More precisely, the rate of TC can be
broken down into effects due to pure technical change (the effect of technology accumulation)
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and biased technical change (through the use of inputs over time). We do not hypothesize any
sign of the effect of wastewater and leave our data and estimation model to do this.

Third, we assume that wastewater can modify rice yields through input uses (labor, capital,
fertilizers, irrigation and other running costs). The underlying idea is to investigate whether rice
yields can be plagued by wastewater through a reduction of input productivity. For instance,
wastewater can damage workers’ health (through water they consume as well as through their
consumption of food and water “polluted” through industrial wastewater) that can be transmit-
ted to a reduction of worker productivity and, in turn, crop yields losses. In order to isolate the
direct negative biological effect from interaction effects, we propose an econometric framework,
presented in Section 3.

3 Econometric framework

The aim of the econometric analysis is to estimate the impact of industrial water pollution on
rice farming. To do so, our approach relies on two strategies. First, we study the link between
water pollution and rice yields by testing a direct negative biological effect of wastewater as
well as interaction effects of wastewater through TC and input uses. Second, we investigate
the effect of water pollution on technical efficiency in order to study an overuse of inputs to
overcome the direct negative biological effect.

3.1 The production function model

We start by assuming the following rice production function with a translog form that accom-
modates non-neutral technical change (TC hereafter) as follows:

ln(yi,v,t) = β0 +
5∑

j=1

βjln(xji,v,t) + 0.5
5∑

j=1

5∑
k=1

βjkln(xji,v,t).ln(xki,v,t)

+ βtt+ 0.5βttt
2 +

5∑
j=1

βjtln(xji,v,t)t+ µi + νi,v,t,

(A)

where i = 1, . . . , N are the farmer unit observations at time t (t = 1, . . . , 5) in village v (v =

1, 2, . . . , 6) ; ln(yi,t) is the logarithm of rice output (in kg) of farmer i at time t ; xj,k = 1, . . . , 5

are the five following inputs: labor (l: number of working days (both family labor and hired
labor)), the value of fixed assets (c), fertilizer costs (f), irrigation costs (ir) and other running
costs (insecticides, seed, etc.) (rc) and ln(xji,v,t) is the logarithm of the jth input ; t (time
trend), t2 and ln(xi,v,t)t are used to take into account non-neutral TC where the measure of
TC is the elasticity of output with respect to time that is both time and farm specific and
varies with inputs ; µi are time-invariant farmer-specific effects and νi,v,t is idiosyncratic factors
uncorrelated with input decisions. β0, βj, βjk, βt, βtt and βjt are parameters to be estimated.
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Output and inputs are normalized to land devoted to rice farming8.
We then assume that the rice production of each farmer may be influenced by time-varying

local conditions such as the presence of industrial water pollution (pi,v,t). More precisely,
we investigate the effect of four types of pi,v,t which are successively studied: total wastewater
(treated and untreated), only untreated wastewater, COD wastewater and NH3-N wastewater9.
We assume that pi,v,t modifies rice production through three different channels as highlighted in
Section 2.2: a direct biological effect, interaction effects with input uses and interactions effect
with TC. We present four models to test these effects.

First, pi,v,t is added to Model A that becomes10:

ln(y) = β0 +
5∑

j=1

βjln(xj) + 0.5
5∑

j=1

5∑
k=1

βjkln(xj).ln(xk)

+ βtt+ 0.5βttt
2 +

5∑
j=1

βjtln(xj).t+ βpln(p) + µi + ν,

(B)

where βp is the effect of water pollution that has to be estimated. This model does not allow
us to disentangle all potential transmission channels of p on y. Thus, in order to isolate the
direct biological effect of p, we add interaction effects of p with input uses. Model B becomes:

ln(y) = β0 +
5∑

j=1

βjln(xj) + 0.5
5∑

j=1

5∑
k=1

βjkln(xj).ln(xk) + βtt+ 0.5βttt
2 +

5∑
j=1

βjtln(xj).t

+ βpln(p) +
5∑

j=1

βpjln(p).ln(xj) + βpjkln(p).0.5(
5∑

j=1

5∑
k=1

ln(xj).ln(xk)) + µi + ν,

(C)

where βpj and βpjk are the effect of water pollution associated to input uses that have to be
estimated. We study the interaction effects of p with each input j as: βpj +

∑5
j=1

∑5
k=1 βpjk.

The overall effect of water pollution is βp +
∑5

j=1 βpj +
∑5

j=1

∑5
k=1 βpjk.

Third, p is assumed to modify rice yields as a “technology shifter” by modifying TC. Model
B becomes:

ln(y) = β0 +
5∑

j=1

βjln(xj) + 0.5
5∑

j=1

5∑
k=1

βjkln(xj).ln(xk) + βtt+ 0.5βttt
2 +

5∑
j=1

βjtln(xj)t

+ βpln(p) + βptln(p).t+ βpttln(p)t
2 +

5∑
j=1

βpjtln(p).ln(xj).t+ µi + ν,

(D)

where βpt, βptt, βpjt are the effects of water pollution associated to TC that have to be
estimated. We investigate three types of interactions with TC. First, we compute the interaction
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effects of p with total TC as: βpt + βptt +
∑5

j=1 βpjt. Second, we calculate the interaction
effects of p with pure technical change as: βpt + βptt. Third, we focus on the interaction
effects of p with biased technical change as:

∑5
j=1 βpjt. The overall effect of water pollution is

βp + βpt + βptt +
∑5

j=1 βpjt.
The last model, which is the general model in which all the previous models are nested, is

as follows:

ln(y) = β0 +
5∑

j=1

βjln(xj) + 0.5
5∑

j=1

5∑
k=1

βjkln(xj).ln(xk) + βtt+ 0.5βttt
2 +

5∑
j=1

βjtln(xj).t

+ βpln(p) +
5∑

j=1

βpjln(p).ln(xj) + βpjkln(p).0.5(
5∑

j=1

5∑
k=1

ln(xj).ln(xk))

+ βptln(p)t+ βpttln(p)t
2 +

5∑
j=1

βpjtln(p).ln(xj).t+ µi + ν,

(E)

where βp is the direct biological effect of p since all other interaction effects of p with the
production process are controlled for.

Finally, Models B, C, D and E are estimated with the within estimator that allows us to
control for µi. Moreover, a potential problem arises if farmers operating within a geographic
region experience similar unobservable market or agro-climatic shocks, causing the random
error to be spatially correlated. We address this issue by clustering the random errors at the
village level.

3.2 The endogeneity of wastewater

The estimation of the effect of p can be challenged by its endogeneity. p is also a measure
of industrial activities surrounding rice farming. Therefore, p can catch both a negative com-
petition effect between industry and agriculture to attract inputs and consumers or a positive
agglomeration effect resulting in the presence of industry (e.g., more industry implies more con-
sumers or more infrastructure which benefits agriculture). We deal with this bias of omitted
variables by introducing two variables of industrial production (in value (I1) and in hour (I2))
in Models B, C, D and E11. These two variables should capture all effects of industry on rice
farming except for the pollution effect (e.g., a competition channel effect between agriculture
and industry or agglomeration effects).

Moreover, we use three external instruments (hereafter Z) for p. Specifically, we use the
quantity of water intake by industrial production (z1; in tons) and the quantity of both COD
(z2; in tons) and NH3-N (z3; in kg) generated by industrial production12. These three variables
are used for the four types of p studied (total wastewater, untreated wastewater, COD and NH3-
N). These three variables are calculated as follows. First, z1, z2 and z3 of each industrial firm
are weighted by the distance between the firm and the center of the village where the firm is
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located13. Second, we aggregate Z at the village level to link Z to rice farmers as instrumental
variables of p.

We assume that these three external instruments are valid14. Each of the four types of
wastewater released by an industrial firm seem obviously related to the quantity of water
consumed for its production (z1) as well as the quantity of COD and NH3-N generated by
its production (z2 and Z3). Consequently, it is plausible to assume a causal link between Z

and p. Moreover, regarding the effect of Z on rice production (y), it is reasonable to assume
that COD and NH3-N generated by industrial firms (z2 and z3) can play on y only through
the part of wastewater released into the environment (so p). However, the quantity of water
intake by industry (z1) can influence y beyond the quantity of wastewater released by industrial
firms (p). For instance, more water intake by industry can imply less water to rice production.
Independently of p, z1 can reduce rice production because of a competition channel between
industry and rice farming to capture water. However, we assume that this effect is not present
in Jiangsu province. Water is abundant there, so a water-related conflict between industry and
rice farming is unlikely.

Finally, the set of instrumental variables used is different according to the model estimated.
Table 1 gives the list of endogeneous variables and their instrumental variables for each model.

11
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Table 1: List of endogeneous and instrumental variables

Model B Model C
List of endogenous variables p p

p.
∑5

j=1 xj

p.(0.5
∑5

j=1

∑5
k=1 xjxk)

List of instrumental variables
∑3

z=1 Zz

∑3
z=1 Zz∑3
z=1

∑5
j=1 Zz.xj∑3

z=1 Zz.0.5(
∑5

j,k=1 xjxk)

Model D Model E
List of endogenous variables p p

t p.
∑5

j=1 xj

p.t2 p.(0.5
∑5

j=1

∑5
k=1 xjxk)

p.t.
∑5

j=1 xj p.t

p.t2

p.t.
∑5

j=1 xj

List of instrumental variables
∑3

z=1 Zz

∑3
z=1 Zz∑3

z=1 Zz.t
∑3

z=1

∑5
j=1 Zz.xj∑3

z=1 Zz.t
2

∑3
z=1 Zz.0.5(

∑5
j,k=1 xjxk)∑3

z=1

∑5
j=1 Zz.xj .t

∑3
z=1 Zz.t∑3
z=1 Zz.t

2∑3
z=1

∑5
j=1 Zz.xj .t

Note: p: alternatively total wastewater, untreated wastewater, COD and NH3. z1: indus-
trial water intake, z2: COD generated by industrial production and z3: NH3 generated by
industrial production. x: the five inputs of rice production (l: labor, c: capital, rc: running
costs, fe: fertilizer and ir: irrigation), t: time trend.

In Model B, only p is endogenous so that we use only z1, z2 and z3 as instruments. In
Model C, all interaction terms of p with inputs are also assumed to be endogenous so that we
use z1, z2, z3 and their interactions with inputs as instruments. In Model D, all interaction
terms of p with TC terms are assumed to be endogenous. The set of instruments is z1, z2, z3
and their interactions with TC terms. In the general model (Model E), the set of instruments
is all instruments used in Models B, C and D.

4 Data and descriptive statistics

The data used in this study are derived from crop and industry data.

4.1 Rice farming data

Rice farming data come from the China Rural Fixed Point Survey. The survey questionnaire
is administered at the household level to collect data on agricultural production (inputs and
outputs), non-agricultural activities and sociodemographic characteristics of individuals within
a household. In our analysis, we retain only households that were surveyed at least twice over
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the period 2011-2015 (five waves) and that were involved in rice farming. We have in total
1,514 observations for 366 households located in 6 villages.

Table A1 gives descriptive statistics of the variables related to rice farming used in this
study. All input and output variables are normalized by the area allocated to rice production.
It is worth noting that the average rice farming area is very small (3.74 mu or 0.25 hectares,
where mu is the unit of area used in China and 1 mu = 1/15 ha). This is not surprising in
the context of Chinese agriculture. Regarding the output used in this study, we focus on the
quantity of rice production in a year. The average production of rice is 580.26 kilograms per
mu with a standard deviation of 81.70.

We use five inputs: 1) labor (number of working days of hired labor and family members), 2)
capital costs (value of fixed production assets (large and medium sized farm tools, agriculture
machinery, etc.) possessed at the end of the year), 3) expenditures related to fertilizers, 4)
irrigation costs, and (5) all other running costs (expenditures related to pesticides, seeds, etc.).
Labor and all running costs are specifically related to the farm’s rice production but this is
not the case for capital costs. In fact, in the questionnaire, there is no question related to
the possession of fixed assets specifically related to rice production. Thus if the farmer is
engaged in another farming activity (e.g., other grain production (soybean, wheat, . . . ), cash
crops (cotton, oil plants, . . . ), garden crops (fruits, . . . ) or animal husbandry), capital costs
may be overestimated. In our sample, rice farming is the most largest production activity. It
represents 48.34 percent at mean (the median is 51.40) of all the farmer’s farming revenues (rice
production, other grain production, cash and garden production, and animal production) far
ahead of other grain production (30.72 percent), animal production (11.13 percent) and cash
and garden crops (9.81 percent). On average, there are 12.70 working days (hired labor and
family members) per mu with a standard deviation of 3.77. Specifically, rice farming is mainly
a family business because hired hands work less than one day (in total so not per mu) while
family members work about 48 days (in total so not per mu). Also, these figures suggest that
rice farming is not the main activity of households. In fact, in our sample, only 189 of 366
household heads declared that farming is their main activity. Moreover, some farms diversify
their production with other grain production (about 48 working days for family members on
average), animal husbandry production (about 30 working days for family members on average),
and cash and garden crop production (about 33 working days for family members on average).
On average, fixed assets (capital) are estimated at 3,629 yuan per mu with a high dispersion
(standard deviation of 15,104 yuan per mu). In our sample, rice farmers spent about 213 yuan,
38 yuan and 309 yuan per mu, respectively, for fertilizers, irrigation and all other running costs
(standard deviation of 40 yuan, 24 yuan and 65 yuan per mu for fertilizers, irrigation and all
other running costs). Also, it is worth noting that all farmers spent money to irrigate (the
minimum of irrigation costs is 1.46 yuan per mu). Variables in monetary value (capital costs
and all running costs) are calculated based on the 2011 Consumer Price Index.
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4.2 Industrial wastewater data

Industry-related data focus on both industrial output and wastewater. These data are derived
from the large administrative database of Chinese Environmental Statistics (CES), collected
by China’s Ministry of Environmental Protection (MEP).

First, industrial output is defined at the village level and measured by two variables: the
production of industrial firms in yuan and in hours.

Second, we use detailed information on pollution discharged by industrial firms. More
precisely, the database focuses on pollutants which account for approximately 85 percent of the
total major pollutants (air + water): Chemical Oxygen Demand (COD), ammonia nitrogen
(NH3-N), sulfur dioxide (SO2), industrial smoke and dust, and solid waste.

Based on the firm level pollution information, we construct a measure of industrial water
pollution that influences a given farmer. First, we use the measure of the total wastewater
released by all industrial firms in the farmer’s village (in tons). Next, this measure is weighted
by the distance between each firm and the center of the village. Note that we do not have
the farmers’ coordinates so we use the coordinates of the village center. This measure helps
us to consider the importance of proximity between industry and farming in terms of water
pollution. Next, this weighted measure of wastewater by distance is divided by the area of rice
devoted to rice farming in the village. This gives us the quantity of wastewater per unit of rice
area (tons per mu). Finally, we multiply this measure of wastewater per mu by the area of land
devoted to rice on each farm unit. This final measure of wastewater varies over farm unit and
is an approximation of the quantity of wastewater received by each farm given the size of their
rice area.

This measure is applied to four types of wastewater. First, we use the total wastewater
released by industrial firms as a global measure of water pollution. This water pollution is
either received by water treatment plants or discharged directly into the water environment.
Second, we focus only on the wastewater discharged directly into the water environment, with-
out treatment by sewage plants. Third, we focus on two major water pollutants: COD and
NH3-N. The COD and NH3-N are two commonly used indicators of surface water pollution in
environmental chemistry and are monitored by the Chinese government as part of its water–
environment regulation. The last three types of wastewater (i.e., untreated wastewater, COD
and NH3-N) are nested into the first one (i.e., total wastewater).

Lastly, Maps A1, A2, A3 and A4 in the Appendix report the spatial distribution of the four
types of wastewater over the six rural villages used in this study. The measure reported is the
quantity of wastewater received by a village, weighted first by the distance of each industrial
firm and the center of the village, and second, by the area devoted to rice farming in the village.
The measure is thus the quantity per mu of wastewater in each village. It is worth noting a
significant heterogeneity between villages helps us to estimate the effect of wastewater on rice
yields. Finally, Table A1 gives descriptive statistics for all pollution variables.
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5 Econometric results

5.1 Effects on rice yields

In this study, we assume that rice yields will be plagued by industrial wastewater. Figures
1 and 2 provide te first insight into this relationship. These figures give the resulting line,
along with a confidence interval, of the prediction for rice yields (y) from a linear regression
of y on each type of wastewater. More wastewater seems to be associated to lesser rice yields.
While the relationships displayed in these graphs cannot be interpreted as a causal link between
wastewater and rice yields, they confirm a negative pattern between industrial pollution and
agricultural yields.

Figure 1: Total treated and untreated wastewater and rice yield

To more deeply investigate the study of the relationship between wastewater and rice yield,
we run the production function models depicted in Section 3. Table 2 reports the results for
total wastewater released by industrial firms (treated and untreated ; columns 1 to 4) and for
only untreated wastewater (columns 5 to 8). Table 3 focuses on the results for COD (columns
1 to 4) and NH3-N (columns 5 to 8) released by industrial firms. In order to facilitate the
reading, a short version of the results is presented in these tables (without interaction terms).
The complete versions are in the Appendix (Tables A6 and A7).

For each type of pollution outlined in the two tables, we implement a step-by-step approach.
Columns 1 and 5 present the estimation of Model B (only the additive effect of wastewater
without controlling for interactions of wastewater with input uses or technical change (TC)
terms). Columns 2 and 6 give the estimation of Model C (Model B + interaction effects
between wastewater and inputs). We provide the total effect of wastewater through each input
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Figure 2: COD and NH3-N pollution and rice yield

as
∑5

j=1 βpj +
∑5

j=1

∑5
k=1 βpjk

15. Columns 3 and 7 concern the estimation of Model D (Model
B + interaction effects between wastewater and technical change (TC) terms). We present the
effect of wastewater through total TC as βpt+βptt+

∑5
j=1 βpjt, pure TC as βpt+βptt and biased

TC as
∑5

j=1 βpjt. Columns 4 and 8 provide the estimation of the general Model E (Model B +
Model C + Model D).

In Table 2, our results suggest that wastewater alone (i.e., without interactions with inputs
or TC terms - Model B) has a negative but non–significant effect (cols. 1 and 5). However,
while taking into account interactions, the additive effect of wastewater becomes negatively
significant16. We interpret this effect as the direct negative biological effect of wastewater on
rice yields since all other effects of wastewater on rice yields through the production process
are controlled for. Our results show that this direct biological effect can be quite significant. A
one percent increase of total wastewater (untreated wastewater) decreases rice yields between
0.06 percent and 3.60 percent (0.06 percent and 3.53 percent) per mu.

With regards to the other effects of wastewater, two results can be highlighted. First, we do
not find robust or significant interaction effects of wastewater with both inputs and TC. Second,
the aggregated effect of wastewater (e.g., in Model C, the aggregated effect is the additive effect
of p plus all interaction effects of p with inputs) is significantly and robustly negative in all
regressions. More precisely, the effect is stronger in Model C (cols. 2 and 6) than in Model D
(cols. 3 and 7). A one percent increase of total wastewaster and untreated wastewater reduces
rice yields by 2.79 (col. 2) and 2.78 percent (col.6), respectively, in Model C while the reduction
is 0.10 (col. 3) and 0.11 (col. 6) percent, respectively, in Model D.

Taken together, these two results suggest that wastewater weakens rice yields mainly through
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the direct biological effect highlighted previously rather than through the production process
(input uses or TC).
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Table 2: Industrial wastewater and rice yield

Type of p Total wastewater (treated and untreated) Untreated wastewater
Estimated model Model B Model C Model D Model E Model B Model C Model D Model E

(1) (2) (3) (4) (5) (6) (7) (8)
l 1.279** 8.559 0.856* 7.784 1.258** 8.648 0.838* 8.173

(0.493) (5.636) (0.353) (4.827) (0.488) (5.227) (0.390) (4.776)
c -0.104 -0.0567 -0.0686 0.0363 -0.109 -0.317 -0.0880 -0.106

(0.0811) (1.198) (0.0808) (1.049) (0.0820) (1.380) (0.0841) (1.202)
rc 2.014*** -1.153 1.980*** -3.023 2.011*** -1.645 1.985*** -3.197

(0.427) (4.610) (0.460) (3.761) (0.430) (4.465) (0.463) (3.676)
fe 0.702 -10.11 0.731 -9.119 0.713 -8.853 0.697 -8.278

(0.932) (6.289) (0.894) (5.563) (0.931) (5.966) (0.941) (5.463)
ir -0.0793 0.0566 -0.116 0.450 -0.0770 0.0696 -0.106 0.318

(0.197) (1.973) (0.195) (2.024) (0.196) (1.955) (0.183) (1.922)
t 0.144 0.0708 0.436 0.601 0.144 0.0638 0.526* 0.383

(0.0756) (0.0867) (0.223) (1.001) (0.0741) (0.0837) (0.248) (0.913)
t2 0.00305 0.00423 0.116* 0.131 0.00340 0.00399 0.0982* 0.104

(0.00927) (0.0108) (0.0478) (0.0883) (0.00919) (0.0106) (0.0487) (0.0840)
I1 (yuan) -0.00616 -0.00682 -0.00789 -0.00683 -0.00586 -0.00585 -0.00733 -0.00611

(0.0118) (0.0112) (0.0117) (0.0110) (0.0118) (0.0109) (0.0116) (0.0109)
I2 (hours) -0.181** -0.182** -0.175** -0.185** -0.182** -0.187** -0.173** -0.184**

(0.0625) (0.0586) (0.0601) (0.0524) (0.0622) (0.0577) (0.0618) (0.0541)
p -0.00873 -3.463* -0.0583** -3.583** -0.0116 -3.388* -0.0584** -3.530**

(0.00900) (1.476) (0.0169) (1.008) (0.00787) (1.461) (0.0194) (1.032)
Constant -0.779 28.71* 0.0484 30.04** -0.739 27.78* 0.180 29.08**

(1.145) (12.43) (1.362) (9.681) (1.157) (12.03) (1.439) (9.584)
Effect of p through ...
All inputs 0.670 0.757* 0.610 0.686
Labor (l) -0.711 -0.652 -0.736 -0.703
Capital (c) 0.0831 -0.0256 0.0846 -0.0113
Running costs (rc) 0.455 0.642 0.516 0.666
Fertilizers (fe) 0.530 0.492 0.483 0.481
Irrigation (ir) -0.0485 -0.0889 -0.0539 -0.0826
Technical change (TC) -0.0368 -0.0630 -0.0469 -0.0379
Pure TC (t, t2) -0.0571 -0.0863 -0.0690 -0.0551
Biased TC (t×inputs) 0.0203* 0.0233 0.0221* 0.0172
Aggregated effect of p -2.792** -0.0951** -2.889*** -2.778** -0.105** -2.881***
Observations 1,514 1,514 1,514 1,514 1,514 1,514 1,514 1,514
R-squared 0.393 0.407 0.401 0.410 0.394 0.406 0.400 0.408
Number of ID 366 366 366 366 366 366 366 366
Translog terms YES YES YES YES YES YES YES YES
TC terms YES YES YES YES YES YES YES YES
Wastewater×inputs NO YES NO YES NO YES NO YES
Wastewater×TC NO NO YES YES NO YES YES YES
Estimation method: within regression estimator. The dependent variable is rice production (quantities) per mu. l: labor ; c:
capital ; rc: running costs ; fe: fertilizers ; ir: irrigation ; I1 and I2 : industrial production in yuan and hours. All variables
are in logarithm (except t and t2). Standard errors in parentheses are clustered at village level. *** statistical significance at
1%, ** statistical significance at 5%, * statistical significance at 10%. Translog terms not reported are: l2, c2, fe2, ir2, rc2,
l×c, l×fe, l×ir, l×rc, c×fe, c×ir, c×rc, fe×ir, fe×rc and ir×rc. Technical change (TC) terms not reported are: t×l, t×c, t×fe,
t×ir and t×rc.

In Table 3, we find that COD has a stronger negative link with yields than does NH3-N. We
notice three worthwhile results with regards to COD. First, COD is found to have a significant
and negative direct biological effect when interactions are controlled for (columns 2, 3 and 4).
The magnitude of the effect of COD is much higher than that of total wastewater or untreated
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wastewater. For instance, from Model C, a one percent increase of COD reduces rice yields by
11.08 percent (3.46 and 3.40 percent for total wastewater and untreated wastewater in Table
2, respectively). Moreover, COD has a significant and negative aggregated effect, which is also
greater in magnitude than total that of wastewater and untreated wastewater (e.g., -9.33 for
COD in Model C compared to -2.79 and -2.78 for total wastewater and untreated wastewater,
respectively in Table 2). Third, COD significantly weakens rice yields through labor uses (by
2.39 percent in Model C and 2.18 percent in Model E). This effect suggests that COD reduces
the productivity of labor. To our knowledge, no studies have been done on the link between this
pollutant and labor productivity. Since COD is a measure of the quantity of organic compounds
such as petroleum, solvents, lubricants, cleaning agents, etc. in water, we can assume that COD
can damage workers’ health, and in turn, reduce their productivity.

Regarding NH3-N, this pollutant is found to have a marginal impact on rice yields. In fact,
while we also find a negative direct biological effect, this effect is insignificant. In the same
vein, the aggregated effect of NH3-N is always insignificant (albeit negative). Similarly, two
interesting results can be highlighted. NH3-N, unlike total wastewater, untreated water and
COD, is found to weaken rice yields through irrigation (only in Model C) and increase rice
yields through running costs (both in Model C and in Model E).

5.2 Robustness checks

We check the robustness of our results by dealing with the endogeneity of wastewater. Tables
A3 and A4 replicate Tables 2 and 3, respectively, by using external instruments (Z = z1, z2
and z3 and the interactions of these variables with input uses and TC terms) for wastewater as
well as for its interactions with input uses and TC terms. Table A5 in the Appendix gives the
list of endogenous variables and instruments for each column of Tables A3 and A4. Also, in
Table A5 we report the joint significance of all z variables on each of the measures of wastewater
calculated from the instrumentation equation of each column of Tables A3 and A417. In each
model, instrumental variables are found to have joint significance on wastewater. Moreover, in
Tables A3 and A4, a look at statistical tests of the validity of Z show that the Kleibergen-Paap
underidentification test always rejects the null hypothesis that the excluded instruments are not
correlated with the endogenous regressors. Also, the Hansen test accepts the null hypothesis
that our set of instruments is valid in 10 of 16 regressions (except in Model D (interactions
with TC terms) for the four types of wastewater and in Model E for COD and NH3-N).

19

Études et Documents n° 5, CERDI, 2020



Table 3: COD, NH3 and rice yield

Type of p COD NH3
Estimated model Model B Model C Model D Model E Model B Model C Model D Model E

(1) (2) (3) (4) (5) (6) (7) (8)
l 1.329* 1.251 1.215* 1.355 1.302* 2.358* 1.384* 1.994**

(0.546) (0.813) (0.535) (0.677) (0.512) (1.130) (0.598) (0.749)
c -0.0928 -0.0739 -0.0604 -0.0614 -0.109 0.0411 -0.124 0.112

(0.0742) (0.127) (0.0622) (0.129) (0.0772) (0.195) (0.0687) (0.175)
rc 2.007*** 0.499 1.724*** 0.663 2.007*** -1.313 1.794*** -0.990

(0.453) (0.715) (0.379) (0.783) (0.418) (1.179) (0.243) (1.225)
fe 0.671 -1.436 0.382 -1.115 0.676 -0.112 0.530 0.410

(0.926) (1.137) (1.044) (1.258) (0.929) (1.223) (0.885) (1.188)
ir -0.0767 0.112 -0.163 -0.00880 -0.0760 0.815* -0.00357 0.304

(0.200) (0.199) (0.223) (0.239) (0.187) (0.347) (0.121) (0.320)
t 0.139 0.156 0.120 0.146** 0.146 0.104 0.184* 0.129

(0.0803) (0.0825) (0.0792) (0.0523) (0.0779) (0.102) (0.0797) (0.145)
t2 0.00260 0.00400 0.0140 0.0132 0.00321 0.00383 0.00135 0.00269

(0.00956) (0.00950) (0.0129) (0.0132) (0.00925) (0.0102) (0.0124) (0.00943)
I1 -0.00665 -0.00807 -0.00938 -0.00839 -0.00627 -0.00701 -0.00269 -0.00326

(0.0117) (0.0127) (0.0130) (0.0132) (0.0115) (0.0118) (0.0117) (0.0119)
I2 -0.180** -0.181** -0.182** -0.181** -0.169* -0.164* -0.175* -0.182*

(0.0637) (0.0643) (0.0610) (0.0605) (0.0663) (0.0741) (0.0680) (0.0816)
p -0.000659 -11.08*** -0.230** -7.928** -0.0155 -2.675 -0.0454 -1.658

(0.0557) (2.285) (0.0846) (2.105) (0.0140) (2.087) (0.0273) (1.974)
Constant -0.859 8.970** 1.076 7.642** -0.865 7.765 0.0970 6.506

(1.031) (2.419) (2.021) (2.965) (1.154) (5.145) (1.445) (5.187)
Effect of p through ...
All inputs 1.744** 1.230 0.320 0.211
Labor (l) -2.391* -2.180** -0.550 -0.401
Capital (c) 0.633 0.0504 -0.338 -0.346
Running costs (rc) 1.808* 2.249 1.667* 1.345*
Fertilizers (fe) 1.530 0.547 -0.358 -0.511
Irrigation (ir) -0.535 -0.176 -0.305* -0.101
Technical change (TC) -0.0592 -0.277 -0.0221 -0.0224
Pure TC (t, t2) -0.120 -0.394 -0.0363 -0.0473
Biased TC (t×inputs) 0.0604 0.117* 0.0142 0.0249
Aggregated of p -9.334*** -0.289 -6.976*** -2.355 -0.0675 -1.469
Observations 1,514 1,514 1,514 1,514 1,514 1,514 1,514 1,514
R-squared 0.393 0.404 0.399 0.407 0.394 0.402 0.399 0.407
Number of ID 366 366 366 366 366 366 366 366
Translog terms YES YES YES YES YES YES YES YES
TC terms YES YES YES YES YES YES YES YES
Wastewater×inputs NO YES NO YES NO YES NO YES
Wastewater×TC NO NO YES YES NO YES YES YES
Estimation method: within regression estimator. The dependent variable is rice production (quantities) per mu. l: labor ; c:
capital ; rc: running costs ; fe: fertilizers ; ir: irrigation ; I1 and I2 : industrial production in yuan and hours. All variables
are in logarithm (except t and t2). Standard errors in parentheses are clustered at village level. *** statistical significance at
1%, ** statistical significance at 5%, * statistical significance at 10%. Translog terms not reported are: l2, c2, fe2, ir2, rc2,
l×c, l×fe, l×ir, l×rc, c×fe, c×ir, c×rc, fe×ir, fe×rc and ir×rc. Technical change (TC) terms not reported are: t×l, t×c, t×fe,
t×ir and t×rc.

Three interesting results are found: (1) the negative direct biological effect as well as the
aggregated effect of total wastewater, untreated wastewater and COD highlighted in Tables 2
and 3 are still found, while stronger (e.g., the direct effect of COD in Model E moves from
7.64 percent (col. 4 in Table 3) to 17.41 percent (col. 4 in Table A4)) ; (2) NH3-N now has a
negative direct biological effect (only in Model C: a one percent increase of NH3-N leads to a
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5.20 percent reduction of rice yields) and a negative aggregated effect (also only in Model C:
a one percent increase of NH3-N leads to a 4.31 percent reduction of rice yields)18 ; (3) we do
not find robust interaction effects of wastewater through input uses or TC terms19.

Taken together, our results suggest that wastewater impacts rice yields mainly through a
strong negative biological effect. We assume that industrial wastewater can weaken the growth
of roots, seedlings and tillers of the rice plant, resulting in lower produced quantities.

6 Conclusion

In recent decades, the rapid industrialization of the Chinese economy has been accompanied by
the development of polluting industries such as the chemical, paper, textile and dyeing indus-
tries, which have generated severe water pollution. In this paper, we aim to estimate the impact
of industrial wastewater on Chinese rice production in Jiangsu province, which is particularly
impacted by severe industrial pollution. Using data from the Chinese Environmental Statistics
(CES) and the China Rural Fixed Point Survey, we are able to link wastewater released by
industrial firms to rice farming at the household level between 2011 and 2015 in six villages of
Jiangsu province.

More precisely, we focus on four types of wastewater (total (treated and untreated) wastew-
ater, untreated wastewater, COD and NH3-N) and we analyse the link between all these four
types of industrial wastewater and rice yields, defined in terms of produced quantities per mu.
We focus on this farming output in order to study the direct biological effect of wastewater
on rice production. This effect reflects the negative influence of industrial wastewater on the
growing process of rice. Our framework allows us to isolate a direct effect of wastewater on rice
yields from other potential effects of wastewater through the production process.

Our results confirm the presence of a causal, direct and negative effect of wastewater on
rice yields. We attribute this negative link to the detrimental biological effect of wastewater
on the growing process of the rice. The damaging effect of COD, a major water pollutant in
China, is particularly severe. A one percent increase of COD released by industrial firms in the
surroundings of rice farmers is found to reduce rice yields by up to approximately 19 percents.
The effect of NH3-N, another major water pollutant in China, is also negative but its statistical
significance is less often robust. However, when this effect is robust, NH3-N is found to reduce
rice yields by about 5 percents. With regards to the impact of total wastewater and untreated
wastewater, we also find a direct and negative effect. For each of these two types of wastewater,
a one percent increase can reduce rice yields by up to 7 percent.

Taken together, these results highlight the need to better understand the linkages between
industry and agriculture at the local level. While there are (positive and negative) economic
spillover effects of industry on agriculture, negative environmental spillovers such as water pol-
lution should not be underestimated. Rapid industrialization in rural areas weakens agriculture
as well as the livelihood of farmers.
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Notes
1See Section 2 for a discussion of the literature.
2These last two pollutants (COD and NH3-N) are commonly used indicators of surface water pollution

in environmental chemistry and are monitored by the Chinese government as part of its water environment
regulation.

3Our measure is weighted by the distance between each industrial firm and the center of the village where
each farm is located because we do not have the farmer coordinates. See Section 4 for a complete explanation
of our measure of wastewater.

4Section 2.2 goes back to theoretical links between wastewater and rice yield and Section 3 provides the
econometric framework that allows us to disentangle the direct effect from the other effects.

5External instruments are the water intake for industrial production and the quantity generated of both
COD and NH3-N by industrial production.

6For instance, wastewater is found to reduce rice yields through labor uses but while a negative effect is
found in all specifications, it is rarely significant.

7Note that this biological effect can also impact crop quality. Lower crop prices reflect this reduction in
quality. Also, farmers may want to compensate for possible productivity losses by implementing activities that
can offset these losses but that are more costly to implement which implies an increase of input costs. These
two factors (decrease of price and increase of production costs) are not investigated in this study, as we focus
here only on yields (quantity).

8More information on all variables can be found in Section 4 and Table A2 in the Appendix.
9For the four types of pi,v,t, we use a measure of water pollution which varies across farm units and takes

into account the distance between the industrial firm and the village where the farm unit is located. Section 4
gives more information about pi,v,t.

10We pull out subscripts i, v and t to facilitate the reading. Recall that all variables are defined at the
household level (i), and each household level is located in a village v at time t.

11More information on these two variables can be found in Section 4 and Table A2 in the Appendix.
12It is worth noting that COD and NH3-N, used as external instruments (respectively z2 and z3), are different

from COD and NH3-N, used as water pollution (p). The former (z2 and z3) focus on the quantity of COD and
NH3-N generated by industrial production while the latter (p) is the part of COD and NH3-N released into the
environment.

13As mentioned in the introduction, we do not have the geographical coordinates of the farmers. We thus use
the coordinates of the center of the village where the farmer lives. In other words, farmers located in the same
village are the same Z.

14Beyond the economical validity of Z as instruments of p, the statistical validity of Z is measured by two
tests. The Hansen test is used as a test of overidentifying restrictions (H0: instruments are valid instruments,
i.e., uncorrelated with the error term). The Kleibergen-Paap test is used as an underidentification test (H0: the
excluded instruments are not correlated with the endogenous regressors).

15For instance, the effect of wastewater associated to labor is the sum of the coefficients associated to variables
p.l, p.l2, p.l.c, p.l.rc, p.l.fe and p.l.ir.

16This is the effect of the variable p in Table 2.
17Note that there are as many instrumentation equations as there are endogenous variables. For reading

convenience, we present only the joint significance of Z variables on wastewater (for the other endogenous
variables, i.e., wastewater and its interaction with input uses and TC terms, results are available upon request).
Also, to save space, we do not report estimation results of the instrumentation equation. These are also available
upon request.
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18Note that the set of instruments is valid according to the Hansen test (i.e., the test accepts the null
hypothesis) in Model C for NH3-N.

19The negative effect of COD through labor is no longer significant albeit still negative.
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7 Appendix

7.1 Geographical maps
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Figure A1: Quantity of total wastewater within the six villages (in ton per mu)

Figure A2: Quantity of untreated wastewater within the six villages (in ton per mu)
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Figure A3: Quantity of COD within the six villages (in ton per mu)

Figure A4: Quantity of NH3-N within the six villages (in kg per mu)
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7.2 Descriptive statistics and definition of variables

Table A1: Descriptive statistics

Variables Mean Std. Dev. Min Max Obs.
Rice farming data

Rice production (at household level)
Rice yield (kg/mu) 580.25 81.7 51.66 920 1,514
Labor (in days per mu) 12.69 3.76 0.83 35 1,514
Capital costs (yuan per mu) 3,629.15 15,104.28 40.82 210,523.73 1,514
Fertilizer costs (yuan per mu) 213.70 40.149 19.977 653.178 1,514
Irrigation costs (yuan per mu) 38.29 24.12 1.46 192.881 1,514
Other running costs (yuan per mu) 309.26 64.98 21.11 900.644 1,514
Rice area (in mu, 1 mu = 1/15 ha) 3.73 3.31 0.3 30 1,514

Industry data
Industrial production (at the village level)
Industrial production (yuan) 925,188.69 1,558,513.82 13,407 4,288,78 1,514
Industrial production (hours) 61346.41 23319.81 22,772 87,482 1,514
Wastewater variables (at the household level)
Total wastewater (tons) 612.93 362.06 184.71 1,641.12 1,514
Untreated wastewater (tons) 527.93 307.7 184.71 1,246.47 1,514
COD pollution (tons) 0.08 0.07 0.02 0.43 1,514
NH3 pollution (in kg) 1.70 1.31 0.49 8.41 1,514
Authors’ calculation. Rice farming data come from the China Household Living Standard Survey.
Industry-related data come from the Chinese Environmental Statistics. See Table A1 for definitions
of variables.
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Table A2: Definition and description of variables

Variables Definition and description

Rice production variables defined at the household level
Rice yield (y) Total rice production over the past 12 months (in kg per mu).
Labor (l) Number of working days (family and hired labor).
Capital (c) Original value of fixed assets owned for production (yuan per mu).
Fertilizers (fe) Fertilizers costs for rice production (yuan per mu).
Irrigation (ir) Irrigation costs for rice production (yuan per mu).
Running costs (rc) All other running costs excepted fertilizers and irrigation (insecticide,

seeds, etc) (yuan per mu).

Variables of industrial production defined at the village level
Industrial production in yuan (I1) Production in yuan of all industrial firms located in one village.
Industrial production in hours (I2) Production in hours of all industrial firms located in one village.

Four measures of wastewater (p) defined at the household level
Total wastewater Wastewater released by industrial firms in the farmer’s village, weighted

by the distance between each firm and the center of the village and the
area devoted to rice area per farm (in tons).

Untreated wastewater Wastewater released in the farmer’s village without passing through wa-
ter treatment plant and weighted by the distance between each firm and
the center of the village and the area devoted to rice area per farm (in
tons).

COD pollutant Chemical Oxygen Demand (COD) released in the farmer’s village and
weighted by the distance between each firm and the center of the village
and the area devoted to rice area per farm (in tons).

NH3-N pollutant Ammonia nitrogen (NH3-N) released in the farmer’s village and weighted
by the distance between each firm and the center of the village and the
area devoted to rice area per farm (in kg).
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7.3 The IV strategy

Table A3: Industrial wastewater and rice yield: an IV strategy

Type of p Total wastewater (treated and untreated) Untreated wastewater
Estimated model Model B Model C Model D Model E Model B Model C Model D Model E

(1) (2) (3) (4) (5) (6) (7) (8)
l 1.286** 12.95 -0.409 15.44 1.269** 14.29 -0.363 15.96

(0.542) (14.88) (0.763) (14.47) (0.543) (13.84) (0.778) (12.91)
c -0.103 -1.862 -0.0869 0.492 -0.107 -2.343 -0.194 0.312

(0.105) (2.662) (0.150) (2.826) (0.103) (2.666) (0.158) (2.582)
rc 2.013*** 9.127 0.682 -0.372 2.011*** 8.401 0.715 -5.799

(0.353) (10.13) (0.667) (10.68) (0.354) (9.140) (0.653) (8.373)
fe 0.697* -35.91*** 0.620 -19.96** 0.707* -34.53*** -0.0630 -14.86

(0.421) (11.69) (0.743) (10.03) (0.417) (11.34) (0.768) (9.749)
ir -0.0789 6.909 0.0379 3.154 -0.0770 5.969 0.103 4.564

(0.216) (6.884) (0.275) (7.338) (0.216) (5.979) (0.290) (6.644)
t 0.143* 0.0586 3.977** 0.0590 0.144* 0.0712 4.906*** -1.128

(0.0835) (0.0905) (1.646) (2.248) (0.0809) (0.0905) (1.676) (2.171)
t2 0.00299 0.00398 0.169* 0.157* 0.00329 0.00411 0.0796 0.0978

(0.00434) (0.00490) (0.0909) (0.0883) (0.00436) (0.00479) (0.0911) (0.0824)
I1 -0.00623 -0.0109* -0.00908 -0.00913 -0.00598 -0.00890 -0.00539 -0.00706

(0.00564) (0.00596) (0.00717) (0.00581) (0.00558) (0.00584) (0.00739) (0.00569)
I2 -0.181*** -0.167*** -0.173*** -0.185*** -0.181*** -0.169*** -0.176*** -0.167***

(0.0281) (0.0322) (0.0367) (0.0310) (0.0280) (0.0318) (0.0373) (0.0314)
p -0.00747 -7.282** 0.0222 -4.838* -0.00990 -7.409*** 0.0183 -5.091*

(0.0304) (2.844) (0.0505) (2.686) (0.0250) (2.690) (0.0492) (2.620)
Effect of p through ...
All inputs 1.609* 0.749 1.599* 0.659
Labor (l) -0.997 -1.206 -1.126 -1.302
Capital (c) 0.696 0.172 0.566 -0.0220
Running costs (rc) 0.623 0.360 0.322 1.070
Fertilizers (fe) 2.778** 1.578 2.676*** 1.230
Irrigation (ir) -0.528 -0.195 -0.472 -0.380
Technical change (TC) -0.412** -0.0113 -0.532*** 0.131
Pure TC (t, t2) -0.528** -0.00920 -0.665*** 0.164
Biased TC (t×inputs) 0.116*** -0.00205 0.132*** -0.033
Aggregated effect of p -5.672** -0.390** -4.100* -5.810*** -0.514*** -4.303**
Observations 1,514 1,514 1,514 1,514 1,514 1,514 1,514 1,514
R-squared 0.393 0.360 0.293 0.344 0.394 0.360 0.310 0.357
Number of ID 366 366 366 366 366 366 366 366
Translog terms YES YES YES YES YES YES YES YES
TC terms YES YES YES YES YES YES YES YES
Wastewater×inputs NO YES NO YES NO YES NO YES
Wastewater×TC NO NO YES YES NO YES YES YES
Hansen test 0.574 35.81 32.34*** 54.50 0.426 39.38 30.97** 60.69
Kleibergen-Paap test 108.6*** 55.21* 31.04** 81.98** 150.0*** 61.04** 33.60*** 81.38**
Estimation method: within regression estimator. The dependent variable is rice production (quantities) per mu. l: labor
; c: capital ; rc: running costs ; fe: fertilizers ; ir: irrigation ; I1 and I2 : industrial production in yuan and hours. All
variables are in logarithm (except t and t2). Robust standard errors in parentheses. *** statistical significance at 1%, **
statistical significance at 5%, * statistical significance at 10%. Translog terms not reported are: l2, c2, fe2, ir2, rc2, l×c, l×fe,
l×ir, l×rc, c×fe, c×ir, c×rc, fe×ir, fe×rc and ir×rc. Technical change (TC) terms not reported are: t×l, t×c, t×fe, t×ir and
t×rc. Hansen test is a test of overidentifying restrictions (H0: instruments are valid instruments, i.e., uncorrelated with the
error term). Kleibergen-Paap test is an underidentification test (H0: the excluded instruments are not correlated with the
endogenous regressors).
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Table A4: COD, NH3 and rice yield: an IV strategy

Type of p COD NH3
Estimated model Model B Model C Model D Model E Model B Model C Model D Model E

(1) (2) (3) (4) (5) (6) (7) (8)
l 1.260** 1.301 1.467*** 1.681 1.328** 1.609 0.564 -1.186

(0.612) (1.695) (0.538) (1.643) (0.535) (1.797) (0.677) (1.914)
c -0.107 -0.270 -0.0547 0.0574 -0.0941 -0.0635 -0.0434 0.321

(0.129) (0.165) (0.0997) (0.159) (0.122) (0.365) (0.127) (0.328)
rc 1.976*** -0.0697 1.687*** -1.229 2.008*** -2.032 1.553*** -2.289

(0.418) (1.048) (0.590) (1.156) (0.356) (1.581) (0.573) (1.957)
fe 0.672* -2.941*** 0.375 -2.297** 0.672* -1.129 1.014* 2.593

(0.404) (1.106) (0.555) (1.058) (0.405) (2.070) (0.537) (2.593)
ir -0.0707 0.572 -0.181 0.690 -0.0767 1.991* 0.0166 1.814

(0.217) (0.616) (0.245) (0.564) (0.215) (1.198) (0.278) (1.190)
t 0.149 0.180** 0.205** 0.344** 0.140 0.0951 0.275 0.438*

(0.109) (0.0773) (0.0953) (0.137) (0.0865) (0.0942) (0.208) (0.235)
t2 0.00248 0.00534 0.0161** 0.00970 0.00266 0.00371 -0.0473** -0.0172

(0.00394) (0.00449) (0.00704) (0.00662) (0.00505) (0.00537) (0.0202) (0.0158)
I1 (yuan) -0.00632 -0.00927 -0.0113* -0.00925 -0.00662 -0.00912 0.00822 0.00134

(0.00580) (0.00588) (0.00619) (0.00611) (0.00563) (0.00592) (0.00635) (0.00662)
I2 (hours) -0.180*** -0.190*** -0.246*** -0.231*** -0.179*** -0.177*** -0.178*** -0.199***

(0.0281) (0.0317) (0.0356) (0.0397) (0.0509) (0.0420) (0.0553) (0.0454)
p -0.0418 -19.66*** -0.0477 -17.41*** -0.00148 -5.203** 0.000234 -1.506

(0.234) (5.604) (0.243) (5.411) (0.0676) (2.225) (0.0736) (2.241)
Effect of p through ...
All inputs 3.154* 2.208 0.889 0.450
Labor (l) -3.405 -4.242 -0.503 0.450
Capital (c) 2.243* -0.706 -0.450 -0.581
Running costs (rc) 0.971 6.700 2.372** 1.983
Fertilizers (fe) 4.803* 2.018 0.459 -0.953
Irrigation (ir) -1.676 1.198 -0.810* -0.696
Technical change (TC) -0.135 -0.0865* -0.046 -0.147
Pure TC (t, t2) -0.184 -1.042* -0.081 -0.212
Biased TC (t×inputs) 0.049 0.177 0.035 0.065*
Aggregated effect of p -16.509*** -0.182 -16.063*** -4.314** -0.046 -1.203
Observations 1,514 1,514 1,514 1,514 1,514 1,514 1,514 1,514
R-squared 0.393 0.392 0.384 0.384 0.393 0.378 0.332 0.376
Number of ID 366 366 366 366 366 366 366 366
Translog terms YES YES YES YES YES YES YES YES
TC terms YES YES YES YES YES YES YES YES
Wastewater×inputs NO YES NO YES NO YES NO YES
Wastewater×TC NO NO YES YES NO YES YES YES
Hansen test 0.642 53.87 42.48*** 71.38* 0.681 53.21 31.47** 73.80*
Kleibergen-Paap test 31.55*** 81.83*** 68.26*** 116.3*** 45.38*** 107.8*** 71.17*** 128.6***
Estimation method: within regression estimator. The dependent variable is rice production (quantities) per mu. l: labor
; c: capital ; rc: running costs ; fe: fertilizers ; ir: irrigation ; I1 and I2 : industrial production in yuan and hours. All
variables are in logarithm (except t and t2). Robust standard errors in parentheses. *** statistical significance at 1%, **
statistical significance at 5%, * statistical significance at 10%. Translog terms not reported are: l2, c2, fe2, ir2, rc2, l×c, l×fe,
l×ir, l×rc, c×fe, c×ir, c×rc, fe×ir, fe×rc and ir×rc. Technical change (TC) terms not reported are: t×l, t×c, t×fe, t×ir and
t×rc. Hansen test is a test of overidentifying restrictions (H0: instruments are valid instruments, i.e., uncorrelated with the
error term). Kleibergen-Paap test is an underidentification test (H0: the excluded instruments are not correlated with the
endogenous regressors).
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Table A5: First stage (IV) regressions

Col. of Tables A3 and A4 (1) and (5) (2) and (6) (3) and (7) (4) and (8)
List of endog. variables p p p p

p.
∑5

j=1 xj t p.
∑5

j=1 xj

p.(0.5
∑5

j=1

∑5
k=1 xjxk) p.t2 p.(0.5

∑5
j=1

∑5
k=1 xjxk)

p.t.
∑5

j=1 xj p.t

p.t2

p.t.
∑5

j=1 xj

List of Z variables
∑3

z=1 Zz
∑3

z=1 Zz
∑3

z=1 Zz
∑3

z=1 Zz∑3
z=1

∑5
j=1 Zz .xj

∑3
z=1 Zz .t

∑3
z=1

∑5
j=1 Zz .xj∑3

z=1 Zz .0.5(
∑5

j,k=1 xjxk)
∑3

z=1 Zz .t2
∑3

z=1 Zz .0.5(
∑5

j,k=1 xjxk)∑3
z=1

∑5
j=1 Zz .xj .t

∑3
z=1 Zz .t∑3
z=1 Zz .t2∑3
z=1

∑5
j=1 Zz .xj .t

Col. No. of Table A3 (1) (2) (3) (4)
Observations 1,514 1,514 1,514 1,514
R-squared 0.404 0.563 0.539 0.663
Number of ID 366 366 366 366
F-stat Z variables 14.96*** 8.120*** 7.720*** 8.132***
Col. No. Table A3 (5) (6) (7) (8)
Observations 1,514 1,514 1,514 1,514
R-squared 0.585 0.684 0.624 0.712
Number of ID 366 366 366 366
F-stat Z variables 22.89*** 9.899*** 11.99*** 11.39***
Col. No. Table A4 (1) (2) (3) (4)
Observations 1,514 1,514 1,514 1,514
R-squared 0.404 0.563 0.539 0.663
Number of ID 366 366 366 366
F-stat Z variables 14.96*** 8.120*** 7.720*** 8.132***
Col. No. of Table A4 (5) (6) (7) (8)
p is NH3 pollutant.
Observations 1,514 1,514 1,514 1,514
R-squared 0.585 0.684 0.624 0.712
Number of ID 366 366 366 366
F-stat Z variables 22.89*** 9.899*** 11.99*** 11.39***
p: alternatively total wastewater, untreated wastewater, COD and NH3. z1: industrial water intake, z2: industrial COD generation
and z3: industrial NH3 generation. x: the five inputs of rice production (l, c, rc, fe and ir), t: time trend. Number of observations
and ID, R-squared and F-stat come from the instrumentation equation (first stage) in which the dependent (endogeneous) variable is
p. F-stat reports the joint significance of all Z variables on variables p (e.g. z are z1, z2 and z3, and p is total wastewater in col. (1)
of Table A3). We do not report the results for all other endogeneous variables (p and its interactions with inputs and TC terms) but
there are available upon request. *** statistical significance at 1%, ** statistical significance at 5%, * statistical significance at 10%.
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7.4 Complete table results

Table A6: Industrial wastewater and rice yield - complete results of Table 2

Type of p Total wastewater (treated and untreated) Untreated wastewater
Estimated model Model B Model C Model D Model E Model B Model C Model D Model E

(1) (2) (3) (4) (5) (6) (7) (8)
l 1.279** 8.559 0.856* 7.784 1.258** 8.648 0.838* 8.173

(0.493) (5.636) (0.353) (4.827) (0.488) (5.227) (0.390) (4.776)
c -0.104 -0.0567 -0.0686 0.0363 -0.109 -0.317 -0.0880 -0.106

(0.0811) (1.198) (0.0808) (1.049) (0.0820) (1.380) (0.0841) (1.202)
rc 2.014*** -1.153 1.980*** -3.023 2.011*** -1.645 1.985*** -3.197

(0.427) (4.610) (0.460) (3.761) (0.430) (4.465) (0.463) (3.676)
fe 0.702 -10.11 0.731 -9.119 0.713 -8.853 0.697 -8.278

(0.932) (6.289) (0.894) (5.563) (0.931) (5.966) (0.941) (5.463)
ir -0.0793 0.0566 -0.116 0.450 -0.0770 0.0696 -0.106 0.318

(0.197) (1.973) (0.195) (2.024) (0.196) (1.955) (0.183) (1.922)
lsq -0.161* -1.648* -0.136** -1.597 -0.160* -1.435 -0.141* -1.374

(0.0633) (0.813) (0.0503) (0.808) (0.0629) (0.727) (0.0555) (0.737)
rcsq -0.151 -0.488 -0.172 0.231 -0.151 -0.301 -0.170 0.245

(0.108) (1.114) (0.124) (0.679) (0.109) (1.042) (0.123) (0.714)
csq -0.00456 0.0421 -0.00454 0.0392 -0.00434 0.0469 -0.00430 0.0447

(0.00281) (0.0393) (0.00297) (0.0451) (0.00285) (0.0334) (0.00308) (0.0364)
fesq 0.0530 -1.178 0.0390 -1.082 0.0525 -1.103 0.0438 -1.021

(0.0529) (0.657) (0.0599) (0.669) (0.0530) (0.655) (0.0620) (0.655)
irsq -0.0153 -0.500* -0.0219 -0.433** -0.0156 -0.479* -0.0200 -0.428**

(0.0116) (0.208) (0.0142) (0.125) (0.0126) (0.188) (0.0144) (0.120)
l_rc -0.314 -4.010* -0.205 -3.225* -0.308 -3.578* -0.203 -2.938*

(0.257) (1.853) (0.214) (1.362) (0.255) (1.554) (0.230) (1.204)
l_c 0.0563* -0.0682 0.0531* -0.0684 0.0559* -0.0753 0.0580* -0.0883

(0.0219) (0.166) (0.0237) (0.221) (0.0219) (0.152) (0.0249) (0.196)
l_fe -0.136 2.600* -0.102 1.999 -0.136 1.897 -0.0987 1.349

(0.165) (1.148) (0.162) (1.088) (0.165) (1.234) (0.169) (1.097)
l_ir 0.0653 0.0339 0.0498 0.189 0.0670 0.0819 0.0423 0.205

(0.0466) (0.324) (0.0479) (0.172) (0.0464) (0.359) (0.0490) (0.177)
rc_c 0.0511 -0.0400 0.0462 -0.0396 0.0515 0.00852 0.0474 -0.0363

(0.0279) (0.509) (0.0231) (0.379) (0.0280) (0.458) (0.0239) (0.339)
rc_fe -0.255 3.837** -0.259 3.360** -0.256 3.457** -0.262 3.176**

(0.199) (1.296) (0.191) (1.116) (0.199) (1.182) (0.196) (1.117)
rc_ir -0.0824 -0.697 -0.0547 -1.303** -0.0816 -0.866 -0.0648 -1.315**

(0.0771) (0.601) (0.0721) (0.331) (0.0772) (0.525) (0.0760) (0.430)
c_fe -0.0409 -0.0426 -0.0437 -0.110 -0.0400 -0.0165 -0.0422 -0.0787

(0.0266) (0.423) (0.0293) (0.401) (0.0265) (0.439) (0.0296) (0.433)
c_ir 0.0192** 0.0962 0.0140* 0.149 0.0190** 0.0952 0.0154** 0.148

(0.00608) (0.108) (0.00637) (0.109) (0.00607) (0.0948) (0.00503) (0.100)
fe_ir 0.0828 1.266 0.0895 1.534 0.0804 1.386 0.0958 1.592

(0.0682) (0.656) (0.0625) (0.864) (0.0670) (0.721) (0.0651) (0.909)
t 0.144 0.0708 0.436 0.601 0.144 0.0638 0.526* 0.383

(0.0756) (0.0867) (0.223) (1.001) (0.0741) (0.0837) (0.248) (0.913)
t2 0.00305 0.00423 0.116* 0.131 0.00340 0.00399 0.0982* 0.104

(0.00927) (0.0108) (0.0478) (0.0883) (0.00919) (0.0106) (0.0487) (0.0840)
l_t 0.0112 0.00895 -0.0709* -0.0438 0.0112 0.00926 -0.0645* -0.0320

(0.00910) (0.00506) (0.0328) (0.0668) (0.00876) (0.00501) (0.0284) (0.0547)
c_t -0.00141 -0.00196 0.0160 3.64e-05 -0.00147 -0.00175 0.0125 0.00391

(0.00251) (0.00222) (0.0129) (0.0318) (0.00254) (0.00239) (0.0117) (0.0310)
rc_t -0.0270 -0.0259 -0.137* -0.307 -0.0270 -0.0260 -0.120** -0.232

(0.0222) (0.0218) (0.0539) (0.352) (0.0222) (0.0224) (0.0379) (0.306)
fe_t 0.00105 0.0160 -0.00305 0.160 0.000517 0.0168 -0.0235 0.136

(0.0123) (0.0169) (0.0498) (0.208) (0.0122) (0.0175) (0.0353) (0.183)
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ir_t -0.000232 -0.00247 0.0319 0.01000 8.97e-05 -0.00223 0.0242 -0.00741
(0.00479) (0.00271) (0.0193) (0.0663) (0.00479) (0.00276) (0.0156) (0.0619)

industry (value) -0.00616 -0.00682 -0.00789 -0.00683 -0.00586 -0.00585 -0.00733 -0.00611
(0.0118) (0.0112) (0.0117) (0.0110) (0.0118) (0.0109) (0.0116) (0.0109)

industry (hours) -0.181** -0.182** -0.175** -0.185** -0.182** -0.187** -0.173** -0.184**
(0.0625) (0.0586) (0.0601) (0.0524) (0.0622) (0.0577) (0.0618) (0.0541)

p -0.00873 -3.463* -0.0583** -3.583** -0.0116 -3.388* -0.0584** -3.530**
(0.00900) (1.476) (0.0169) (1.008) (0.00787) (1.461) (0.0194) (1.032)

p*l -1.113 -0.997 -1.147 -1.076
(0.725) (0.596) (0.682) (0.604)

p*c 0.0139 0.00296 0.0473 0.0196
(0.162) (0.138) (0.190) (0.162)

p*rc 0.331 0.572 0.408 0.613
(0.553) (0.463) (0.556) (0.470)

p*fe 1.421 1.267 1.272 1.176
(0.815) (0.693) (0.782) (0.687)

p*ir -0.0434 -0.0896 -0.0436 -0.0720
(0.257) (0.259) (0.258) (0.247)

p*lsq 0.202 0.195 0.177 0.168
(0.102) (0.102) (0.0920) (0.0942)

p*rcsq 0.0572 -0.0415 0.0332 -0.0435
(0.142) (0.0829) (0.136) (0.0904)

p*csq -0.00643 -0.00605 -0.00715 -0.00686
(0.00555) (0.00647) (0.00476) (0.00527)

p*fesq 0.168 0.153 0.162 0.149
(0.0931) (0.0931) (0.0949) (0.0932)

p*irsq 0.0660* 0.0564** 0.0650** 0.0576**
(0.0268) (0.0152) (0.0251) (0.0153)

p*l_rc 0.523* 0.412* 0.473* 0.381*
(0.238) (0.166) (0.202) (0.148)

p*l_c 0.0174 0.0167 0.0190 0.0204
(0.0235) (0.0300) (0.0222) (0.0276)

p*l_fe -0.351* -0.267 -0.259 -0.180
(0.153) (0.144) (0.172) (0.152)

p*l_ir 0.00947 -0.0120 0.000715 -0.0171
(0.0419) (0.0219) (0.0478) (0.0235)

p*rc_c 0.0108 0.0109 0.00437 0.0109
(0.0725) (0.0524) (0.0667) (0.0478)

p*rc_fe -0.550** -0.475** -0.511** -0.463**
(0.168) (0.146) (0.156) (0.148)

p*rc_ir 0.0830 0.164*** 0.108 0.168**
(0.0857) (0.0397) (0.0759) (0.0553)

p*c_fe -0.00543 0.00340 -0.00848 -0.000407
(0.0606) (0.0564) (0.0639) (0.0620)

p*c_ir -0.0108 -0.0181 -0.0109 -0.0183
(0.0150) (0.0151) (0.0136) (0.0142)

p*fe_ir -0.153 -0.189 -0.173 -0.201
(0.0836) (0.111) (0.0942) (0.120)

p*t -0.0415 -0.0689 -0.0557 -0.0411
(0.0390) (0.137) (0.0437) (0.129)

p*t2 -0.0155** -0.0174 -0.0133* -0.0140
(0.00575) (0.0111) (0.00598) (0.0107)

p*l_t 0.0111* 0.00733 0.0108* 0.00600
(0.00487) (0.00942) (0.00440) (0.00781)

p*c_t -0.00242 -0.000253 -0.00196 -0.000770
(0.00151) (0.00415) (0.00136) (0.00410)

p*rc_t 0.0156** 0.0381 0.0135** 0.0284
(0.00556) (0.0463) (0.00399) (0.0409)

p*fe_t 0.000537 -0.0202 0.00334 -0.0171
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(0.00633) (0.0280) (0.00505) (0.0249)
p*ir_t -0.00454 -0.00160 -0.00361 0.000695

(0.00262) (0.00876) (0.00221) (0.00837)
Constant -0.779 28.71* 0.0484 30.04** -0.739 27.78* 0.180 29.08**

(1.145) (12.43) (1.362) (9.681) (1.157) (12.03) (1.439) (9.584)
Observations 1,514 1,514 1,514 1,514 1,514 1,514 1,514 1,514
R-squared 0.393 0.407 0.401 0.410 0.394 0.406 0.400 0.408
Number of ID 366 366 366 366 366 366 366 366
Translog terms YES YES YES YES YES YES YES YES
Time*inputs YES YES YES YES YES YES YES YES
Total effect of p -2.792** -0.0951** -2.889*** -2.778** -0.105** -2.881***
p*inputs NO YES NO YES NO YES NO YES
p*TC NO NO YES YES NO YES YES YES
Estimation method: within regression estimator. The dependent variable is rice production (quantities) per mu. l: labor ; c:
capital ; rc: running costs ; fe: fertilizers ; ir: irrigation ; I1 and I2 : industrial production in yuan and hours. All variables
are in logarithm (except t and t2). Standard errors in parentheses are clustered at village level. *** statistical significance
at 1%, ** statistical significance at 5%, * statistical significance at 10%. Translog term are: l2, c2, fe2, ir2, rc2, l*c, l*fe, l*ir,
l*rc, c*fe, c*ir, c*rc, fe*ir, fe*rc and ir*rc. Technical change (TC) terms are: t*l, t*c, t*fe, t*ir and t*rc.
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Table A7: COD, NH3 and rice yield - complete results of Table 3

Type of p COD NH3
Estimated model Model B Model C Model D Model E Model B Model C Model D Model E

(1) (2) (3) (4) (5) (6) (7) (8)
l 1.329* 1.251 1.215* 1.355 1.302* 2.358* 1.384* 1.994**

(0.546) (0.813) (0.535) (0.677) (0.512) (1.130) (0.598) (0.749)
c -0.0928 -0.0739 -0.0604 -0.0614 -0.109 0.0411 -0.124 0.112

(0.0742) (0.127) (0.0622) (0.129) (0.0772) (0.195) (0.0687) (0.175)
rc 2.007*** 0.499 1.724*** 0.663 2.007*** -1.313 1.794*** -0.990

(0.453) (0.715) (0.379) (0.783) (0.418) (1.179) (0.243) (1.225)
fe 0.671 -1.436 0.382 -1.115 0.676 -0.112 0.530 0.410

(0.926) (1.137) (1.044) (1.258) (0.929) (1.223) (0.885) (1.188)
ir -0.0767 0.112 -0.163 -0.00880 -0.0760 0.815* -0.00357 0.304

(0.200) (0.199) (0.223) (0.239) (0.187) (0.347) (0.121) (0.320)
lsq -0.162** -0.239* -0.157** -0.256* -0.162* -0.204** -0.178** -0.138

(0.0628) (0.105) (0.0552) (0.110) (0.0639) (0.0756) (0.0624) (0.0855)
rcsq -0.146 -0.0975 -0.130 -0.0641 -0.152 0.299 -0.0846 0.280

(0.103) (0.139) (0.0976) (0.153) (0.107) (0.322) (0.0599) (0.275)
csq -0.00511 -0.00552 -0.00486 -0.00511 -0.00428 -0.00796 -0.00421 -0.00911

(0.00288) (0.00486) (0.00315) (0.00515) (0.00286) (0.00635) (0.00350) (0.00735)
fesq 0.0562 -0.0591 0.0478 -0.0118 0.0532 -0.172 0.0678 -0.114

(0.0546) (0.0763) (0.0576) (0.0421) (0.0535) (0.126) (0.0676) (0.118)
irsq -0.0151 -0.0488 -0.0268* -0.0562* -0.0168 -0.117* -0.0231 -0.117*

(0.0111) (0.0290) (0.0132) (0.0249) (0.0131) (0.0526) (0.0130) (0.0499)
l_rc -0.330 -0.762 -0.351 -0.668 -0.319 -0.782 -0.337 -0.531

(0.275) (0.418) (0.276) (0.398) (0.257) (0.451) (0.227) (0.457)
l_c 0.0567** 0.0612 0.0580** 0.0661* 0.0565** 0.00853 0.0823** -0.0136

(0.0214) (0.0364) (0.0182) (0.0317) (0.0218) (0.0497) (0.0204) (0.0333)
l_fe -0.135 0.412 -0.0691 0.286 -0.136 0.0480 -0.139 -0.0771

(0.159) (0.257) (0.178) (0.282) (0.163) (0.245) (0.115) (0.266)
l_ir 0.0644 0.0713 0.0672 0.0876 0.0617 0.104 0.0218 0.114

(0.0448) (0.0769) (0.0458) (0.0784) (0.0466) (0.0856) (0.0500) (0.0973)
rc_c 0.0502 0.0551 0.0373 0.0503 0.0512 0.0906 0.0291 0.0463

(0.0266) (0.0404) (0.0198) (0.0415) (0.0276) (0.0687) (0.0182) (0.0751)
rc_fe -0.251 0.452 -0.178 0.289 -0.247 0.357 -0.260 0.108

(0.196) (0.313) (0.209) (0.299) (0.200) (0.339) (0.169) (0.230)
rc_ir -0.0854 -0.168** -0.0552 -0.132 -0.0813 -0.345* -0.103 -0.126

(0.0770) (0.0610) (0.0629) (0.0731) (0.0770) (0.134) (0.0690) (0.106)
c_fe -0.0426 -0.0651 -0.0413 -0.0742 -0.0403 -0.111 -0.0260 -0.0990

(0.0279) (0.0323) (0.0263) (0.0450) (0.0261) (0.0652) (0.0242) (0.0642)
c_ir 0.0195** 0.0393** 0.0176* 0.0454* 0.0189** 0.0240 0.0208*** 0.0509

(0.00631) (0.0147) (0.00708) (0.0179) (0.00581) (0.0219) (0.00454) (0.0279)
fe_ir 0.0855 0.122 0.0980 0.126 0.0838 0.148 0.103 0.0887

(0.0715) (0.100) (0.0658) (0.121) (0.0680) (0.206) (0.0547) (0.170)
t 0.139 0.156 0.120 0.146** 0.146 0.104 0.184* 0.129

(0.0803) (0.0825) (0.0792) (0.0523) (0.0779) (0.102) (0.0797) (0.145)
t2 0.00260 0.00400 0.0140 0.0132 0.00321 0.00383 0.00135 0.00269

(0.00956) (0.00950) (0.0129) (0.0132) (0.00925) (0.0102) (0.0124) (0.00943)
l_t 0.0103 0.00359 -0.00527 -0.00542 0.0106 0.00258 -0.00571 -0.0328*

(0.00902) (0.00802) (0.00913) (0.00905) (0.00855) (0.00627) (0.00545) (0.0140)
c_t -0.00128 -0.000678 0.000309 -0.000168 -0.00140 -0.000985 0.00110 0.00421

(0.00238) (0.00241) (0.00287) (0.00425) (0.00248) (0.00235) (0.00403) (0.00492)
rc_t -0.0270 -0.0269 -0.0266 -0.0454 -0.0270 -0.0246 -0.00532 -0.0322

(0.0221) (0.0205) (0.0240) (0.0261) (0.0223) (0.0220) (0.0124) (0.0410)
fe_t 0.00275 0.00137 0.00350 0.0228 0.000985 0.0121 -0.0237* 0.0364

(0.0133) (0.0124) (0.0173) (0.0231) (0.0120) (0.0129) (0.0100) (0.0267)
ir_t -0.000553 -0.000398 0.000989 -0.00383 -0.000131 -0.00431 -0.00542 -0.0243*

(0.00454) (0.00317) (0.00515) (0.00761) (0.00472) (0.00428) (0.00553) (0.0101)
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industry (yuan) -0.00665 -0.00807 -0.00938 -0.00839 -0.00627 -0.00701 -0.00269 -0.00326
(0.0117) (0.0127) (0.0130) (0.0132) (0.0115) (0.0118) (0.0117) (0.0119)

industry (hours) -0.180** -0.181** -0.182** -0.181** -0.169* -0.164* -0.175* -0.182*
(0.0637) (0.0643) (0.0610) (0.0605) (0.0663) (0.0741) (0.0680) (0.0816)

p -0.000659 -11.08*** -0.230** -7.928** -0.0155 -2.675 -0.0454 -1.658
(0.0557) (2.285) (0.0846) (2.105) (0.0140) (2.087) (0.0273) (1.974)

p*l -3.804* -3.367** -0.815 -0.530
(1.623) (1.034) (0.441) (0.307)

p*c 0.729* 0.547 -0.105 -0.142
(0.294) (0.311) (0.135) (0.111)

p*rc 1.118 1.999 1.800** 1.582**
(0.733) (1.618) (0.603) (0.458)

p*fe 4.225* 1.937 -0.230 -0.625
(2.044) (2.341) (0.852) (0.657)

p*ir -0.925 -0.200 -0.416 -0.0704
(0.539) (0.521) (0.215) (0.170)

p*lsq 0.484* 0.582* 0.0353 -0.00289
(0.202) (0.254) (0.0415) (0.0684)

p*rcsq 0.181 -0.248 -0.285 -0.271
(0.323) (0.342) (0.254) (0.161)

p*csq -0.0160 -0.00756 0.00452 0.00546
(0.0322) (0.0368) (0.00540) (0.00671)

p*fesq 0.533 0.373 0.185 0.154
(0.357) (0.321) (0.0988) (0.104)

p*irsq 0.113 0.114 0.0609* 0.0610**
(0.0583) (0.0688) (0.0250) (0.0225)

p*l_rc 2.143* 1.559* 0.293 0.141
(0.874) (0.666) (0.220) (0.242)

p*l_c 0.0387 0.00593 0.0448* 0.0578**
(0.133) (0.116) (0.0186) (0.0214)

p*l_fe -1.392** -0.952 -0.0826 -0.0179
(0.490) (0.482) (0.182) (0.161)

p*l_ir 0.139 -0.00787 -0.0261 -0.0490
(0.205) (0.159) (0.0383) (0.0545)

p*rc_c -0.163 -0.176 -0.0448 -0.0233
(0.172) (0.126) (0.0394) (0.0434)

p*rc_fe -1.773* -0.912 -0.233 -0.0662
(0.830) (0.550) (0.296) (0.151)

p*rc_ir 0.302 0.0276 0.137 -0.0182
(0.336) (0.345) (0.0746) (0.0595)

p*c_fe -0.0255 0.0663 0.0580 0.0503
(0.0936) (0.0992) (0.0404) (0.0402)

p*c_ir -0.128* -0.145 -0.00552 -0.0181
(0.0606) (0.0742) (0.0121) (0.0150)

p*fe_ir -0.0365 0.0349 -0.0551 -0.00648
(0.261) (0.296) (0.0875) (0.0657)

p*t -0.0676 -0.349 -0.0375 -0.0459
(0.143) (0.255) (0.0469) (0.118)

p*t2 -0.0520* -0.0450 0.00124 -0.00139
(0.0257) (0.0273) (0.00478) (0.00430)

p*l_t 0.0292 0.0334 0.00650 0.0175*
(0.0170) (0.0219) (0.00583) (0.00781)

p*c_t -0.00641 0.000302 -0.000773 -0.00228
(0.00552) (0.0112) (0.00182) (0.00234)

p*rc_t 0.0242 0.122 -0.0170 0.00848
(0.0340) (0.0607) (0.0127) (0.0354)

p*fe_t 0.0127 -0.0683 0.0225 -0.0119
(0.0151) (0.0541) (0.0112) (0.0229)

p*ir_t 0.000679 0.0296 0.00293 0.0131**
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(0.0104) (0.0184) (0.00268) (0.00455)
Constant -0.859 8.970** 1.076 7.642** -0.865 7.765 0.0970 6.506

(1.031) (2.419) (2.021) (2.965) (1.154) (5.145) (1.445) (5.187)
Observations 1,514 1,514 1,514 1,514 1,514 1,514 1,514 1,514
R-squared 0.393 0.404 0.399 0.407 0.394 0.402 0.399 0.407
Number of ID 366 366 366 366 366 366 366 366
Translog terms YES YES YES YES YES YES YES YES
Time*inputs YES YES YES YES YES YES YES YES
Total effect of p -9.334*** -0.289 -6.976*** -2.355 -0.0675 -1.469
p*inputs NO YES NO YES NO YES NO YES
p*TC NO NO YES YES NO YES YES YES
Estimation method: within regression estimator. The dependent variable is rice production (quantities) per mu. l: labor ; c:
capital ; rc: running costs ; fe: fertilizers ; ir: irrigation ; I1 and I2 : industrial production in yuan and hours. All variables
are in logarithm (except t and t2). Standard errors in parentheses are clustered at village level. *** statistical significance at
1%, ** statistical significance at 5%, * statistical significance at 10%. Translog terms are: l2, c2, fe2, ir2, rc2, l*c, l*fe, l*ir,
l*rc, c*fe, c*ir, c*rc, fe*ir, fe*rc and ir*rc. Technical change (TC) terms are: t*l, t*c, t*fe, t*ir and t*rc.
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