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A SHORT NOTE ON A PAIR OF MEROMORPHIC
FUNCTIONS IN A p-ADIC FIELD, SHARING A FEW SMALL

ONES

ALAIN ESCASSUT AND C.C. YANG

Abstract. A new Nevanlinna theorem on q p-adic small functions is given.
Let f, g, be two meromorphic functions on a complete ultrametric algebraically
closed field IK of characteristic 0, or two meromorphic functions in an open disk
of IK, that are not quotients of bounded analytic functions by polynomials. If
f and g share 7 small meromorphic functions I.M., then f = g.

Better results hold when f and g satisfy some property of growth. Partic-
ularly, if f and g have finitely many poles or finitely many zeros and share 3
small meromorphic functions I.M., then f = g.

1. Main results

Let IK be a complete ultrametric algebraically closed field of characteristic
0. Let us fix a ∈ IK and let R ∈]0,+∞[. We denote by d(a,R−) the disk
{x ∈ IK | |x− a| < R}.

We denote by A(IK) the IK-algebra of entire functions in IK and by M(IK)
the field of meromorphic functions which is its field of fractions. We denote by
A(d(a,R−)) the IK-algebra of analytic functions in d(a,R−) i.e. the set of power
series converging in the disk d(a,R−) and by M(d(a,R−)) the field of mero-
morphic functions in d(a,R−) i.e. the field of fractions of A(d(a,R−)). More-
over, we denote by Ab(d(a,R−)) the IK-algebra of functions f ∈ A(d(a,R−))
that are bounded in d(a,R−), by Mb(d(a,R−)) its field of fractions and we put
Mu(d(a,R−)) =M(d(a,R−)) \ Ab(d(a,R−)).

We define N(r, f) ([1], chapter 40 or [3], chapter 2) in the same way as for
complex meromorphic functions [2]. Let f be a meromorphic function in all
IK (resp. in d(0, R−)) having no zero and no pole at 0. Let (an)n∈IN be the
sequence of poles of f , of respective order sn, with |an| ≤ |an+1| and, given
r > 0, (resp. r ∈]0, R[), let q(r) be such that |aq(r)| ≤ r, |aq(r)+1| > r. We then
denote by N(r, f) the counting function of the zeros of f , counting multiplicity,

as usual: for all r > 0, we put N(r, f) =

q(r)∑
j=0

sj(log |aj| − log(r)). Moreover, we

denote by N(r, f) the counting function of the poles of f , ignoring multiplicity
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as

q(r)∑
j=0

(log |aj| − log(r)). Next, we define the counting function of zeros of f as

Z(r, f) = N(r,
1

f
) and we put Z(r, f) = N(r,

1

f
).

Similarly, considering a function f ∈ M(d(a,R−)), we denote by N(r, f) the
counting function of the poles of f , counting multiplicity (0 < r < R) counting

multiplicity, as N(r, f) =

q(r)∑
j=0

sj(log |aj − a| − log(r)), the counting function of

the poles of f , ignoring multiplicity as N(r, f) =

q(r)∑
j=0

(log |aj − a| − log(r)) (0 <

r < R), we define the counting function of zeros of f as Z(r, f) = N(r,
1

f
) and

we put Z(r, f) = N(r,
1

f
).

Finally, in each situation, we put T (r, f) = max(Z(r, f), N(r, f)). Then T (r, f)
is strictly increasing and has most properties of the characteristic function of a
complex function, concerning operations (see [1], chapter 40 and [3], chapter 2.)

A function w ∈ M(IK) (resp. w ∈ M(d(a,R−))) is called a small function

with respect to f if lim
r→+∞

T (r, w)

T (r, f)
= 0 (resp. lim

r→R−

T (r, w)

T (r, f)
= 0) and we denote by

Mf (IK) (resp. Mf (d(a,R−))) the set of small functions with espect to f .
Two functions f, g ∈ M(IK) (resp. f, g ∈ Mu(d(a,R−))) are said to share

a small function I.M. w ∈ Mf (IK) ∩ Mg(IK) (resp. w ∈ Mf (d(a,R−)) ∩
Mg(d(a,R−))) if f(z) = w(z) holds if and only if g(z) = w(z).

A function F ∈ M(IK) (resp. F ∈ M(d(a,R−))) will be called climbing if

lim inf
r→+∞

Z(r, F )

N(r, F )
> 1 (resp. lim inf

r→R−

Z(r, F )

N(r, F )
> 1).

A function F ∈M(IK) (resp. F ∈M(d(a,R−))) will be called downing if if
1

F
is climbing.

A function F ∈M(IK) (resp. F ∈M(d(a,R−))) will be called strongly climb-
ing if N(r, f) = o(Z(r, f)), r → +∞ (resp. r → R).

A function F ∈M(IK) (resp. F ∈M(d(a,R−))) will be called strongly down-

ing if
1

F
is strongly climbing.

Remark: If a function f ∈ M(IK) (resp. f ∈ M(d(a,R−))) has finitely many
poles and infinitely many zeros, it is obviously strongly climbing.

Here we aim at studying the problem of two meromorphic functions sharing a
few small meromorphic functions I.M. in order to show that these two functions
are equal. Indeed thanks to Yamanoi’s Nevanlinna Second Main Theorem, a
similar result is known in complex analysis when two meromorphic functions
share 5 small meromorphic functions. But in p-adic analysis, no Theorem similar
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to Yamanoi’s Theorem is known. However, here we give Theorem 2 which makes
a tool other than Yamanoi’s Theorem to derive some similar results as follows.

Theorem 1: Let f, g ∈M(IK)be transcendental (resp. f, g ∈Mu(d(a,R−))),
be distinct and share q distinct small functions I.M. wj ∈Mf (IK)∩Mg(IK) (j =
1, ..., q) (resp. wj ∈ Mf (d(a,R−)) ∩Mg(d(a,R−)) (j = 1, ..., q)) other than the
constant ∞. Then

q∑
j=1

Z(r, f − wj) ≤ Z(r, f − g) + o(T (r, f)) + o(T (r, g)).

Theorem 2: Let f ∈ M(IK)be transcendental (resp. f ∈ Mu(d(a,R−))) and
let wj ∈ Mf (IK) (j = 1, ..., q) (resp. wj ∈ Mf (d(a,R−))) be q distinct small
functions other than the constant ∞. Then

qT (r, f) ≤ 3

q∑
j=1

Z(r, f − wj) + o(T (r, f)).

Moreover, if f is strongly climbing, then

qT (r, f) ≤ 2

q∑
j=1

Z(r, f − wj) + o(T (r, f)).

Corollary 1: Let f ∈ A(IK) be transcendental (resp. Let f ∈ Au((.0, R
−)))

and let wj ∈ Mf (IK) (j = 1, ..., q) (resp. wj ∈ Mf (d(0, R−)), (j=1,...,q)) be q
distinct small functions other than the constant ∞. Then

qT (r, f) ≤ 2

q∑
j=1

Z(r, f − wj) + o(T (r, f)).

Theorem 3: Let f, g ∈M(IK) be transcendental (resp. f, g ∈Mu(d(a,R−)))
be distinct and share 7 distinct small functions (other than the constant ∞) I.M.
wj ∈Mf (IK)∩Mg(IK) (j = 1, ..., 7) (resp. wj ∈Mf (d(a,R−))∩Mg(d(a,R−)) (j =
1, ..., 7)). Then f = g.

Moreover, if f and g are climbing and share 6 distinct small functions (other
than the constant ∞) I.M. then f = g.

Corollary 2: Let f, g ∈M(IK) be downing and share 6 distinct small functions
(other than the constant 0) I.M. wj ∈ Mf (IK) ∩ Mg(IK) (j = 1, ..., 6) (resp.
wj ∈Mf (d(a,R−)) ∩Mg(d(a,R−)) (j = 1, ..., 6)). Then f = g.

Theorem 4: Let f, g ∈ M(IK) be transcendental, strongly climbing and share
3 distinct small functions (other than the constant ∞) I.M. wj ∈ Mf (IK) ∩
Mg(IK) (j = 1, 2, 3) (resp. wj ∈ Mf (d(a,R−)) ∩Mg(d(a,R−)) (j = 1, 2, 3)).
Then f = g.
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Corollary 3: Let f, g ∈M(IK) be transcendental, strongly downing and share
3 distinct small functions (other than the constant 0) I.M. wj ∈ Mf (IK) ∩
Mg(IK) (j = 1, 2, 3) (resp. wj ∈ Mf (d(a,R−)) ∩Mg(d(a,R−)) (j = 1, 2, 3)).
Then f = g.

Corollary 4: Let f, g ∈ A(IK) be transcendental (resp. f, g ∈ Au(d(a,R−)))
and share 3 distinct small functions (other than the constant ∞) I.M. wj ∈
Mf (IK) ∩Mg(IK) (j = 1, 2, 3) (resp. wj ∈ Mf (d(a,R−)) ∩Mg(d(a,R−)) (j =
1, 2, 3)). Then f = g.

Remarks: The results known in complex analysis suggest that the number
7 obtained in Theorem 2 might be improved, concerning p-adic meromorphic
functions. On the contrary, concerning analytic functions, the number 3 obtained
in Theorem 4 seems to be the best possible. In Theorem 41.1 of [1] as in Theorem
3.2 of [3], it is shown that two entire functions f, g sharing 2 constants are equal
and in Theorem 41.2 of [1], it is shown that two unbounded analytic functions
f, g ∈ Au(d(0, R−)) sharing 3 constants are equal. Here we see that this last
statement is generalized.

The question whether Corollary 3 is sharp is interesting in Au(d(a,R−)). If
IK had positive characteritic, it would be easy to make a pair of distinct entire
functions f and g sharing IM two constants. But then the Nevanlinna Theory
used here would not apply. On the other hand, Theorem 41.1 of [1] shows that
in A(IK) it is not sharp for constants.

2. The proofs

In all the proofs, we can obviously assume that the disk d(a,R−) is d(0, R−).
In order to prove the theorems, we need to state the following four lemmas.

Lemma 1: Let f, g ∈M(IK) be transcendental (resp. let f, g ∈Mu(d(0, R−)))
and let M(r) = (max(T (r, f), T (r, g)). Then T (r, f+g) ≤ T (r, f)+T (r, g)+O(1).
Moreover, if f and g are climbing, then there exists λ > 0 and S > 0 (resp.
S ∈]0, R[) such that

T (r, f + g) ≤ (2− λ) max(T (r, f), T (r, g)) +O(1),∀r > S

(resp. ∀r ∈]S,R[).
Furthermore, if f and g are strongly climbing then

T (r, f + g) ≤M(r) + o(M(r)), ∀r > S

(resp. ∀r ∈]S,R[).

Proof: The general statement concerning meromorphic functions f, g that
are not supposed to be climbing is well known and comes, for instance from
Theorem 40.8 in [1]. In all the sproof, we set M(r) = max(T (r, f), T (r, g)) and
for simplicity, we suppose first that f and g belong to M(IK).

Suppose now that f and g are just climbing. By Lemma 32.3 in [1], we can

write f and g in the form f =
h1

`1
and g =

h2

`2
, with h1, h2, `1, `2 ∈ A(IK) where

hi and `i have no common zeros [1]. Then, applying hypotheses on f and g, there
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exists S > 0 and λ > 0, such that
T (r, `1)

M(r)
≤ 1− λ and

T (r, `2)

M(r)
≤ 1− λ ∀r > S.

Consequently, T (r, h1`2) ≤ (2−λ)M(r), T (r, h2`1) ≤ (2−λ)M(r) ∀r > S, hence
T (r, h1`2 − h1`2) ≤ (2− λ)M(r) +O(1) ∀r > S while T (r, `1`2) ≤ (2− 2λ)M(r).
Consequently

T (r, f + g) ≤ (2− λ)M(r) +O(1) ∀r > S.

Let us now now suppose that f and g strongly climbing. Let us write again

f and g in the form
h1

`1
and g =

h2

`2
, with h1, h2, `1, `2 ∈ A(IK) where hi and

`i have no common zeros. For every r, set M(r) = max(T (r, f), T (r, g)). Since
h1, h2, `1, `2 belong to A(IK), by Theorem 40.8 of [1], we have:

T (r, h1`2 − h2`1) ≤ max(T (r, h1`2), T (r, h2`1)) + o(M(r))

Consequently, we can write T (r, `1`2) ≤ T (r, `1)+T (r, `2) ≤M(r)+o(M(r)) ∀r >
S therefore T (r, f + g) ≤M(r) + o(M(r)).

Suppose now that f and g belong toMu(d(0, R−)). Without loss of generality,
we can assume that the field IK is spherically complete because the Nevanlinna
functions Z(r, f), N(r, f), T (r, f) are the same in a spherically algebraically

closed extension of IK. In such a field, we can write f in the form
h1

`1
and g in the

form
h2

`2
where hi and `i have no common zero and then we can make the same

reasonings as in M(IK). That ends the proof of Lemma 1.

The following Lemma 2 is Lemma 40.10 in [1] (see also Proposition 2.5 in [3]):

Lemma 2: Let f ∈ M(IK). Then T (r, f) ≤ O(log(r)) in ]0,+∞[ if and only
if f belongs to IK(x). Let f ∈ M(d(0, R−)). Either f ∈ Mb(d(0, R−)) and then
T (r, f) is bounded in ]0, R[ or f ∈Mu(d(0, R−)) and then lim

r→R−
T (r, f) = +∞.

The following Lemma 3 comes from Theorems 43.10 and 43.11 in [1] (see also
Theorem 2.21 in [3]).

Lemma 3: Let f ∈M(IK) be transcendental (resp. let f ∈Mu(d(0, R−))) and
let w1, w2, w3 ∈Mf (IK) (resp. let w1, w2, w3 ∈Mf (d(0, R−))). Then

T (r, f) ≤ Z(r, f − w1) + Z(r, f − w2) + Z(r, f − w3) + o(T (r, f))

Moreover, if f is strongly climbing, then

T (r, f) ≤ Z(r, f − w1) + Z(r, f − w2) + o(T (r, f)).

General remark: By Lemma 2, all functions h we will consider in M(IK)
(resp. in Mu(d(0, R−))) satisfy lim

r→+∞
T (r, h) = +∞, (resp. lim

r→R
T (r, h) = +∞).

Proof of Theorem 1: Suppose that f and g belong to M(IK), are distinct
and share q distinct small functions I.M. wj ∈ Mf (IK) ∩Mg(IK) (j = 1, ..., q)
(resp. wj ∈Mf (d(0, R−)) ∩Mg(d(0, R−)) (j = 1, ..., q)).
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Lat b be a zero of f − wi for a certain index i. Then it is also a zero of

g − wi. Suppose that b is counted several times in the sum

q∑
j=1

Z(r, f − wj),

which means that it is a zero of another function f −wk for a certain index k 6= i.
Then we have wi(b) = wk(b) and hence b is a zero of the function wi − wk which

belongs to Mf (IK). Now, put Z̃(r, f − w1) = Z(r, f − w1) and for each j > 1,

let Z̃(r, f − wj) be the counting function of zeros of f − wj in the disk d(0, r−)
ignoring multiplicity and avoiding the zeros already counted as zeros of f−wk for

some k < j. Consider now the sum

q∑
j=1

Z̃(r, f − wj). Since the functions wi−wj

belong to Mf (IK), clearly, we have

q∑
j=1

Z(r, f − wj) =

q∑
j=1

Z̃(r, f − wj) = o(T (r, f))

.
Now, it is clear, from the assumption, that f(x) − wj(x) = 0 implies g(x) −

wj(x) = 0 and hence f(x) − g(x) = 0. Since f − g is not the identically zero
function, it follows that

q∑
j=1

Z(r, f − wj) ≤ Z(r, f − g).

Consequently,

q∑
j=1

Z(r, f − wj) ≤ Z(r, f − g) + o(T (r, f)) + o(T (r, g)).

Now, if f and g belong to M(d(0, R−)), the proof is exactly the same.

Proof of Theorems 2: By Lemma 3, for every triplet (i, j, k) such that 1 ≤
i ≤ j ≤ k ≤ q, we can write

T (r, f) ≤ Z(r, f − wi) + Z(r, f − wj) + Z(r, f − wk) + o(T (r, f)).

The number of such inequalities is C3
q . Summing up, we obtain

(1)

C3
qT (r, f) ≤

∑
(i,j,k), 1≤i≤j≤k≤q

Z(r, f −wi)+Z(r, f −wj)+Z(r, f −wk)+o(T (r, f)).

In this sum, for each index i, the number of terms Z(r, f −wi) is clearly C2
q−1.

Consequently, by (1) we obtain

C3
qT (r, f) ≤ C2

q−1

q∑
i=1

Z(r, f − wi) + o(T (r, f))
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and hence
q

3
T (r, f) ≤

q∑
i=1

Z(r, f − wi) + o(T (r, f)).

Suppose now that f is strongly climbing. By Lemma 3, for every pair (i, j)
such that 1 ≤ i ≤ j ≤ q, we have

T (r, f) ≤ Z(r, f − wi) + Z(r, f − wj) + o(T (r, f)).

The number of such inequalities is then C2
q . Summing up we now obtain

(2) C2
qT (r, f) ≤

∑
(i,j, 1≤i≤j≤q

Z(r, f − wi) + Z(r, f − wj) + o(T (r, f)).

In this sum, for each index i, the number of terms Z(r, f − wi) is clearly
C1

q−1 = q − 1. Consequently, by (1) we obtain

C2
qT (r, f) ≤ (q − 1)

q∑
i=1

Z(r, f − wi) + o(T (r, f))

and hence
q

2
T (r, f) ≤

q∑
i=1

Z(r, f − wi) + o(T (r, f)).

Proof of Theorems 3 and 4: In all the proofs of Theorems 3 and 4, we put
M(r) = max(T (r, f), T (r, g)). Suppose that f and g are distinct and share q
small functions I.M. wj, (1 ≤ j ≤ q). By Theorem 2, we have

qT (r, f) ≤ 3

q∑
j=1

Z(r, f − wj) + o(T (r, f)).

But thanks to Theorem 1, we can derive

qT (r, f) ≤ 3T (r, f − g) + o(T (r, f))

and similary
qT (r, g) ≤ 3T (r, f − g) + o(T (r, g))

hence

(1) qM(r) ≤ 3T (r, f − g) + o(M(r)).

By Lemma 1, we can derive that

qM(r) ≤ 3(T (r, f) + T (r, g)) + o(M(r)))

and hence qM(r) ≤ 6M(r) + o(M(r)). That applies to the situation when f and
g belong toM(IK) as well as when when f and g belong toMu(d(0, R−)). In the
hypotheses of Theorem 3, this is impossible if q ≥ 7 and hence the first statement
of Theorem 3 is proved.

Suppose now that f and g are climbing. Then by Lemma 1 there exists λ > 0
and S > 0 (resp. S ∈]0, R[) such that T (r, f − g) ≤ (2− λ)M(r) +O(1) ∀r > S,
(resp. ∀r ∈]S,R[). Consequently, by (1) we obtain qM(r) ≤ 3(2 − λ)M(r) +
o(M(r))∀r > S, (resp. ∀r ∈]S,R[). Thus, this inequality is impossible if q ≥ 6.
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That finishes proving Theorem 3 when f and g are meromorphic transcendental
climbing functions.

Similarly, if f and g are meromorphic climbing functions in d(0, R−), we can
clearly make the same reasoning with S ∈]0, R[ and r ∈]S,R[. That ends the
proof of Theorem 3.

Consider now the hypotheses of Theorem 4. By Lemma 1, Relation (2) gives
us

qM(r) ≤ 2M(r) + o(M(r))

which is obviously absurd whenever q ≥ 3 and proves that f = g when f and g
belong to M(IK) as well as when f and g belong to Mu(d(0, R−)).

Acknowledgements: We are grateful to the anonymous referee for sugges-
tions and improvements.
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