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A B S T R A C T

Deep brain stimulation (DBS) therapy requires extensive patient-specific planning prior to implantation to
achieve optimal clinical outcomes. Collective analysis of patient’s brain images is promising in order to provide
more systematic planning assistance. In this paper the design of a normalization pipeline using a group specific
multi-modality iterative template creation process is presented. The focus was to compare the performance of a
selection of freely available registration tools and select the best combination. The workflow was applied on 19
DBS patients with T1 and WAIR modality images available. Non-linear registrations were computed with ANTS,
FNIRT and DRAMMS, using several settings from the literature. Registration accuracy was measured using
single-expert labels of thalamic and subthalamic structures and their agreement across the group. The best
performance was provided by ANTS using the High Variance settings published elsewhere. Neither FNIRT nor
DRAMMS reached the level of performance of ANTS. The resulting normalized definition of anatomical struc-
tures were used to propose an atlas of the diencephalon region defining 58 structures using data from 19 pa-
tients.

1. Introduction

Deep brain stimulation (DBS) is established for routine therapy of
movement disorders such as Parkinson’s disease (PD), essential tremor
(ET) and dystonia (Coubes et al., 2002). Over the years, new brain
targets for stimulation have been proposed by observing the modula-
tion of symptoms and new conditions are explored with DBS (Hariz
et al., 2013). Thereby different hypotheses on the mechanisms of action
were suggested (Herrington et al., 2015), but none of them provides
rationale for all the multiple phenomena observed in the clinic (Hariz,
2017; Hemm and Wårdell, 2010). Lastly, the introduction of new sti-
mulation devices with increased number of contacts for stimulation
participated to make surgical planning more complex.

A source of information to provide assistance during surgical plan-
ning is group analysis of brain images from patients. The goal is to draw

conclusions that can be generalized and applied to new patients i.e. for
planning of surgeries. An important point in this process is the possi-
bility to analyze the data from different patients in the same anatomical
space. Anatomical atlases based on histology (Morel, 2007;
Schaltenbrand, 1977; Talairach and Tournoux, 1988) have been used
for a long time as assistance during planning as they provide outlines of
the different structures of the deep brain. Because of their creation
methodology (trimming, small number of specimen), they are not sui-
table to proceed to anatomical normalization of patients. Magnetic re-
sonance imaging (MRI) is a way to circumvent this issue and allows the
creation of structural brain templates from large cohorts. The works at
the Montreal Neurological Institute are a good example: the templates
produced over the years present iterative improvement in methodology
(Fonov et al., 2009; Grabner et al., 2006; Mazziotta et al., 2001) as well
as focus on specific populations (Fonov et al., 2011; Xiao et al., 2017).
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However, the commonly available MRI-based anatomical atlases base
their segmentation on histology atlases, especially for structures in the
deep brain. Furthermore, large numbers of patients introduce several
difficulties regarding the homogeneity of image data across the cohort
(Ou et al., 2014) and the sharpness in the center of the brain. Those
shortcomings are the important reasons that make anatomical analysis
of collections of patient images difficult.

The major burden in the creation of an anatomical template of the
thalamus and sub-thalamic areas is certainly the difficulty to identify
those structures from anatomical MRI, and to obtain accurate seg-
mentation of those structures. Within the present study, the availability
of extensive manual segmentation of anatomical labels (Lemaire et al.,
2010; Zerroug et al., 2016) allows the assessment of the performance of
image-based non-linear registration tools in the deep brain. The aim of
this study was to evaluate a selection of existing image registration
implementations with the task of normalizing the anatomy of the deep
brain to setup a workflow to normalize the deep brain anatomy of 19
patients operated on with DBS. The manually segmented deep brain
structures were used as control to measure registration accuracy.

2. Materials and methods

2.1. Patients

The data presented in this study was obtained from the Department
of Neurosurgery, University Hospital of Clermont-Ferrand, France. The
patient group consists of 19 patients (age: 50–84) who underwent DBS
surgery and gave written informed consent (ethics approval: 2011-
A00774-34/AU905). It consists of 13 patients admitted for PD and six
for ET. All received bilateral DBS implantation.

Two of the PD patients were implanted in the ventro-intermediate
nucleus (VIM) and 11 in the subthalamic nucleus (STN). All six ET
patients were implanted in VIM.

2.2. Imaging, labeling and DBS surgery protocol

The implantation of a DBS lead is done in a two-day procedure. On the
first day, the stereotactic frame (Leksell G frame, Elekta AB, Sweden) is
attached to the patient’s skull under local anesthesia. The frame is anchored
using fiber-glass rods positioned on the surface of the skull with blind holes
(Re-positioning kit, Elekta AB, Sweden). The fiducial box is then mounted
on the frame (Fiducial box, Elekta AB, Sweden) for the acquisition of ste-
reotactic T1MRI (0.63 mm×0.63 mm×1.30 mm) and stereotactic white
matter attenuated inversion recovery imaging (WAIR,
0.53 mm × 0.53 mm × 2.00 mm) (Lemaire et al., 2007; Magnotta et al.,
2000) (Sonata, 1.5T, Siemens, Germany). The frame is removed, and the
DBS lead implantation is planned using iPlan Stereotaxy 3.0 (Brainlab AG,
Munich, Germany). This routinely includes the manual delineation and
labeling of substructures of the thalamic and subthalamic areas (between
26 and 37 per patient) based on the MR images. All procedures were
performed by the same neurosurgeon (JJL). Fig. 1 shows a visualization of
the MR image set, superimposed with the expert-labeled deep brain
structures and the trajectory defined by entry and target points for an in-
dividual patient. The list of deep brain structures segmented by the expert
across the patient group and their corresponding names and occurrence in
this specific data-set is provided in Table 1. On the following day and under
local anesthesia, the stereotactic frame is re-positioned and pre-operative
stereotactic computer tomography (CT, 0.59 mm× 0.59 mm× 1.25 mm)
is acquired. Prior to implantation, different electrode positions are eval-
uated with the help of micro-electrode recording (MER) (Alpha Omega
Engineering, Nazareth, Israel) and intraoperative test stimulation revealing
the efficacy of stimulation on the symptoms and side effects. Based on these
results, the lead (Medtronic 3389, Medtronic, USA) is implanted at the
most suitable position. The final placement of this lead along the trajectory
is checked with projection X-ray (MPS64, General Electrics, Boston USA).
Once the electrodes have been implanted and the scalp sutured, post-

operative stereotactic CT is acquired in order to verify the position of the
electrode and the absence of any bleeding. Extensive description of the
protocol can be found in Vassal et al. (2012).

2.3. Normalization workflow of deep brain anatomy

The workflow (Fig. 2) starts with the export from the planning
software and preparation of the data (Fig. 2A). A linear registration of
all images to a common reference system (Fig. 2B) is necessary as a
starting point before non-linear registration. This step is needed to
minimize the displacement to be done by the non-linear registration
algorithm (Fig. 2C), which allows finer anatomical details to be re-
tained. The three registration tools selected were ANTS (Avants et al.,

Fig. 1. Result of the planning for a DBS implantation. A slice of the WAIR
anatomical image is presented together with the 3D representation of the deep
brain structures manually segmented by the neurosurgeons used to decide on
the trajectories for the stereotactic implantation (blue). (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Table 1
List of the deep brain structures labeled in the dataset and their occurrences in
the left and right hemispheres.

Structure name Count left Count right

Corpus geniculatum Lateral 19 18
Corpus geniculatum Medial 18 2
Fields of Forel 18 12
Medial Leminiscus 17 18
Mamillothalamic Tract 12 19
Mammillary Body 11 18
Anterolateral Nucleus 11 8
Peripeduncular Nucleus 11 11
Red Nucleus 11 11
Substancia Nigra 11 11
Fascicle Q of Sano (Lemaire et al., 2019) 11 11
Subthalamic Nucleus 11 11
Arquate Nucleus 11 11
Zona Incerta 8 11
Pre-Leminiscal Radiation 8 7
Anterolateral Thalamus 8 11
Anteromedial Thalamus 8 8
Dorsolateral Thalamus 8 8
Dorsomedial Thalamus 8 8
Intermediolateral Thalamus 8 8
Center Median Thalamus 8 8
Oral Thalamus 8 1
Parafascicular Thalamus 8 8
Medial Thalmus 8 8
Pulvinar Thalamus 8 8
Ventrocaudal lateral Thalamus 8 8
Ventrocaudal medial Thalamus 7 8
Ventrointermediate Thalamus 2 8
Ventro-oral Thalamus 1 8
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2010a), FNIRT (Andersson et al., 2007) and DRAMMS (Ou et al., 2011).
The results produced by each of them were compared (Fig. 2D) using
the labeled anatomical structures as metric. The different steps are
described in detail in the following sections and were implemented with
the help of the nipype Python module (Gorgolewski et al., 2011).

2.3.1. Data export and preparation
For each patient, images, labels of the deep brain structures, entry

and target points were exported (Fig. 2A) from the iPlan Cranial (ver-
sion 2.0, Brainlab AG, Munich, Germany) software planning station.
This was done using the OpenIGTLink network protocol (Tokuda et al.,
2009) implemented in the SlicerIGT (Ungi et al., 2016) plug-in for
3DSlicer (slicer.org, v4.8.1, Fedorov et al., 2012). The labels corre-
sponding to the manual segmentation of deep brain structures by the
neurosurgeon were extracted as binary images (masks). The size of each
mask corresponds to the smallest box, which encloses the label
(bounding box); the voxel dimensions are the same as in the WAIR
image. To ensure homogeneous naming of structures across patients

and organization of the dataset, the exported labels were validated
based on the metadata obtained from the planning station. This pre-
processing was done with Python (python.org) scripts and the Sim-
pleITK module (SimpleITK, Insight Software, USA).

2.3.2. Linear atlas creation
The MNI152 6th generation nonlinear T1 group atlas

(0.5 mm × 0.5 mm × 0.5 mm) (Grabner et al., 2006) was used as
reference for linear registrations (Fig. 2B). Fig. 3 presents the linear
atlas creation method. T1 images (i ∈ [0,18]) were first skull-stripped
using FSL’s Brain Extraction Tool (BET) and registered using FSL’s
FLIRT to the skull-stripped MNI152 template using 12 degrees of
freedom (dof) registration. To create an anatomical T1-led (the T1
contrast drives the registration) T1 Linear template and a T1-led WAIR
Linear template of the group, the transformed anatomical images were
averaged. Cumulative definition for each anatomical structure was
created by normalizing intensities and summing across patients in
template space. The transformed skull-stripped images were cropped to

Fig. 2. Top-level workflow description of the group normalization procedure. After preparation of the surgery on the planning station by the neurosurgeon, the data
is exported and prepared (A). Data is first aligned on the MNI152 template with linear registration based on the T1 contrast (B). Aligned images are then non-linearly
warped with three different tools (C) in order to compare the results achieved in the deep brain region by each tool (D).
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the bounding box of the T1 linear atlas. This reduced the size of images,
and in turn the processing times in the following steps.

2.3.3. Non-linear atlas creation
With the goal to produce an optimal average brain anatomy

(Fig. 2C) for a group of patients, a method based on Avants et al.,
(2010b) and depicted in Fig. 4 was used. It was implemented in a two-
step, multi-modality, deep brain focused pipeline (Fig. 4A). The single-
modality iterative template creation method (Fig. 4B) minimizes bias of
the final anatomical atlas toward any registration reference external to
the group by creating a new reference image iteratively. Each iteration
(Fig. 4) of the registration uses one image modality to lead the regis-
tration (active image set) to a reference. An affine (12 dof) registration
followed by a non-linear registration are determined. The warped
images are then averaged to create a temporary template of the group.
The affine transforms and warp fields obtained for each patient are
averaged across patients, inverted, scaled, combined and applied to the
temporary template, resulting in an updated template (Fig. 4D). The
updated template is then used as the new reference for the next itera-
tion. By repeating this process four times (Fig. 4B), using each refreshed
template as reference for the next iteration, the method converges to-
ward an optimal template of the group.

In our case, the first reference provided was the linear T1 template
previously created as described in 2.3.2. T1 image data-sets from all
patients were successively used as active images for creating a T1-led

template. This was repeated four times and resulted in a template for
each modality after each iteration denoted T1T10→3 andWAIRT1

0→3 and the
associated labels denoted LabelsT10→3.

In the last template space created, the volume of interest (VOI)
enclosing the labels from all structures was selected and extended by
50% to avoid border effects. Patient image data-sets were cropped to
the VOI and the iterative template creation was repeated, using WAIRT1

3

as first registration reference, and the cropped WAIR volumes as active
image data-sets. The method was iterated four times (Fig. 4B), resulting
in four WAIR-led non-linear templates (Fig. 4A) per modality denoted
T1WAIR

0→3 and WAIRWAIR
0→3 and their associated labels, LabelsWAIR

0→3 .
All the processing was run on a 32-core AMD 2990WX 3.80 GHz

workstation equipped with 128 GB of RAM running Debian Linux
(debian.org). All the tools and software were setup in a docker en-
vironment based on the NeuroDocker project (https://github.com/
kaczmarj/neurodocker). Most of the normalization processing time
was spent in this non-linear atlas creation step. Time required to run the
non-linear normalization step (Fig. 4C) was collected for each run and
used as a comparison metric between the tools and settings.

2.3.4. Registration tools and parameters selection
The normalization methodology was applied with three different

non-linear registration tools to compare performance for the specific
registration scenario of normalizing the deep part of the brain.

Among the different registration tools evaluated in the reports from

Fig. 3. Linear patient registration as a prealignment for the non-linear registrations. The skullstripped T1 image from each patient is registered to the skullstripped
MNI152 template using FLIRT with 12 degrees of freedom (dof). The resulting transformation matrix is then applied to the WAIR image and each anatomical
structure label. Transformed anatomical images are then averaged for each modality to create a T1 and a WAIR linear atlas, while the labels are summed for each
structure to create cumulative definitions of the labels.
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Klein et al. (2009), Ou et al. (2011) and Keszei et al. (2016), ANTS,
FNIRT and DRAMMS were selected for evaluation.

• ANTS (Avants et al., 2010a) provides an implementation of the
Symmetric Normalization method. It uses diffeomorphic transfor-
mations that preserve topology, even when transformations are
composed. A linear penalty is applied to those deformations during
optimization, making both small and large deformation possible.
Moreover, the components of the transformations are split in two
parts dependent on the two images to be registered, resulting in a
symmetric optimization toward a midway solution.
• FNIRT (Andersson et al., 2007) uses a Cubic B-spline deformation
model and optimizes the Sum of Squared Differences (SSD) of image
intensities in order to compute a transformation.
• DRAMMS (Ou et al., 2011) uses texture information with Gabor
filters applied on moving and reference images in different or-
ientations and with central frequencies to measure the similarity
between images. The set of Gabor filters used in fine during the re-
gistration is optimized in order to use only the most appropriate set
of filters, enabling multi-modality registration. Mutual-Saliency is
used to weight the volume based on the similarity metric. This al-
lows to relax the optimization in areas where differences are more
important e.g. lesions, tumor, missing tissue, cysts.

For each of the tools under test, the default settings were evaluated.
For ANTS, the setting used in the MultiModalityTemplateContruction2
(Avants et al., 2010b) script were considered as the default settings as
none are set by default in the registration program. For FNIRT and
DRAMMS the settings documented in their respective help command
were used. When applicable, the settings from Klein et al. (2009) i.e.
only ANTS and FNIRT were used. To this selection we added the two
best performing settings for ANTS from Ewert et al. (2019) called “Low
Variance” and “High Variance”. The interpolation methods for all
transformations was set to BSpline interpolation, after comparison by
the expert of the anatomical templates created with trilinear and
BSpline interpolation. The resulting calls to each registration software
are summarized in Appendix A1. Structure labels were transformed
using trilinear interpolation after observing Runge’s phenomenon when
using BSpline interpolation due to the binary nature of those images.

2.4. Normalization comparison

In order to quantitatively evaluate the precision of each of the se-
lected registration tools in a comparative way, intra-atlas assessment
was conducted. The comparisons were done in 3D using the Dice
coefficient (DC) (Dice, 1945) and Mean Surface Distance (MSD). The
Dice coefficient aims to measure the overlap between two volumes (A

Fig. 4. Non-linear atlas creation workflow: A. The template is created in a two-step iterative registration process. In the first step, the T1 images lead the registration
(active image set) while the WAIR and label images are passively transformed in the new reference system. After this step, a volume of interest centered on the deep
brain region is selected. In the second step, the WAIR images are used as active set and the T1 and label images are passively transformed. B. Each of these two
iterative template creations consists in registering the active anatomical images from each patient to a reference. The first reference for the T1-led non-linear
normalization is the Linear template (Fig. 3). C. Each registration iteration uses the selected active image to register it to the current reference. D. The resulting
warped active images are averaged to create a temporary template. The latter is warped with the inverse average affine transform composed with the inverse average
non-linear warp to create the updated template. All the transforms are composed to create a transform for each patient from the original images to the updated
template that allows transforming the passive images to the updated template space.
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and B) and is defined as:

=
+

DC vol A B
vol A vol B
2 ( )

( ) ( ) (1)

A DC value of 1 corresponds to an exact overlap of the two labels,
and a value of 0 corresponds to an absence of overlap. The MSD was
used as additional metric in order to have information about the re-
lative position of the surfaces of the volumes compared (structure de-
finitions). The MSD is the mean of the shortest distance from each point
on the contour of one structure to any point of the contour of the other.

=
+

MSD
A B

min dist a b1 ( , )
a A b B, (2)

After transformation to template space, the labels for each structure
were compared in a cross-validation fashion. For each patient, each
structure was compared to the definition of the same structure in each
of the other patients.

Violin plots (Hintze and Nelson, 1998) were used to present the
distribution of DC and MSD of the labeled structures from all patients
(Table 1) for the three registration tools with the different settings. In
short, the profile of the violin plots are histograms smoothed with a
Gaussian kernel. A kernel bandwidth of 0.05 and 0.1 was used for DC
and MSD plot, respectively. The violin plots were used to compare the
tools and their respective settings in order to identify the best combi-
nation. Only a subset of the labels available was considered, namely
only the largest and most visible labels in order to minimize the effects
of individual variability and smoothing during the registration steps
and thus make it easier to detect differences in the visualization be-
tween samples. The structures are the following: the Anterolateral
Thalamus, the Dorsolateral Thalamus, the Medial Thalamus, the Pul-
vinar Thalamus, the Anterolateral Nucleus, the Corpus Geniculatum
Lateral, the Mammillary Body, the Red Nucleus, Substancia Nigra and
the Sub-Thalamic Nucleus.

One-way Anova testing was employed to compare DC and MSD
between the different iterations of the atlas creation process for each
non-linear registration tool to estimate the significance of the difference
observed in the violin plots. Significance of the one-way Anova testing
is presented above the violin plots. We present the significance for the
test:

• for the best iteration with the best setting for each tool and the
previous iteration (LabelsT13 ) as well as the last iteration (LabelsWAIR

3 )
• across the best iterations of the best setting for each tool
• between the best iteration with ANTS with the high variance set-
tings and the best iteration with the low variance settings

In order to provide insights in the influence of the high disparity in
contrast profile from the structures in the deep brain, the performance
of the registration for the best normalization result identified was
compared across all structures, namely ANTS with the “high variance”
setting at the first iteration of the normalization with the WAIR mod-
ality. The results are presented again as violin plots with the same
bandwidth settings as previously.

Lastly, in order to provide a more visual and qualitative re-
presentation of the normalization results, the cumulative definition of
structures is overlaid to the anatomical template images. The cumula-
tive definition of several anatomical structures are however difficult to
visualize at the same time, because of the number of structures in this
dataset, and the overlap of the heatmaps in their peripheral parts. To
make this visualization possible, the cumulative definitions are resolved
into binary labels using a relative threshold set to 50% of the max in-
tensity in each heatmap. This is equivalent to majority voting across
patients on the inclusion of a voxel in a label class.

3. Results

Results for each registration tool with their respective settings and
the successive iterations of the normalization process are presented in
this section.

3.1. Quantitative evaluation

Fig. 5 presents the results of intra-atlas assessment for each com-
bination of registration tool and settings tested as violin plots for a
subset of all the anatomical structures. The mean in each sample is
marked with a black horizontal line. For ANTS, the two best performing
settings are the settings from Ewert et al. (2019). The high variance
settings present the best result after the first iteration using the WAIR
modality (LabelsWAIR

0 ) with a DC of 0.691 and MSD of 0.831 mm. The
results exhibit changes of strong significance (p < 0.001) in DC and no
significance in MSD with the previous iteration (LabelsT13 ) but no sig-
nificant changes (p > 0.01) in neither DC nor MSD with the last
iteration (LabelsWAIR

3 ). The results from the low variance settings reach
their maximum after the last (fourth) iteration using the WAIR modality
(LabelsWAIR

3 ) with DC and MSD of 0.682 and 0.880 mm respectively. The
difference between the best iterations of those two results have differ-
ences of medium significance (0.005 < p < 0.001) in both DC and
MSD. Neither the Default nor the Klein settings (Klein et al., 2009)
reach the performance of the settings from Ewert et al. (2019), while
they surpass both FNIRT and DRAMMS in DC and MSD results. With the
settings from Klein, the mean DC values produced by ANTS only im-
prove from 0.521 to 0.642 between the first and the last iteration of the
normalization.

With FNIRT, mean DC values decrease after the first iteration using
the WAIR modality for both settings (Default: 0.544 to 0.377, Klein:
0.505 to 0.413). The best result for FNIRT is reach with the default
settings, after the first WAIR iteration, with a DC and MSD of 0.544 and
1.371 mm. The difference has strong significance (p < 0.001) in DC
and no significance (p > 0.01) in MSD with the previous iteration
(LabelT13 ) and high significance (p < 0.001) in both DC and MSD with
the last iteration (LabelWAIR

3 ). Finally, DRAMMS, used with the default
settings is the least performing. The best result is LabelsWAIR

0 , with an
average DC of 0.491 and average MSD of 1.554 mm. The change in DC
with the previous iteration (LabelT13 ) are of high significance
(p < 0.001) and are of low significance (0.005 < p < 0.01) with the
last iteration (LabelsWAIR

3 ). Changes in MSD are not significant
(p > 0.01) for the same iterations.

The best normalization produced by each tool is thus:

• ANTS high variance settings, LabelsWAIR
0

• FNIRT default settings, LabelsWAIR
0

• DRAMMS default settings, LabelsWAIR
0

Differences across these three results show strong significance
(p < 0.001) in both DC and MSD.

Fig. 6 presents the DC and MSD values for the best combination of
tool, setting and iteration (ANTS, Ewert’s high variance settings, La-
belsWAIR

0 ) as violin plots for all structures present in the data-set. The
structures are ordered on the horizontal axis by descending average DC
value. Structures visible on contrast such as Substancia Nigra, Red
Nucleus, the Sub-thalamic Nucleus, the Antero-lateral Nucleus and the
Mammillary body present high DC values (average DC > 0.6) and low
MSD (average MSD < 1 mm). Larger structures such as Medial tha-
lamus, the Dorso-lateral Thalamus and the Antero-lateral Thalamus also
reach high agreement especially for the MSD. The more elongated
structures such as Zona Incerta, Center Median Thalamus, Fields of
Forel, Intermedio-lateral Thalmus, Ventro-caudal lateral Thalamus or
the Mammillothalamic tract provide intermediate DC and MSD values.
Lastly, the worst results are those from the smallest and least visible
structures, such as the Arquate Nucleus, Preliminiscal Radiations (PLR),
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Ventro-oral Thalamus, Fascicle Q of Sano, Dorso-medial Thalamus
(DM), Parafascicular Thalamus (LaPf), Ventro-intermediate Thalamus
(VIM) and the Medial Leminiscus (LemMed), where mean DC values are
below 0.4 and most of the MSD values above 1 mm, for those small
structures that are in the order of a few millimeters in size. Moreover,
for both DC and MSD, the spread of the values is important. Lastly a
large number of values at 0 of DC for PLR, DM, LaPf, VIM and LemMed
expressing the lack of any agreement between patients on the location
of those structures can be observed.

3.2. Qualitative evaluation

For visual comparison purposes, a coronal slice from the original
WAIR dataset from one PD patient is presented in Fig. 7, together with
slices of each of the best templates at the location of the largest cross-
section of the STN for ANTS, FNIRT and DRAMMS. The three template
images (Fig. 7, ANTS, FNIRT, DRAMMS) present much smoother con-
trast than the individual patient’s image. Compared to ANTS, both
FNIRT and DRAMMS are smoother and present less contrast dynamic,
resulting in increased difficulty to identify intensity differences. The
superior quality of the template created by ANTS compared to the two
others was confirmed by the neurosurgeon after inspection of each
volume data-set. The cumulative definition of STN is different across
templates, ANTS and FNIRT both have maximum cumulative value of
11, while DRAMMS has 10. The heatmaps differ in their spread in area
as well as their intensity profile. The heatmap from ANTS has the
highest intensity gradient. This results in a larger volume at higher
confidence level compared to FNIRT and DRAMMS. As a result, the
areas of low confidence level (yellow) are more important with these
tools.

Fig. 8 presents a slice of the WAIR image from the same patient as in
Fig. 7 transformed in the template space created with ANTS and is
presented with the anatomical structures labeled by the expert (Fig. 8A,
C). The right side of the figure (Fig. 8B, D) is a representation of a slice

of the anatomical template of the group taken at the same location.
Anatomical structures in the template are presented with a confidence
level of 50%. Two different coronal positions are presented: the first
one (Fig. 8A, B) is located at the slice of largest cross-section of STN,
and the second (Fig. 8C, D) at the slice that presents ZI, the FF, the AL
nucleus, SN and the MB. Comparatively to the structures defined for a
single patient (Fig. 8A, C), the structures in the atlas have smaller vo-
lume and as a result the contours of structures have greater distance
between each other (Fig. 8B, D). Some voxels associated to a structure
in this specific patient are not part of the structure in the final template:
for example the most superior part of the left Mammillothalamic tract is
much smaller in the template (Fig. 8B, D) than in the patient (Fig. 8A,
C). Similarly, voxels in the lateral part of ZI in the patient (Fig. 8C) are
absent of the structure in the template (Fig. 8D). Lastly in the case of
STN, the second slice (Fig. 8C) shows the occurrence of that structure in
this patient, however in the final template (Fig. 8D) this structure is not
present, meaning that the patient was an outlier in that regard.

3.3. Processing time

In addition to the qualitative results of the different methods, run
times have been recorded (Table 2). For ANTS, both settings from Ewert
et al. (2019) were the fastest to proceed to all the 152 registrations with
only 15 min of difference between the two settings. However, since the
high variance setting reached the best result after the first WAIR
iteration and the low variance did after 4 iterations, the result was
faster to obtain with the high variance setting. The default settings and
those from Klein et al. (2009) were both slower. FNIRT presented the
highest variability with settings, with those from Klein being 9.7 times
faster than the default settings. Lastly, DRAMMS in the default settings
was slower than the settings from Ewert et al. (2019) but faster than
both default settings and settings from Klein et al. (2009) for ANTS.

Fig. 5. Presentation of the results of the normalization using ANTS, FNIRT and DRAMMS. Registration accuracy was measured using the Dice coefficient (DC) (A) and
Mean Surface Distance (MSD) (B) between the definition of each structure for each patient and the cumulative definition of the structure in the template. Kernel
density estimation bandwidth: DC:0.05, MSD:0.1. p-values for the one-way Anova test results between selected iterations are presented above each plot.
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4. Discussion

This study presents the design of a multi-scale, multi-modality
iterative non-linear template creation pipeline used to normalize
anatomy from patients with focus on DBS. The non-linear component of
the pipeline was duplicated in order to compare three different im-
plementations and different parameters for those. To compare the
performance of the registration tools selected, expert labels were used
as silver-standard and the spatial overlap and surface distance of the
labels with their group definition were used as metric.

4.1. Group template creation

Several researcher have proposed group templates created from
different input data and approaches. Nowinski et al. (2005) normalized
MRI from 168 patients who underwent bilateral STN implantation
based on Nowinski’s Fast Talairach transformation method. The result
was a probabilistic functional atlas of the STN. However, the use of
linear transformations as opposed to non-linear transformations is de-
scribed as a limitation by the authors of the study. Shattuck et al.
(2008) presented the creation of an anatomical template based on T1
images from 40 patients, comparing AIR, FNIRT and SPM5. The study
was focused on cortical structures labeled by two different experts and
not on the deep brain. The approach only consisted in a single regis-
tration of each patient with each registration tool under test, to a dif-
ferent reference for each tool. Klein et al. (2009) focused on the

performance of non-linear registrations and provided a comparison of
14 non-linear registration tools for patient-to-template registration
using cortical structures to measure registration performance. Lalys
et al. (2010) created an anatomical template for use in deep brain sti-
mulation based on 22 scans from the same individual. They used
custom designed registration method, which limit the comparability of
their results. Qiu et al. (2010) created a probabilistic definition of 6
subthalamic structures based on the manual segmentation using their
own implementation of the registration and shape optimization
method. Ewert et al. (2017) created their atlas of the deep brain by
semi-automatically segmenting a subset of the structures in the region
of interest on 4 modalities simultaneously (T1, T2, Proton Density, and
T2 relaxometry) applying a region growing method, with the seeds
placed by experts. For the structures indiscernible on any modality, the
histological atlas from Chakravarty et al. (2006), after conversion to a
pseudo-MRI image, was warped to the previous template, providing a
definition of the missing structures. Very recently, Ewert et al. (2019)
compared ANTS, FNIRT, SPM12 and the “linear threestep” method
implemented in Lead-DBS (Horn et al., 2019). Their comparison was
conducted for the task of registering patients to an existing template.
The manual segmentation by two different experts of two structures
(STN and GPi) per hemisphere served to measure registration accuracy.

In contrast to the studies described above, our work describes the
creation of a group specific template based on multi-modality non-
linear registration using coherent data from a single center and expert
(Lemaire et al., 2010), using an imaging modality (WAIR) specially

Fig. 6. Results of the normalization with ANTS and the High Variance settings after the first WAIR-based registration. Results for each anatomical structure are
presented for both the Dice coefficient (A) and the Mean Surface Distance (B).
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designed to enhance contrast in the region of interest of DBS. The
method is completely automatic and scalable. The focus was to exploit
the richness of the input data, resulting in the definition of 58 structures
of the thalamus and basal ganglia together with a structural template of
the region of interest for each of the imaging modalities available.

4.2. Registration tool selection

In the present work, we compared the performance of ANTS, FSL’s
FNIRT and DRAMMS for the task of creating group-specific templates of
the deep brain. The study from Klein et al. (2009) describes ANTS as the
best performer. Based on this conclusion many studies used ANTS and
for that same reason, we included it in the comparison. The second tool
selected was FSL’s FNIRT considering the popularity of the software
package FSL, and lastly, the DRAMMS tool was added as fewer in-
formation about its performance could be found. The registration tools
were evaluated in their default settings as well as those from Klein et al.
(2009) and Ewert et al. (2019) when applicable. The well-established
Statistical Parametric Mapping toolbox (SPM, (Ashburner and Friston,
1999)) registration, used in several other studies (e.g. (Ewert et al.,
2019; Klein et al., 2009)) was however not used in this work. SPM
registration using the “DARTEL” and “Normalize” functions takes a
significantly different approach and requires the application of the
“NewSegment” function first, which creates a segmentation of the dif-
ferent tissues based on a Tissue Probability Map (TPM). The default
TPM shipped with the toolbox only defines the white matter, gray
matter and CSF areas, which makes registration of the subthalamic area
ambitious. Lorio et al. (2016) and Ewert et al. (2017) proposed different
refined TPM focused on the subthalamic and basal ganglia areas,
however defining only a small subset of the anatomical structures
available in our dataset. Moreover, the use of this method requires prior
information of the subthalamic/basal ganglia area in the form of this

TPM, which makes it difficult to compare with the tools used in the
present study in a fair way. However, the result from our study could be
an interesting starting point for a TPM defining up to 29 structures in
each hemisphere. This TPM would be based exclusively on single expert
labeling.

4.3. Registration tool comparison

The results in the intra-atlas assessment presented in Fig. 5 show
that for ANTS, the best setting was the “High Variance” setting from
Ewert et al. (2019). The “Low Variance” settings from the same authors
produced competing but inferior results. This is in opposition with the
results from the same authors who postulated that the “excessive
freedom” for the warp field in the high variance setting results in worst
performance due to the lack of contrast in the deep brain. On the other
hand, the low variance setting leaves “less freedom” for the warp field
to allow the influence of the more visible nearby structures to improve
the registration of the deep brain area. In our case however, it seems
that using the WAIR modality after T1 provides additional information
(compared to T1 and T2 used in Ewert et al. (2019)) and allows the high
variance setting to perform better than the low variance setting, thus,
our conclusions are similar to those from Ewert and colleagues.

As expected, the settings from Ewert et al. (2019) surpass both the
default settings and the settings from Klein et al. (2009) none of those
two being optimized for multi-modality registration, nor for registra-
tion of the deep brain. Moreover, ANTS out-performed FNIRT as well as
DRAMMS in all comparisons. This confirms the conclusions from Klein
et al. (2009) and contradicts the conclusions from Ou et al. (2014)
presenting DRAMMS as an alternative to ANTS.

A visual comparison of the results of the best settings for each re-
gistration tool (Fig. 7) is challenging from an anatomical point of view
without highly trained knowledge of the anatomy. The general

Fig. 7. Anatomical normalization results. An image from an individual patient is presented for comparison purposes together with the ANTS template with Ewert
et al. (2019) – high variance settings and one step of WAIR refinement, the FNIRT template created with the default settings and a single WAIR refinement and the
atlas created with DRAMMS using the default settings and one WAIR refinement step. Each template slice is presented with the heatmap of the left subthalamic
nucleus overlaid. Slices were taken at the largest cross-section of STN.
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characteristics of the images are however quite simple to agree on: the
normalization process objectively improved the image when compared
to the original slice of a single patient. Template images provide higher
signal to noise ratio thanks to the inclusion of several samples as op-
posed to a single sample for each voxel of the image volumes. They also
provide smoother transitions due to the number of samples considered,
inter-patient variability, and smoothing steps implicated in each of the
registration methods. The most noticeable difference between the
templates are the contrast and the anatomical fidelity. Differences in
the cumulative definition of structures are easier to interpret; the high
gradient for STN in the results from ANTS shows that the tool was
successful in matching the structure across patients, and that the re-
sulting outline of the structure will be less impacted when increasing
the confidence level than in the case of FNIRT and DRAMMS. The result
is that for the same confidence level, the definition of STN will be
bigger with ANTS than with FNIRT, which will be larger than the de-
finition of the structure with DRAMMS.

4.4. Anatomical analysis

Agreement scores for the anatomical structures (Fig. 6) are con-
trasted. Without surprise, the structures that present the highest con-
trast on structural images are the ones that present the best scores, as
the quantity of information for the registration algorithm to work with
is important. In the case of structures that do not present strong con-
trasts, they provide intermediate results: bigger structures provide
better MSD values, since their shape (more spheric) is more tolerant to
small variations due to remaining registration mismatch as well as in-
dividual variability. Inversely, the structures with a more elongated
shape are more impacted. The smallest and least visible structures
provided the worst results in our study due to the lack of information in
the image, and the small size of the structures representing a small
number of voxels. An interesting example, however, is the Zona Incerta.
Despite its lack of contrast on the images, the results are superior to
other structures that do exhibit contrast. We attribute this to the loca-
tion of the structure, near the internal capsula, which provides dis-
tinctive contrast helping ANTS in matching the area across patients.

The definition of STN proposed by ANTS is supported in Fig. 8
through its adjacency with FF and SN with no overlap. This is in
agreement with the structural architecture of the brain in those regions,
where gray matter nuclei are interconnected with white matter fibers,
making the transition from one structure to another challenging to
define even on histology slices.

For smaller, less visible or more elongated structures, it was ob-
served that parts of the structures are missing in the template when
compared to the structures from a specific patient. We consider this to
be the result of a small number of samples in the atlas creation process.

Fig. 8. Two WAIR slices together with anatomical structures from a single patient, transformed in the space of the best template created with ANTS are presented in A
and C. The corresponding slices in the WAIR template of the group, with the cumulative definition of the structures with a 50% confidence level are presented in B
and D. The Fields of Forel (FF), sub-thalamic nucleus (STN), substrancia nigra (SN), antero-lateral nucleus (AL), Mammillary body (MB) and Mammillothalamic tract
are marked for anatomical reference.

Table 2
Run times for the three tools under test with different settings.

Registration tool Setting Time

ANTS Default 33 h 40 min 14 s
Klein 2009 26 h 44 min 11 s
Ewert 2019 Low Variance 20 h 23 min 12 s
Ewert 2019 High Variance 20 h 0 min 8 s

FNIRT Default 91 h 1 min 3 s
Klein 2009 9 h 22 min 13 s

DRAMMS Default 25 h 45 min 47 s
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4.5. Processing time

The time required to generate the templates was recorded, even if it
was not a crucial criterion in our study. Run times for ANTS and
DRAMMS were between 20 and 34 h which is well below the time
between two surgeries in most centers, giving the opportunity to update
a template with larger groups between two surgeries. FNIRT showed
the most heterogeneous run-times, with a 10-fold increase of the time
needed to create a template with the default settings compared to the
settings from Klein et al. (2009). The reason observed is that FNIRT
does not seem to take advantage of multi-processor systems. Parallel
registrations were thus limited by the memory available and as a result,
only 8 of the 64 threads were used for 8 parallel registrations. While the
time required to generate a template from a group is dependent on the
number of patients, the computing resources used in this work remain
desktop-grade resources and transferring this methodology to a cluster
environment is possible.

4.6. Limitations

Expert labeled structures are often subject of discussion due to
variations from one labeling session to another especially because of
inter-rater variability. Nevertheless, in absence of a gold standard for
anatomy based on MR and CT images applicable to each and every
patient, expert labeling can be considered as a compromise and as the
best silver-standard when available. Throughout the present study, the
labels used to measure the accuracy of the registration applied on the
image data sets were the anatomical structures delineated routinely and
exclusively by the same experienced neurosurgeon (301 surgeries be-
tween 1995 and 2019). In consequence, inter-rater variability was
avoided.

To convert cumulative label definitions to binary outlines, a fixed
threshold was used. However, for anatomically realistic visualization of
the deep brain structures or for atlas-based segmentation of the ana-
tomical structures, this method might not be the most appropriate since
it relies on a constant threshold over a space that has been non-linearly
transformed. There is a lack of literature describing details about this
necessary step and further research is needed.

The present study uses the entirety of a group of patients available
at the time of the study design and identifies the best registration tool
for the specific data and pipeline used. However, the influence of the
number of patients on the quality of the result on the template has not
been investigated in the present study. In consequence, the next step
will be to start a follow-up project to study the template variability in
relation to the number of patients and to estimate the amount of data
required to converge to a stable anatomy. Several parameters of this
pipeline should be explored in more details, namely the number of
iterations in the atlas creation (currently 4 with T1, 4 with WAIR) and
the scaling of the warp field during the update of the template.

We did not present the comparison of the atlas created in this study
with other existing subthalamic templates for several reasons. Firstly,
the creation of the probabilistic definitions of anatomical structures and
the structural MR templates is a secondary outcome, compared to the
main goal of this study, which was the validation of the normalization
workflow for study-specific anatomical templates. Secondly, the limited
number of patients included in this study combined with the hetero-
geneous occurrence of structures makes the conversion to binary out-
lines questionable at this point, since it involves normalizing the oc-
currence of structures, and thus artificially increases the statistical
power of under-represented structures. Lastly, the method of resolving
the probabilistic definitions of anatomical structures is a crucial point
as it can vastly change the appearance of structures considering the size
of structures in the deep brain. This issue requires a larger dataset with
comparable labeling detail.

5. Conclusion

A workflow for multi-modality iterative anatomical template con-
struction was introduced and the performance of three non-linear re-
gistration tools (ANTS, FSL’s FNIRT, and DRAMMS) was evaluated for
that purpose using MRI of the human deep brain. The quality of the
registration was evaluated using labels of the anatomical structures
from the thalamus and sub-thalamus produced by single-expert manual
segmentation. ANTS using the “high variance” settings from Ewert et al.
(2019) produced the results of the best quality.

Future works will determine the number of patients necessary to
achieve a reliable template that represents a group accurately. Apart
from creating a representative anatomical template, other patient data
can now be transferred in the normalized template space in the same
way as the labels of the structures. This method can be applied to
normalize patient-specific stimulation maps (Shah, 2018). Stimulation
maps make use of patient-specific electric field simulations (Alonso
et al., 2016) and quantitative tremor evaluation (Hemm et al., 2016) by
acceleration sensors during intraoperative stimulation tests to provide
assistance during peri-operative decision making.
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