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Survey on the Kakutani problem in p-adic analysis I

by Alain Escassut

Abstract

Let IK be a complete ultrametric algebraically closed field and let A be the Banach IK-
algebra of bounded analytic functions in the ”open” unit disk D of IK provided with the
Gauss norm. Let Mult(A, ‖ . ‖) be the set of continuous multiplicative semi-norms of A
provided with the topology of pointwise convergence, let Multm(A, ‖ . ‖) be the subset of the
φ ∈ Mult(A, ‖ . ‖) whose kernel is a maximal ideal and let Mult1(A, ‖ . ‖) be the subset of
the φ ∈ Mult(A, ‖ . ‖) whose kernel is a maximal ideal of the form (x − a)A with a ∈ D.
By analogy with the Archimedean context, one usually calls ultrametric Corona problem, or
ultrametric Kakutani problem the question whether Mult1(A, ‖ . ‖) is dense in Multm(A, ‖ . ‖).
In order to recall the study of this problem that was made in several successive steps, here
we first recall how to characterize the various continuous multiplicative semi-norms of A, with
particularly the nice construction of certain multiplicative semi-norms of A whose kernell is
neither a null ideal nor a maximal ideal, due to J. Araujo. Here we prove that multbijectivity
implies density. The problem of multbijectivity will be described in a further paper.

2000 Mathematics subject classification: Primary 12J25 Secondary 46S10
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I. Introduction and results.
Let T = H∞(B) be the unital Banach algebra of bounded analytic functions on the open unit

disk B in the complex plane. Each a ∈ B defines a multiplicative linear functional φa on T by
”point evaluation” i.e. φa(f) = f(a). If a function f lies in the kernel of all the φa then clearly
f = 0. This tells us that the set of all the φa is dense in the set Ξ(T ) of all non-zero multiplicative
linear functionals on T in the hull-kernel topology which is lifted from the kernels of the functionals,
which are the maximal ideals of T (each maximal ideal, being of codimension 1, is the kernel of a
multiplicative linear functional).

The Corona Conjecture of Kakutani was that one also has density with respect to the weak
topology (or Gelfand topology) which is the topology of pointwise convergence on T , defined on
the space Ξ(T ). This was famously proved by Carleson in 1962 [4]. The key fact is that if f1, ..., fn
belong to T and if there exists d > 0 such that, for all a ∈ B we have

|f1(z)|+ ......+ |fn(z)| > d

then the ideal generated by the f1, ...., fn is the whole of T . People often transfer the name ”Corona
Statement” to this key fact. Indeed, this Corona Statement implies that the Corona Conjecture is
true, thanks to the fact that all maximal ideals of a lC-Banach algebra are of codimension 1.

Now consider the situation in the non-archimedean context.
Notations: Let IK be an algebraically closed field complete with respect to an ultrametric
absolute value | . |. Given a ∈ IK and r > 0, we denote by d(a, r) the disk {x ∈ IK | |x− a| ≤ r},
by d(a, r−) the disk {x ∈ K | |x − a| < r}, by C(a, r) the circle {x ∈ IK | |x − a| = r} and set
D = d(0, 1−).

Let a ∈ D. Given r, s ∈]0, 1] such that 0 < r < s we set Γ(a, r, s) = {x ∈ IK |r < |x− a| < s}.
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Let A be the IK-algebra of bounded power series converging in D which is complete with

respect to the Gauss norm defined as
∥∥ ∞∑
n=1

anx
n
∥∥ = sup

n∈ IN
|an|: we know that this norm actually is

the norm of uniform convergence on D [5].
In [16] the Corona problem was considered in a similar way as it is on the field lC [4]: the

author asked the question whether the set of maximal ideals of A defined by the points of D
(which are well known to be of the form (x − a)A), is dense in the whole set of maximal ideals
with respect to a so-called ”Gelfand Topology”. In fact, as explained in [8], this makes no sense
because the maximal ideals which are not of the form (x − a)A are of infinite codimension [8].
Consequently, a Corona problem should be defined in a different way, as explained in [8]. Actually,
one can’t define a relevant topology on the maximal spectrum of a Banach IK-algebra having
maximal ideals of infinite codimension: the only spectrum we have to consider is Guennebaud’s
spectrum of Continuous multiplicative semi-norms [13], which is at the basis of Berkovich theory
[2].

However, in [16] a ”Corona Statement” similar to that mentioned above was shown in our
algebra A and it is useful in the present paper as it was in [8]. Roughly, the ”Corona Statement”
shows that each maximal ideal is just the ideal of elements of the algebra T , vanishing along
an ultrafilter, on the domain D. Therefore, on lC, f(z) has a limit along the ultrafiter and the
limit defines a character which, by definition, lies in the closure of the set of characters defined
by points of D. And there are no other characters. On the field IK, although a similar ”Corona
Statement” remains true [16], we can’t manage the problem in the same way because f(x) has
no limit along an ultrafilter (the field is not locally compact). But we may consider continuous
multiplicative semi-norms and then |f(x)| has a limit along an ultrafilter, which defines again
a continuous multiplicative semi-norm. But do we get all continuous multiplicative semi-norms
whose kernel is a maximal ideal, in that way? That is the problem (easily solved when the field
is strongly valued [9] and next, solved when IK is spherically complete [9]). Here we will recall
that if A is multbijective, then the problem of density is solved and we will examine this problem
of multbijectivity in a further article. On the other hand, we will show that certain continuous
multiplicative semi-norms have a kernel that is neither null nor maximal ideal: they are Araujo’s
semi-norms [1].

Recall classical results on analytic elements. Let E be a closed bounded subset of IK. We
denote by R(E) the algebra of rational functions having no pole in E and we denote by H(E) the
Banach IK-algebra completion of R(E) with respect to the norm of uniform convergence ‖ . ‖E
which is defined on R(E) because every rational function is bounded on such a set E.

Theorem I.1 summerizes a few classical properties of analytic elements in a disk d(a,R) [5].

Theorem I.1: Let a ∈ IK and let r > 0. Then H(d(a, r)) is the set of power series
∞∑
n=0

an(x− a)n

such that lim
n→+∞

|an|rn = 0. Let f(x) =
∞∑
n=0

an(x− a)n ∈ H(d(a,R)) and let q be the biggest integer

such that |aq|rq = maxn∈ IN |an|rn. Then the number of zeros of f in d(a, r) is equal to q.
Given a maximal ideal of H(d(a,R)), it is of the form (x− b)H(d(a,R)).

We have defined by A the IK-algebra of power series f =
∞∑
n=0

anx
n such that supn∈ IN |an| <

+∞. Then each element of A converges in the disk D. Now, fixing a ∈ D, then f is also equal to

a power series
∞∑
n=0

an(x− a)n which also converges in D. We denote by ‖ . ‖ the norm of uniform

convergence on D.
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Notations: Let S be a unital commutative normed algebra whose norm is denoted by ‖ . ‖.
We denote by Mult(S, ‖ . ‖) the set of continuous multiplicative semi-norms of S. For each
φ ∈ Mult(S, ‖ . ‖), we denote by Ker(φ) the closed prime ideal of the f ∈ S such that φ(f) = 0.
The set of the φ ∈Mult(S, ‖ . ‖) such that Ker(φ) is a maximal ideal is denoted by Multm(S, ‖ . ‖),
the set of the φ ∈Mult(T, ‖ . ‖) such that Ker(φ) is a maximal ideal of codimension 1 is denoted
by Mult1(S, ‖ . ‖) [2], [13].

First, we will characterize all continuous multiplicative norms on A. Next, recalling Araujo’s
contruction, we will present continuous multiplicative semi-norms whose kernel is a prime closed
ideal that is neither null nor maximal [1].

The ultrametric Corona problem may be viewed at two levels:
1) Is Mult1(A, ‖ . ‖) dense in Multm(A, ‖ . ‖) (with respect to the topology of pointwise conver-
gence)?
2) Is Mult1(A, ‖ . ‖) dense in Mult(A, ‖ . ‖) (with respect to the same topology )?

In a further article, we will try to solve Question 1). Actually, this way to set the Corona
problem on an ultrametric field is not really different from the original problem once considered
on lC because on a commutative unital Banach lC-algebra S, all continuous multiplicative semi-
norms are known to be of the form |χ| where χ is a character of S. Thus the Corona problem was
equivalent to show that the set of multiplicative semi-norms defined by the points of the open disk
of center 0 and radius 1 was dense inside the whole set of continuous multiplicative semi-norms,
with respect to the topology of pointwise convergence.

Let us recall some classical results on multiplicative semi-norms in ultrametric Banach algebras.
Let B be a commutative unital Banach IK-algebra. We know that for every M∈Max(B), there
exists at least one φ ∈ Multm(B, ‖ . ‖) such that Ker(φ) = M but in certain cases, there exist
infinitely many φ ∈Multm(B, ‖ . ‖) such that Ker(φ) =M, [6], [7].

A maximal ideal M of B is said to be univalent if there is only one φ ∈ Multm(B, ‖ . ‖) such
that Ker(φ) =M and the algebra B is said to be multbijective if every maximal ideal is univalent.
It was proven that non-multbijective commutative unital Banach IK-algebras with unity do exist
[6], [7]. The question whther A is multbijective here appears to be crucial.
Remark: Given a filter G, if for every f ∈ A, |f(x)| admits a limit ϕG(f) along G, the function
ϕG obviously belongs to Mult(A, ‖ . ‖). Moreover, it clearly lies in the closure of Mult1(A, ‖ . ‖).
Consequently, if we can prove that every element of Multm(A, ‖ . ‖) is of the form ϕG , with G a
certain filter on D, Question 1) is solved.

Thus it is important to know the nature of continuous multiplicative semi-norms on A. Unfor-
tunately, we can’t give a complete characterization.

In the proof of Theorems we shall need several basic results. Lemma I.2 is immediate and
Lemma I.3 is well known [9]:
Lemma I.2: Let

∑∞
n=0 un be a converging series with positive terms. There exists a sequence

of strictly positive integers tn ∈ IN satisfying
tn ≤ tn+1, n ∈ IN,
lim
n→∞

tn = +∞,
∞∑
m=0

tmum < +∞.

Definition: An element f ∈ A will be said to be quasi-invertible if it factorizes in A in the form
P (x)g(x) where P is a polynomial whose zeros lie in D and g is an invertible element of A.
Lemma I.3: Let f ∈ A be not quasi-invertible and let (an)n∈ IN be the sequence of its zeros

with respective multiplicity qn. Then the series
∑∞
n=0 qn log(|an|) converges to log(|f(0)|)− log ‖f‖.

Now, we have the following Theorem [5]:
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Theorem I.4: Given f =
∞∑
n=0

anx
n ∈ A, we have ‖f‖ = supn∈ IN |an| = sup{φ(f) | φ ∈

Mult(A, ‖ . ‖). The norm ‖f‖ is multiplicative and every f ∈ A is uniformly continuous in
D. For every r ∈]0, 1[, f has finitely many zeros in d(0, r−). Let a ∈ C(0, r). If f has no zero in
d(a, r−) then |f(x)| = |f |(r) ∀x ∈ d(a, r−).

Moreover, the three following statements are equivalent,
1) f has no zero in D,
2) f is invertible in A,
3) ‖f‖ = |a0|.
4) |f(x)| is a constant in D.

Corollary I.4.1: An element f ∈ A is quasi-invertible if and only if it has finitely many zeros.
Lemmas I.5, I.6 are also classical and particularly, are given in [5] and [10].

Lemma I.5: Let f, g ∈ A be such that every zero a of f is a zero of g of order superior or equal
to its order as a zero of f . Then there exists h ∈ A such that g = fh.

Lemma I.6: Let f ∈ A. Then |f ′|(r) ≤ |f |(r)r ∀r < 1.
By classical results on analytic functions we know this lemma (for instance Lemma I.7 is

Theorem 22.26 in [10]):
Lemma I.7: Let r′, r′′ ∈]0, 1[ and let f ∈ A admit zeros a1, ...aq of respective order kj , j = 1, ..., q
in Γ(0, r′, r′′) and no zero in d(0, r′). Then

|f |(r′′) = |f |(r′)
q∏
j=1

(
r′′

|aj |
)kj .

Lemma I.8: Let f(x) =
∑∞
n=0 anx

n ∈ H(C(0, r)) and assume that f has a unique zero α, of
order 1, in C(0, r). Then |f ′(α)| = |f ′|(r).
Proof: By hypothesis, f(x) is of the form (x − α)h(x) with h ∈ H(C(0, r)), having no zero in
C(0, r). Then |f |(r) = r|h|(r). Moreover, since h has no zero in C(0, r), we have |h(α)| = |h|(r).
And by Lemma I.6, |f ′|(r) ≤ |f |(r)

r . Therefore, we have |f ′(α)| ≤ |f ′|(r) ≤ |f |(r)
r = |h|(r) =

|h(α)| = |f ′(α)| and hence |f ′(α)| = |f ′|(r).

Definitions and notation: We call circular filter of center a and diameter R on D the filter F
which admits as a generating system the family of sets Γ(α, r′, r′′)∩D with α ∈ d(a,R), r′ < R < r′′,

i.e. F is the filter which admits for basis the family of sets of the form D ∩
( q⋂
i=1

Γ(αi, r′i, r
′′
i )
)

with

αi ∈ d(a,R), r′i < R < r′′i (1 ≤ i ≤ q , q ∈ IN).
Recall that the field IK is said to be spherically complete if every decreasing sequence of disks

has a non-empty intersection. Each field such as IK admits an algebraically closed spherical
completion (see Theorems 7.4 and 7.6 in [10].

In a field which is not spherically complete, one has to consider decreasing sequences of disks
(Dn) with an empty intersection. We call circular filter with no center, of canonical basis (Dn)
the filter admitting for basis the sequence (Dn) and the number lim

n→∞
diam(Dn) is called diameter

of the filter.
Finally the filter of neighborhoods of a point a ∈ D is called circular filter of the neighborhoods

of a on D and its diameter is 0. Given a circular filter F , its diameter is denoted by diam(F).
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Given a ∈ IK and r > 0, we denote by Φ(a, r) the set of circular filters secant with d(a, r) i.e.
the circular filters of center b ∈ d(a, r) and radius s ∈ [0, r].

Here, we will denote byW the circular filter on D of center 0 and diameter 1 and by Y the filter
admitting for basis the family of sets of the form Γ(0, r, 1)\

(⋃∞
n=0 d(an, r−n )

)
with an ∈ D, rn ≤ |an|

and limn→∞ |an| = 1.
On IK[x], circular filters on IK are known to characterize multiplicative semi-norms by asso-

ciating to each circular filter F the multiplicative semi-norm ϕF defined as ϕF (f) = limF |f(x)|
[12], [13], [9], [11].

We know that every f ∈ A is an analytic element in each disk d(a, r) whenever r ∈]0, 1[
[5]. Consequently, by classical results [5], several properties of polynomials have continuation to
analytic elements and to A.
Definitions and notation: Let a ∈ D and let R ∈]0, 1]. Given r, s ∈ IR such that 0 < r < s
we set Γ(a, r, s) = {x ∈ IK |r < |x− a| < s}.

We call circular filter of center a and diameter R on D the filter F which admits as a generating
system the family of sets Γ(α, r′, r′′) ∩D with α ∈ d(a,R), r′ < R < r′′, i.e. F is the filter which

admits for basis the family of sets of the form D ∩
( q⋂
i=1

Γ(αi, r′i, r
′′
i )
)

with αi ∈ d(a,R), r′i < R <

r′′i (1 ≤ i ≤ q , q ∈ IN).
Recall that the field IK is said to be spherically complete if every decreasing sequence of disks

has a non-empty intersection. Each field such as IK admits an algebraically closed spherical
completion.

In a field which is not spherically complete, one has to consider decreasing sequences of disks
(Dn) with an empty intersection. We call circular filter with no center, of canonical basis (Dn)
the filter admitting for basis the sequence (Dn) and the number lim

n→∞
diam(Dn) is called diameter

of the filter.
Finally the filter of neighborhoods of a point a ∈ D is called circular filter of the neighborhoods

of a on D and its diameter is 0. Given a circular filter F , its diameter is denoted by diam(F).
Given a ∈ IK and r > 0, we denote by Φ(a, r) the set of circular filters secant with d(a, r) i.e.

the circular filters of center b ∈ d(a, r) and radius s ∈ [0, r].
On IK[x], circular filters on IK are known to characterize multiplicative semi-norms by asso-

ciating to each circular filter F the multiplicative semi-norm ϕF defined as ϕF (f) = limF |f(x)|
[12], [5], [6].

We know that every f ∈ A is an analytic element in each disk d(a, r) whenever r ∈]0, 1[
[5]. Consequently, by classical results [5], several properties of polynomials have continuation to
analytic elements and to A.

Thus, by results on analytic elements, we have Theorem I.9 [5], [10]:
Theorem I.9: Let a ∈ IK and R ∈]0, 1[ and let r ∈ [0, R]. For each circular filter F ∈ Φ(a, r),
for each element f of H(d(a, r)) (resp. f ∈ H(d(a, r−))), |f(x)| has a limit ϕa,r(f) = ϕF (f) along
F . Moreover, the mapping ϕF defined on H(d(a,R)) (resp. on H(d(a, r−))) is a multiplicative
semi-norm continuous with respect to the norm ‖ . ‖d(a,r)) (resp. ‖ . ‖d(a,r−))) and is a norm if
and only if r > 0.

Next, if b ∈ d(a, r) (resp. f ∈ d(a, r−)), then ϕa,r(f) = ϕb,r(f). Further, the mapping
associating to each circular filter F ∈ Φ(a, r) secant with d(a,R) the continuous multiplicative
semi-norm ϕF is a bijection from Φ(a, r) onto Mult(H(d(a, r)), ‖ . ‖d(a,R)).

Now, we will denote byW the circular filter on D of center 0 and diameter 1 and by Y the filter
admitting for basis the family of sets of the form Γ(0, r, 1)\

(⋃∞
n=0 d(an, r−n )

)
with an ∈ D, rn ≤ |an|

and limn→∞ |an| = 1.
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Next, ϕW defines the Gauss norm on IK[x] because, given a polynomial P (x) =
∑q
j=0 ajx

j , we

have ϕW(P ) = max
0≤j5

|aj |. Therefore ϕW admits a natural continuation toA as ‖
∞∑
n=1

anx
n‖ = sup

n∈ IN
|an|.

However, by [6] we know that this continuation is far from unique.
So, the problem is first to determine whether a multiplicative semi-norms defined on IK[x] by

circular filters on D, other than the Gauss norm, have a unique continuation to A.
Consequently, given a circular filter F on D of diameter < 1, according to Theorem I.9, for every

f ∈ A, |f(x)| has a limit along F denoted by ϕF (f) and then ϕF is a continuous multiplicative
semi-norm on A. In particular, given a ∈ D and r ∈]0, 1[, if we consider the circular filter F of
center a and diameter r, we denote by ϕa,r the multiplicative semi-norm ϕF which actually is
defined by ϕa,r(f) = lim

|x−a|→r
|f(x)| and is a norm whenever diam(F) > 0. For convenience, if F is

the circular filter of center 0 and diameter r, we set |f |(r) = ϕF (f).
Definitions and notations: Let E be a subset of IK. If E is bounded, of diameter r, we denote
by E the disk d(a, r), a ∈ E.

For each a ∈ E, we denote by Ia the mapping from E to IR+ defined as Ia(x) = |x− a|.
A subset E of IK is said to be infraconnected if for every a ∈ E, the closure in IR of Ia(E) is

an interval.
By classical results ([5], Lemma 2.1) we have the following description:

Lemma I.10 : Let E be a closed bounded subset of IK, of diameter R. Then E \ E admits a
unique partition by a family of maximal disks (d(bj , r−j ))j∈I .

Definitions and notations: Let E be a closed bounded subset of IK and let (d(bj , r−j ))j∈I be

the partition of E \E shown in Lemma I.10. The disks d(bj , r−j )), j ∈ I are called the holes of E.
We can now recall the famous Mittag-Leffler Theorem for analytic elements due to Marc Krasner

[14] and [5], Theorem 15.1:
Theorem I.11: (M.Krasner) Let E be a closed and bounded infraconnected subset of IK and
let f ∈ H(E) . There exists a unique sequence of holes (Tn)n∈ IN∗ of E and a unique sequence
(fn)n∈IN in H(E) such that f0 ∈ H(E), fn ∈ H0( IK \ Tn) (n > 0), lim

n→∞
fn = 0 satisfying

(1) f =
∞∑
n=0

fn and ‖f‖
D

= sup
n∈IN

‖fn‖E
.

Moreover for every hole Tn = d(an, r−n ) , we have
(2) ‖fn‖E

= ‖fn‖ IK\Tn
= ϕan,rn

(fn) ≤ ϕan,rn
(f) ≤ ‖f‖

E
.

If E = d(a, r) we have
(3) ‖f0‖E

= ‖f0‖
E

= ϕa,r(f0) ≤ ϕa,r(f) ≤ ‖f‖
E

.

Let F = E \
( ∞⋃
n=1

Tn

)
. Then f belongs to H(F ) and its decomposition in H(F ) is given again

by (1) and then f satisfies ‖f‖
F

= ‖f‖
E
.

Let us recall the following results [7], [13]:
Theorem I.12: Let B be a unital commutative ultrametric Banach IK-algebra. Then sup{φ(f) | φ ∈
Mult(B, ‖ . ‖)} = limn→∞(‖fn‖) 1

n ∀f ∈ B. On the other hand, Mult(B, ‖ . ‖) is provided with
the topology of pointwise convergence and is compact for this topology [3], [13].

Let us now recall some general results on maximal ideals [7] (Theorems 15.6 and 27.3):
Theorem I.13: Let B be a unital cmmutative Banach IK-algebra. Each maximal ideal of B is
the kernel of at least one continuous multiplicative semi-norm. If IK has a non-countable residue
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class field or a non-countable value group then each maximal ideal of B is the kernel of a unique
continuous multiplicative semi-norm.
Corollary I.13.1: If IK has a non-countable residue class field or a non-countable value group
then every unital commutative Banach IK-algebra is multbijective.
Definition: The field IK is said to be strongly valued if one of the following two sets are not
countable:

1) the residue field of IK,
2) the set | IK| = {|x| |x ∈ IK}.

Remark: When the algebraically closed complete field is not strongly valued, there exist Banach
IK-algebras which are not multbijective [6], [7].

II. Study of Mult(A, ‖ . ‖).
Let us first notice the following basic result which is indispensable in the sequel:

Theorem II.1: Let F be a filter on D such that for all f ∈ A, |f(x)| have a limit along F .
Then the mapping φ defined on A as φ(f) = lim

F
|f(x)| belongs to the closure of Mult1(A, ‖ . ‖) in

Mult(A, ‖ . ‖).
Proof: Let us first notice that given an element φ ∈Mult(A, ‖ . ‖) of the form ϕF with F a filter
on D, then φ clearly belongs to the closure of Mult1(A, ‖ . ‖) in Mult(A, ‖ . ‖). More precisely, take
f1, ..., fq ∈ A and ε > 0. For each j = 1, ..., q therer exists Bj ∈ F such that

∣∣∣|fj(x)| −ϕU (fj)
∣∣∣
∞
≤

ε ∀x ∈ Bj . Let B =
⋂q
j=1Bj . Then

∣∣∣|fj(x)| − ϕU (fj)
∣∣∣
∞
≤ ε ∀x ∈ B, ∀j = 1, ..., q, which ends the

proof.
We will now apply to the algebra A all results already known concerning algebras H(d(a,R))

and H(d(a,R−)).
Now, when studying the set of multiplicative semi-norms of the algebra A, we have to consider

coroner ultrafilters.
Definitions and notations: An ultrafilter U on D will be called coroner ultrafilter if it is
thinner than W. Similarly, a sequence (an) on D will be called a coroner sequence if its filter is a
coroner filter, i.e. if limn→+∞ |an| = 1.

Two coroner ultrafilters F , G are said to be contiguous if for every subsets F ∈ F , G ∈ G of
D the distance from F to G is null.

Let ψ ∈Mult(A, ‖ . ‖) be different from ‖ . ‖. Then ψ will be said to be coroner if its restriction
to IK[x] is equal to ‖ . ‖.

In [8] regular ultrafilters were defined. Let (an)n∈ IN be a coroner sequence in D. The sequence
is called a regular sequence if inf

j∈ IN

∏
n∈ IN
n 6=j

|an − aj | > 0.

An ultrafilter U is said to be regular if it is thinner than a regular sequence. Thus, by definition,
a regular ultrafilter is a coroner ultrafilter.

Now, given an ultrafilter U on D, the function |f(x)| from D to [0, ‖f‖] has a limit ϕU (f) which
clearly defines an element of Mult(A, ‖ . ‖). We can then derive Theorem II.2.

Given a filter F on D, we will denote by J (F) the ideal of the f ∈ A such that lim
F
f(x) = 0.

Theorem II.2: Let U be an ultrafilter on D. For every f ∈ A, |f(x)| admits a limit ϕU (f) along
U . Moreover, the mapping ϕU from A to IR+ belongs to Mult(A, ‖ . |) and Ker(ϕU ) = J (U).
Given two contiguous ultrafilters U1, U2 on D, ϕU1 = ϕU2 .
Proof: Let θ be the function defined in D, by θ(x) = |f(x)|. For each f ∈ A, θ takes values in
the compact [0, ‖f‖]. Clearly, θ admits a limit ϕU along every ultrafilter U on D. Consequently,
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ϕU defines a continuous multiplicative semi-norm on A whose kernel is J (U). Finally, since every
function f ∈ A is uniformly continuous, it is easily seen that limU1 |f(x)| = limU2 |f(x)| ∀f ∈ A,
hence ϕU1(f) = ϕU2(f) ∀f ∈ A, hence ϕU1 = ϕU2 .
Remark: Contrary to the context of uniformly continuous bounded functions [11], it seems very
hard to know whether two ultrafilters U and V on D such that ϕU = ϕV are contiguous.
Notation: We will denote by Y the filter on D admitting for basis the family of sets of the form

d(0, 1−) \
∞⋃
n=1

(
qn⋃
j=1

d(an,j , r−n ))

with |aj,n| = rn < rn+1 < 1 ∀n ∈ IN and lim
n→∞

rn = 1.

Proposition II.3: For every f ∈ A, ‖f‖ = lim
Y
|f(x)|.

Proof: Let f ∈ A, let (C(0, rn))n∈ IN be the sequence of circles of center 0 containing zeros of f
and for every n ∈ IN, and let an,1, ..., an,qn

be the zeros of f in C(0, rn). Then we can see that

|f(x)| = |f |(|x|) ∀x /∈ d(0, 1−) \
∞⋃
n=1

(
qn⋃
j=1

d(an,j , r−n )). Next, by definition of the norm ‖ . ‖, we have

‖f‖ = lim
r→1
|f |(r), which ends the proof.

Proposition II.4: Let φ ∈Mult(A, ‖ . ‖) satisfy φ(P ) = ‖P‖ ∀P ∈ IK[x]. Every quasi-invertible
element f ∈ A also satisfies φ(f) = ‖f‖.
Proof: First suppose f ∈ A invertible in A. Then 1 = φ(f)φ(f−1). But φ(f) ≤ ‖f‖, φ(f−1) ≤
‖f−1‖, hence both inequalities must be equalities. Now, let f = Pg ∈ A be quasi-invertible, with
P ∈ IK[x] a polynomial having all zeros in D and g ∈ A, invertible in A. Then φ(f) = φ(P )φ(g) =
‖P‖‖g‖ = ‖Pg‖ = ‖f‖.

Let us now look at the maximal spectrum of A.
Theorem II.5: Let M be an ideal of A. Then M is a maximal ideal of codimension 1 if and
only if it is of the form (x− a)A with a ∈ D.
Proof: Given a ∈ D, the ideal (x − a)A is obviously a maximal ideal of codimension 1 because
the mapping χa from A to IK defined as χa(f) = f(a) maps A onto IK.

Now, letM be a maximal ideal of codimension 1 and let θ be the IK-algebra homorphism from
A onto IK admitting M for kernel. Let a = θ(x). Since θ(x− a) = θ(x)− a is not invertible, we

have |a| < 1 because if |a| ≥ 1, then
1

x− a
belongs to H(D) and hence to A. Thus, a belongs to

D. We know that all characters of a Banach IK-algebra are continuous (see for instance Theorem
6.19 in [7]), hence so is θ. Consequently, θ(f) = f(a) ∀f ∈ A and hence Ker(θ) = (x− a)A.
Notation: We will denote by Mult1(A, ‖ . ‖) the set of maximal ideals of codimension 1.
Remark: A admits maximal ideals of infinite codimension.
Theorem II.6: Let M be a maximal ideal of A. The following statements are equivalent:

(i) there exists a ∈ D such that M = (x− a))A,
(ii) M is principal,
(iii) M is of finite type,
(iv) M is of codimension 1.
(v) M contains a quasi-invertible element.

Proof: Suppose (i) is satisfied. Then so are (ii) and (iii) and by Theorem I.4, so is (iv). Moreover,
by(i), x−a belongs to A, hence (v) is satisfied. Suppose now that (v) is satisfied and let P (x)g(x) ∈
M be quasi-invertible, with P a polynomial whose zeros lie in D and g an invertible element of A.
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Then P belongs to M . Let P (x) =
q∏
j=1

(x− aj). Since M is prime, one of the x− aj belongs to D

and hence (i) is satisfied, which ends the proof.
Corollary II.6.1: An element ϕ of Mult(A, ‖ . ‖) belongs to Mult1(A, ‖ . ‖) if and only if there
exists α ∈ D such that ϕ(f) = |f(α)|,∀f ∈ A.
Notation : Given an ideal I ofA we will denote by GI the filter generated by the sets E(f, ε), f ∈
I, ε > 0. By definition, GI is minimal, with respect to the relation of thinness, among the filters H
such that limH f(x) = 0 ∀f ∈ I.
Theorem II.7: Let M be a non-principal maximal ideal of A. Then M = J (GM ).
Proof: By definition, we have M ⊂ J (GM ). On the other hand, J (GM ) 6= A because by Theorem
II.5 all elements of J (GM ) are non-quasi-invertible. Consequently, M = J (GM ).
Corollary II.7.1: Let M be a non-principal maximal ideal of A. For every ultrafilter U thinner
than GM , J (U) = M .
Corollary II.7.2: For every maximal ideal M of A, there exist ultrafilters U such that M =
J (U).
Proof: Indeed, either M is principal, of the form (x − a)A or M is not principal and then the
answer comes from Corollary II.7.1.
Definition: A maximal ideal M of A will be said to be coroner (resp. regular) if there exists a
coroner (resp. regular) ultrafilter U such that M = J (U).
Notation: Let H be the IK-algebra of (bounded or not) analytic functions in D.

Theorem II.8 also is classical ([10], Theorem 22.26):
Theorem II.8: Let f ∈ H and let r1, r2 ∈]0, 1[ satisfy r1 < r2. If f admits exactly q zeros in
d(O, r1) (taking multiplicity into account) and t different zeros αj, of respective multiplicity order
mj (1 ≤ j ≤ t) in Γ(0, r1, r2), then f satisfies

|f |(r2)
|f |(r1)

=
( t∏
j=1

( r2
|αj |

)mj
)(r2
r1

)q

Corollary II.8.1: Let f(x) =
∞∑
n=0

anx
n ∈ H have a set of zeros in D that consists of a se-

quence (αn)n∈ IN such that αn 6= 0 ∀n ∈ IN and where each αn is of order un. Then ‖f‖D =

|f(0)|
∞∏
n=0

( 1
|αn|

)un
.

Corollary II.8.2: Let f ∈ A be not quasi-invertible, such that f(0) = 1 and let (an)n∈ IN be

the sequence of zeros with respective multiplicity qn. Then the series
∞∑
n=0

qn log
( 1
|an|

)
converges

to log ‖f‖.
Now, by Theorem II.6, II.7, and II.8 we can derive Theorem II.9:

Theorem II.9: A maximal ideal of A is of infinite codimension if and only if it is coroner.
Proof: Let M be a maximal ideal of A. By Corollary II.7.2, M is of the form J (U) with U an
ultrafilter on D. If U is coroner, then M is not of the form (x− a)A a ∈ D, and by Theorem II.6
it contains no quasi-invertible element and it is of infinite codimension. If U is not coroner, either
it is a Cauchy filter of limit a ∈ D or it is thinner than a circular filter on D of center a ∈ D and
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diameter r ∈]0, 1[. If U is a Cauchy filter, M is the ideal of functions f such that f(a) = 0, then
by Theorem II.6., M is of codimension 1.

Suppose now that If U is not a Cauchy filter. Since it is not coroner, it is secant with a disk
d(a, r) ⊂ D and hence it is thinner than a circular filter F of center b ∈ d(a, r) and diameter
s ∈]0, r] so that lim

F
|f(x)| = 0 ∀f ∈M . But since the function f ∈ A is an element f H(d(a, r)),

by Theorem I.9 it cannot satisfy lim
F
|f(x)| = 0, a contradiction.

Theorem II.10: If A is multbijective, then Mult1(A, ‖ . ‖) is dense in Multm(A, ‖ . ‖).
Proof: By Theorem II.2, each ultrafilter U on D defines an element ϕU of Mult(A, ‖ . ‖). Con-
versely, by Corollary II.7.2, every maximal ideal M is of the form J (U) with U an ultrafilter on
D. Suppose now that A is multbijective and let φ ∈Multm(A, ‖ . ‖). Then Ker(φ) is a maximal
ideal M of the form J (U) with U an ultrafilter on D. Consequently, Ker(ϕU ) = M = Ker(φ).
But since A is multbijective, then φ = ϕU . And then, by Theorem II.1, ϕU does belong to the
closure of Mult1(A, ‖ . ‖) in Mult(A, ‖ . ‖), which ends the proof.

On the other hand, consequently to Theorem II.8, we can state Theorem II.11:
Theorem II.11: Let r, s, R ∈]0,+∞[ satisfy 0 < r < s < R and let f ∈ H((0, R)). Then

log(|f |(s))− log(|f |(r)) ≤
(

log(|f |(R))− log(|f |(s))
)( log(s)− log(r)

log(R)− log(s)

)
.

Proof: Let q be the total number of zeros of f in d(0, s), each counted with its multiplicity.
Then by Theorem II.8 we have log(|f |)(s))− log(|f |)(r)) ≤ q(|og(s)− log(r)). On the other hand,
log(|f |(R))− log(|f |(s)) ≥ q

(
log(R)− log(s)

)
. Consequently,

q ≤ log(|f |(R))− log(|f |(s)
log(R)− log(s)

which ends the proof.
Theorem II.12: Let φ ∈Mult(A, ‖ . ‖) and assume that its restriction ϕF to H(D) is not ‖ . ‖.
Then φ(f) = limF |f(x)| ∀f ∈ A.
Proof: By hypothesis, F is a circular filter of diameter l < 1. Suppose first that f is invertible.
Then |f(x)| is a constant b > 0. Consequently, ‖f‖ = b = ϕF (f). Suppose φ(f) 6= b. Then

φ(f) < b because b = ‖f‖. Now consider h =
1
f

. Since ‖ . ‖ is multiplicative, we see that

φ(h) > ‖h‖, a contradiction. Consequently, φ(f) = ϕF (f).
Suppose now f is quasi-invertible. Then f is of the form Pg with P ∈ IK[x] and g invertible

in A. Then, φ(f) = φ(P )φ(g) = ϕF (P )ϕF (g) = ϕF (f).
We now suppose that f is not quasi-invertible. By Corollary I.4.1, f has a sequence of zeros

(an)n∈ IN in D, each having a multiplicity order un. By Corollary II.8.1, we have lim
n→+∞

|an| = 1,

so we can assume |an| ≤ |an+1| ∀n ∈ IN. Let t = φ(f) and s = limF |f(x)|. We shall show that
t ≤ s.

Suppose first that F has a disk d(a, r) which contains none of the an. By Corollary II.8.1

we have
‖f‖d(a,r)
‖f‖

=
∞∏
n=1

(
|an − a|

)un

, hence inside the disk d(a, r), |f(x)| is a constant equal to

‖f‖
∞∏
n=0

(
|an − a|

)un

and therefore,

(1) s = ‖f‖
∞∏
n=1

(
|an − a|

)un

.
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For each q ∈ IN, let fq =
f∏q

n=0(x− an)un
and let lq =

∑q
k=0 uk. So, clearly,

‖fq‖ = ‖f‖ ∀q ∈ IN.
Now, since φ(P ) = ϕF (P ) ∀P ∈ IK[x], we have

φ(
q∏

n=1

(x− an)un) =
q∏

n=1

|an − a|un , hence φ(fq) =
t∏q

n=1 |an − a|un
. But since

φ(fq) ≤ ‖fq‖, that yields

t∏q
n=1 |an − a|un

≤ ‖fq‖ = ‖f‖ ∀q ∈ IN

hence
t∏q

n=1 |an − a|un
≤ ‖f‖ ∀q ∈ IN

Since this is true for every q ∈ IN, we can derive

t

∞∏
n=1

( 1
|an − a|un

)
≤ ‖f‖

hence by (1),
t‖f‖
s
≤ ‖f‖ and therefore t ≤ s.

Now consider the case when there exists no disk d(a, r) belonging to F , such that none of the
an lie in d(a, r). Since lim

n→∞
|an| = 1, F is a filter admitting a center α. Let ρ be its diameter:

of course ρ < 1 because ϕF is not ‖ . ‖. Consequently, d(α, ρ) contains finitely many zeros of f
a1, ..., as (eventually, if ρ = 0, then d(α, ρ) is reduced to the singelton {α} ).

Suppose first ρ = 0. Then ϕF (f) = 0 and φ(x− α) = 0 therefore s = t.
Suppose now ρ > 0. Suppose |aj − a| ≤ ρ whenever j = 1, ..., q. We can choose a 6= aj ∀j =

1, ..., q. Set h =
f∏q

j=1(x− aj)uj
. Then ϕF (h) =

s∏q
j=1 |aj − α|uj

and φ(h) =
t∏q

j=1 |aj − α|uj
.

Thus we are led to the same problem with h. Setting s′ =
s∏q

j=1 |aj − α|uj
, t′ =

t∏q
j=1 |aj − α|uj

,

we have t′ ≤ s′ hence t ≤ s in all cases and therefore we have proven again that

(2) φ(h) ≤ ϕF (h) ∀h ∈ A.

Suppose now that for some f ∈ A, we have φ(f) < ϕF (f). We can take r ∈]l, 1[ such that

the disk d(0, r) belongs to F . Let f(x) =
∞∑
n=1

bnx
n. For every q ∈ IN, let gq(x) =

q∑
n=1

bnx
n.

We notice that when q is big enough we have ϕF (gq) = sup
n∈ IN

|bn|rn. Set w = sup
n∈ IN

|bn|rn. Now

ϕF (f − gq) ≤ supn>q |bn|rn, therefore lim
q→+∞

ϕF (f − gq) = 0 and hence, by (2), we have

(3) lim
q→+∞

φ(f − gq) = 0.

So, we can take q such that ϕF (f−gq) < ϕF (f) and hence, by (2), we have φ(f−gq) < ϕF (f). But
since gq is a polynomial, we have φ(gq) = ϕF (gq), hence φ(gq) > φ(f). Consequently, φ(f − gq) =
φ(gq) = w when q is big nenough, a contradiction to (3).

By Theorem II.12 we now have the following corollaries:
Corollary II.12.1: Let F be a circular filter on D of diameter r ∈]0, 1[. Then ϕF has extension
to a norm that belongs to Mult(A, ‖ . ‖).
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Proof: Let s ∈]r, 1[ and let d(a, s) be a disk that belongs to F . As an element of H(d(a, s)),
each element f of A is such that ϕF (f) = lim

F
|f(x)| and that defines a multiplicative norm on A.

Corollary II.12.2: Let φ ∈ Mult(A, ‖ . ‖) \Mult1(A, ‖ . ‖). If the restriction of φ to H(D)
is of the form ϕF with F a circular filter on D of diameter r ∈]0, 1[, then φ is a norm on A.
Proof: Indeed, given a disk L of diameter s ∈ [r, 1[, which belongs to F , ϕF is a norm on H(L)
which contains A.
Corollary II.12.3: Let φ ∈ Mult(A, ‖ . ‖) \Mult1(A, ‖ . ‖). If φ is not a norm on A, its

restriction to H(D) is ‖ . ‖.
Proof: Indeed, if the restriction of φ to H(D) is of the form ϕF with F a circular filter on D of
diameter r ∈]0, 1[, then by Corollary II.12.1 φ is a norm on A.

The following Theorem II.13 is Theorem 22.33 in [10]:

Theorem II.13: Let f(x) =
∞∑
n=0

anx
n ∈ A( IK) (resp. f(x) =

∞∑
n=0

anx
n ∈ A(d(0, r−))). All

zeros of f are of order one and the set of zeros of f is a sequence (αn)n∈ IN such that |αn| < |αn+1|
if and only if the sequence

∣∣∣ an
an+1

∣∣∣ is strictly increasing. Moreover, if these properties are satisfied,

then the sequence of zeros of f in IK (resp. in d(0, r−)) is a sequence (αn)n∈ IN∗ such that
lim

n→+∞
|αn| = +∞ (resp. lim

n→+∞
|αn| = r) and |αn| =

∣∣∣ an
an+1

∣∣∣.
The following Theorem II.14 is also given in [5] as Theorem 25.5:

Theorem II.14: Let (aj)j∈IN be a sequence in d(0, 1−) such that 0 < |an| ≤ |an+1| for every
n ∈ IN and lim

n→∞
|an| = r. Let (qn)n∈IN be a sequence in IN∗ and let B ∈]1,+∞[. There exists

f ∈ A(d(0, r−)) satisfying
i) f(0) = 1

ii) ‖f‖ ≤ B
n∏
j=0

|an
aj
|qj whenever n ∈ IN

iii) for each n ∈ IN an is a zero of f of order zn ≥ qn.
Corollary II.14.1: Let (aj)j∈IN be a sequence in d(0, r−) such that 0 < |an| ≤ |an+1| for every
n ∈ IN, lim

n→∞
|an| = r and let (qn)n∈IN be a sequence in IN∗ such that

n∏
j=0

( |an|
r

)qj

> 0.

Let B ∈]1,+∞[. There exists f ∈ A satisfying
i) f(0) = 1

ii) ‖f‖ ≤ B
∞∏
j=0

( r

|an|

)qj

whenever n ∈ IN

iii) for each n ∈ IN, an is a zero of f of order zn ≥ qn.
Notation: Let (an)n∈ IN a sequence in D such that |an| ≤ |an+1| and lim

n→+∞
|an| = 1 and let

(qn)n∈ IN be a sequence of integers (qn ≥ 0). The family (an, qn)n∈ IN is called a divisor of D. The
definition applies to a divisor where all qn are null but finitely many.

The family of divisors of D is provided with a natural order: given two divisors T = (an, qn)n∈ IN

and E = (an, sn)n∈ IN, we say that T ≤ E if qn ≤ sn ∀n ∈ IN.
Let f ∈ H and let (an, qn)n∈ IN be the set of zeros of f , each zero an being of order qn. We will

denote by T (f) this family (an, qn)n∈ IN and the expression T (f) is then called divisor of f .
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An interesting question was whether certain elements of Mult(A, ‖ . ‖) may have a kernel that
is neither null nor a maximal ideal. The question was solved by Jesus Araujo thanks to this nice
example [1].

In the proof of Theorem II.16, we will need the following Theorem II.15 that comes from
Theorems 28.14 and 29.6 in [10].
Theorem II.15: Let E = (an, qn)n∈ IN be a divisor on D with an 6= 0 ∀n ∈ IN and let ε > 0.
There exists f ∈ H such that T (f) ≥ E, f(0) = 1 and |f |(r) ≤ |E|(r)(1 + ε) ∀r ∈]0, 1[. Moreover,
if IK is spherically complete, then there exists f ∈ B such that T (f) = E.
Corollary II.15.1: Let IK be spherically complete. Let (aj)j∈IN be a coroner sequence such that∏∞
n=0 |an| > 0. There exists f ∈ H admitting each an as a zero of order 1 and having no other

zeros.
Corollary II.15.2: Let f, g ∈ A be such that T (g) ≤ T (f). There exists h ∈ A such that
f = gh.

Theorem II.16 (J. Araujo): Let h(x) =
∞∑
n=0

anx
n and suppose that the sequence

( |an|
|an+1|

)
n∈ IN

is strictly increasing, of limit 1. Then h belongs to A. Moreover, putting rn =
|an|
|an+1|

, n ∈ IN, h

admits a unique zero on each circle C(0, rn) and has no other zero in D.
Let N be an ultrafilter on IN and for every f ∈ A, let φ(f, n) = ‖f‖d(αn,r). Let ϕr(f) =

lim
N
φ(f, n).

Then ϕr belongs to Mult(A, ‖ . ‖) and Ker(ϕr) is neither null nor a maximal ideal of A.
Moreover, Ker(ϕr) does not depend on r ∈]0, 1[.

However each so defined semi-norm ϕr belongs to the closure of Mult1(A, ‖ . ‖) in Mult(A, ‖ . ‖).
Proof: h belongs to A because the sequence (an) is bounded. Next, h has a unique zero αn in
each circle C(0, rn) and no other zero in D by Theorem II.13.

Let M be the ideal of the f ∈ A such that lim
N
|f(αn)| = 0. Of course h belongs to M and

Ker(ϕr) is strictly included in M. Indeed, since h admits a unique zero in the disk d(αn, r), it

satisfies ‖h‖d(αn,,r) = |h|(rn)
rn
r

and therefore lim
N
‖h‖d(αn,r)) =

1
r

, which proves that h does not

belong to Ker(ϕr).
On the other hand, we will prove that Ker(ϕr) is not null. Let (qn)n∈ IN∗ be a sequence

of positive integers satisfying qn ≤ qn+1 ∀n ∈ IN∗, lim
n→+∞

qn = +∞ and such that the series
+∞∑
n=1

qn log(
1
rn

) converges: we can easily find the sequence (qn) since lim
n→+∞

rn = 1. Now, consider

the divisor (αn, qn)n∈ IN of D. By Theorem II.15 there exists g ∈ A admitting each αn as a zero
of order tn ≥ qn and such that |g|(rn) ≤ |T |(rn) + 1 ∀n ∈ IN∗. Consequently, g is bounded in D
and hence belongs to A. Next, for every n ∈ IN∗, by Corollary II.8.1 we have

‖g‖d(αn,r) ≤ |g|(rn)
( r
rn

)tn
≤ ‖g‖

( r
rn

)qn

.

Since the sequence (qn)n∈ IN∗ tends to +∞ and the sequence (rn) is increasing, we have
lim

n→+∞
‖g‖d(αn,r) = 0, which proves that g belongs to Ker(ϕr).

Let f ∈ Ker(ϕr) and let s ∈]0, 1[. If s < r, it is obvious that f belongs to Ker(ϕs). Now
suppose s > r. Consider an element L of N such that infn∈L ‖f‖d(αn,r) = 0. We will prove that
infn∈L ‖f‖d(αn,s) = 0. For each n ∈ IN∗, by Theorem II.11, we have

(1) log(‖f‖d(αn,s))− log(‖f‖d(αn,r))
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≤
(

log(‖f‖d(αn,rn))− log(‖f‖d(αn,s))
)( log(s)− log(r)

log(rn)− log(s)

)
.

Suppose that the sequence ‖f‖d(αn,s) does not tend to 0. There exists a sequence (um)m∈ IN of
IN∗ such that ‖f‖d(αum ,s) > b ∀m ∈ IN with b > 0. But then, we get to a contradiction with

(1). Consequently, infn∈L ‖f‖d(αn,s) = 0 and therefore f belongs to Ker(ϕs), which proves that
Ker(ϕs) = Ker(ϕr).

Consider now a neighborhood V(ϕr, f1, ..., fq, ε) of ϕr, where f1, ..., fq ∈ A and ε > 0, with
respect to the topology of pointwise convergence, i.e.
V(ϕr, f1, ..., fq, ε) = {φ ∈ Mult(A, ‖ . ‖) |

∣∣∣ϕr(fj) − φfj)
∣∣∣
∞
≤ ε, j = 1, ..., q, q ∈ IN∗}. By

definition of that topology, there exists a subset G of IN such that
|ϕr(fj)−‖fj‖d(αn,r)|∞ ≤ ε ∀n ∈ G,∀j = 1, ..., q. But now, in each disk d(αn, r), we can take a class
d(bn, r−) where none of the fj admits a zero, and hence we have |fj(bn)| = ‖fj‖d(αn,r) ∀j = 1, ..., q
and hence |ϕbn

(fj) − ϕr(fj)|∞ ≤ ε ∀j = 1, ..., q. Consequently, ϕbn
belongs to V(ϕr, f1, ..., fq, ε),

which proves that ϕr lies in the closure of Mult1(A, ‖ . ‖) and that finishes the proof of Theorem
II.16.

Acknowledgement: I am very grateful to Bertin Diarra for many advises and to Jesus Araujo
for letting me know his nice proof of Theorem II.16.
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141 (1964). Centre National de la Recherche Scientifique (1966), (Colloques internationaux du
C.N.R.S. Paris, 143).
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