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I. Introduction and results.

Let T = H ∞ (B) be the unital Banach algebra of bounded analytic functions on the open unit disk B in the complex plane. Each a ∈ B defines a multiplicative linear functional φ a on T by "point evaluation" i.e. φ a (f ) = f (a). If a function f lies in the kernel of all the φ a then clearly f = 0. This tells us that the set of all the φ a is dense in the set Ξ(T ) of all non-zero multiplicative linear functionals on T in the hull-kernel topology which is lifted from the kernels of the functionals, which are the maximal ideals of T (each maximal ideal, being of codimension 1, is the kernel of a multiplicative linear functional).

The Corona Conjecture of Kakutani was that one also has density with respect to the weak topology (or Gelfand topology) which is the topology of pointwise convergence on T , defined on the space Ξ(T ). This was famously proved by Carleson in 1962 [START_REF] Carleson | Interpolation by bounded analytic functions and the corona problem[END_REF]. The key fact is that if f 1 , ..., f n belong to T and if there exists d > 0 such that, for all a ∈ B we have Let a ∈ D. Given r, s ∈]0, 1] such that 0 < r < s we set Γ(a, r, s) = {x ∈ IK |r < |x -a| < s}.

Let A be the IK-algebra of bounded power series converging in D which is complete with respect to the Gauss norm defined as

∞ n=1 a n x n = sup n∈ IN
|a n |: we know that this norm actually is the norm of uniform convergence on D [START_REF] Escassut | Analytic Elements in p-adic Analysis[END_REF].

In [START_REF] Van Der Put | The Non-Archimedean Corona Problem Table Ronde Anal. non Archimedienne[END_REF] the Corona problem was considered in a similar way as it is on the field l C [START_REF] Carleson | Interpolation by bounded analytic functions and the corona problem[END_REF]: the author asked the question whether the set of maximal ideals of A defined by the points of D (which are well known to be of the form (x -a)A), is dense in the whole set of maximal ideals with respect to a so-called "Gelfand Topology". In fact, as explained in [START_REF] Escassut | About the ultrametric Corona problem[END_REF], this makes no sense because the maximal ideals which are not of the form (x -a)A are of infinite codimension [START_REF] Escassut | About the ultrametric Corona problem[END_REF]. Consequently, a Corona problem should be defined in a different way, as explained in [START_REF] Escassut | About the ultrametric Corona problem[END_REF]. Actually, one can't define a relevant topology on the maximal spectrum of a Banach IK-algebra having maximal ideals of infinite codimension: the only spectrum we have to consider is Guennebaud's spectrum of Continuous multiplicative semi-norms [START_REF] Guennebaud | Sur une notion de spectre pour les algèbres normées ultramétriques[END_REF], which is at the basis of Berkovich theory [START_REF] Berkovich | Spectral Theory and Analytic Geometry over Non-archimedean Fields[END_REF].

However, in [START_REF] Van Der Put | The Non-Archimedean Corona Problem Table Ronde Anal. non Archimedienne[END_REF] a "Corona Statement" similar to that mentioned above was shown in our algebra A and it is useful in the present paper as it was in [START_REF] Escassut | About the ultrametric Corona problem[END_REF]. Roughly, the "Corona Statement" shows that each maximal ideal is just the ideal of elements of the algebra T , vanishing along an ultrafilter, on the domain D. Therefore, on l C, f (z) has a limit along the ultrafiter and the limit defines a character which, by definition, lies in the closure of the set of characters defined by points of D. And there are no other characters. On the field IK, although a similar "Corona Statement" remains true [START_REF] Van Der Put | The Non-Archimedean Corona Problem Table Ronde Anal. non Archimedienne[END_REF], we can't manage the problem in the same way because f (x) has no limit along an ultrafilter (the field is not locally compact). But we may consider continuous multiplicative semi-norms and then |f (x)| has a limit along an ultrafilter, which defines again a continuous multiplicative semi-norm. But do we get all continuous multiplicative semi-norms whose kernel is a maximal ideal, in that way? That is the problem (easily solved when the field is strongly valued [START_REF] Escassut | Ultrametric Corona problem and spherically complete fields[END_REF] and next, solved when IK is spherically complete [START_REF] Escassut | Ultrametric Corona problem and spherically complete fields[END_REF]). Here we will recall that if A is multbijective, then the problem of density is solved and we will examine this problem of multbijectivity in a further article. On the other hand, we will show that certain continuous multiplicative semi-norms have a kernel that is neither null nor maximal ideal: they are Araujo's semi-norms [START_REF] Araujo | Prime and maximals ideals in the spectrum of the ultrametric algebra H ∞ (D)[END_REF].

Recall classical results on analytic elements. Let E be a closed bounded subset of IK. We denote by R(E) the algebra of rational functions having no pole in E and we denote by H(E) the Banach IK-algebra completion of R(E) with respect to the norm of uniform convergence . E which is defined on R(E) because every rational function is bounded on such a set E.

Theorem I.1 summerizes a few classical properties of analytic elements in a disk d(a, R) [START_REF] Escassut | Analytic Elements in p-adic Analysis[END_REF].

Theorem I.1: Let a ∈ IK and let r > 0. Then H(d(a, r)) is the set of power series

∞ n=0 a n (x -a) n such that lim n→+∞ |a n |r n = 0. Let f (x) = ∞ n=0 a n (x -a) n ∈ H(d(a, R)
) and let q be the biggest integer

such that |a q |r q = max n∈ IN |a n |r n . Then the number of zeros of f in d(a, r) is equal to q. Given a maximal ideal of H(d(a, R)), it is of the form (x -b)H(d(a, R)).
We have defined by A the IK-algebra of power series f = Notations: Let S be a unital commutative normed algebra whose norm is denoted by . . We denote by M ult(S, . ) the set of continuous multiplicative semi-norms of S. For each φ ∈ M ult(S, . ), we denote by Ker(φ) the closed prime ideal of the f ∈ S such that φ(f ) = 0. The set of the φ ∈ M ult(S, . ) such that Ker(φ) is a maximal ideal is denoted by M ult m (S, . ), the set of the φ ∈ M ult(T, . ) such that Ker(φ) is a maximal ideal of codimension 1 is denoted by M ult 1 (S, . ) [START_REF] Berkovich | Spectral Theory and Analytic Geometry over Non-archimedean Fields[END_REF], [START_REF] Guennebaud | Sur une notion de spectre pour les algèbres normées ultramétriques[END_REF].

First, we will characterize all continuous multiplicative norms on A. Next, recalling Araujo's contruction, we will present continuous multiplicative semi-norms whose kernel is a prime closed ideal that is neither null nor maximal [START_REF] Araujo | Prime and maximals ideals in the spectrum of the ultrametric algebra H ∞ (D)[END_REF].

The ultrametric Corona problem may be viewed at two levels: 1) Is M ult 1 (A, . ) dense in M ult m (A, . ) (with respect to the topology of pointwise convergence)?

2) Is M ult 1 (A, . ) dense in M ult(A, . ) (with respect to the same topology )?

In a further article, we will try to solve Question 1). Actually, this way to set the Corona problem on an ultrametric field is not really different from the original problem once considered on l C because on a commutative unital Banach l C-algebra S, all continuous multiplicative seminorms are known to be of the form |χ| where χ is a character of S. Thus the Corona problem was equivalent to show that the set of multiplicative semi-norms defined by the points of the open disk of center 0 and radius 1 was dense inside the whole set of continuous multiplicative semi-norms, with respect to the topology of pointwise convergence.

Let us recall some classical results on multiplicative semi-norms in ultrametric Banach algebras. Let B be a commutative unital Banach IK-algebra. We know that for every M ∈ M ax(B), there exists at least one φ ∈ M ult m (B, . ) such that Ker(φ) = M but in certain cases, there exist infinitely many φ ∈ M ult m (B, . ) such that Ker(φ) = M, [START_REF] Escassut | Spectre maximal d'une algbre de Krasner[END_REF], [START_REF] Escassut | Ultrametric Banach Algebras[END_REF].

A maximal ideal M of B is said to be univalent if there is only one φ ∈ M ult m (B, . ) such that Ker(φ) = M and the algebra B is said to be multbijective if every maximal ideal is univalent. It was proven that non-multbijective commutative unital Banach IK-algebras with unity do exist [START_REF] Escassut | Spectre maximal d'une algbre de Krasner[END_REF], [START_REF] Escassut | Ultrametric Banach Algebras[END_REF]. The question whther A is multbijective here appears to be crucial. Remark: Given a filter G, if for every f ∈ A, |f (x)| admits a limit ϕ G (f ) along G, the function ϕ G obviously belongs to M ult(A, . ). Moreover, it clearly lies in the closure of M ult 1 (A, . ). Consequently, if we can prove that every element of M ult m (A, . ) is of the form ϕ G , with G a certain filter on D, Question 1) is solved.

Thus it is important to know the nature of continuous multiplicative semi-norms on A. Unfortunately, we can't give a complete characterization.

In the proof of Theorems we shall need several basic results. Lemma I.2 is immediate and Lemma I.3 is well known [START_REF] Escassut | Ultrametric Corona problem and spherically complete fields[END_REF]: Lemma I.2: Let ∞ n=0 u n be a converging series with positive terms. There exists a sequence of strictly positive integers

t n ∈ IN satisfying t n ≤ t n+1 , n ∈ IN, lim n→∞ t n = +∞, ∞ m=0 t m u m < +∞.
Definition: An element f ∈ A will be said to be quasi-invertible if it factorizes in A in the form P (x)g(x) where P is a polynomial whose zeros lie in D and g is an invertible element of A.

Lemma I.3:

Let f ∈ A be not quasi-invertible and let (a n ) n∈ IN be the sequence of its zeros with respective multiplicity q n . Then the series ∞ n=0 q n log(|a n |) converges to log(|f (0)|)-log f . Now, we have the following Theorem [START_REF] Escassut | Analytic Elements in p-adic Analysis[END_REF]:

Theorem I.4: Given f = ∞ n=0 a n x n ∈ A, we have f = sup n∈ IN |a n | = sup{φ(f ) | φ ∈ M ult(A, .
). The norm f is multiplicative and every f ∈ A is uniformly continuous in D. For every r ∈]0, 1[, f has finitely many zeros in d(0, r -). Let a ∈ C(0, r).

If f has no zero in d(a, r -) then |f (x)| = |f |(r) ∀x ∈ d(a, r -).
Moreover, the three following statements are equivalent, 1) f has no zero in D,

2) f is invertible in A, 3) f = |a 0 |. 4) |f (x)| is a constant in D. Corollary I.4.1: An element f ∈ A is quasi-invertible if
and only if it has finitely many zeros.

Lemmas I.5, I.6 are also classical and particularly, are given in [START_REF] Escassut | Analytic Elements in p-adic Analysis[END_REF] and [START_REF] Escassut | Value Distribution in p-adic Analysis[END_REF]. Lemma I.5: Let f, g ∈ A be such that every zero a of f is a zero of g of order superior or equal to its order as a zero of f . Then there exists h ∈ A such that g = f h.

Lemma I.6: Let f ∈ A. Then |f |(r) ≤ |f |(r) r ∀r < 1.
By classical results on analytic functions we know this lemma (for instance Lemma I.7 is Theorem 22.26 in [START_REF] Escassut | Value Distribution in p-adic Analysis[END_REF]): Lemma I.7: Let r , r ∈]0, 1[ and let f ∈ A admit zeros a 1 , ...a q of respective order k j , j = 1, ..., q in Γ(0, r , r ) and no zero in d(0, r ). 

Then |f |(r ) = |f |(r ) q j=1 ( r |a j | ) kj . Lemma I.8: Let f (x) = ∞ n=0 a n x n ∈ H(C(0,

Definitions and notation:

We call circular filter of center a and diameter R on D the filter F which admits as a generating system the family of sets Γ(α, r , r )∩D with α ∈ d(a, R), r < R < r , i.e. F is the filter which admits for basis the family of sets of the form D ∩

q i=1 Γ(α i , r i , r i ) with α i ∈ d(a, R), r i < R < r i (1 ≤ i ≤ q , q ∈ IN).
Recall that the field IK is said to be spherically complete if every decreasing sequence of disks has a non-empty intersection. Each field such as IK admits an algebraically closed spherical completion (see Theorems 7.4 and 7.6 in [START_REF] Escassut | Value Distribution in p-adic Analysis[END_REF].

In a field which is not spherically complete, one has to consider decreasing sequences of disks (D n ) with an empty intersection. We call circular filter with no center, of canonical basis (D n ) the filter admitting for basis the sequence (D n ) and the number lim

n→∞ diam(D n ) is called diameter of the filter.
Finally the filter of neighborhoods of a point a ∈ D is called circular filter of the neighborhoods of a on D and its diameter is 0. Given a circular filter F, its diameter is denoted by diam(F).

Given a ∈ IK and r > 0, we denote by Φ(a, r) the set of circular filters secant with d(a, r) i.e. the circular filters of center b ∈ d(a, r) and radius s ∈ [0, r].

Here, we will denote by W the circular filter on D of center 0 and diameter 1 and by Y the filter admitting for basis the family of sets of the form Γ(0, r, 1)\

∞ n=0 d(a n , r - n ) with a n ∈ D, r n ≤ |a n | and lim n→∞ |a n | = 1.
On IK[x], circular filters on IK are known to characterize multiplicative semi-norms by associating to each circular filter F the multiplicative semi-norm ϕ F defined as ϕ F (f ) = lim F |f (x)| [START_REF] Garandel | Les semi-normes multiplicatives sur les algèbres d'éléments analytiques au sens de Krasner[END_REF], [START_REF] Guennebaud | Sur une notion de spectre pour les algèbres normées ultramétriques[END_REF], [START_REF] Escassut | Ultrametric Corona problem and spherically complete fields[END_REF], [START_REF] Escassut | Multiplicative spectrum of ultrametric Banach algebras of continuous functions Topology and its applications[END_REF].

We know that every f ∈ A is an analytic element in each disk d(a, r) whenever r ∈]0, 1[ [START_REF] Escassut | Analytic Elements in p-adic Analysis[END_REF]. Consequently, by classical results [START_REF] Escassut | Analytic Elements in p-adic Analysis[END_REF], several properties of polynomials have continuation to analytic elements and to A. Definitions and notation:

Let a ∈ D and let R ∈]0, 1]. Given r, s ∈ IR such that 0 < r < s we set Γ(a, r, s) = {x ∈ IK |r < |x -a| < s}.
We call circular filter of center a and diameter R on D the filter F which admits as a generating system the family of sets Γ(α, r , r ) ∩ D with α ∈ d(a, R), r < R < r , i.e. F is the filter which admits for basis the family of sets of the form D ∩

q i=1 Γ(α i , r i , r i ) with α i ∈ d(a, R), r i < R < r i (1 ≤ i ≤ q , q ∈ IN).
Recall that the field IK is said to be spherically complete if every decreasing sequence of disks has a non-empty intersection. Each field such as IK admits an algebraically closed spherical completion.

In a field which is not spherically complete, one has to consider decreasing sequences of disks (D n ) with an empty intersection. We call circular filter with no center, of canonical basis (D n ) the filter admitting for basis the sequence (D n ) and the number lim

n→∞ diam(D n ) is called diameter of the filter.
Finally the filter of neighborhoods of a point a ∈ D is called circular filter of the neighborhoods of a on D and its diameter is 0. Given a circular filter F, its diameter is denoted by diam(F).

Given a ∈ IK and r > 0, we denote by Φ(a, r) the set of circular filters secant with d(a, r) i.e. the circular filters of center b ∈ d(a, r) and radius s ∈ [0, r].

On IK[x], circular filters on IK are known to characterize multiplicative semi-norms by associating to each circular filter F the multiplicative semi-norm ϕ F defined as ϕ F (f ) = lim F |f (x)| [START_REF] Garandel | Les semi-normes multiplicatives sur les algèbres d'éléments analytiques au sens de Krasner[END_REF], [START_REF] Escassut | Analytic Elements in p-adic Analysis[END_REF], [START_REF] Escassut | Spectre maximal d'une algbre de Krasner[END_REF].

We know that every f ∈ A is an analytic element in each disk d(a, r) whenever r ∈]0, 1[ [START_REF] Escassut | Analytic Elements in p-adic Analysis[END_REF]. Consequently, by classical results [START_REF] Escassut | Analytic Elements in p-adic Analysis[END_REF], several properties of polynomials have continuation to analytic elements and to A.

Thus, by results on analytic elements, we have Theorem I.9 [START_REF] Escassut | Analytic Elements in p-adic Analysis[END_REF], [START_REF] Escassut | Value Distribution in p-adic Analysis[END_REF]: Theorem I.9:

Let a ∈ IK and R ∈]0, 1[ and let r ∈ [0, R]. For each circular filter F ∈ Φ(a, r), for each element f of H(d(a, r)) (resp. f ∈ H(d(a, r -))), |f (x)| has a limit ϕ a,r (f ) = ϕ F (f ) along F. Moreover, the mapping ϕ F defined on H(d(a, R)) (resp. on H(d(a, r -))
) is a multiplicative semi-norm continuous with respect to the norm . d(a,r)) (resp.

. d(a,r -)) ) and is a norm if and only if r > 0.

Next, if b ∈ d(a, r) (resp. f ∈ d(a, r -)), then ϕ a,r (f ) = ϕ b,r (f ). Further, the mapping associating to each circular filter F ∈ Φ(a, r) secant with d(a, R) the continuous multiplicative semi-norm ϕ F is a bijection from Φ(a, r) onto M ult(H(d(a, r)), . d(a,R) ). Now, we will denote by W the circular filter on D of center 0 and diameter 1 and by Y the filter admitting for basis the family of sets of the form Γ(0, r, 1)\

∞ n=0 d(a n , r - n ) with a n ∈ D, r n ≤ |a n | and lim n→∞ |a n | = 1.
Next, ϕ W defines the Gauss norm on IK[x] because, given a polynomial P (x) = q j=0 a j x j , we

have ϕ W (P ) = max 0≤j |a j |. Therefore ϕ W admits a natural continuation to A as ∞ n=1 a n x n = sup n∈ IN |a n |.
However, by [START_REF] Escassut | Spectre maximal d'une algbre de Krasner[END_REF] we know that this continuation is far from unique.

So, the problem is first to determine whether a multiplicative semi-norms defined on IK[x] by circular filters on D, other than the Gauss norm, have a unique continuation to A.

Consequently, given a circular filter F on D of diameter < 1, according to Theorem I.9, for every f ∈ A, |f (x)| has a limit along F denoted by ϕ F (f ) and then ϕ F is a continuous multiplicative semi-norm on A. In particular, given a ∈ D and r ∈]0, 1[, if we consider the circular filter F of center a and diameter r, we denote by ϕ a,r the multiplicative semi-norm ϕ F which actually is defined by ϕ a,r (f ) = lim |x-a|→r |f (x)| and is a norm whenever diam(F) > 0. For convenience, if F is the circular filter of center 0 and diameter r, we set |f |(r) = ϕ F (f ). Definitions and notations: Let E be a subset of IK. If E is bounded, of diameter r, we denote by E the disk d(a, r), a ∈ E.

For each a ∈ E, we denote by I a the mapping from E to IR + defined as I a (x) = |x -a|.

A subset E of IK is said to be infraconnected if for every a ∈ E, the closure in IR of I a (E) is an interval. 

(f n ) n∈IN in H(E) such that f 0 ∈ H(E), f n ∈ H 0 ( IK \ T n ) (n > 0), lim n→∞ f n = 0 satisfying (1) f = ∞ n=0 f n and f D = sup n∈IN f n E .
Moreover for every hole

T n = d(a n , r - n ) , we have (2) f n E = f n IK\Tn = ϕ an,rn (f n ) ≤ ϕ an,rn (f ) ≤ f E . If E = d(a, r) we have (3) f 0 E = f 0 E = ϕ a,r (f 0 ) ≤ ϕ a,r (f ) ≤ f E . Let F = E \ ∞ n=1
T n . Then f belongs to H(F ) and its decomposition in H(F ) is given again by (1) and then f satisfies

f F = f E .
Let us recall the following results [START_REF] Escassut | Ultrametric Banach Algebras[END_REF], [START_REF] Guennebaud | Sur une notion de spectre pour les algèbres normées ultramétriques[END_REF]: Theorem I.12: Let B be a unital commutative ultrametric Banach IK-algebra.

Then sup{φ(f ) | φ ∈ M ult(B, . )} = lim n→∞ ( f n ) 1 n ∀f ∈ B.
On the other hand, M ult(B, . ) is provided with the topology of pointwise convergence and is compact for this topology [START_REF] Bourbaki | Topologie générale, Ch. I[END_REF], [START_REF] Guennebaud | Sur une notion de spectre pour les algèbres normées ultramétriques[END_REF].

Let us now recall some general results on maximal ideals [START_REF] Escassut | Ultrametric Banach Algebras[END_REF] (Theorems 15.6 and 27.3): Theorem I.13: Let B be a unital cmmutative Banach IK-algebra. Each maximal ideal of B is the kernel of at least one continuous multiplicative semi-norm. If IK has a non-countable residue class field or a non-countable value group then each maximal ideal of B is the kernel of a unique continuous multiplicative semi-norm. Corollary I.13.1: If IK has a non-countable residue class field or a non-countable value group then every unital commutative Banach IK-algebra is multbijective. Definition: The field IK is said to be strongly valued if one of the following two sets are not countable:

1) the residue field of IK, 2) the set | IK| = {|x| |x ∈ IK}. Remark: When the algebraically closed complete field is not strongly valued, there exist Banach IK-algebras which are not multbijective [START_REF] Escassut | Spectre maximal d'une algbre de Krasner[END_REF], [START_REF] Escassut | Ultrametric Banach Algebras[END_REF].

II. Study of M ult(A, . ).

Let us first notice the following basic result which is indispensable in the sequel: Theorem II.1: Let F be a filter on D such that for all f ∈ A, |f (x)| have a limit along F. Then the mapping φ defined on A as φ(f ) = lim

F |f (x)| belongs to the closure of M ult 1 (A, . ) in M ult(A, .
). Proof: Let us first notice that given an element φ ∈ M ult(A, . ) of the form ϕ F with F a filter on D, then φ clearly belongs to the closure of M ult 1 (A, . ) in M ult(A, . ). More precisely, take f 1 , ..., f q ∈ A and > 0. For each j = 1, ..., q therer exists

B j ∈ F such that |f j (x)| -ϕ U (f j ) ∞ ≤ ∀x ∈ B j . Let B = q j=1 B j . Then |f j (x)| -ϕ U (f j ) ∞ ≤ ∀x ∈ B, ∀j = 1, ...,
q, which ends the proof.

We will now apply to the algebra A all results already known concerning algebras H(d(a, R)) and H(d(a, R -)). Now, when studying the set of multiplicative semi-norms of the algebra A, we have to consider coroner ultrafilters. Definitions and notations: An ultrafilter U on D will be called coroner ultrafilter if it is thinner than W. Similarly, a sequence (a n ) on D will be called a coroner sequence if its filter is a coroner filter, i.e. if lim n→+∞ |a n | = 1.

Two coroner ultrafilters F, G are said to be contiguous if for every subsets F ∈ F, G ∈ G of D the distance from F to G is null.

Let ψ ∈ M ult(A, . ) be different from . . Then ψ will be said to be coroner if its restriction to IK[x] is equal to . . In [START_REF] Escassut | About the ultrametric Corona problem[END_REF] regular ultrafilters were defined. Let (a n ) n∈ IN be a coroner sequence in D. The sequence is called a regular sequence if inf

j∈ IN n∈ IN n =j |a n -a j | > 0.
An ultrafilter U is said to be regular if it is thinner than a regular sequence. Thus, by definition, a regular ultrafilter is a coroner ultrafilter. Now, given an ultrafilter U on D, the function |f (x)| from D to [0, f ] has a limit ϕ U (f ) which clearly defines an element of M ult(A, . ). We can then derive Theorem II.2.

Given a filter F on D, we will denote by J (F) the ideal of the f ∈ A such that lim

F f (x) = 0.
Theorem II.2: Let U be an ultrafilter on D. For every f ∈ A, |f (x)| admits a limit ϕ U (f ) along U. Moreover, the mapping ϕ U from A to IR + belongs to M ult(A, . |) and Ker(ϕ U ) = J (U).

Given two contiguous ultrafilters U 1 , U 2 on D, ϕ U1 = ϕ U2 .

Proof: Let θ be the function defined in D, by θ(x) = |f (x)|. For each f ∈ A, θ takes values in the compact [0, f ]. Clearly, θ admits a limit ϕ U along every ultrafilter U on D. Consequently, ϕ U defines a continuous multiplicative semi-norm on A whose kernel is J (U). Finally, since every function f ∈ A is uniformly continuous, it is easily seen that lim

U1 |f (x)| = lim U2 |f (x)| ∀f ∈ A, hence ϕ U1 (f ) = ϕ U2 (f ) ∀f ∈ A, hence ϕ U1 = ϕ U2 .
Remark: Contrary to the context of uniformly continuous bounded functions [START_REF] Escassut | Multiplicative spectrum of ultrametric Banach algebras of continuous functions Topology and its applications[END_REF], it seems very hard to know whether two ultrafilters U and V on D such that ϕ U = ϕ V are contiguous.

Notation: We will denote by Y the filter on D admitting for basis the family of sets of the form

d(0, 1 -) \ ∞ n=1 ( qn j=1 d(a n,j , r - n )) with |a j,n | = r n < r n+1 < 1 ∀n ∈ IN and lim n→∞ r n = 1.
Proposition II.3:

For every f ∈ A, f = lim Y |f (x)|.
Proof: Let f ∈ A, let (C(0, r n )) n∈ IN be the sequence of circles of center 0 containing zeros of f and for every n ∈ IN, and let a n,1 , ..., a n,qn be the zeros of f in C(0, r n ). Then we can see that Proposition II.4: Let φ ∈ M ult(A, . ) satisfy φ(P

|f (x)| = |f |(|x|) ∀x / ∈ d(0, 1 -) \ ∞ n=1 ( qn j=1 d(a n,j , r - n )). Next,
) = P ∀P ∈ IK[x]. Every quasi-invertible element f ∈ A also satisfies φ(f ) = f . Proof: First suppose f ∈ A invertible in A. Then 1 = φ(f )φ(f -1 ). But φ(f ) ≤ f , φ(f -1 ) ≤ f -1
, hence both inequalities must be equalities. Now, let f = P g ∈ A be quasi-invertible, with P ∈ IK[x] a polynomial having all zeros in D and g ∈ A, invertible in A. Then φ(f ) = φ(P )φ(g) = P g = P g = f .

Let us now look at the maximal spectrum of A. Theorem II.5: Let M be an ideal of A. Then M is a maximal ideal of codimension 1 if and only if it is of the form (x -a)A with a ∈ D. Proof: Given a ∈ D, the ideal (x -a)A is obviously a maximal ideal of codimension 1 because the mapping χ a from A to IK defined as χ a (f ) = f (a) maps A onto IK. Now, let M be a maximal ideal of codimension 1 and let θ be the IK-algebra homorphism from A onto IK admitting M for kernel. Let a = θ(x). Since θ(x -a) = θ(x) -a is not invertible, we

have |a| < 1 because if |a| ≥ 1, then 1 x -a
belongs to H(D) and hence to A. Thus, a belongs to D. We know that all characters of a Banach IK-algebra are continuous (see for instance Theorem 6.19 in [START_REF] Escassut | Ultrametric Banach Algebras[END_REF]), hence so is θ. Consequently, θ(f ) = f (a) ∀f ∈ A and hence Ker(θ) = (x -a)A.

Notation: We will denote by M ult 1 (A, . ) the set of maximal ideals of codimension 1.

Remark: A admits maximal ideals of infinite codimension.

Theorem II.6: Let M be a maximal ideal of A. The following statements are equivalent:

(i) there exists a ∈ D such that M = (x -a))A, (ii) M is principal, (iii) M is of finite type, (iv) M is of codimension 1.
(v) M contains a quasi-invertible element. Proof: Suppose (i) is satisfied. Then so are (ii) and (iii) and by Theorem I.4, so is (iv). Moreover, by(i), x-a belongs to A, hence (v) is satisfied. Suppose now that (v) is satisfied and let P (x)g(x) ∈ M be quasi-invertible, with P a polynomial whose zeros lie in D and g an invertible element of A.

Then P belongs to M . Let P (x) = q j=1 (x -a j ). Since M is prime, one of the x -a j belongs to D and hence (i) is satisfied, which ends the proof. Corollary II.6.1: An element ϕ of M ult(A, . ) belongs to M ult 1 (A, . ) if and only if there exists α ∈ D such that ϕ(f ) = |f (α)|, ∀f ∈ A. Notation : Given an ideal I of A we will denote by G I the filter generated by the sets E(f, ), f ∈ I, > 0. By definition, G I is minimal, with respect to the relation of thinness, among the filters H such that lim H f (x) = 0 ∀f ∈ I. Theorem II.7: Let M be a non-principal maximal ideal of A. Then M = J (G M ).

Proof: By definition, we have M ⊂ J (G M ). On the other hand, J (G M ) = A because by Theorem II.5 all elements of J (G M ) are non-quasi-invertible. Consequently, M = J (G M ). Corollary II.7.1: Let M be a non-principal maximal ideal of A. For every ultrafilter U thinner than G M , J (U) = M . Corollary II.7.2:

For every maximal ideal M of A, there exist ultrafilters U such that M = J (U). Proof: Indeed, either M is principal, of the form (x -a)A or M is not principal and then the answer comes from Corollary II.7.1. Definition: A maximal ideal M of A will be said to be coroner (resp. regular) if there exists a coroner (resp. regular) ultrafilter U such that M = J (U). Notation: Let H be the IK-algebra of (bounded or not) analytic functions in D.

Theorem II.8 also is classical ( [START_REF] Escassut | Value Distribution in p-adic Analysis[END_REF], Theorem 22.26): Theorem II.8: Let f ∈ H and let r 1 , r 2 ∈]0, 1[ satisfy r 1 < r 2 . If f admits exactly q zeros in d(O, r 1 ) (taking multiplicity into account) and t different zeros α j , of respective multiplicity order m j (1

≤ j ≤ t) in Γ(0, r 1 , r 2 ), then f satisfies |f |(r 2 ) |f |(r 1 ) = t j=1 r 2 |α j | mj r 2 r 1 q Corollary II.8.1: Let f (x) = ∞ n=0 a n x n ∈ H have a set of zeros in D that consists of a se- quence (α n ) n∈ IN such that α n = 0 ∀n ∈ IN and where each α n is of order u n . Then f D = |f (0)| ∞ n=0 1 |α n | un .
Corollary II.8.2: Let f ∈ A be not quasi-invertible, such that f (0) = 1 and let (a n ) n∈ IN be the sequence of zeros with respective multiplicity q n . Then the series

∞ n=0 q n log 1 |a n | converges to log f .
Now, by Theorem II.6, II.7, and II.8 we can derive Theorem II.9: Theorem II.9: A maximal ideal of A is of infinite codimension if and only if it is coroner.

Proof: Let M be a maximal ideal of A. By Corollary II.7.2, M is of the form J (U) with U an ultrafilter on D. If U is coroner, then M is not of the form (x -a)A a ∈ D, and by Theorem II.6 it contains no quasi-invertible element and it is of infinite codimension. If U is not coroner, either it is a Cauchy filter of limit a ∈ D or it is thinner than a circular filter on D of center a ∈ D and diameter r ∈]0, 1[. If U is a Cauchy filter, M is the ideal of functions f such that f (a) = 0, then by Theorem II.6., M is of codimension 1.

Suppose now that If U is not a Cauchy filter. Since it is not coroner, it is secant with a disk d(a, r) ⊂ D and hence it is thinner than a circular filter F of center b ∈ d(a, r) and diameter s ∈]0, r] so that lim Theorem II.10: If A is multbijective, then M ult 1 (A, . ) is dense in M ult m (A, . ). Proof: By Theorem II.2, each ultrafilter U on D defines an element ϕ U of M ult(A, . ). Conversely, by Corollary II.7.2, every maximal ideal M is of the form J (U) with U an ultrafilter on D. Suppose now that A is multbijective and let φ ∈ M ult m (A, . ). Then Ker(φ) is a maximal ideal M of the form J (U) with U an ultrafilter on D. Consequently, Ker(ϕ U ) = M = Ker(φ). But since A is multbijective, then φ = ϕ U . And then, by Theorem II.1, ϕ U does belong to the closure of M ult 1 (A, . ) in M ult(A, . ), which ends the proof.

On the other hand, consequently to Theorem II.8, we can state Theorem II.11:

Theorem II.11: Let r, s, R ∈]0, +∞[ satisfy 0 < r < s < R and let f ∈ H((0, R)). Then log(|f |(s)) -log(|f |(r)) ≤ log(|f |(R)) -log(|f |(s))
log(s) -log(r) log(R) -log(s) .

Proof: Let q be the total number of zeros of f in d(0, s), each counted with its multiplicity.

Then by Theorem II.8 we have log

(|f |)(s)) -log(|f |)(r)) ≤ q(|og(s) -log(r)). On the other hand, log(|f |(R)) -log(|f |(s)) ≥ q log(R) -log(s) . Consequently, q ≤ log(|f |(R)) -log(|f |(s) log(R) -log(s)
which ends the proof. Theorem II.12: Let φ ∈ M ult(A, . ) and assume that its restriction

ϕ F to H(D) is not . . Then φ(f ) = lim F |f (x)| ∀f ∈ A. Proof: By hypothesis, F is a circular filter of diameter l < 1. Suppose first that f is invertible. Then |f (x)| is a constant b > 0. Consequently, f = b = ϕ F (f ). Suppose φ(f ) = b. Then φ(f ) < b because b = f . Now consider h = 1 f . Since . is multiplicative, we see that φ(h) > h , a contradiction. Consequently, φ(f ) = ϕ F (f ).
Suppose now f is quasi-invertible. Then f is of the form P g with P ∈ IK[x] and g invertible in A. Then, φ(f

) = φ(P )φ(g) = ϕ F (P )ϕ F (g) = ϕ F (f ).
We now suppose that f is not quasi-invertible. By Corollary I. For each q ∈ IN, let f q = f q n=0 (x -a n ) un and let l q = q k=0 u k . So, clearly, f q = f ∀q ∈ IN. Now, since φ(P ) = ϕ F (P ) ∀P ∈ IK[x], we have

φ( q n=1 (x -a n ) un ) = q n=1
|a n -a| un , hence φ(f q ) = t q n=1 |a n -a| un . But since φ(f q ) ≤ f q , that yields

t q n=1 |a n -a| un ≤ f q = f ∀q ∈ IN hence t q n=1 |a n -a| un ≤ f ∀q ∈ IN Since this is true for every q ∈ IN, we can derive t ∞ n=1 1 |a n -a| un ≤ f hence by (1), t f s ≤ f and therefore t ≤ s.
Now consider the case when there exists no disk d(a, r) belonging to F, such that none of the a n lie in d(a, r). Since lim n→∞ |a n | = 1, F is a filter admitting a center α. Let ρ be its diameter: of course ρ < 1 because ϕ F is not . . Consequently, d(α, ρ) contains finitely many zeros of f a 1 , ..., a s (eventually, if ρ = 0, then d(α, ρ) is reduced to the singelton {α} ).

Suppose first ρ = 0. Then ϕ F (f ) = 0 and φ(x -α) = 0 therefore s = t. Suppose now ρ > 0. Suppose |a j -a| ≤ ρ whenever j = 1, ..., q. We can choose a = a j ∀j = 1, ..., q. Set h = f q j=1 (x -a j ) uj . Then ϕ F (h) = s q j=1 |a j -α| uj and φ(h) = t q j=1 |a j -α| uj . Thus we are led to the same problem with h. Setting s = s q j=1 |a j -α| uj , t = t q j=1 |a j -α| uj , we have t ≤ s hence t ≤ s in all cases and therefore we have proven again that [START_REF] Berkovich | Spectral Theory and Analytic Geometry over Non-archimedean Fields[END_REF] φ(h) ≤ ϕ F (h) ∀h ∈ A.

Suppose now that for some f ∈ A, we have φ(f ) < ϕ F (f ). We can take r ∈]l, 1[ such that the disk d(0, r) belongs to

F. Let f (x) = ∞ n=1 b n x n . For every q ∈ IN, let g q (x) = q n=1 b n x n .
We notice that when q is big enough we have ϕ F (g q ) = sup

n∈ IN |b n |r n . Set w = sup n∈ IN |b n |r n . Now ϕ F (f -g q ) ≤ sup n>q |b n |r n , therefore lim q→+∞ ϕ F (f -g q ) =
0 and hence, by (2), we have

(3) lim q→+∞ φ(f -g q ) = 0.
So, we can take q such that ϕ F (f -g q ) < ϕ F (f ) and hence, by (2), we have φ(f -g q ) < ϕ F (f ). But since g q is a polynomial, we have φ(g q ) = ϕ F (g q ), hence φ(g q ) > φ(f ). Consequently, φ(f -g q ) = φ(g q ) = w when q is big nenough, a contradiction to [START_REF] Bourbaki | Topologie générale, Ch. I[END_REF]. By Theorem II.12 we now have the following corollaries: Corollary II.12.1: Let F be a circular filter on D of diameter r ∈]0, 1[. Then ϕ F has extension to a norm that belongs to M ult(A, . ). Proof: Let s ∈]r, 1[ and let d(a, s) be a disk that belongs to F. As an element of H(d(a, s)), each element f of A is such that ϕ F (f ) = lim F |f (x)| and that defines a multiplicative norm on A.

Corollary II.12.2: Let φ ∈ M ult(A, . ) \ M ult 1 (A, . ). If the restriction of φ to H(D) is of the form ϕ F with F a circular filter on D of diameter r ∈]0, 1[, then φ is a norm on A. Proof: Indeed, given a disk L of diameter s ∈ [r, 1[, which belongs to F, ϕ F is a norm on H(L) which contains A. Corollary II.12.3:

Let φ ∈ M ult(A, . ) \ M ult 1 (A, . ). If φ is not a norm on A, its restriction to H(D) is . . Proof: Indeed, if the restriction of φ to H(D) is of the form ϕ F with F a circular filter on D of diameter r ∈]0, 1[, then by Corollary II.12.1 φ is a norm on A.

The following Theorem II.13 is Theorem 22.33 in [START_REF] Escassut | Value Distribution in p-adic Analysis[END_REF]: The following Theorem II.14 is also given in [START_REF] Escassut | Analytic Elements in p-adic Analysis[END_REF] as Theorem 25.5: Theorem II.14: Let (a j ) j∈IN be a sequence in d(0,

Theorem II.13: Let f (x) = ∞ n=0 a n x n ∈ A( IK) (resp. f (x) = ∞ n=0 a n x n ∈ A(d(0, r -))
1 -) such that 0 < |a n | ≤ |a n+1 | for every n ∈ IN and lim n→∞ |a n | = r. Let (q n ) n∈IN be a sequence in IN * and let B ∈]1, +∞[. There exists f ∈ A(d(0, r -)) satisfying i) f (0) = 1 ii) f ≤ B n j=0 | a n a j | qj whenever n ∈ IN iii) for each n ∈ IN a n is a zero of f of order z n ≥ q n . Corollary II.14.1: Let (a j ) j∈IN be a sequence in d(0, r -) such that 0 < |a n | ≤ |a n+1 | for every n ∈ IN, lim n→∞ |a n | = r and let (q n ) n∈IN be a sequence in IN * such that n j=0 |a n | r qj > 0. Let B ∈]1, +∞[. There exists f ∈ A satisfying i) f (0) = 1 ii) f ≤ B ∞ j=0 r |a n | qj whenever n ∈ IN iii) for each n ∈ IN, a n is a zero of f of order z n ≥ q n . Notation: Let (a n ) n∈ IN a sequence in D such that |a n | ≤ |a n+1 | and lim n→+∞ |a n | = 1 and let (q n ) n∈ IN
be a sequence of integers (q n ≥ 0). The family (a n , q n ) n∈ IN is called a divisor of D. The definition applies to a divisor where all q n are null but finitely many.

The family of divisors of D is provided with a natural order: given two divisors T = (a n , q n ) n∈ IN and E = (a n , s n ) n∈ IN , we say that T ≤ E if q n ≤ s n ∀n ∈ IN.

Let f ∈ H and let (a n , q n ) n∈ IN be the set of zeros of f , each zero a n being of order q n . We will denote by T (f ) this family (a n , q n ) n∈ IN and the expression T (f ) is then called divisor of f . An interesting question was whether certain elements of M ult(A, . ) may have a kernel that is neither null nor a maximal ideal. The question was solved by Jesus Araujo thanks to this nice example [START_REF] Araujo | Prime and maximals ideals in the spectrum of the ultrametric algebra H ∞ (D)[END_REF].

In the proof of Theorem II.16, we will need the following Theorem II.15 that comes from Theorems 28.14 and 29.6 in [START_REF] Escassut | Value Distribution in p-adic Analysis[END_REF]. Theorem II.15: Let E = (a n , q n ) n∈ IN be a divisor on D with a n = 0 ∀n ∈ IN and let > 0. There exists f ∈ H such that T (f ) ≥ E, f (0) = 1 and |f |(r) ≤ |E|(r)(1 + ) ∀r ∈]0, 1[. Moreover, if IK is spherically complete, then there exists f ∈ B such that T (f ) = E. Corollary II.15.1: Let IK be spherically complete. Let (a j ) j∈IN be a coroner sequence such that ∞ n=0 |a n | > 0. There exists f ∈ H admitting each a n as a zero of order 1 and having no other zeros. Corollary II.15.2: Let f, g ∈ A be such that T (g) ≤ T (f ). There exists h ∈ A such that f = gh. Then ϕ r belongs to M ult(A, . ) and Ker(ϕ r ) is neither null nor a maximal ideal of A. Moreover, Ker(ϕ r ) does not depend on r ∈]0, 1[.

However each so defined semi-norm ϕ r belongs to the closure of M ult 1 (A, . ) in M ult(A, . ). Proof: h belongs to A because the sequence (a n ) is bounded. Next, h has a unique zero α n in each circle C(0, r n ) and no other zero in D by Theorem II. [START_REF] Guennebaud | Sur une notion de spectre pour les algèbres normées ultramétriques[END_REF].

Let M be the ideal of the f ∈ A such that lim On the other hand, we will prove that Ker(ϕ r ) is not null. Let (q n ) n∈ IN * be a sequence of positive integers satisfying q n ≤ q n+1 ∀n ∈ IN * , lim n→+∞ q n = +∞ and such that the series +∞ n=1 q n log( 1 r n ) converges: we can easily find the sequence (q n ) since lim Since the sequence (q n ) n∈ IN * tends to +∞ and the sequence (r n ) is increasing, we have lim n→+∞ g d(αn,r) = 0, which proves that g belongs to Ker(ϕ r ).

Let f ∈ Ker(ϕ r ) and let s ∈]0, 1[. If s < r, it is obvious that f belongs to Ker(ϕ s ). Now suppose s > r. Consider an element L of N such that inf n∈L f d(αn,r) = 0. We will prove that inf n∈L f d(αn,s) = 0. For each n ∈ IN * , by Theorem II.11, we have But then, we get to a contradiction with [START_REF] Araujo | Prime and maximals ideals in the spectrum of the ultrametric algebra H ∞ (D)[END_REF]. Consequently, inf n∈L f d(αn,s) = 0 and therefore f belongs to Ker(ϕ s ), which proves that Ker(ϕ s ) = Ker(ϕ r ). Consider now a neighborhood V(ϕ r , f 1 , ..., f q , ) of ϕ r , where f 1 , ..., f q ∈ A and > 0, with respect to the topology of pointwise convergence, i.e. V(ϕ r , f 1 , ..., f q , ) = {φ ∈ M ult(A, . ) | ϕ r (f j ) -φf j ) ∞ ≤ , j = 1, ..., q, q ∈ IN * }. By definition of that topology, there exists a subset G of IN such that |ϕ r (f j )-f j d(αn,r) | ∞ ≤ ∀n ∈ G, ∀j = 1, ..., q. But now, in each disk d(α n , r), we can take a class d(b n , r -) where none of the f j admits a zero, and hence we have |f j (b n )| = f j d(αn,r) ∀j = 1, ..., q and hence |ϕ bn (f j ) -ϕ r (f j )| ∞ ≤ ∀j = 1, ..., q. Consequently, ϕ bn belongs to V(ϕ r , f 1 , ..., f q , ), which proves that ϕ r lies in the closure of M ult 1 (A, . ) and that finishes the proof of Theorem II.16.

|f 1

 1 (z)| + ...... + |f n (z)| > d then the ideal generated by the f 1 , ...., f n is the whole of T . People often transfer the name "Corona Statement" to this key fact. Indeed, this Corona Statement implies that the Corona Conjecture is true, thanks to the fact that all maximal ideals of a l C-Banach algebra are of codimension 1. Now consider the situation in the non-archimedean context. Notations: Let IK be an algebraically closed field complete with respect to an ultrametric absolute value | . |. Given a ∈ IK and r > 0, we denote by d(a, r) the disk {x ∈ IK | |x -a| ≤ r}, by d(a, r -) the disk {x ∈ K | |x -a| < r}, by C(a, r) the circle {x ∈ IK | |x -a| = r} and set D = d(0, 1 -).

∞a

  n=0 n x n such that sup n∈ IN |a n | < +∞. Then each element of A converges in the disk D. Now, fixing a ∈ D, then f is also equal to a power series ∞ n=0 a n (x -a) n which also converges in D. We denote by . the norm of uniform convergence on D.

  r)) and assume that f has a unique zero α, of order 1, in C(0, r). Then |f (α)| = |f |(r). Proof: By hypothesis, f (x) is of the form (x -α)h(x) with h ∈ H(C(0, r)), having no zero in C(0, r). Then |f |(r) = r|h|(r). Moreover, since h has no zero in C(0, r), we have |h(α)| = |h|(r). And by Lemma I.6, |f |(r) ≤ |f |(r) r . Therefore, we have |f (α)| ≤ |f |(r) ≤ |f |(r) r = |h|(r) = |h(α)| = |f (α)| and hence |f (α)| = |f |(r).

  By classical results ([START_REF] Escassut | Analytic Elements in p-adic Analysis[END_REF], Lemma 2.1) we have the following description: Lemma I.10 : Let E be a closed bounded subset of IK, of diameter R. Then E \ E admits a unique partition by a family of maximal disks (d(b j , r - j )) j∈I . Definitions and notations: Let E be a closed bounded subset of IK and let (d(b j , r - j )) j∈I be the partition of E \ E shown in Lemma I.10. The disks d(b j , r - j )), j ∈ I are called the holes of E. We can now recall the famous Mittag-Leffler Theorem for analytic elements due to Marc Krasner[START_REF] Krasner | Prolongement analytique uniforme et multiforme dans les corps valués complets. Les tendances géométriques en algèbre et théorie des nombres[END_REF] and[START_REF] Escassut | Analytic Elements in p-adic Analysis[END_REF], Theorem 15.1: Theorem I.11: (M.Krasner) Let E be a closed and bounded infraconnected subset of IK and let f ∈ H(E) . There exists a unique sequence of holes (T n ) n∈ IN * of E and a unique sequence

  by definition of the norm . , we have f = lim r→1 |f |(r), which ends the proof.

F

  |f (x)| = 0 ∀f ∈ M . But since the function f ∈ A is an element f H(d(a, r)), by Theorem I.9 it cannot satisfy lim F |f (x)| = 0, a contradiction.

4 . 1 ,

 41 f has a sequence of zeros (a n ) n∈ IN in D, each having a multiplicity order u n . By Corollary II.8.1, we have lim n→+∞ |a n | = 1, so we can assume |a n | ≤ |a n+1 | ∀n ∈ IN. Let t = φ(f ) and s = lim F |f (x)|. We shall show that t ≤ s. Suppose first that F has a disk d(a, r) which contains none of the a n . By Corollary II.the disk d(a, r), |f (x)| is a constant equal to f

  Theorem II.16 (J. Araujo): Let h(x) = ∞ n=0 a n x n and suppose that the sequence |a n | |a n+1 | n∈ IN is strictly increasing, of limit 1. Then h belongs to A. Moreover, putting r n = |a n | |a n+1 | , n ∈ IN, h admits a unique zero on each circle C(0, r n ) and has no other zero in D. Let N be an ultrafilter on IN and for every f ∈ A, let φ(f, n) = f d(αn,r) . Let ϕ r (f ) = lim N φ(f, n).

N

  |f (α n )| = 0. Of course h belongs to M and Ker(ϕ r ) is strictly included in M. Indeed, since h admits a unique zero in the disk d(α n , r), it satisfies h d(αn,,r) = |h|(r n ) r n r and therefore lim N h d(αn,r) ) = 1 r , which proves that h does not belong to Ker(ϕ r ).

n→+∞ r n = 1 .

 1 Now, consider the divisor (α n , q n ) n∈ IN of D. By Theorem II.15 there exists g ∈ A admitting each α n as a zero of order t n ≥ q n and such that |g|(r n ) ≤ |T |(r n ) + 1 ∀n ∈ IN * . Consequently, g is bounded in D and hence belongs to A. Next, for every n ∈ IN * , by Corollary II.8.1 we have g d(αn,r) ≤ |g|(r n )

( 1 )

 1 log( f d(αn,s) ) -log( f d(αn,r) ) ≤ log( f d(αn,rn) ) -log( f d(αn,s) ) log(s) -log(r) log(r n ) -log(s) . Suppose that the sequence f d(αn,s) does not tend to 0. There exists a sequence (u m ) m∈ IN of IN * such that f d(αu m ,s) > b ∀m ∈ IN with b > 0.

  ). All zeros of f are of order one and the set of zeros of f is a sequence(α n ) n∈ IN such that |α n | < |α n+1 |

	if and only if the sequence	a n a n+1	is strictly increasing. Moreover, if these properties are satisfied,

then the sequence of zeros of f in

IK (resp. in d(0, r -)) is a sequence (α n ) n∈ IN * such that lim n→+∞ |α n | = +∞ (resp. lim n→+∞ |α n | = r) and |α n | = a n a n+1 .
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