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SOME ISOMORPHISM RESULTS FOR GRADED TWISTINGS OF

FUNCTION ALGEBRAS ON FINITE GROUPS

JULIEN BICHON AND MAEVA PARADIS

Abstract. We provide isomorphism results for Hopf algebras that are obtained as graded
twistings of function algebras on finite groups by cocentral actions of cyclic groups. More gen-
erally, we also consider the isomorphism problem for finite-dimensional Hopf algebras fitting
into abelian cocentral extensions. We apply our classification results to a number of con-
crete examples involving special linear groups over finite fields, alternating groups and dihedral
groups.
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1. Introduction

Hopf algebras are useful and far-reaching generalizations of groups. In the semisimple (hence
finite-dimensional) setting, the framework that is the closest from the one of finite groups,
all the known examples arise from groups via a number of sophisticated constructions, and
a general fundamental question [2, Problem 3.9] is whether any semisimple Hopf algebra is
“group-theoretical” in an appropriate sense. An answer to the above question, positive or not,
still would leave open the hard problem of the isomorphic classification of the “group-theoretical”
Hopf algebras. This paper proposes contributions to this classification problem, mainly for the
class of Hopf algebras that are obtained as graded twisting of function algebras of finite groups.

The graded twisting of Hopf algebras, which differs in general from the familiar Hopf 2-cocycle
twisting construction [9], was introduced in [4], and is the formalization of a construction in [26]
that solved the quantum group realization problem of the Kazhdan-Wenzl categories [18]. The
initial data is that of a graded Hopf algebra A, acted on by a group Γ. The resulting twisted
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Hopf algebra then has a number of pleasant features related to those of initial one. Among those
features, the following one [4, 5] is of particular interest: if A = O(G) is the coordinate algebra
on a linear algebraic group G and Γ has prime order, then all the noncommutative quotients of
the graded twisted Hopf algebra again are graded twist of O(H), for a well-chosen “admissible”
closed subgroup H ⊂ G. This applies in particular to O−1(SL2(C)), whose noncommutative
quotients have been discussed and classified in [27, 3]. The results in [4, 5], however, leave open
the question of the isomorphic classification of the Hopf algebras that are obtained by graded
twisting, and this is precisely the problem that we discuss in this paper.

We prove 3 isomorphism results for graded twisting of Hopf algebras of functions on finite
groups. These results all have in common strong cohomological assumptions on the underlying
group, which we believe to be difficult to overcome to obtain general results, but yet are broad
enough to cover a number of interesting cases. Namely, we obtain classification results for Hopf
algebras that are graded twists of

(1) O(SLn(Fq)) by Zm, where q is a power of a prime number, m = GCD(n, q− 1) is prime
and (n, q) 6∈ {(2, 9), (3, 4)} (see Theorem 5.2);

(2) O(Ãn) by Z2, where Ãn is the unique Schur cover of the alternating group An, with
n 6= 6 (see Theorem 5.4);

(3) O(S̃n) by Z2, where S̃n is any of the two Schur covers of the symmetric group Sn, with
n 6= 6 (see Theorem 5.5).

While the first two isomorphism theorems (Theorem 3.1 and Theorem 3.3) are obtained
rather directly and early in the paper (in Section 3), the third one (Theorem 4.27) is obtained
by considering the more general problem of the classification of the Hopf algebras fitting into an
abelian cocentral extension. This is a classical topic in the field, which has been quite studied
and very successful to obtain several classification results [20, 25, 15]. Most of our analysis in
Section 4 is thus well-know to specialists, but we feel that certain formulations and our focus on
extensions that are universal bring some novelty, and we get as applications some results in this
framework that seem to be new. Indeed we obtain classification results (i.e. parameterizations
by concrete and explicitly known group-theoretical data) for noncommutative Hopf algebras A
fitting into an abelian cocentral extension k → O(H) → A → kZm in the following cases:

(1) H = PSL2(Fp), with p odd prime and m = 2;
(2) H = An, with n = 5 or n ≥ 8 and m = 2;
(3) H = A5, for any m ≥ 1;
(4) H = Sn, with n 6= 6 and m = 2;
(5) H = Dn, the dihedral group of order 2n with n odd and m ≥ 1;
(6) H = Dn with n even, with the above extension universal and m = 2;
(7) H = Zp × Zp with p an odd prime and m a power of a prime such that m|(p− 1).

Among those examples, it is interesting to note that the one with Dn and n even is certainly
the most intricate one, and does not follow from a general result, although the structure of this
group is certainly not the richest one.

The paper is organized as follows. Section 2 consists of reminders and preliminaries. In
Section 3 we provide our first two isomorphism results for graded twistings of function algebras
on finite groups. Section 4 deals with general abelian cocentral extensions and provides our
third isomorphism result for graded twistings. The final Section 5 discusses applications of the
previous results to the concrete examples mentioned above.

Notation and conventions. We work over a fixed base field k, that we assume to be al-
gebraically closed and of characteristic zero. We assume familiarity with the theory of Hopf
algebras, for which [24] is a convenient reference, and we adopt the usual conventions: for ex-
ample ∆, ε and S always respectively stand for the comultiplication, counit and antipode of a
Hopf algebra, and we will use Sweedler’s notation in the standard manner. A slightly less usual
convention is that we will assume that Hopf algebras have bijective antipode. We also assume
some familiarity with basic homological algebra, for which [12, 14] are convenient references,
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and in particular we will use [14] as a reference for Schur multiplier computations. Other specific
notations will be introduced throughout the text.

2. Preliminaries

This section consists of reminders about cocentral Hopf algebra maps, cocentral gradings, and
the graded twisting construction. It also provides a number of simple but useful preliminary
results.

2.1. Cocentral Hopf algebra maps, cocentral gradings. The concept of cocentral Hopf
algebra map is dual to the familiar one of central algebra map. The precise definition is as
follows [1], see [6, 7] for extensive discussions on these notions.

Definition 2.1. (1) A Hopf algebra map p : A → B is said to be cocentral if for any a ∈ A,
we have p(a(1))⊗ a(2) = p(a(2))⊗ a(1).

(2) A cocentral Hopf algebra map p : A → B is said to be universal if for any cocentral
Hopf algebra map q : A → C, there exists a unique Hopf algebra map f : B → C such
that f ◦ p = q.

(3) A Hopf algebra is said to have a universal grading group if there exists a universal
cocentral Hopf algebra map p : A → kΓ for some group Γ, the unique such group Γ
being called the universal grading group of A.

Remarks 2.2. (1) If p : A → B is a cocentral surjective Hopf algebra map, then B is
necessarily cocommutative.

(2) Given a Hopf algebra A, the existence of a universal cocentral Hopf algebra map A → B
is easily shown as follows. Consider X, the linear subspace of A spanned by the elements

ϕ(a(1))a(2) − ϕ(a(2))a(1), ϕ ∈ A∗, a ∈ A

It is easy to see that X is a co-ideal in A, and then the ideal I generated by X is a Hopf
ideal in A. The quotient Hopf algebra map p : A → A/I is then universal cocentral.
Uniqueness of the universal cocentral Hopf algebra map is obvious from the definition.

(3) If G is a linear algebraic subgroup, denote by O(G) the algebra of coordinate functions
on G. If H ⊂ G is a closed subgroup, the restriction map O(G) → O(H) is cocentral if
and only if H is central in G: H ⊂ Z(G), and the restriction map O(G) → O(Z(G)) is
universal cocentral.

(4) If a Hopf algebra A is cosemisimple, it is not difficult to see, using the Peter-Weyl
decomposition of A (decomposition of A into direct sum of matrix subcoalgebras), that
A has a universal grading group.

The following lemma will be used several times in the text.

Lemma 2.3. Let A, B be Hopf algebras having the same universal finite cyclic grading group
Γ0 and suppose given two surjective cocentral Hopf algebra maps p : A → kΓ and q : B → kΓ
for some finite cyclic group Γ, and a Hopf algebra isomorphism f : A → B. Then there exists
u ∈ Aut(Γ) such that u ◦ p = q ◦ f .

Proof. Let p0 : A → kΓ0 and q0 : B → kΓ0 be the universal cocentral Hopf algebra maps. The
Hopf algebra map q0 ◦ f : A → kΓ0 being cocentral, there exists a unique group morphism
v : Γ0 → Γ0 such that v ◦ p0 = q0 ◦ f . Since q0 ◦ f is surjective, so is v and hence v is
an automorphism since Γ0 is finite. The Hopf algebra maps p : A → kΓ and q : B → kΓ
being cocentral and surjective, the universality of p0 and q0 yields surjective group morphisms
w,w′ : Γ0 → Γ such that w ◦ p0 = p and w′ ◦ q0 = q. Let N = Ker(w) and N ′ = Ker(w′).

We have |N | = |Γ0|
|Γ| = |N ′|, hence the uniqueness of a subgroup of given order in a finite cyclic

group yields N = N ′ = v(N), and there exists a unique group morphism u : Γ → Γ such that
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u ◦ w = w′ ◦ v:
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✤
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u
��
✤
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✤

B
q0

//

q

66kΓ0
w′

//❴❴❴ kΓ

We get u ◦ p = u ◦ w ◦ p0 = w′ ◦ v ◦ p0 = w′ ◦ q0 ◦ f = q ◦ f , as required. �

Definition 2.4. Let A be a Hopf algebra and let Γ be a group. A cocentral grading of A by Γ
consists of a direct sum decomposition A = ⊕g∈ΓAg such that for any g, h ∈ Γ we have

(1) AgAh ⊂ Agh and 1 ∈ Ae,
(2) ∆(Ag) ⊂ Ag ⊗Ag and S(Ag) ⊂ Ag−1 .

Cocentral gradings by Γ correspond to cocentral Hopf algebra maps p : A → kΓ. Indeed,
given a cocentral Hopf algebra map p : A → kΓ, the corresponding grading is defined by

Ag = {a ∈ A | a(1) ⊗ p(a(2)) = a⊗ g = a(2) ⊗ p(a(1))}

We occasionally denote the set Ag by Ag,p to specify the dependence on p, in case there is a
risk of confusion. Conversely, given a cocentral grading by Γ, the cocentral Hopf algebra map
p : A → kΓ is defined by p|Ag

= ε(−)g, and is surjective if and only if Ag 6= {0} for any g ∈ Γ.
We will freely circulate from cocentral Hopf algebra maps to cocentral gradings.

An important property of the cocentral gradings, provided that the corresponding cocentral
Hopf algebra map is surjective, is that they are strong: for any g, h ∈ Γ, we have AgAh = Agh

(see e.g. [5, Proposition 2.2] for this well-known fact). Here is a useful application, used in the
proof of the forthcoming Lemma 2.13.

Lemma 2.5. Let p : A → kΓ be a cocentral surjective Hopf algebra map. Let g ∈ Γ and let
y, z ∈ A be such that xy = xz for any x ∈ Ag. Then y = z.

Proof. Since Ae = Ag−1Ag, there exist x1, . . . , xm ∈ Ag−1 and y1, . . . , ym ∈ Ag such that
1 =

∑m
i=1 xiyi. Then, using our assumption, we have y =

∑m
i=1 xiyiy =

∑m
i=1 xiyiz = z. �

2.2. Cocentral actions and graded twisting. The following notion is introduced in [4] under
the name “invariant cocentral action”. In the present paper, to simplify terminology, we will
simply say “cocentral action”.

Definition 2.6. A cocentral action of a group Γ on a Hopf algebra A consists of a pair (p, α)
where p : A → kΓ is a surjective cocentral Hopf algebra map and α : Γ → AutHopf(A) is a group
morphism, together with the compatibility condition p ◦ αg = p for any g ∈ Γ.

In the graded picture, the compatibility condition is αg(Ah) = Ah for any g, h ∈ Γ.

Definition 2.7. Given a cocentral action (p, α) of a group Γ on a Hopf algebra A, the graded

twisting Ap,α is the Hopf algebra having A as underlying coalgebra, and whose product and
antipode are defined by

∀a ∈ Ag, b ∈ Ah, a · b = aαg(b), S(a) = αg−1(S(a))

The present definition of a graded twisting differs from the original one in [4], but is equivalent
to it: see [5, Remark 2.4], the underlying algebra structure is that of a twist in the sense of [29].

Lemma 2.8. Let q : A → B be a universal cocentral Hopf algebra map and let (p, α) be a
cocentral action of a group Γ on A. Then q : Ap,α → B still is a universal cocentral Hopf
algebra map.
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Proof. Recall from Remark 2.2 that we can assume that q is the quotient map A → A/I
where I is the ideal of A generated by X, the linear subspace of A spanned by the elements
ϕ(a(1))a(2) − ϕ(a(2))a(1), ϕ ∈ A∗, a ∈ A. The space X is as well the linear subspace of A
spanned by the elements

ϕ(a(1))a(2) − ϕ(a(2))a(1), ϕ ∈ A∗, a ∈ Ag, g ∈ Γ

Let I ′ be the ideal of Ap,α generated by X. The computation, for a ∈ Ag, b ∈ Ah, c ∈ Ar,

a ·
(
ϕ(b(1))b(2) − ϕ(b(2))b(1)

)
· c = ϕ(b(1))aαg(b(2))αgh(c)− ϕ(b(2))aαg(b(1))αgh(c)

= a
(
ϕαg−1(αg(b(1)))αg(b(2))− ϕαg−1(αg(b(2)))αg(b(1))

)
αgh(c)

shows that I ′ ⊂ I. In a symmetric manner, since ab = a ·αg−1(b) for a ∈ Ag and b ∈ A, we have
I ⊂ I ′ and hence I = I ′. Therefore the quotient map q′ : Ap,α → Ap,α/I ′, which is universal
cocentral, equals q, and we have our result. �

Since our main goal is to compare the different Hopf algebras obtained via graded twisting,
an obvious thing to do first is to compare the various cocentral actions, and for this the following
notion is quite natural.

Definition 2.9. Two cocentral actions (p, α) and (q, β) of a group Γ on a Hopf algebra A are
said to be equivalent if there exist u ∈ Aut(Γ) and f ∈ AutHopf(A) such that

u ◦ p = q ◦ f and ∀g ∈ Γ, f ◦ αg ◦ f
−1 = βu(g)

Lemma 2.10. Let (p, α) and (q, β) be cocentral actions of a group Γ on a Hopf algebra A. If
(p, α) and (q, β) are equivalent, then the Hopf algebras Ap,α and Aq,β are isomorphic.

Proof. Let u ∈ Aut(Γ) and f ∈ AutHopf(A) as in the above definition. The condition u◦p = q◦f
ensures that f(Ag) = Au(g) for any g ∈ Γ. Hence for a ∈ Ag and b in A, we have

f(a · b) = f(aαg(b)) = f(a)f(αg(b)) = f(a)βu(g)(f(b)) = f(a) · f(b)

which shows that f is as well a Hopf algebra isomorphism from Ap,α to Aq,β. �

There is also another weaker notion of equivalence for cocentral actions, as follows.

Definition 2.11. Two cocentral actions (p, α) and (q, β) of a group Γ on a Hopf algebra A
are said to be weakly equivalent if there exist u ∈ Aut(Γ) and a Hopf algebra isomorphism
f : Ae,p → Ae,q such that

∀g ∈ Γ, f ◦ (αg)|Ae,p
◦ f−1 = (βu(g))|Ae,q

Not surprisingly, equivalent cocentral actions are weakly equivalent.

Lemma 2.12. Two equivalent cocentral actions (p, α) and (q, β) of a group Γ on a Hopf algebra
A are weakly equivalent.

Proof. Let u ∈ Aut(Γ) and f ∈ AutHopf(A) be such that u ◦p = q ◦ f and ∀g ∈ Γ, f ◦αg ◦ f
−1 =

βu(g). Then f(Ag,p) = Au(g),q, ∀g ∈ Γ, hence f(Ae,p) = Ae,q, and the conclusion follows. �

It is unclear to us whether the existence of a Hopf algebra isomorphism between Ap,α and
Aq,β forces the cocentral actions (p, α) and (q, β) to be weakly equivalent. However this holds
true in the following special situation.

Lemma 2.13. Let A be a commutative Hopf algebra having a finite cyclic universal grading
group, and let (p, α), (q, β) be cocentral actions of a cyclic group Γ on A. If the Hopf algebras
Ap,α and Aq,β are isomorphic, then the cocentral actions (p, α) and (q, β) are weakly equivalent.

Proof. Let f : Ap,α → Aq,β be a Hopf algebra isomorphism. By Lemma 2.8, we can apply
Lemma 2.3 to get u ∈ Aut(Γ) such that u ◦ p = q ◦ f , so that f(Ag,p) = Au(g),q for any g ∈ Γ,
and in particular f(Ae,p) = Ae,q. For a ∈ Ag and b ∈ Ae, we have

f(aαg(b)) = f(a · b) = f(a) · f(b) = f(a)βu(g)(f(b))
5



By the commutativity of A, we have as well

f(aαg(b)) = f(αg(b)a) = f(αg(b) · a) = f(αg(b)) · f(a) = f(αg(b))f(a) = f(a)f(αg(b))

We conclude from Lemma 2.5 that βu(g)(f(b)) = f(αg(b)), so our cocentral actions are indeed
weakly equivalent. �

2.3. Graded twisting of function algebras. In this subsection we translate in group theo-
retical terms the notions discussed in the previous subsections when A = O(G), the function
algebra on a finite group G (this of course runs as well if we assume that G is a linear algebraic
group, but for simplicity we restrict to the finite case). The translations are rather obvious,
convenient, and induce a few new notations. As usual, if Γ is group, the dual group Hom(Γ, k×)

is denoted Γ̂. If G is a group and T ⊂ G is a subgroup, we denote by AutT (G) the group of
automorphisms of G that preserve T , and by Aut◦T (G) the subgroup of automorphisms that fix
each element of T .

(1) A cocentral action (p, α) of the finite group Γ on O(G) corresponds to a pair (i, α) where

i : Γ̂ → Z(G) is an injective group morphism and α : Γ → Aut◦
i(Γ̂)

(G) a group morphism.

We then consider cocentral actions of Γ on O(G) as such pairs (i, α), call them cocentral
actions on G, and denote the corresponding graded twisting O(G)p,α by O(G)i,α.

(2) Two cocentral actions (i, α) and (j, β) are equivalent if there exist u ∈ Aut(Γ) and
f ∈ Aut(G) such that

i ◦ û = f ◦ j and ∀g ∈ Γ, f−1 ◦ αg ◦ f = βu(g)

where û = − ◦ u.
(3) Two cocentral actions (i, α) and (j, β) are weakly equivalent if there exist u ∈ Aut(Γ)

and an isomorphism f : G/j(Γ̂) → G/i(Γ̂) such that ∀g ∈ Γ, f−1 ◦ αg ◦ f = βu(g), where

αg and βu(g) denote the automorphisms of G/i(Γ̂) and G/j(Γ̂) induced by αg and βu(g)
respectively.

Assuming that the finite group G has a cyclic center, there is a convenient way to describe
the equivalence classes of cocentral actions of Zm on G, as follows.

For m a divisor of |Z(G)|, let Tm be the unique subgroup of order m of Z(G), and let Xm(G)
be the set of elements α0 ∈ Aut◦Tm

(G) such that αm
0 = idG modulo the equivalence relation

α0 ∼ β0 ⇐⇒ ∃f ∈ AutTm(G) and l prime to m such that f−1 ◦ α0 ◦ f = βl
0 and f|Tm

= (−)l

For α0 ∈ Aut◦Tm
(G), we denote by α̈0 its equivalence class in Xm(G). We will also denote by

X•
m(G) the set of equivalence classes α̈0 such that α0 does not induce the identity on G/Tm.

Lemma 2.14. If G is a finite group with cyclic center and m is a divisor of |Z(G)|, we have
a bijection Xm(G) ≃ {equivalence classes of cocentral actions of Zm on G}.

Proof. Fix a generator g of Zm and an injective group morphism i : Ẑm → Z(G) with Tm =

i(Ẑm), and associate to α0 ∈ Aut◦Tm
(G) the cocentral action (i, α) of Zm on G with αg = α0. It

is clear that for α0, β0 ∈ Aut◦Tm
(G), we have α̈0 = β̈0 if and only if the cocentral actions (i, α)

and (j, β) are equivalent, so we get the announced injective map.
Start now with a cocentral action (j, β) of Zm on G. Let u be the automorphism of Zm

defined by û = i−1 ◦ j: u = (−)l for l prime to m. For l′ such that ll′ ≡ 1[n], we then see

that the cocentral actions (j, β) and (i, βl′) are equivalent, and this proves that our map is
surjective. �

2.4. Group-theoretical preliminaries. This last subsection consists of group theoretical pre-
liminaries. As usual, if G is a group and M is a G-module, the second cohomology group of
G with coefficients in M is denoted H2(G,M). We mainly consider trivial G-modules (the
only exception is in the proof of Lemma 4.3). If τ ∈ Z2(G,M) is a (normalized) 2-cocycle, its
cohomology class in H2(G,M) is denoted [τ ], while if µ : G → M is a map with µ(1) = 1, the
associated 2-coboundary is denoted ∂(µ).
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Our first lemma is certainly well-known. We provide the details of the proof for future use.

Lemma 2.15. Let T be a central subgroup of a group G. There is an exact sequence of groups

1 → Hom(G/T, T ) → AutT (G) → Aut(G/T ) ×Aut(T )

where the map on the right is surjective when |H2(G/T, T )| ≤ 2 (or more generally when the
natural actions of Aut(G/T ) and Aut(T ) on H2(G/T, T ) are trivial).

Proof. Since any element in AutT (G) simultaneously restricts to an automorphism of T and
induces an automorphism of G/T , we get the group morphism on the right. Given χ ∈
Hom(G/T, T ), define an automorphism χ̃ of G by χ̃(x) = xχ(π(x)), where π : G → G/T
is the canonical surjection. This defines the group morphism Hom(G/T, T ) → AutT (G) on the
left, which is clearly injective and whose image is easily seen to be the kernel of the map on the
right.

Put H = G/T . By the standard description of central extensions of groups, we can freely
assume that G = H ×τ T where τ ∈ Z2(H,T ) and the product of G is defined by

∀x, y ∈ H, ∀r, s ∈ T, (x, r) · (y, s) = (xy, τ(x, y)rs).

It is straightforward to check that an element α ∈ AutT (G) is defined by α(x, t) = (θ(x), µ(x)u(t)),
where (θ, µ, u) is a triple with θ ∈ Aut(H), u ∈ Aut(T ) and µ : H → T satisfying

∀x, y ∈ H, u(τ(x, y))µ(xy) = µ(x)µ(y)τ(θ(x), θ(y)). (⋆)

Under this identification, the composition law in AutT (G) is given by

(θ, µ, u)(θ′, µ′, u′) = (θ ◦ θ′, µ ◦ θ′ · u ◦ µ′, u ◦ u′).

The map AutT (G) → Aut(H)×Aut(T ) in the statement of the lemma is then the projection on
the first and third factor, and elements of the kernel are exactly those of the form (idH , µ, idT ),
where µ : H → T is a group morphism.

Assume now the natural actions of Aut(H) and Aut(T ) onH2(H,T ) by group automorphisms
are trivial (which obviously holds when |H2(H,T )| ≤ 2). Let (θ, u) ∈ Aut(H) × Aut(T ). The
cocycles u ◦ τ and τ ◦ (θ × θ) are then cohomologous to τ , and hence there exists µ : H → T
such that u◦τ = ∂(µ)τ ◦ (θ×θ), which is exactly the condition (⋆) that allows (θ, µ, u) to define
an element of AutT (G), and thus the map on the right in our exact sequence is surjective. �

Our second lemma will be used at the end of Section 4.

Lemma 2.16. Let H be a finite group, let T be a cyclic group of order m, let τ ∈ Z2(H,T ) and
consider the group G = H ×τ T . Let α, β ∈ Aut◦T (G) (i.e. α|T = idT = β|T ), and let α, β be the
induced automorphisms of H. Assume that Hom(H,T ) = {1} and that there exists θ ∈ Aut(H)
and l prime to m such that

θ ◦ α ◦ θ−1 = β
l
and [τ ]l = [τ ◦ θ × θ] ∈ H2(H,T )

Then there exists f ∈ AutT (G) such that

f ◦ α ◦ f−1 = βl and f|T = (−)l

Proof. Recall from the proof of the previous lemma that the elements of AutT (G) are represented
by triples (θ, µ, u) with θ ∈ Aut(H), u ∈ Aut(T ) and µ : H → T satisfying u◦ τ = ∂(µ)τ ◦θ× θ,
with (θ, µ, u)(x, t) = (θ(x), µ(x)u(t)), for (x, t) ∈ H × T . By assumption, with this convention,
we have α = (α, φ, idT ) and β = (β, γ, idT ). Let u be the automorphism of T defined by
u = (−)l. The assumption [τ ]l = [τ ◦ θ × θ] thus amounts to [u ◦ τ ] = [τ ◦ θ × θ], hence there
exists µ : H → T such that θ extends to an automorphism f = (θ, µ, u) of G. We have

f ◦ α ◦ f−1 = (θ, µ, u)(α, φ, idT )(θ, µ, u)
−1

= (θ ◦ α, µ ◦ α · u ◦ φ, u)(θ−1, u−1 ◦ ((µ ◦ θ−1)−1), u−1)

= (θ ◦ α ◦ θ−1, χ, idT )

= (β
l
, χ, idT )
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for some χ : H → T . Hence f ◦α ◦ f−1 and βl have the same image under the group morphism
on the right in the previous lemma, and the assumption Hom(H,T ) = {1} thus implies that
f ◦ α ◦ f−1 = βl. We have moreover f|T = u = (−)l, and this finishes the proof. �

To finish this section, we record a last lemma, again to be used in Section 4. It is well known
that inner automorphisms act trivially on the second cohomology of a group. Our next lemma
is an explicit writing of this fact. The proof is a straightforward verification, but can also be
obtained easily from the considerations in the proof of Lemma 2.15.

Lemma 2.17. Let H be a group, let x ∈ H and let τ ∈ Z2(H, k×). Then we have τ =
∂(µx) · τ ◦ ad(x)× ad(x), where µx(y) = τ(xy, x−1)τ(x, y)τ(x, x−1)−1.

3. First results

We are now ready to state and prove our first two isomorphism results for graded twistings
of function algebras on finite groups.

Theorem 3.1. Let G be a finite group with cyclic center, let (i, α) and (j, β) be cocentral actions

of a cyclic group Γ on G, and put H = G/i(Γ̂) = G/j(Γ̂). Assume that |H2(H, Γ̂)| ≤ 2 (or

more generally that the natural actions of Aut(H) and Aut(Γ̂) on H2(H, Γ̂) are trivial) and that

Hom(H, Γ̂) = {1}. Then the following assertions are equivalent.

(1) The Hopf algebras O(G)i,α and O(G)j,β are isomorphic.
(2) The cocentral actions (i, α) and (j, β) are equivalent.
(3) The cocentral actions (i, α) and (j, β) are weakly equivalent.

Proof. First notice that, since Z(G) is cyclic, it has a unique subgroup of a given order, and we

have indeed i(Γ̂) = j(Γ̂). Since (1) ⇒ (3) follows from Lemma 2.13 and (2) ⇒ (1) follows from
Lemma 2.10, it remains to show that (3) ⇒ (2).

Denote by f 7→ f the group morphism Auti(Γ̂)(G) → Aut(H) of Lemma 2.15. Fix a generator

g ∈ Γ and assume the existence of f ∈ Aut(H) and u ∈ Aut(Γ) such that f−1 ◦ αg ◦ f = βu(g).

Our assumption on H2(H, Γ̂) ensures, by Lemma 2.15, the existence of f0 ∈ Auti(Γ̂)(G) such

that
f0 = f and f

0|i(Γ̂)
= i ◦ û ◦ j−1, i.e. f0 ◦ j = i ◦ û.

We then have f−1
0 ◦ αg ◦ f0 = βu(g) and (f−1

0 ◦ αg ◦ f0)|i(Γ̂) = id = (βu(g))|i(Γ̂). The condition

Hom(H, Γ̂) = {1} and Lemma 2.15 then ensure that f−1
0 ◦αg ◦ f0 = βu(g), and we conclude that

the cocentral actions (i, α) and (j, β) are equivalent. �

Example 3.2. Let p ≥ 3 be a prime number. There are exactly two non-isomorphic non-trivial
graded twistings of O(SL2(Fp)). The details will be given in Section 5.

The previous theorem has the following very convenient consequence when Γ = Z2.

Theorem 3.3. Let G be a finite group with cyclic center, let (i, α) and (j, β) be cocentral

actions of Z2 on G, and put H = G/i(Ẑ2) = G/j(Ẑ2). Assume that H2(H, k×) is cyclic and
that Hom(H,Z2) = {1}. Then the following assertions are equivalent.

(1) The Hopf algebras O(G)i,α and O(G)j,β are isomorphic.
(2) The cocentral actions (i, α) and (j, β) are equivalent.
(3) The cocentral actions (i, α) and (j, β) are weakly equivalent.

Proof. The universal coefficient theorem provides the following exact sequence

0 → Ext1(H1(H),Z2) → H2(H,Z2) → Hom(H2(H),Z2) → 0

The assumption Hom(H,Z2) = {1} implies that Ĥ ≃ H1(H) has odd order, so the group on
the left vanishes. Moreover H2(H) ≃ H2(H, k×) (again by the universal coefficient theorem),
so the cyclicity of H2(H, k×) yields that |H2(H,Z2)| ≤ 2, and we can apply Theorem 3.1. �
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Remark 3.4. It is natural to wonder whether Theorem 3.1 pertinently applies outside the case

m = 2. There is, at least, the example G = H × Zm where H is a group with Ĥ = {1} and
|H2(H,Zm)| ≤ 2, and if H2(H,Zm) ≃ Z2 (which, by the universal coefficient theorem, will hold
if H2(H, k×) ≃ Z2 and m is even), the group G obtained as the non split central extension
1 → Zm → G → H → 1 corresponding to the non trivial cohomology class.

4. Abelian cocentral extensions of Hopf algebras

To go beyond Theorem 3.1, it will be convenient to work in the more general framework of
abelian cocentral extensions. As already said in the introduction, this is a very well studied
and understood framework [1, 22, 20, 25, 15, 19] (even in more general situations, dropping
the cocentrality assumption), but we propose a detailed exposition of the structure of Hopf
algebras fitting into abelian cocentral extensions, both for the sake of self-completeness and of
introducing the appropriate notations, and also because we think that some of our formulations
have some interest.

4.1. Generalities. We recall first the concept and the structure of the Hopf algebras arising
from abelian cocentral extensions. There is a general notion of exact sequence of Hopf algebras
[1], but in this paper we will only need the cocentral ones.

Definition 4.1. A sequence of Hopf algebra maps

k → B
i
→ A

p
→ L → k

is said to be cocentral exact if i is injective, p is surjective and cocentral, p ◦ i = ε(−)1 and
i(B) = Acop = {a ∈ A : (id⊗p) ◦∆(a) = a ⊗ 1.}. When B is commutative, a cocentral exact
sequence as above is called an abelian cocentral extension.

Example 4.2. Let (i, α) be a cocentral action of a group Γ on a linear algebraic group G. Then

k → O(G/i(Γ̂)) → O(G) → kΓ → k

is cocentral abelian extension, as well as

k → O(G/i(Γ̂)) → O(G)i,α → kΓ → k.

Hence graded twists of function algebras fit into appropriate abelian cocentral extensions.

We now restrict ourselves to finite dimensional Hopf algebras. In this case the abelian cocen-
tral extensions are of the form

k → O(H) → A → kΓ → k

for some finite groups H,Γ. There are some general descriptions of the Hopf algebras A fitting
into such abelian cocentral extensions using various actions and cocycles (see [1, 22]). Since we
only will consider the case when Γ is cyclic, there is an even simpler description, inspired by
[20], that we give now. We start with a lemma.

Lemma 4.3. Let H a finite group, let θ ∈ Aut(H) with θm = idH for some m ≥ 1, and let
a : H → k×. Consider the algebra Am(H, θ, a) defined by the quotient of the free product algebra
O(H) ∗ k[g] by the relations :

gm = a, gex = eθ(x)g,∀x ∈ H.

Then the set {exg
i, x ∈ H, 0 ≤ i ≤ m − 1} linearly spans Am(H, θ, a), and is a basis if and

only if a ◦ θ = a.

Proof. It is clear from the defining relations that {exg
i, x ∈ H, 0 ≤ i ≤ m− 1} linearly spans

Am(H, θ, a). The defining relations give that for any φ ∈ O(H), we have gφ = (φ ◦ θ−1)g, and
since a = gm must be central, we see from this that if the above set is linearly independent, we
have a ◦ θ = a.
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To prove the converse, we recall a general construction. Let R be a commutative algebra
endowed with an action of a group Γ, α : Γ → Aut(R), and let σ : Γ× Γ → R× be a 2-cocycle
according to this action:

αr(σ(s, t))σ(r, st) = σ(rs, t)σ(s, t), ∀r, s, t ∈ Γ

The crossed product algebra R#σkΓ is then defined to be the algebra having R⊗ kΓ as under-
lying vector space, and product defined by

x#r · y#s = xαr(y)σ(r, s)#rs

Assume furthermore that Γ = Zm = 〈g〉 is cyclic, consider an element a ∈ R× that is Zm-
invariant, and define the algebra A to be the quotient of the free product R ∗ k[X] by the
relations Xb = αg(b)X and Xm = a. Since a is invariant under the Zm-action, the classical
description of the second cohomology of a cyclic group shows that there exists a 2-cocycle
σ : Zm × Zm → R× such that σ(g, g) · · · σ(g, gm−1) = a. From this we get an algebra map

A −→ R#σkZm

b ∈ R, X 7−→ b#1, 1#g.

Applying this to R = O(H), the Zm-action on it induced by θ and the assumption that a is
invariant yields that {exg

i, x ∈ H, 0 ≤ i ≤ m− 1} is a linearly independent set since its image
is in the crossed product algebra O(H)#σkZm. �

Definition 4.4. Let m ≥ 1. An m-datum is a quadruple (H, θ, a, τ) consisting of a finite group
H, an automorphism θ ∈ Aut(H) such that θm = idH , a map a : H → k× such that a ◦ θ = a
and a(1) = 1, and a 2-cocycle τ : H ×H → k× such that for any x, y ∈ H

(
m−1∏

i=0

τ(θi(x), θi(y))

)
a(x)a(y) = a(xy).

We now check m-data as above produce Hopf algebras fitting into abelian cocentral exten-
sions, and that any such Hopf algebra arises in this way.

Proposition 4.5. Let (H, θ, a, τ) be an m-datum, and consider the algebra Am(H, θ, a) defined
by the quotient of the free product algebra O(H) ∗ k[g] by the relations :

gex = eθ(x)g,∀x ∈ H, gm = a.

(1) There exists a unique Hopf algebra structure on Am(H, θ, a) extending that of O(H) and
such that

∆(g) =
∑

y,z∈H

τ(y, z)eyg ⊗ ezg, ε(g) = 1.

We denote by Am(H, θ, a, τ) the resulting Hopf algebra.
(2) The Hopf algebra Am(H, θ, a, τ) has dimension m|H| and fits into an abelian cocentral

extension

k → O(H) → Am(H, θ, a, τ)
p
→ kZm → k

where p is the Hopf algebra map defined by p|O(H) = ε and p(g) = g (here g denotes any
fixed generator of Zm).

Proof. It is a straightforward verification, using the axioms of m-data, that there indeed exists
a Hopf algebra structure on Am(H, θ, a) as in the statement. That Am(H, θ, a, τ) has dimension
m|H|, follows from Lemma 4.3, while the last statement follows easily from the decomposition
Am(H, θ, a, τ) = ⊕m−1

k=0 O(H)gk. �

Proposition 4.6. Let A be a finite-dimensional Hopf algebra fitting into an abelian cocentral
extension

k → O(H) → A → kZm → k

Then there exists an m-datum (H, θ, a, τ) such that A ≃ Am(H, θ, a, τ) as Hopf algebras.
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Proof. To simplify the notation, we will identify O(H) with its image in A, so that Ae = O(H).
The finite-dimensionality assumption ensures that the extension is cleft (see e.g [23, Theorem
3.5] or [28, Theorem 2.4]). Here this simply means that for any h ∈ Zm, there exists an invertible
element uh in Ah, that we normalize so that ε(uh) = 1, and hence p(uh) = h, where p : A → kZm

is the given cocentral surjective Hopf algebra map. We have Aeuh ⊂ Ah and for b ∈ Ah, we can
write b = bu−1

h uh ∈ Aeuh, hence Ah = Aeuh.
Fix now a generator g of Zm and ug as above. We have umg ∈ Agm = Ae, and we put a = umg .

Since ∆(Ag) ⊂ Ag⊗Ag we have ∆(ug) =
∑

x,y∈H τ(x, y)exug⊗eyug for scalars τ(x, y) ∈ k, these

scalars all being non-zero since ∆(ug) is invertible. The coassociativity and counit conditions
give that the map τ : H ×H → k× defined in this way is a 2-cocycle. We have ugAeu

−1
g ⊂ Ae

and hence we get an automorphism α := ad(ug) of the algebra Ae, satisfying αm = id since
umg ∈ Ae and Ae is commutative. It is a direct verification to check that α is as well a coalgebra
automorphism, and hence a Hopf algebra automorphism of Ae = O(H), necessarily arising from
an automorphism θ of H, with α(φ) = φ ◦ θ−1 for φ ∈ O(H). Clearly α(a) = a, ε(a) = 1, and
one checks that the last condition defining an m-datum is fulfilled by comparing ∆(ug)

m and
∆(a). We thus obtain an m-datum (H, θ, a, τ) and it is straightforward to check that there
exists a Hopf algebra map Am(H, θ, a, τ) → A, φ ∈ O(H) 7→ φ, g 7→ ug. Combining Lemma 4.3
and the first paragraph in the proof, we see that this is an isomorphism. �

4.2. Equivalence of m-data and the isomorphism problem. The main question then is to
classify the Hopf algebras Am(H, θ, a, τ) up to isomorphism. For this, the following equivalence
relation on m-data will arise naturally.

Definition 4.7. Two m-data (H, θ, a, τ) and (H ′, θ′, a′, τ ′) are said to be equivalent if there
exists a group isomorphism f : H → H ′, a map ϕ : H ′ → k× with ϕ(1) = 1 and l ∈ {1, . . . ,m−1}
prime to m such that the following conditions hold, for any x, y ∈ H ′:

(1) θ′l = f ◦ θ ◦ f−1 ;

(2)
(∏m−1

k=0 ϕ(θ′k(y))
)
a′(y)l = a(f−1(y)) ;

(3)
(∏l−1

k=0 τ
′(θ′−k(x), θ′−k(y))

)
ϕ(xy) = τ(f−1(x), f−1(y))ϕ(x)ϕ(y).

It is not completely obvious that the above relation is an equivalence relation, but this follows
from the following basic result, which is a partial answer for the classification problem of the
Hopf algebras Am(H, θ, a, τ).

Proposition 4.8. Let (H, θ, a, τ) and (H ′, θ′, a′, τ ′) be m-data. The following assertions are
equivalent.

(1) There exists a Hopf algebra isomorphism F : Am(H, θ, a, τ) → Am(H ′, θ′, a′, τ ′) and a
group automorphism u ∈ Aut(Zm) making the following diagram commute:

Am(H, θ, a, τ)
p

//

F
��

kZm

u

��
Am(H ′, θ′, a′, τ ′)

p′
// kZm

(2) The m-data (H, θ, a, τ) and (H ′, θ′, a′, τ ′) are equivalent.

Proof. Assume that F and u as above are given, and put A = Am(H, θ, a, τ) and B =
Am(H ′, θ′, a′, τ ′). The commutativity of the diagram yields, at the level of gradings, that
F (Ah) = Bu(h) for any h ∈ Zm. Then F induces an isomorphism Ae = O(H) → O(H ′)

coming from a group isomorphism f : H → H ′ such that F (φ) = φ ◦ f−1 for any φ ∈ O(H).
Pick a generator g of Zm. We have F (Ag) = Bu(g) = Bgl for some l ∈ {1, . . . ,m − 1} prime

to m. Since Bgl = Beg
l, there exists ϕ ∈ O(H)× such that F (g) = ϕgl. The fact that F is a

coalgebra map yields that ϕ(1) = 1 and relations (3). The compatibility of the algebra map F
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with the relations gex = eθ(x)g yields relation (1), while compatibility with the relation gm = a
yields relation (2).

Conversely, given f , l and ϕ as in Definition 4.7, it is a direct verification to check that there
exist Hopf algebra isomorphism F : Am(H, θ, a, τ) → Am(H ′, θ′, a′, τ ′) defined by F (ex) = ef(x)
and F (g) = ϕgl, and satisfying u ◦ p = p′ ◦ F for u given by u(g) = gl. �

Corollary 4.9. Let (H, θ, a, τ) be an m-datum.

(1) Let f ∈ Aut(H) and let l ≥ 1 be prime to m. Then (H, f ◦ θl ◦ f−1, a ◦ f−1, τ ′), with

τ ′ =
∏l−1

k=0 τ ◦ θk × θk ◦ f−1 × f−1, is an m-datum and

Am(H, θ, a, τ) ≃ Am

(
H, f ◦ θl ◦ f−1, (a ◦ f−1)l,

l−1∏

k=0

τ ◦ θk × θk ◦ f−1 × f−1

)

as Hopf algebras.
(2) Let τ ′ ∈ Z2(H, k×) be cohomologous to τ . There exists a′ : H → k× such that

(H, θ, a′, τ ′) is a datum and

Am(H, θ, a, τ) ≃ Am(H, θ, a′, τ ′)

as Hopf algebras.

In particular, if θ1, . . . , θr is a set of representative of the conjugacy classes of elements whose
order divides m in Aut(H), and if τ1, . . . , τs is a set of representative of 2-cocycles in H2(H, k×),
there exist i ∈ {1, . . . , r}, j ∈ {1, . . . , s} and a′ : H → k× such that (H, θi, a

′, τj) is a datum and
Am(H, θ, a, τ) ≃ Am(H, θi, a

′, τj).

Proof. The first assertion is easily obtained via the previous proposition. For the second one,
let µ : H → k× be such that τ ′ = τ∂(µ). The result is again a direct consequence of the

previous proposition, taking a′ = a
(∏m−1

i=0 µ ◦ θi
)−1

. The final assertion is then easily obtained

by combining (1) and (2). �

Remark 4.10. Let (H, θ, a, τ) be an m-datum. Since a ◦ θ = a, there exists a map µ : H → k×

such that µ ◦ θ = µ and µm = a. The cocycle τ ′ = τ∂(µ) then satisfies

m−1∏

k=0

τ ′ ◦ θk × θk = 1.

Hence, by Corollary 4.9, the m-datum (H, θ, a, τ) is equivalent to an m-datum (H, θ, a′, τ ′) with

a′ ∈ Ĥ. Such a datum with a′ ∈ Ĥ will be said to be normalized. It is therefore tempting
to work only with normalized data, but this forces to change the cocycle for each choice of
automorphism θ, and can be inconvenient in practice if we have “nice” representatives for 2-
cocycles over H. We will therefore work with the general notion of an m-datum, as given in
Definition 4.4.

Remark 4.11. Fix θ ∈ Aut(H) with θm = id. Kac’s group Opextθ(kZm,O(H)) [13] can be

described as the set of pairs (a, τ) ∈ Ĥ × Z2(H, k×) such that (H, θ, a, τ) is a normalized m-
datum modulo the equivalence relation defined by (a, τ) ∼ (a′, τ ′) ⇐⇒ ∃ϕ : H → k× with

ϕ · ϕ ◦ θ ∈ Ĥ,
(∏m−1

k=0 ϕ ◦ θk
)
a′ = a and τ ′ = τ∂(ϕ). The group law is by the ordinary

multiplication on the components. The group Opextθ(kZm,O(H)) is known to be possibly
difficult to compute (see [21], and [11] for a recent contribution), hence the problem of the
description of m-data up to equivalence is a fortiori a non-obvious one as well.

Proposition 4.8 is in general not sufficient to classify the Hopf algebras Am(H, θ, a, τ) up to
isomorphism. However, in the context of Lemma 2.3, it can be sufficient. Thus we need to anal-
yse furthermore the Hopf algebras Am(H, θ, a, τ) to determine when Lemma 2.3 is applicable.
For this we introduce a number of groups associated to an m-datum.

Definition 4.12. Let (H, θ, a, τ) be an m-datum.
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(1) We put Zτ,θ(H) = {x ∈ Z(H) | τ(θi(x), y) = τ(y, θi(x)), ∀y ∈ H, ∀i, 0 ≤ i ≤
m − 1}. This a central subgroup of H, and we get, by restriction, a new m-datum
(Zτ,θ(H), θ, a, τ).

(2) Let Hθ be the subgroup of H formed by elements that are invariant under θ. The
group G(H, θ, a, τ) is the group whose elements are pairs (x, λ) ∈ Hθ × k× satisfying
λm = a(x), and whose group law is defined by (x, λ) · (y, µ) = (xy, τ(x, y)λµ).

(3) We denote byG0(H, θ, a, τ) the groupG(Zτ,θ(H), θ, a, τ), thus consisting of pairs (x, λ) ∈

Z(H)θ × k× with x satisfying λm = a(x) and τ(x, y) = τ(y, x), ∀y ∈ H.

It is easy to check that G(H, θ, a, τ) is indeed a group, fitting into a central exact sequence

1 → µm → G(H, θ, a, τ) → Hθ → 1.

Proposition 4.13. Let (H, θ, a, τ) be an m-datum. We have a universal cocentral exact se-
quence

k → O(H/Zτ,θ(H)) → Am(H, θ, a, τ) → Am(Zτ,θ(H), θ, a, τ) → k.

Proof. It is easily seen that there is a surjective Hopf algebra map

p : A(H, θ, a, τ) → A(Zτ,θ(H), θ, a, τ)

with p(g) = g and such that for φ ∈ O(H), p(φ) is the restriction of φ to Zτ,θ(H). The
cocentrality of p follows from the centrality of the group Zτ,θ(H) in H, and it is easy to see
that p induces the announced cocentral exact sequence. We thus have to prove the universality
of p. For this consider a cocentral Hopf algebra map q : A(H, θ, a, τ) → B. The cocentrality of
q yields that q(ex) = 0 if x 6∈ Z(H), and that for any x ∈ Z(H) and y ∈ H, τ(x, y)q(ex)q(g) =
τ(y, x)q(ex)q(g). Hence τ(x, y)q(ex) = τ(y, x)q(ex) and τ(x, y) = τ(y, x) if q(ex) 6= 0. Let
T := {x ∈ H | q(ex) 6= 0}. Since q(g)q(ex)q(g)

−1 = q(gexg
−1) = q(eθ(x)) we thus see that T ⊂

Zτ,θ(H). We then easily check that there exists a Hopf algebra map f : A(Zτ,θ(H), θ, a, τ) → B
with f(ex) = q(ex) and f(g) = q(g), as needed. �

We now proceed to analyse the structure of the Hopf algebras Am(H, θ, a, τ), with first the
following basic result.

Proposition 4.14. Let (H, θ, a, τ) be an m-datum.

(1) The Hopf algebra Am(H, θ, a, τ) is commutative if and only if θ = idH . More generally,
the abelianisation of Am(H, θ, a, τ) is the Hopf algebra O(G(H, θ, a, τ)).

(2) The Hopf algebra Am(H, θ, a, τ) is cocommutative if and only if H is abelian and τ is
symmetric, i.e. τ(x, y) = τ(y, x) for any x, y ∈ H.

Proof. The assertions regarding the commutativity or cocommutativity of Am(H, θ, a, τ) are
easily seen using Lemma 4.3. An algebra map χ : Am(H, θ, a, τ) → k corresponds to a pair
(x, λ) ∈ H × k×, with χ(φ) = φ(x) for any φ ∈ O(H) and φ(a) = λ. The compatibility
of χ with the defining relations of Am(H, θ, a, τ) is easily seen to be equivalent to the con-
dition that (x, λ) ∈ G(H, θ, a, τ), and an immediate calculation shows that the group law in
Alg(Am(H, θ, a, τ), k) corresponds to the group law in G(H, θ, a, τ). Thus the abelianization
of Am(H, θ, a, τ), which is the algebra of functions on Alg(Am(H, θ, a, τ), k), is isomorphic to
O(G(H, θ, a, τ)). �

We now discuss when the universal grading group of Am(H, θ, a, τ) is cyclic.

Proposition 4.15. Let (H, θ, a, τ) be an m-datum.

(1) The Hopf algebra Am(H, θ, a, τ) has a universal cyclic grading group if and only if the
group G0(H, θ, a, τ) is cyclic and the restriction of θ to Zτ,θ(H) is trivial.

(2) The natural cocentral Hopf algebra map p : Am(H, θ, a, τ) → kZm is universal if and
only if the group Zτ,θ(H) is trivial.
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Proof. (1) Assume that Am(H, θ, a, τ) has a universal cyclic grading group. By Proposition
4.13, we have that Am(Zτ,θ(H), θ, a, τ) is the group algebra of a cyclic group, and in particular
is commutative. Then by (1) in Proposition 4.14, the restriction of θ to Zτ,θ(H) is trivial and
G0(H, θ, a, τ) = G(Zτ,θ(H), θ, a, τ) is cyclic.

Conversely, if the restriction of θ to Zτ,θ(H) is trivial, then by (1) in Proposition 4.14, the Hopf
algebra Am(Zτ,θ(H), θ, a, τ) is commutative and isomorphic toO(G(Zτ,θ(H), θ, a, τ)). Assuming
moreover that G0(H, θ, a, τ) = G(Zτ,θ(H), θ, a, τ) is cyclic, we obtain that Am(Zτ,θ(H), θ, a, τ)
is the group algebra of a cyclic group, and we conclude by Proposition 4.13.

(2) The canonical surjection Am(Zτ,θ(H), θ, a, τ) → kZm is an isomorphism if and only if
Zτ,θ(H) is trivial, because dim(Am(Zτ,θ(H), θ, a, τ)) = m|Zτ,θ(H)|. Hence Proposition 4.13
yields the result. �

The previous result leads us to introduce some more vocabulary.

Definition 4.16. An m-datum (H, θ, a, τ) is said to be cyclic (resp. reduced) if the group
G0(H, θ, a, τ) is cyclic and the restriction of θ to Zτ,θ(H) is trivial (resp. if the group Zτ,θ(H)
is trivial).

We get our most useful result for the classification of Hopf algebras of type Am(H, θ, a, τ).

Proposition 4.17. Let (H, θ, a, τ) and (H ′, θ′, a′, τ ′) be cyclic m-data. The following assertions
are equivalent.

(1) The Hopf algebras Am(H, θ, a, τ) and Am(H ′, θ′, a′, τ ′) are isomorphic.
(2) The data (H, θ, a, τ) and (H ′, θ′, a′, τ ′) are equivalent.

Proof. We have (2)⇒(1) by Proposition 4.8. Assuming that (1) holds, Proposition 4.15 ensures
that we are in the situation of Lemma 2.3, which in turn ensures that we are in the situation
of (1) in Proposition 4.8, so that (2) holds. �

Combining Propositions 4.6 and 4.17, we finally obtain the main result of the section.

Theorem 4.18. Let H be a finite group and let m ≥ 1. The map (H, θ, a, τ) 7→ Am(H, θ, a, τ)
induces a bijection between the following sets:

(1) equivalence classes of cyclic (resp. reduced) m-data having H as underlying group;
(2) isomorphism classes of Hopf algebras A fitting into an abelian cocentral extension

k → O(H) → A → kZm → k

and having a cyclic universal grading group (resp. having Zm as universal grading group).

Corollary 4.19. Let H be a finite group with Z(H) = {1} and let m ≥ 2. The map (H, θ, a, τ) 7→
Am(H, θ, a, τ) induces a bijection between the following sets:

(1) equivalence classes of m-data having H as underlying group;
(2) isomorphism classes of Hopf algebras A fitting into an abelian cocentral extension

k → O(H) → A → kZm → k.

Proof. This follows from the previous theorem, since the assumption Z(H) = {1} ensures that
all them-data (H, θ, a, τ) are reduced and that all the corresponding abelian cocentral extensions
k → O(H) → A → kZm → k are universal. �

4.3. Classification results. We now apply Theorem 4.18 and Corollary 4.19 to obtain effective
classification results for Hopf algebras fitting into abelian cocentral extensions, under various
assumptions.

The set of equivalence classes of m-data has a very simple description under some strong
assumptions on H, and then the previous result takes the following simple form, where we use
the following notation: if G is a group and m ≥ 1, the set CC•

m(G) is the set of elements of
G such that xm = 1 and x 6= 1, modulo the equivalence relation defined by x ∼ y ⇐⇒ there
exists l prime to m such that xl is conjugate to y. When m = 2, CC•

2(G) is just the set of
conjugacy classes of elements of order 2 in G.
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Theorem 4.20. Let H be a finite group with Ĥ = {1} = Z(H) and H2(H, k×) ≃ Z2. Then
for any m ≥ 2, there is a bijection between the set of isomorphism classes of noncommutative
Hopf algebras A fitting into an abelian cocentral extension

k → O(H) → A → kZm → k

and

(1) if m is odd, the set CC•
m(Aut(H));

(2) if m is even, the set CC•
m(Aut(H))×H2(H, k×).

Proof. Since Z(H) = {1}, the previous corollary ensures that we have a bijection between the
set of isomorphism classes of noncommutative Hopf algebras as above and the set of equivalence
classes of m-data (H, θ, a, τ) with θ 6= id.

The key point, to be used freely, is that, since H2(H, k×) ≃ Z2, for any θ ∈ Aut(H) and
τ ∈ Z2(H, k×), we have [τ ] = [τ ◦ θ × θ] and [τ ][τ ◦ θ × θ] = 1 in H2(H, k×).

First assume that m is odd. Let (H, θ, a, τ) be an m-data with θ 6= id. Then [τ ]m = 1 and
[τ ] = 1 since m is odd, so (H, θ, a, τ) is equivalent to some m-datum (H, θ, a′, 1) with a′ = 1

since Ĥ = {1}. The result is then clear.
Assume now that m is even, and start with a pair (θ, τ) where θ ∈ Aut(H) satisfies θm = id

θ 6= id, and τ ∈ Z2(H, k×). The assumption H2(H, k×) ≃ Z2 implies again that there exists

a : H → k× such that
∏m−1

k=0 τ ◦ θk× θk = ∂(a−1). The assumption Ĥ = {1} implies that such a
map a is unique and satisfies a◦θ = a, so to (θ, τ) we can unambiguously associate an m-datum
(H, θ, a, τ).

Consider now another such pair (θ′, τ ′) with a′ the corresponding map making (H, θ′, a′, τ ′)
an m-datum. If the m-data (H, θ, a, τ) and (H, θ′, a′, τ ′) are equivalent, then there is l prime to
m (hence l is odd) such that θ′l is conjugate to θ and [τ ] = [τ ′]l = [τ ′] (remark at the beginning
of the proof).

Conversely if θ = f ◦ θl ◦ f−1, for f ∈ Aut(H) and l prime to m, then we have, by Corollary
4.9

(H, θ, a, τ) ∼ (H, f ◦ θl ◦ f−1, (a ◦ f−1)l,
l−1∏

k=0

τ ◦ θkf−1 × θkf−1)

∼ (H, θ′, (a ◦ f−1)l,

l−1∏

k=0

τ ◦ θkf−1 × θkf−1).

The cocycle on the right is cohomologous to τ l, hence to τ , and if we assume that τ ′ is coho-
mologous to τ , we have (again thanks to Corollary 4.9)

(H, θ, a, τ) ∼ (H, θ′, b, τ) ∼ (H, θ′, c, τ ′)

for some maps b, c, with necessarily c = a′ by the discussion at the beginning of the proof. This
concludes the proof. �

Another useful consequence of Theorem 4.18 is the following one, again under strong assump-
tions.

Theorem 4.21. Let H be a finite group with |Ĥ | ≤ 2, and Z(H) = {1} = H2(H, k×). Then
for m ≥ 1, there is a bijection between the set of isomorphism classes of noncommutative Hopf
algebras A fitting into an abelian cocentral extension

k → O(H) → A → kZm → k

and

(1) if m is odd, the set CC•
m(Aut(H));

(2) if m is even, the set CC•
m(Aut(H))× Ĥ.
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Proof. Corollary 4.19 ensures that we have a bijection between the set of isomorphism classes of
noncommutative Hopf algebras as above and the set of equivalence classes of m-data (H, θ, a, τ)
with θm 6= id. Then, since H2(H, k×) = {1}, Corollary 4.9 ensures that all such data are

equivalent to data of type (H, θ, a, 1) (hence with a ∈ Ĥ). Now using that |Ĥ| ≤ 2, so that

Aut(H) acts trivially on Ĥ, we see that two m-data (H, θ, a, 1) and (H, θ′, a′, 1) are equivalent

if and only if there exists f ∈ Aut(H), ϕ ∈ Ĥ and l prime to m such that

θ′l = f ◦ θ ◦ f−1, ϕma′l = a.

If m is even, we have ϕm = 1 and the last condition amounts to a′ = a (l being then necessarily

odd), again since |Ĥ | ≤ 2. If m is odd, we have ϕm = ϕ, and such a ϕ always exists if l does.
This concludes the proof. �

To prove our next classification result, we will use the following lemma.

Lemma 4.22. Let H be a finite group in which any automorphism is inner and such that

Z(H) = {1} and |Ĥ| ≤ 2. If (H, θ, a, τ) and (H, θ, a′, τ) are equivalent 2-data, then a = a′.

Proof. We first assume that our data are normalized: τ · τ ◦ θ × θ = 1 (and a, a′ ∈ Ĥ). Let
f ∈ Aut(H) and ϕ : H → k× be such that

f ◦ θ = θ ◦ f, ϕ · ϕ ◦ θ · a′ = a ◦ f−1, τ = ∂(ϕ)τ ◦ f−1 × f−1.

Writing θ = ad(x) and f−1 = ad(y), we then have xy = yx since Z(H) = {1} and

ϕ · ϕ ◦ θ · a′ = a ◦ f−1, τ = ∂(ϕ)τ ◦ f−1 × f−1 = ∂(ϕ)∂(µ−1
y )τ

where µy is as in Lemma 2.17. Hence ϕ = χµy for some χ ∈ Ĥ, and

ϕ · ϕ ◦ θ = χ · χ ◦ θ · µy · µy ◦ θ.

Since |Ĥ | ≤ 2 and θ is inner, we obtain ϕ · ϕ ◦ θ = µy · µy ◦ θ = µy · µy ◦ ad(x). For z ∈ H, we
have

µy ◦ ad(x)(z) = τ(yxzx−1, y−1)τ(y, xzx−1)τ(y, y−1)−1

= τ(xyzx−1, xy−1x−1)τ(xyx−1, xzx−1)τ(xyx−1, xy−1x−1)−1

= τ(yz, y−1)−1τ(y, z)−1τ(y, y−1)

= µy(z)
−1

where we have used the fact that our datum is normalized and that xy = yx. Hence ϕ ·ϕ◦θ = 1,
and a = a′.

In general, recall (See remark 4.10) that (H, θ, a, τ) and (H, θ, a′, τ ′) are respectively equiva-
lent to normalized 2-data (H, θ, b, τ ′) and (H, θ, b′, τ ′), hence b = b′ from the normalized case,
and a = a′ by the construction of b and b′ from a and a′ (see the proof of Corollary 4.9). �

Theorem 4.23. Let H be a finite group in which any automorphism is inner and with |Ĥ| ≤ 2,
Z(H) = {1} and |H2(H, k×)| ≤ 2. Then there is a bijection between the set of isomorphism
classes of noncommutative Hopf algebras A fitting into an abelian cocentral extension

k → O(H) → A → kZ2 → k

and the set CC•
2(H)× Ĥ ×H2(H, k×).

Proof. As before, in view of the assumption Z(H) = {1}, by Corollary 4.19, we have to classify
the 2-data (H, θ, a, τ) with θ 6= id up to equivalence. We can assume that H2(H, k×) ≃ Z2,
otherwise the result follows from Theorem 4.20. Fix a set {θ1, . . . , θr} of representative of the
elements of CC•

2(Aut(H)) ≃ CC•
2(H), and for each i, fix a non-trivial 2-cocycle τi ∈ H2(H, k×)

such that τi · τi ◦ θi × θi = 1 (these cocycles exist since H2(H, k×) ≃ Z2). Then Corollary 4.9
ensures that any 2-data with non-trivial underlying isomorphism is equivalent to one in the list

{(H, θi, a, 1), i = 1, . . . , r, a ∈ Ĥ}, {(H, θi, a, τi), i = 1, . . . , r, a ∈ Ĥ}.
16



Any two different data inside one of the two sets are not equivalent by Lemma 4.22, while two
data taken from the two different sets are easily seen not to be equivalent either. This concludes
the proof. �

4.4. Back to graded twisting. To finish the section, we go back to graded twistings.

Proposition 4.24. Let (i, α) be a cocentral action of Zm on a finite group G. Put H =

G/i(Ẑm), fix a 2-cocycle τ0 : H ×H → Ẑm such that G ≃ H ×τ0 Ẑm and a generator g of Zm.
Define a 2-cocycle τ : H ×H → µm by τ(x, y) = τ0(x, y)(g), and let θ be the automorphism of
H induced by α = αg Then there exists a : H → µm such that (H, θ, a, τ) is an m-datum and
O(G)i,α ≃ Am(H, θ, a, τ).

Proof. We can assume without loss of generality that G = H ×τ0 Ẑm and that i is the canonical

injection. Indeed, consider the isomorphism F : G → H ×τ0 Ẑm making the following diagram
commutative

1 // Ẑm
i

// G
π

//

F
��

H // 1

1 // Ẑm
i0

// H ×τ0 Ẑm
π0

// H // 1

where π is the canonical surjection, and i0 and π0 denote the canonical injection and surjec-

tion. Using the Hopf algebra isomorphism O(G) ≃ O(H ×τ0 Ẑm) induced by F , we obtain an

isomorphism O(G)i,α ≃ O(H ×τ0 Ẑm)i0,FαF−1
.

Recall from Subsection 2.4 (particularly the proof of Lemma 2.15) that α = αg has the form

α = (θ, µ) with θ ∈ Aut(H) and µ : H → Ẑm satisfying

θm = id,

m−1∏

i=0

µ ◦ θi = 1, τ0 = ∂(µ) · (τ0 ◦ θ × θ).

Define now a map a0 : H → Ẑm:

a0 =

m−1∏

k=1

(µ ◦ θ−k)k.

We then have

m−1∏

i=0

τ0 ◦ θ
i × θi =

m−1∏

i=0

τ0 ◦ θ
−i × θ−i = ∂(a−1

0 ) and a0 ◦ θ = a0.

Defining then a : H → µm by a(x) = a0(x)(g), we get an m-datum (H, θ, a, τ) satisfying the

announced conditions, and we have to show that Am(H, θ, a, τ) ≃ O(H ×τ0 Ẑm)i,α.

For this, first note that the Zm-grading on O(H ×τ0 Ẑm)i,α is given by

O(H ×τ0 Ẑm)i,αh = {φ ∈ O(H ×τ0 Ẑm) | φ(x, χ) = χ(h)φ(x, 1), ∀(x, χ) ∈ H × Ẑm}.

Put, for x ∈ H,

ug =
∑

x∈H

∑

χ∈Ẑm

χ(g)ex,χ ∈ O(H ×τ0 Ẑm)i,αg , e′x =
∑

χ∈Ẑm

ex,χ ∈ O(H ×τ0 Ẑm)i,αe .

Using the product in O(H ×τ0 Ẑm)i,α, we see that

uge
′
x = e′θ(x)ug, umg = a.

Hence there exists an algebra map Am(H, θ, a, τ) → O(H ×τ0 Ẑm)i,α sending ex to e′x and g to
ug, which is, exactly as in the proof of Proposition 4.6, a Hopf algebra isomorphism. �
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Remark 4.25. Say that an m-datum (H, θ, a, τ) is of graded twist type if τ has values into µm

and if there exists µ : H → µm such that

m−1∏

i=0

µ ◦ θi = 1, τ = ∂(µ) · (τ ◦ θ × θ), a =
m−1∏

k=1

(µ ◦ θ−k)k.

The previous result (and its proof) says that if (i, α) is a cocentral action of Zm on a finite group

G, then letting H = G/i(Ẑm), we have O(G)i,α ≃ Am(H, θ, a, τ) for some m-datum (H, θ, a, τ)
of graded twist type.

Conversely, it is not difficult to show that if (H, θ, a, τ) is an m-datum of graded twist type,
then Am(H, θ, a, τ) is a graded twist of O(H ×τ µm).

We now use the previous considerations to get another isomorphism result for graded twists
of function algebras on finite groups by Zp, where p is a prime number. We start with a lemma.

Lemma 4.26. Let (H, θ, a, τ) be a p-datum, with p a prime number. Assume that H2(H, k×) ≃
Zp. Then we have [τ ] = [τ ◦ θ × θ] in H2(H, k×).

Proof. We can assume that τ is nontrivial, hence that [τ ] is a generator of H2(H, k×). The
group Aut(H) acts on the cyclic group H2(H, k×) by automorphisms, hence there exits l prime
to p such that [τ ]l = [τ ◦ θ × θ]. The assumption that we have a p-datum now gives

[1] =

p−1∏

k=0

[τ ◦ θk × θk] =

p−1∏

k=0

[τ ]l
k

= [τ ]
∑p−1

k=0 l
k

.

Since p is prime and [τ ] has order p, we get l ≡ 1[p], and hence [τ ] = [τ ◦θ×θ] in H2(H, k×). �

We arrive at our expected isomorphism result.

Theorem 4.27. Let G be a finite group with cyclic center, let (i, α) and (j, β) be cocentral

actions of Zp on G, where p is a prime number, and put H = G/i(Ẑp) = G/j(Ẑp). Assume
that Hom(H,Zp) = {1} and that H2(H, k×) is trivial or cyclic of order p. Then the following
assertions are equivalent.

(1) The Hopf algebras O(G)i,α and O(G)j,β are isomorphic.
(2) The cocentral actions (i, α) and (j, β) are equivalent.

Proof. Just as in the proof of Theorem 3.1, we have i(Ẑp) = j(Ẑp), and (2) ⇒ (1) follows from
Lemma 2.10. It remains to show that (1) ⇒ (2).

Assume that (1) holds. To prove (2), we can safely assume that G = H×τ0 Ẑp for a 2-cocycle

τ0 : H×H → Ẑp and that i and j are the canonical injections. Indeed, recall from the beginning
of the proof of Proposition 4.24, of which we retain the notation, that fixing an appropriate

isomorphism F : G → H ×τ0 Ẑp, we get isomorphisms

O(G)i,α ≃ O(H ×τ0 Ẑm)i0,FαF−1
, O(G)j,β ≃ O(H ×τ0 Ẑm)i0,FβF−1

where i0 is the canonical injection. The cocentral actions (i, α) and (j, β) then are equivalent if
and only if the cocentral actions (i0, FαF−1) and (i0, FβF−1) are.

By Proposition 4.24, we have O(G)i,α ≃ Ap(H, θ, a, τ) and O(G)j,β ≃ Ap(H, θ′, a′, τ), for

θ = αg, θ′ = βg (denoting again by f 7→ f the group morphism Auti(Γ̂)(G) → Aut(H) of

Lemma 2.15) and a, a′ : H → µp such that (H, θ, a, τ) and (H, θ′, a′, τ) are p-data.
Since Ap(H, θ, a, τ) ≃ Ap(H, θ′, a′, τ), Theorem 4.18, which is applicable by Lemma 2.8,

provides a group automorphism f ∈ Aut(H), ϕ : H → k× and l prime to p such that

θ′l = f ◦ θ ◦ f−1,

l−1∏

k=0

τ ◦ θ′−k × θ′−k = τ ◦ (f−1 × f−1) · ∂(ϕ).

The previous lemma ensures that [τ ◦ θ′ × θ′] = [τ ], hence we have [τ ]l = [τ ◦ f−1 × f−1] in
H2(H, k×). Our assumptions ensure, by the universal coefficient theorem, that H2(H,Zp) ≃ Zp
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and that the natural map H2(H,µp) → H2(H, k×) is an isomorphism, because of the exact
sequence induced by the p-power map k× → k×

1 → Hom(H,µp) → Hom(H, k×) → Hom(H, k×) → H2(H,µp) → H2(H, k×) → H2(H, k×)

Thus we have [τ ]l = [τ ◦ f−1 × f−1] in H2(H,µp), and [τ0]
l = [τ0 ◦ f−1 × f−1] in H2(H, Ẑp).

Hence by Lemma 2.16 there exists F ∈ Aut(G) such that βl
g = F−1αgF and F

|Ẑp
= (−)l,

therefore means that our cocentral actions are equivalent. �

Remark 4.28. Let (i, α) be a cocentral action of Zm (of which we fix a generator g) on a finite
group G. Then the Hopf algebra O(G)i,α is noncommutative if and only if θ, the automorphism
of H = G/i(Zm) induced by αg, is non-trivial. This follows from the combination of Proposition
4.24 and of Proposition 4.14 (but can be proved quite directly as well by analyzing the 1-
dimensional representations of O(G)p,α). Hence, in the situation of Theorem 3.1 (or of Theorem
3.3 for m = 2), there is a bijection between

(1) the set of isomorphism classes of Hopf algebras that are noncommutative graded twisting
of O(G) by Zm,

(2) the set of equivalence classes of cocentral actions of Zm on G that do not induce the
identity on H, with H the quotient of G by its unique central subgroup of order m,

(3) the set of weak equivalence classes of cocentral actions of Zm on G that are not weakly
equivalent to the trivial one.

The second set is in bijection with X•
m(G) (see the end of subsection 2.3) and for m = 2, is as

well in bijection with CC•
2(Aut(H)) (see Lemma 2.15).

Under the assumptions of Theorem 4.27, we obtain, for p prime, a bijection between

(1) the set of isomorphism classes of Hopf algebras that are noncommutative graded twisting
of O(G) by Zp,

(2) the set of equivalence classes of cocentral actions of Zp on G that are not equivalent to
the trivial one.

The latter set is, by Lemma 2.14, in bijection with X•
p(G) (see the end of Subsection 2.3).

5. Examples

In this section we apply the previous results to examine the examples announced in the
introduction.

5.1. Special linear groups over finite fields. We begin by examining graded twistings of
linear groups over finite fields.

Theorem 5.1. Let q = pα, with p ≥ 3 a prime number and α ≥ 1, and let n ≥ 2 be even.
There is a bijection between the set of isomorphism classes of noncommutative Hopf algebras
that are graded twistings of O(SLn(Fq)) by Z2 and the set X•

2(SLn(Fq)).

Proof. The center of SLn(Fq) is cyclic and has even order, the character group of SLn(Fp)/{±1}
is trivial, and H2(PSLn(Fq), k

×) is always cyclic under our assumptions (see [14, Chapter 7],
for example), hence Theorem 3.3 and Remark 4.28 provide the announced bijection. �

Theorem 5.2. Let q = pα, with p a prime number and α ≥ 1, let n ≥ 2 and assume that
m = GCD(n, q − 1) is prime and that (n, q) 6∈ {(2, 9), (3, 4)}. Then there is a bijection between
the set of isomorphism classes of noncommutative Hopf algebras that are graded twistings of
O(SLn(Fq)) by Zm and the set X•

m(SLn(Fq)).

Proof. The center of SLn(Fq) is µn(Fq) and is cyclic of order m = GCD(n, q − 1), the group
Hom(PSLn(Fp),Zm) is trivial, and H2(PSLn(Fq), k

×) ≃ Zm under our assumptions (see [14,
Chapter 7], for example). Hence Theorem 4.27 and Remark 4.28 provide the announced bijec-
tion. �

In the case n = 2, we have results for abelian cocentral extensions as well.
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Theorem 5.3. Let p ≥ 3 be a prime number.

(1) There are exactly 2 isomorphism classes of noncommutative Hopf algebras that are
graded twistings of O(SL2(Fp)).

(2) If p ≥ 5, there are exactly 4 isomorphism classes of noncommutative Hopf algebras fitting
into an abelian cocentral extension k → O(PSL2(Fp)) → A → kZ2 → k.

Proof. Theorem 5.1 ensures that there is a bijection between the set isomorphism classes of
noncommutative Hopf algebras that are graded twistings of O(SL2(Fp)) and X•

2(SL2(Fp)). All
the automorphisms of SL2(Fp) are obtained by conjugation of a matrix in GL2(Fp) (see e.g.
[8]), and we see that there are two equivalence classes of elements in X•

2(SL2(Fp))), represented
by the automorphisms

ad

((
1 0
0 −1

))
, ad

((
0 λ
1 0

))

where λ is a chosen element such that λ 6∈ (F∗
p)

2. This proves the first assertion.

We have, for p ≥ 5, ̂PSL2(Fp) = {1}, and since Z(PSL2(Fp)) = {1} and H2(PSL2(Fp), k
×) ≃

Z2, the second assertion follows from the previous discussion and Corollary 4.20. �

5.2. Alternating and symmetric groups. We now discuss examples involving alternating
and symmetric groups. We begin with alternating groups and their Schur covers (see e.g. [14]).

Theorem 5.4. Let n ≥ 4 and let Ãn be the unique Schur cover of the alternating group An.

(1) There is a bijection between the set of isomorphism classes of noncommutative Hopf

algebras that are graded twistings of O(Ãn) by Z2 and CC•
2(Aut(An)). For n 6= 6, there

are precisely ⌊n2 ⌋ such isomorphism classes.
(2) For n = 5 or n ≥ 8, there is a bijection between the set of isomorphism classes of

noncommutative Hopf algebras fitting into an abelian cocentral extension k → O(An) →
A → kZ2 → k and the set CC•

2(Aut(An))× Z2. There are precisely 2⌊n2 ⌋ such isomor-
phism classes.

Proof. In all cases Z2 ⊂ Z(Ãn), the center Z(Ãn) is cyclic, and H2(An, k
×) is cyclic (isomorphic

to Z6 for n = 6, 7 and to Z2 otherwise) and we have Hom(An,Z2) = {1}, so the first statement
is a direct consequence of Theorem 3.3. We have CC•

2(Aut(An)) = CC•
2(Aut(Sn)), and when

n 6= 6 this coincides with CC•
2(Sn), which has ⌊n2 ⌋ elements.

For n = 5 or n ≥ 8, we have moreover H2(An, k
×) ≃ Z2, and Ân = {1}, and since Z(An) =

{1}, the statement follows from Corollary 4.20. �

Theorem 5.5. Assume that n 6= 6.

(1) There are exactly 4⌊n2 ⌋ isomorphism classes of noncommutative Hopf algebras fitting
into an abelian cocentral extension k → O(Sn) → A → kZ2 → k.

(2) Let G be any group fitting into a central extension 1 → Z2 → G → Sn → 1. There
are exactly 2⌊n2 ⌋ isomorphism classes of noncommutative Hopf algebras that are graded
twistings of O(G) by Z2.

Proof. Every automorphism of Sn is inner when n 6= 6, and we have Ŝn ≃ Z2 ≃ H2(Sn, k
×), so

the first assertion follows from Theorem 4.23.
Let G be a group as in the statement. By Proposition 4.24, a graded twisting of O(G) is

isomorphic to A2(Sn, θ, a, τ) for a cocycle τ : Sn × Sn → Z2 canonically build from the central
extension 1 → Z2 → G → Sn → 1. Hence Lemma 4.22 ensures that there are at most 2⌊n2 ⌋
isomorphism classes of noncommutative graded twistings of O(G).

Conversely, start with a 2-datum (Sn, θ, a, τ), with τ as before. We wish to prove that
A2(Sn, θ, a, τ) is isomorphic to a graded twist of O(G). By Lemma 2.17, since any automorphism
of Sn is inner, there exists µ : Sn → µ2 such that τ · τ ◦ θ× θ = ∂(µ). Then a−1 and µ differ by

an element of Ŝn, and hence a2 = 1. Our 2-data (Sn, θ, a, τ) is then of graded twist type as in
Remark 4.25, and then we know that A2(Sn, θ, a, τ) is a graded twist of O(H ×τ µ2) ≃ O(G).
This concludes the proof. �
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5.3. The alternating group A5. Examples with the alternating group A5 fall into the series
studied in the last two subsections, but there is a special interest in A5, because of the fol-
lowing result from [3]: any finite-dimensional cosemisimple Hopf algebra A having a faithful
2-dimensional comodule V with V ⊗ V ∗ ≃ V ∗ ⊗ V fits into an abelian cocentral extension

k → O(H) → A → kZm → k

for some m ≥ 2 and some polyhedral group H ∈ {A4, S4, A5, D2n} . Using Corollary 4.20
and the easy description of the conjugacy classes in S5 ≃ Aut(A5), we have the following
contribution to this situation.

Theorem 5.6. Let m ≥ 2 and let N be the number of isomorphism classes of noncommutative
Hopf algebras A fitting into an abelian cocentral extension k → O(A5) → A → kZm → k. Then,
according to the value of GCD(m, 120), the value of N is as follows:

(1) N = 0 if GCD(m, 120) = 1.
(2) N = 4 if GCD(m, 120) = 2.
(3) N = 1 if GCD(m, 120) = 3, 5.
(4) N = 6 if GCD(m, 120) = 4, 8.
(5) N = 7 if GCD(m, 120) = 6, 20, 40.
(6) N = 5 if GCD(m, 120) = 10.
(7) N = 9 if GCD(m, 120) = 12, 24.
(8) N = 2 if GCD(m, 120) = 15.
(9) N = 10 if GCD(m, 120) = 30, 60, 120.

Of course, the above theorem does not give any information about the realizability of one of
the above Hopf algebras as Hopf algebras having a faithful 2-dimensional comodule.

5.4. Dihedral groups Dn. In this subsection we discuss Hopf algebras fitting into an abelian
cocentral extension

k → O(Dn) → A → kZ2 → k

with Dn the dihedral group of order 2n. While the group structure of Dn is certainly less rich
than the one of the groups of the previous sections, the situation with Hopf algebra extensions
as above is in fact much more involved.

5.4.1. Notation. As usual, the group Dn is presented by generators r, s and relations rn = 1 =
s2, sr = rn−1s, and its automorphisms all are of the form Ψk,l, (k, l) ∈ Z/nZ× U(Z/nZ), with

Ψk,l(r) = rl, Ψk,l(s) = srk.

Such an automorphism Ψk,l has order 2 precisely when (k, l) 6= (0, 1), l2 = 1 and k(l + 1) = 0
(in Z/nZ). The following facts are also well-known:

if n is odd, then Z(Dn) = {1}, H2(Dn, k
×) = {1}, D̂n ≃ Z2,

if n is even, then Z(Dn) = {1, rn/2}, H2(Dn, k
×) ≃ Z2, D̂n ≃ Z2 × Z2

5.4.2. The case when n is odd. Here the situation is very simple, since we are in the situation
of Corollary 4.21: we have, for m ≥ 1, a bijection between the set of isomorphism classes of
noncommutative Hopf algebras A fitting into an abelian cocentral extension

k → O(Dn) → A → kZm → k

and

(1) if m is odd, the set CC•
m(Aut(Dn));

(2) if m is even, the set CC•
m(Aut(Dn))× D̂n.

An immediate application yields the following result.

Theorem 5.7. Let n ≥ 3 be odd and let en be the number of isomorphism classes of noncommu-
tative Hopf algebras A fitting into an abelian cocentral extension k → O(Dn) → A → kZ2 → k.

(1) If n = pr with p odd prime and r ≥ 1, then en = 2.
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(2) If n = prqs, with p, q distinct odd primes and r, s ≥ 1, then en = 6.

Proof. The previous statement ensures that en is twice the number of conjugacy classes of
elements of order 2 in Aut(Dn), that we compute in the above two cases. In the first case
there is precisely one such conjugacy class, represented by Ψ0,−1. In the second situation, fix
integers a, b such that pra + qsb = 1, and such that a, b become invertible in Z/prqsZ. One
checks that there are 3 conjugacy classes of elements of order 2 in Aut(Dprqs), represented by
Ψ0,−1, Ψ0,2qsb−1 and Ψ0,2pra−1. �

Remark 5.8. For n = 3, the two non-isomorphic Hopf algebras of the previous theorem are the
two non-isomorphic noncommutative and noncocommutative Hopf algebras of dimension 12,
classified by Fukuda [10].

5.4.3. The case when n is even. We now assume, throughout the subsection, that n is even.
None of our previous classification results apply here and we have to perform a specific analysis.
We obtain a pretty satisfactory result in Table 1, which, on the other hand, indicates that, in
full generality, it is probably hopeless to get compact classification results, such as in theorems
4.20, 4.21, 4.23.

We begin with a useful test to determine whether a 2-cocycle on Dn is trivial or not, and
when it is trivial, to describe it as an explicit coboundary.

Lemma 5.9. Let β ∈ Z2(Dn, k
×). The following assertions are equivalent:

(1) [β] = 1 in H2(Dn, k
×);

(2) there exist x, y ∈ k× such that

xn = β(r, r)β(r, r2) · · · β(r, rn−1), y2 = β(s, s), x2 = β(r, rn−1)β(rn−1, s)−1β(s, r);

(3) we have
(
β(r, rn−1)β(rn−1, s)−1β(s, r)

)n/2
= β(r, r)β(r, r2) · · · β(r, rn−1).

Moreover, when [β] = 1 in H2(Dn, k
×), picking x, y ∈ k× as above, the map µ : Dn → k×

defined by, for 0 ≤ i ≤ n− 1, 0 ≤ j ≤ 1,

µ(risj) = β(ri, sj)−1β(r, r)−1β(r, r2)−1 · · · β(r, ri−1)−1β(s, sj)−1xiyj

is such that β = ∂(µ).

Proof. This is a direct verification, using the well-known fact that β is trivial if and only if there
exists an algebra map kβDn → k, where kβDn is the twisted group algebra. Such an algebra
map then furnishes a map µ with β = ∂(µ). �

We now exhibit a convenient explicit non-trivial 2-cocycle over Dn.

Lemma 5.10. Let ω ∈ k× be such that ωn = 1. Then the map

τω : Dn ×Dn −→ k×

(risj, rksl) 7−→ ωjk (j, l ∈ {0, 1})

is a 2-cocycle, and [τω] = 1 ⇐⇒ ωn/2 = 1. When ωn/2 = −1, τω represents the only non-trivial
cohomology class in H2(Dn, k

×).

Proof. It is a straightforward verification that τω is a 2-cocycle, and the triviality condition
follows from Lemma 5.9. The last assertion follows from the previous one and the fact that
H2(Dn, k

×) ≃ Z2. �

We now proceed to describe the possible 2-data over Dn. We begin with a preliminary lemma.

Lemma 5.11. Let θ ∈ Aut(Dn) and τ ∈ Z2(Dn, k
×) be such that [τ ] = 1 and τ ◦θ×θ = τ , and

let a : Dn → k× be such that τ = ∂(a). If a(θ(r)) = a(r) and a(θ(s)) = a(s), then a ◦ θ = a.

Proof. We have for any g, h ∈ Dn,

a(g)a(h)a(gh)−1 = τ(g, h) = τ(θ(g), θ(h)) = a(θ(g))a(θ(h))a(θ(gh))−1

hence if a(g) = a(θ(g)) and a(h) = a(θ(h)), we have a(θ(gh)) = a(gh), and the result follows
since Dn is generated by r and s. �
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Lemma 5.12. Let Ψu,v ∈ Aut(Dn). Let ω ∈ k× with ω = −1 if n/2 is odd, and with ω a
primitive nth root of unity if n/2 is even. Let τω ∈ Z2(Dn, k

×) be the non trivial cocycle of
Lemma 5.10. Let x, y ∈ k× be such that xn = 1, y2 = ωu and x2 = ω−v−1 (x2 = 1 if n/2 is
odd). The map ax,y : Dn → k× defined by

ax,y(r
isj) = ω−ujxiyj , 0 ≤ i ≤ n− 1, 0 ≤ j ≤ 1

is such that τω(τω ◦Ψu,v × Ψu,v) = ∂(a−1
x,y), and any map satisfying this identity is of the form

a±x,±y. Moreover we have ax,y ◦Ψu,v = ax,y if and only if xu = 1 = xv−1.
Assume furthermore that Ψu,v has order 2. Then ax,y ◦ Ψu,v = ax,y if and only if we are in

one of the following situations.

(1) n/2 is odd, u is even, x = ±1 and y = ±1.
(2) n/2 is odd, u is odd, x = 1 and y = ±ξ, with ξ a primitive fourth root of unity.

(3) n/2 is even, u is even, v2 = 1 + kn, u(1 + v) = ln with k, l even, and x = ±ω
−v−1

2 ,
y = ±ωu

0 , with ω2
0 = ω.

(4) n/2 is even, u is odd, v2 = 1+kn, u(1+v) = ln with k, l even, and x = ω
−v−1

2 , y = ±ωu
0 ,

with ω2
0 = ω.

(5) n/2 is even, u is odd, v2 = 1+kn, u(1+v) = ln with k even and l odd, and x = −ω
−v−1

2 ,
y = ±ωu

0 , with ω2
0 = ω.

Proof. The cocycle τω(τω ◦Ψu,v ×Ψu,v) is necessarily trivial since H2(Dn, k
×) has order 2, and

Lemma 5.9 yields the identity τω(τω ◦ Ψu,v × Ψu,v) = ∂(a−1
x,y). Any map Dn → k satisfying

the previous identity differs from ax,y by the multiplication of an element in D̂n, and hence
is of the form a±x,±y. The previous lemma ensures that ax,y ◦ Ψu,v = ax,y if and only if
ax,y(Ψu,v(r)) = ax,y(r) and ax,y(Ψu,v(s)) = ax,y(s). We have

ax,y(r) = x, ax,y(Ψu,v(r)) = xv, ax,y(s) = ω−uy, ax,y(Ψu,v(s)) = ω−ux−uy.

Hence we have ax,y ◦Ψu,v = ax,y if and only if xv−1 = 1 and xu = 1. The result is then obtained
via a case by case discussion and the previous lemma. �

Lemma 5.12 describes the automorphisms Ψu,v that fit into a 2-datum (Dn,Ψu,v, a, τω) with
the description of the possible maps a. We now have to classify them up to equivalence: this is
done in our next lemma.

Lemma 5.13. Let Ψu,v ∈ Aut(Dn) be an element of order 2, and retain the notation of Lemma
5.12.

(1) For n/2 odd, u even and x, y as in Lemma 5.12 (x = ±1 and y = ±1), the 2-data
(Dn,Ψu,v, a1,1, τω) and (Dn,Ψu,v, a1,−1, τω) are equivalent, while the 2-data (Dn,Ψu,v, a1,1, τω),
(Dn,Ψu,v, a−1,1, τω) and (Dn,Ψu,v, a−1,−1, τω) are pairwise non-equivalent. Hence there
are exactly three equivalence classes of 2-data over Dn having Ψu,v as underlying auto-
morphism.

(2) For n/2 odd and u odd, the 2-data (Dn,Ψu,v, a1,ξ, τω) and (Dn,Ψu,v, a1,−ξ, τω) are equiv-
alent. Hence there is only one equivalence class of 2-data over Dn having Ψu,v as un-
derlying automorphism.

(3) For n/2 even and u odd satisfying the conditions of cases 4 or 5 in Lemma 5.12, and
for x, y as above, the 2-data (Dn,Ψu,v, ax,y, τω) and (Dn,Ψu,v, ax,−y, τω) are equivalent.
Hence there is only one equivalence class of 2-data over Dn having Ψu,v as underlying
automorphism.

(4) For n ≡ 0[8] and u even satisfying the conditions of case 3 in Lemma 5.12, and for x, y
as in Lemma 5.12, the 2-data (Dn,Ψu,v, ax,y, τω) and (Dn,Ψu,v, ax,−y, τω) are equivalent,
while the 2-data (Dn,Ψu,v, ax,y, τω) and (Dn,Ψu,v, a−x,y, τω) are not equivalent. Hence
there are exactly two equivalence classes of 2-data over Dn having Ψu,v as underlying
automorphism.
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(5) For n ≡ 4[8], u even and v ≡ 3[4] satisfying the conditions of case 3 in Lemma 5.12,
and for x, y in Lemma 5.12, the 2-data (Dn,Ψu,v, ax,y, τω) and (Dn,Ψu,v, ax,−y, τω) are
equivalent, while the 2-data (Dn,Ψu,v, ax,y, τω) and (Dn,Ψu,v, a−x,y, τω) are not equiva-
lent. Hence there are exactly two equivalence classes of 2-data over Dn having Ψu,v as
underlying automorphism.

(6) For n ≡ 4[8], u even and v ≡ 1[4] satisfying the conditions of case 3 in Lemma 5.12,
and for x, y as in Lemma 5.12, there are exactly three equivalence classes of 2-data over
Dn having Ψu,v as underlying automorphism.

Proof. Recall that an equivalence between two 2-data (H, θ, a, τ) and (H, θ, a′, τ) is provided by
a pair (f, ϕ) with f ∈ Aut(H) and ϕ : H → k× satisfying

(a) f ◦ θ = θ ◦ f, (b) ϕ · ϕ ◦ θ · a′ = a ◦ f−1, (c) τ = ∂(ϕ) · τ ◦ f−1 × f−1.

For u odd (cases (2) and (3) in the lemma), taking ϕ ∈ Ĥ such that ϕ(r) = −1, we see that the
pair (id, ϕ) realizes an equivalence between the 2-data (Dn,Ψu,v, ax,y, τω) and (Dn,Ψu,v, ax,−y, τω),
and thus the statements (2) and (3) are proved.

We assume now that u is even. Let f ∈ Aut(Dn), with f−1 = Ψα,β. Then, similarly to
Lemma 5.12, one shows that the maps ϕ : Dn → k× satisfying (c) above are defined by

ϕz,t(r
isj) = ω−jαzitj

where z = ±ω
1−β

2 , t = ±(ω0)
α, with ω2

0 = ω. We then have

ϕz,t(r
isj)ϕz,t(Ψu,v(r

isj)) = ω−2jαzi(1+v)−jut2j

and in particular

ϕz,t(r)ϕz,t(Ψu,v(r)) = z1+v = ω
(1−β)(1+v)

2 , ϕz,t(s)ϕz,t(Ψu,v(s)) = ω−αz−u.

Equation (b), for ax,y and ax′,y′ = εax,y, where ε ∈ D̂n (with x′ = ε(r)x, y′ = ε(s)y)), then
becomes

z1+v = ε(r)xβ−1, z−u = ε(s)ωαx−α.

The first equation is then

ω
(1−β)(v+1)

2 = ε(r)ω
(−v−1)(β−1)

2

which gives ε(r) = 1. Hence if the 2-data (Dn,Ψu,v, ax,y, τω) and (Dn,Ψu,v, ax′,y′ , τω) are equiv-
alent, then necessarily x = x′, as claimed.

Since u is even, the second equation now is

ω
(β−1)u

2
−α = ε(s)x−α.(5.1)

Assume that n/2 is odd, so that ω = −1. Since β is odd, the second equation becomes
(−1)α = ε(s)xα, with x = ±1. This is possible with ε(s) = −1 only if x = 1. Hence we see
that the 2-data (Dn,Ψu,v, a−1,1, τω) and (Dn,Ψu,v, a−1,−1, τω) are not equivalent. Conversely,
taking f = f−1 = Ψn/2,1 (which commutes with Ψu,v) and ϕz,t as above, we see that the
pair (Ψn/2,1, ϕz,t) makes the 2-data (Dn,Ψu,v, a1,1, τω) and (Dn,Ψu,v, a1,−1, τω) equivalent. This
concludes the proof of Assertion (1).

Assume now that n/2 is even. Then, writing x = νω
−v−1

2 with ν = ±1, Equation 5.1 becomes

ε(s) = ναω
(β−1)u−α(v+3)

2 = ναω
(β−1)u−α(v−1)

2 ω−2α.(5.2)

If v ≡ 3[4], taking α = n/2 and β = 1, Equation 5.2 is realized with ε(s) = −1. Hence
taking f = Ψn/2,1 (which commutes with Ψu,v) and ϕz,t as above, we obtain that the 2-data
(Dn,Ψu,v, ax,y, τω) and (Dn,Ψu,v, ax,−y, τω) are equivalent when v ≡ 3[4]. This proves Assertion
(5).

Assume that v ≡ 1[4]. If n/4 is even, it is not difficult to check that the condition v2 ≡ 1[2n]
implies that v ≡ 1[8]. Then we see that condition 5.2 is realized with ε(s) = −1 by taking β = 1
and α = n/4, and choosing f = Ψn/4,1 (which commutes with Ψu,v) we obtain that the 2-data
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(Dn,Ψu,v, ax,y, τω) and (Dn,Ψu,v, ax,−y, τω) are equivalent. This finishes the proof of Assertion
(4).

We assume finally that n/4 is odd (still with v ≡ 1[4]). Recall that x = νω
−v−1

2 with ν = ±1.
Taking α = n/4 and β = 1, Equation 5.2 with ε(s) = −1 is realized in the following two cases:

ν = 1, v ≡ 1[8] ; ν = −1, v ≡ 5[8].

Taking f = Ψn/4,1, we obtain:

◦ for v ≡ 1[8], the 2-data (Dn,Ψu,v, a
ω

−v−1
2 ,y

, τω) and (Dn,Ψu,v, a
ω

−v−1
2 ,−y

, τω) are equiv-

alent,
◦ for v ≡ 5[8], the 2-data (Dn,Ψu,v, a

−ω
−v−1

2 ,y
, τω) and (Dn,Ψu,v, a

−ω
−v−1

2 ,−y
, τω) are

equivalent.

To see that these are the only cases where there is an equivalence, assume that Equation 5.2
holds with ε(s) = −1, and (β − 1)u ≡ α(v − 1)[n]:

−1 = ναω
(β−1)u−α(v−1)

2 ω−2α.

Squaring this identity, we see that α ∈ {0, n/4, n/2, 3n/4}. One checks easily that the condition
u(v+1) ≡ 0[2n] implies that there does not exist β such that (β−1)u ≡ n[2n]. Hence, assuming
that ν = 1 and v ≡ 5[8] or that ν = −1 and v ≡ 1[8], and examining all the possibilities for α,
we always arrive at an identity −1 = 1: contradiction. This finishes the proof of Assertion (6),
hence the proof of the lemma. �

Lemma 5.13 enables one to classify the reduced 2-data over Dn, as soon as the representative
elements for the conjugacy classes of order 2 elements in Aut(Dn) have been found. We record
the result in Table 1, where Ψu,v is an order 2 automorphism of Dn (hence with v2 ≡ 1[n] and
u(v + 1) ≡ 0[n]), and N(u, v) denotes the number of equivalence classes of reduced 2-data over
Dn having Ψu,v as underlying automorphism.

Properties of n/2, u and v N(u, v)
n/2 odd, u odd 1
n/2 odd, u even 3
n/2 even, u odd, v2 ≡ 1[2n] 1
n ≡ 0[8], u even, v2 ≡ 1[2n],
u(v + 1) ≡ 0[2n]

2

n ≡ 4[8], u even, v2 ≡ 1[2n],
u(v + 1) ≡ 0[2n], v ≡ 3[4]

2

n ≡ 4[8], u even, v2 ≡ 1[2n],
u(v + 1) ≡ 0[2n], v ≡ 1[4]

3

Table 1. Number of reduced 2-data over Dn having Ψu,v as automorphism

We now apply the results in Table 1 to enumerate the Hopf algebras fitting into a universal
cocentral extension k → O(Dn) → A → kZ2 → k in a number of particular cases.

Theorem 5.14. Let n ≥ 4 be even and let en be the number of isomorphism classes of non-
commutative Hopf algebras A fitting into a universal cocentral extension k → O(Dn) → A →
kZ2 → k.

(1) If n = 2r with r ≥ 2, then en = 3.
(2) If n = 2pr, with r ≥ 1 and p odd prime, then en = 5.
(3) If n = 4pr, with r ≥ 1 and p odd prime, then en = 9.
(4) If n = 2spr, with s ≥ 3, r ≥ 1 and p odd prime, then en = 10.
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Proof. A 2-datum (Dn, θ, a, τ) is not reduced if τ is a trivial cocycle, because Z(Dn) is non
trivial, and is reduced if τ is the non-trivial 2-cocycle in Lemma 5.10. Hence, by Corollary
4.9, Theorem 4.18 and Proposition 4.14, en equals the number of equivalence classes of 2-data
(Dn, θ, a, τω) with θ 6= id, which now will be determined in each case using Table 1.

For n = 4, there are 3 conjugacy classes of order 2 elements in Aut(Dn), represented by
Ψ2,1, Ψ0,−1 and Ψ1,−1. The first automorphism does not satisfy the condition u(v + 1) ≡ 0[8]
in Lemma 5.12, so cannot fit into a 2-datum. For the last two automorphisms, Table 1 gives
e4 = 2 + 1 = 3.

For n = 2r with r ≥ 3, there are 5 conjugacy classes of order 2 elements in Aut(Dn),
represented by:

Ψ2r−1,1, Ψ0,2r−1−1, Ψ0,2r−1+1, Ψ0,−1, Ψ1,−1.

Among these automorphism, only Ψ0,−1 and Ψ1,−1 satisfy the compatibility conditions of
Lemma 5.12 that make them part of a 2-data. Finally, Table 1 gives again en = 2 + 1 = 3.

For n = 2pr, with p odd prime, there are 3 conjugacy classes of order 2 elements in Aut(Dn),
represented by Ψpr,1, Ψ0,−1 and Ψ1,−1. Table 1 gives en = 1 + 3 + 1 = 5.

For n = 4pr, with p odd prime, fix integers a, b such that 4a + prb = 1, and such that a, b
become invertible in Z/4prZ. There are four elements in Z/4prZ such that v2 = 1 and in fact
v2 ≡ 1[2n]: v = ±1, v = ±(4a−prb). One then checks that the representatives of the conjugacy
classes of the order 2 elements Ψu,v ∈ Aut(Dn) satisfying the conditions in Lemma 5.12 are

Ψ0,−1, Ψ1,−1, Ψ0,8a−1, Ψpr,8a−1, Ψ0,1−8a.

Table 1 now yields that en = 2 + 1 + 2 + 1 + 3 = 9.
For n = 2spr, with p odd prime and s ≥ 3, fix integers a, b such that 2sa+ prb = 1, and such

that a, b become invertible in Z/2sprZ. There are 8 elements in Z/2sprZ such that v2 = 1 but
only 4 such that v2 ≡ 1[2n]: v = ±1, v = ±(2sa− prb) = ±(2s+1a− 1). One then checks that
the representatives of the conjugacy classes of the order 2 elements Ψu,v ∈ Aut(Dn) satisfying
the conditions in Lemma 5.12 are

Ψ0,−1, Ψ1,−1, Ψ0,2s+1a−1, Ψpr,2s+1a−1, Ψ0,1−2s+1a, Ψ2s,1−2s+1a.

Table 1 now yields that en = 2 + 1 + 2 + 1 + 2 + 2 = 10. �

Remark 5.15. Part (1) of the above theorem contributes to the classification of semisimple Hopf
algebra of dimension 2r, studied in [16, 17].

5.5. Hopf algebras of dimension p2qr. To conclude the paper, we look at an example where
the group H is abelian, one of the most studied situation in the literature [22, 25, 19]. We wish
to prove the following result, for which the case r = 1 was obtained in [25].

Theorem 5.16. Let p, q be odd prime numbers, let r ≥ 1 and assume that qr|p−1. The number
of isomorphism classes of noncommutative and noncocommutative Hopf algebras fitting into a

cocentral extension k → O(Z2
p) → A → kZqr → k is precisely 1

2(
∑r

i=1 q
i + qi−1) = (q+1)(qr−1)

2(q−1) .

The rest of the section is devoted to the proof of Theorem 5.16. We begin with some gen-
eralities. Recall from Subsection 4.3 that if G is a group and m ≥ 1, the set CC•

m(G) is the
set of elements of G such that xm = 1 and x 6= 1, modulo the equivalence relation defined by
x ∼ y ⇐⇒ there exists l prime to m such that xl is conjugate to y. For d > 1 a divisor of m,
denote by CC•

m,d(G) the set of equivalence classes of elements having order d in G (clearly the

order of an element is well-defined in CC•
m(G)). We get a decomposition

CC•
m(G) =

∐

d|m,d>1

CC•
m,d(G).

For each such d, we have an obvious well-defined surjective map CC•
m,d(G) → CC•

d,d(G) which
is injective if m is a power of a prime. Thus identifying the two sets when m = qr with q a
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prime number, we obtain a decomposition

CC•
qr(G) =

r∐

s=1

CC•
qs,qs(G).

The group we are interested in is GL2(Z/pZ), that we identify with Aut(Z2
p), and for which we

have the following result.

Lemma 5.17. Let p, q be odd prime numbers and let r ≥ 1 be such that qr|(p − 1). Let ξ be a
root of unity of order qr in Z/pZ. The set
{(

ξ 0
0 ξl

)
, l ∈ {1, 2, . . . ,

qr − 1

2
, qr − 1}, GCD(q, l) = 1

}
∪

{(
ξ 0
0 ξqu

)
, 0 ≤ u < qr−1

}

is a set of representatives for the elements of CC•
qr ,qr(GL2(Z/pZ)).

The proof is a direct verification, using the fact that elements of order qr in GL2(Z/pZ) are
diagonalizable. We now discuss when the above automorphisms are part of reduced qr-data.

Lemma 5.18. Let p, q be odd prime numbers and let r ≥ 1 be such that qr|(p− 1). Let θ be an
automorphism of order qr of Z2

p, represented by one of the matrices of the previous lemma.

(1) If θ =

(
ξ 0
0 ξ−1

)
, there does not exist any reduced qr-datum having θ as underlying

automorphism.
(2) Otherwise, there exists, up to equivalence, exactly one reduced qr-datum having θ as

underlying automorphism.

Proof. Fix generators x1, x2 of Z2
p, and for ω ∈ µp, let τω : Z2

p × Z2
p → k× be the unique

bicharacter such that

τω(x1, x1) = 1 = τω(x2, x2) = τω(x2, x1), τω(x1, x2) = ω.

It is well-known that any 2-cocycle on Z2
p is cohomologous to τω for some ω ∈ µp, and that

such 2-cocycles τω and τω′ are cohomologous if and only if ω = ω′. By Corollary 4.9, we can
assume that any qr-datum has τω as underlying cocycle, for some ω ∈ µp. Moreover a direct
computation gives, for ω 6= 1

qr−1∏

k=0

τω ◦ θk × θk = 1 ⇐⇒

qr−1∏

k=0

[τω ◦ θk × θk] = 1 ⇐⇒ θ 6=

(
ξ 0
0 ξ−1

)

and this shows the first assertion, since a datum is not reduced if the underlying cocycle is trivial.

Moreover, for any a ∈ Ẑ2
p such that a ◦ θ = a, we obtain a reduced qr-datum (Z2

p, θ, a, τω), and
any reduced qr-datum arises in this way.

We can now prove the second assertion via a case by case discussion. If θ =

(
ξ 0
0 ξi

)
with

ξi 6= 1, the only compatible a is a = 1. We then see that, for 1 ≤ k ≤ p− 1, the qr-data

(Z2
p, θ, 1, τω) and (Z2

p, θ, 1, τωk )

are equivalent, using, in the notation of Definition 4.7, f−1 =

(
k 0
0 1

)
and ϕ = 1.

If θ =

(
ξ 0
0 1

)
, the compatible a’s are given by a(x1) = 1 and a(x2) = ωk, 0 ≤ k ≤ p − 1.

Denote by ak such an element of Ẑ2
p. We then see that, for 0 ≤ k1 ≤ p− 1 and 1 ≤ k1 ≤ p− 1,

the qr-data
(Z2

p, θ, 1, τω) and (Z2
p, θ, ak1 , τωk2 )

are equivalent, using, in the notation of Definition 4.7, f−1 =

(
k2 0
0 1

)
and ϕ ∈ Ẑ2

p such that

ϕ(x1) = 1 and ϕ(x2)
qr = ω−k1 . This concludes the proof. �
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Proof of Theorem 5.16. Let A be a Hopf algebra as in the statement of Theorem 5.16: there
exists a qr-datum (Z2

p, θ, a, τ) such that A ≃ Aqr(Z
2
p, θ, a, τ), and with θ 6= id and [τ ] 6= 1

(Proposition 4.14), and the datum is reduced, as we have seen in the proof of the previous lemma.
Hence, by Proposition 4.17 (and Theorem 4.18) we have a bijection between isomorphism classes
of Hopf algebras A as above and equivalence classes of qr-data (Z2

p, θ, a, τ), θ 6= id, [τ ] 6= 1. For
1 ≤ s ≤ r, let Es be the set of equivalence classes of qr-data as above and with θ of order
qs. Clearly E =

∐r
s=1 Es. Using Corollary 4.9, Lemma 5.17 and Lemma 5.18, we obtain

|Es| =
qs+qs−1

2 for each 1 ≤ s ≤ r, and the announced result follows. �

The above reasoning works as well when q = 2, the only small difference being in the counting
process of Lemma 5.17. The result is as follows (again, when r = 1, this was proved in [25]).

Theorem 5.19. Let p be an odd prime, let r ≥ 1 and assume that 2r|p − 1. The number
of isomorphism classes of noncommutative and noncocommutative Hopf algebras fitting into a
cocentral extension k → O(Z2

p) → A → kZ2r → k is 1 if r = 1, and is 2(3.2r−2 − 1) if r ≥ 2.

References

[1] N. Andruskiewitsch, J. Devoto, Extensions of Hopf algebras, St. Petersburg Math. J. 7 (1996), no. 1, 17-52.
[2] N. Andruskiewitsch, M. Müller, Examples of extensions of Hopf algebras, Rev. Colombiana Mat. 49 (2015),

no. 1, 193-211.
[3] J. Bichon, S. Natale, Hopf algebra deformations of binary polyhedral groups, Transform. Groups 16 (2011),

no. 2, 339-374.
[4] J. Bichon, S. Neshveyev, M. Yamashita, Graded twisting of categories and quantum groups by group actions,

Ann. Inst. Fourier (Grenoble) 66 (2016), no. 6, 2299-2338.
[5] J. Bichon, S. Neshveyev, M. Yamashita, Graded twisting of comodule algebras and module categories, J.

Noncommut. Geom. 12 (2018), no. 1, 331-368.
[6] A. Chirvasitu, Centers, cocenters and simple quantum groups, J. Pure Appl. Algebra 218 (2014), no. 8,

1418-1430.
[7] A. Chirvasitu, P. Kasprzak, On the Hopf (co)center of a Hopf algebra, J. Algebra 464 (2016), 141-174.
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