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Abstract

Object segmentation in meaningfull parts is an important research
topic as these have become a part of many mesh and object manipula-
tion algorithms in computer graphics, geometric modelling and computer
aided design. In particular, tasks that were before realized by experts
are more and more assumed by people without particular formation in
geometric or computer graphic problems. So there is a need to have some
ergonomic tools that have expert know-how while user keep control on
specific constraints to its particular application. Here, we present how
for segmentation purpose we model expert know-how and two algorithms
that can be used to make segmentation task. One is generic and the other
is specialized for glasses segmentations.

1 Introduction
In reason of 3D printers democratisation and easy access to 3D scanners, there
is more and more 3D meshes available on internet. So use of 3D mesh becomes
commonplace, increasing needs in automatic processings and in interfaces for
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computer-aided manipulations. In particular, tasks that were before realized
by experts are more and more assumed by people without particular formation
in geometric or computer graphic problems. So there is a need to have some
ergonomic tools that have expert know-how while user keep control on specific
constraints to its particular application. Mesh segmentation has become a key
point in many computer graphics tasks and applications and also in geometric
modelling. Segmentation can help for parametrization, mesh editing or anima-
tion and many other tasks [4, 5]. So segmentation is a crucial point when we
want to offer tools for automatic processing.

Mesh segmentation partitions the surface into a set of clusters under some
criteria often depending of the final application. Comparative survey on seg-
mentation technics [1, 16, 24] classify them in two categories: geometric segmen-
tation and semantic segmentation. We are only interesting in the second one:
our aim is to extract meaningful parts (having experts knowledge about what
that mean) of an object in reasonable time, as it will ba a pretreatment in a more
complete application. Different parts should be well identify because different
treatment will be allowed depending on their nature. Automatically identify
meaningful parts of a 3D mesh is challenging. A common practice is to build
some specific features by extracting some geometric or volumetric properties
like approximate convexity anlysis [8], concavity-aware field [2], spectral clus-
tering [12], K-means [18], core-extraction [9], graph-cuts and randomized cuts
[6], randomwalk [11] and then use it for segmentation purpose. Part boundaries
or frontiers are faces which have at least one neighbor with a different label
(that is which belongs to another part than theirs). Inducing part boundaries
along negative curvature minima is often used even for semantic segmentation
because they often offer natural separation between parts like legs and torso.
Volumetric considerations can also be used and are more related to skeletal
shape representation like shape diameter function [17].

Rathers than trying to segment a single object some recent researches are
done on co-segmentation [7, 13, 19, 20, 25]: the aim is to segment in the same
time a family of objects (for example different glasses) because more semantic
knowledge can be extracted by simultaneously analyzing a set of shapes instead
of a single shape. But their final objective is shlightly different of ours as they
only guarantee consistent segmentation over the set whereas we want to use
expert knowledge about what is for a given problem a good segmentation. In-
deed, often saying what is meaningful parts or good segmentation is not a so easy
task. Good exemples of that can be found in [5] where users are asked to seg-
ment different objects. We can see that different persons segments same object
differently (see figure 1). Why one should be consider better than another?

That why, we consider that we have at least an exemple of good segmentation
in the sense that it has be done by an expert and so it can be considered well-
suited for its specific problem. In consequence, here, expert knowledge will be
represent by at least one shape and its good segmentation and our aim will be :
given another shape of the same family, how can we segment it so that extracted
meaningful parts are coherent with example shape.
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Figure 1: An exemple of segmentations of the same objet, here glasses,
from different persons. Segmentations can be found in http://segeval.cs.
princeton.edu/, details of segmentations process are described in [5].

2 Strategy

2.1 Context
Our project implies at the same time a local company Polymagine and a research
laboratory LIMOS. Company needs directed areas of research so that proposed
solutions can be used in industry in the long run. In particular, we will take care
about time computations and will try to have few constraints for meshes (we
will not fixe number of vertices or faces for example). Polymagine is specialized
in personnalisation of objects. Polymagine is interesting in segmentation as a
pre-processus before personnalisation step : deformation and transformation
cannot be apply in the same way on all the object. They represent the expert
knowledge and provide us some segmentations examples for glasses (see figure
2). So, glasses are for us composed of tenon (in red) on which will come to hang
on the legs of glasses, circles (in blue) which hold glasses and finally bridge
(in green) which connects both circles. We assume that we have at least one
labelled example of glasses but not a lot.

Figure 2: Good segmentation of glasses. Tenons are in red, circles in blue and
bridge in green.
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2.2 Learning with (deep) neural network
Deep learning is widely used in image segmentation process. AlexNet [10] is
one of the more known deep neural network. It is one of the pioneer in deep
CNN. Visual Geometry Group (VGG) [21] and GoogLeNet [23] are two others
very well known deep neural network for image segmentation. They give good
results. Even if CNN (Convolutionnal Neural Network) cannot be used for mesh
segmentation because of the complexity of 3D geometry (a vertice don’t have
all the time the same number of neigboor whereas in an image the number of
pixels surrounded one pixel is fixed), it seems to us that neural network can be
interesting in our case, as we want to transfer knowledge from given examples
to new examples of same family.

2.3 Features
When using neural network, what are entries is one of first question to answer.
As previously stated, vertices (or faces) of meshes are not good candidates
because they can vary in number and it is difficult to order them : what can
be consider as first vertice and how we traversed the others ? So we make the
choice to work as in more classical mesh segmentation technics with particular
features.

We find that the work of [25] is interesting. Their aim is not exactly the same
as they want to make co-segmentation and so do not have a model to respect
in segmentation. They compute presegmentations (rough segmentations) of a
family of meshes using K-means in space of eigenfunctions of Laplace-Beltrami
[3, 14]. Then they use these presegmentation and properties of Laplace-Beltrami
operator to compute Functional Maps [15] and to make correspondance between
parts of differents objects. Then, they are able to make segmentation of their
family of meshes. Results on differents family of shapes are impressive.

We make some preliminary tests using the code for Functional Maps provided
on http://www.lix.polytechnique.fr/~maks/fmaps_course/publications.
html. To use this code, we need to have a pre-segmentation of meshes, that is a
segmentation in some coarse regions and we need meshes with the same number
of vertices. This two conditions are for us only for tests, because we want to
be able to treat meshes from our industrial partner that will not respond to
this criteria (meshes tend to have the same order of vertices but not exactly the
same number).

On figure 3, tree pre-segmentations are showns. On figure 4, results of Func-
tionals Maps given the previous pre-segmentation are shown. Colors indicates
similar regions. On the first sub image, the second glasses (the upper one) has
been created by deformation of the first glasses (on bottom). Matching between
the two shapes is not perfect in particular near the bridge but it seem to be
promising. At contrary, on second subimage, the two shapes have independant
meshes and matching is really bad.

Functional Maps not seem to be well-suited for our problematic were meshes
are not near isometric deformation one from another. Nevertheless, we keep
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Figure 3: Pre-segmentations for tree differents glasses : glasses a), glasses b)
and glasses c).

Figure 4: Functional Maps used on our glasses. First column shows front of
glasses and second columns the back. Fisrt rows is between glasses b) and
a). Second rows is between glasses a) and c). Same colors should indicate
correspondant regions.
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Figure 5: On first row : 1st, 2nd eigenfunctions of Laplace-Betrami. On second
rpw : 3rd and 4th eigenfunctions of Laplace-Beltrami.

being interesting in the Laplace-Beltrami Operator as features. Indeed Laplace-
Beltrami is a local descriptor where different feature information are represented
by different feature functions. Since eigenfunctions of Laplace-Beltrami are or-
der from low-frequencies to high-frequencies. Yet low-frequencies contain more
information than high-frequencies functions. So a few of Laplace-Beltrami eigen-
functions can be used as features descriptors. Advantage of Laplace-Beltrami
eigenfunction are that they are independant from shape spacial localisation and
that it describe well shape geometry. In figure 5, the 4 first eigenfunctions of
Laplace-Beltrami are shown.

On experiments, there can be some problems of flips in Laplace-Beltrami
eigenfunctions : sometimes sign of similar regions are inverted. An exemple is
given on figure 6. On the first glasses, high value (in yellow) are on bottom-left
circle and upper-right circle whereas on the second glasses it is on bottom-right
circle and upper-left circle. To overcome this problem of flip signs, we simply
consider the absolute value of the Laplace-Beltrami eigenfunctions. We will also
normalize eigenfunction to be between 0 and 1 :

φ∗i =
|φi| −minj |φi(xj)|

maxj |φi(xj)| −minj |φi(xj)|
(1)

where :

• φ∗i : is the ith feature used. It is the ith eigenfunction of Laplace-Beltrami
in absolute value and normalized.

• φi is the ith eigenfunction of Laplace-Beltrami.

• xj is a vertice of the mesh

• | − | represents the absolute value.

In fact, we are more interested in having one label per face than having one
label per vertice so we convert this vertice features in face features. To make
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Figure 6: the 4rd eigenfunction of Laplace-Beltrami for two differents glasses.
We can observed change in sign.

that, for a face f , we consider the 3 vertices which compose it (as we work on
triangulated mesh) and we say that the feature face value is the mean of the 3
features vertices.

φ∗i (fk) =
1

3

3∑
j=1

φ∗i (v
k
j ) (2)

where :

• φ∗i (fk) is feature vector computed for face fk and we will refer to it by
absolute-normalized eigenfunctions of Laplace-Beltrami for face fk.

• φ∗i (vkj ) is the absolute-normalized eigenfunctions of Laplace-Beltrami for
a vertice vkj that is one of the 3 vertice of the face fk.

By default, when we will refer to this face feature, we will named these absolute
normalized eigenfunctions of Laplace-Beltrami (and we will ommitted for face).

Another problem with the Laplace-Beltrami eigenfunction is an ordering
problem : even if all regions can be well characterized by these functions, some-
times it is not the same function that represent correspondant regions. Whereas
sign flip can be easily removed by taking the absolute value of eigenfunction,
there is no solution for this ordering problem. Or order has big importance when
we want to use neural network. A node should always represent the same com-
ponent. Or if there is change in order, it will not be possible. An exemple of this
problem is illustrate in figure 7. For illustration purpose, we have change ob-
jects and show images on animals but problem is the same on glasses. Here, leg
regions are represented one time by the 3rd eigenfunction of Laplace-Beltrami
and on other on the 4th eigenfunction.

2.4 Construction of our neural network
To construct our neural network, we have to take into account to the previous
remarks and to industrial time constraint : we want that segmentation process
can be used in some application so that should not take to much time. As we
are only developping some prototype, a time of few minutes (5 minutes should
be the maximum and if possible less than one minute) is the goal fixed by
Polymagine, considering this computation time could be improved if technics
give good results.
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Figure 7: eigenfunction of Laplace-Beltrami that highlights the back legs of the
two animals. For the pig, it is the 4th eigenfunction whereas for the veal it is
the 3rd.

Another important constraint is that we want to treat any mesh given so
number of vertices or faces cannot be fixed and our neural network must be
able to work with. Often, when size of example if not fixed, RNN (Recurrant
Neural Network) are used, in particular for text recognition. But, we think it
was not suitable for us, as a sequence has natural order : place of words in
sentence (or place of letters in words) are important : verb is after subject and
so on. In meshes, ordering is difficult, there is no natural beginning or end of
meshes. That why, we decide to take in entry only feature for one face. Doing
this, all size of meshes can be treated, if a mesh has n faces, we simply need to
use n times our neural network only changing entries. As we give only one face
after another, we cannot ensure topological consistence from neural network but
we think that absolute-normalized eigenfunctions of Laplace-Beltrami contain
enough information about face neighbourhood to ensure coherent segmentation.

The main problem that remains is an ordering problem. As discussed previ-
ously, absolute-normalized eigenfunctions of Laplace-Beltrami can have different
order in different meshes. So we cannot make training on some glasses and then
used trained neural network on new glasses. Our main idea, that is really differ-
ent from usual use of neural network, was that we do not need to learn on a lot
of faces and that only few faces can be used to make training. Idea is to have for
one particular mesh few labelled faces per class that are well positionned and to
transfert this face (like some initial source seeds) to another glasses. Once, we
have for new glasses, some labelled faces we can make training with our features
faces for new glasses on this few labelled faces (on new glasses) and then we
only need to used the trained neural network on all faces of new glasses. As
training is on features from new glasses, there is no problem of order (in one
mesh, order is always consistent).

With this idea, we choose to construct a neural network with only one hidden
layer considering that as we want to train with few data, we will not have enough
data to learn a lot of weighs in a lot of hidden layers. The other good point, in
having a small neural network is that training step will be fast (as testing step).
We have a fully connected neural network with 50 entries (the 50 first absolute
normalized eigenfunctions of Laplace-Beltrami) , 3 outputs (one per class) and
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250 nodes on hidden layer. Activation functions from entries to hidden layer
are sigmoïds and activation functions from hidden layer to output are softmax
functions.

3 Method 1 : Seed Transfert
In this section, we will present in more details our method using the previous
idea.

3.1 First Tests
During the analysis phase, we made hypothesis and thus first step is to verify
them. We begin by trying to learn segmentation on mesh when we manually
select the seeds. Good selection of seeds imply :

• every class should have the same number of seeds. Seeds must be balanced
in number.

• in every class, seeds must be spacially distributed. Seeds should be as far
away from other seeds of same class as possible.

• in every class, some seeds must be near boundaries : if we segment every
face in mesh, some seed must be near a face of different label (this face is
not necessary a seed even for the other class).

We compute for all face of meshes, absolute-noramlized eigenfunctions of
Laplace-Beltrami. We use 10 seeds per class (for a total of 30 seeds) to train
our neural network and after we use the trained neural network for testing
segmentation on all faces. Figure 8 shows results for one glasses. Segmentation
is coherent with what we want and so it seems that our idea can work.

3.2 Seeds Transfer
To have an automatic process, we want to have an algorithm that is able to
tranfer seeds from source mesh (we know source seeds labels) to target mesh.

Figure 8: Segmentation from manual seeds using our neural network
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We want to label the same number of faces in target mesh than in source mesh.
Labelled faces in taget mesh will become seeds for target mesh.

3.2.1 Distance Transfer

Firstly, we consider we have aligned glasses. Under this hypothesis, tranferring
seeds can be seen as a research of k-nearest neighbour where k = 1, tree is
constructed using target mesh face (the center of face is taken as 3D point) ,
query points are center of seeds in source mesh. The target face that is selected
become a seed for target mesh with same label as source seed.

3.2.2 Distance Transfer + eigenfunctions

As glasses have not all exactly the same shape, distance transfer can be improved
by taking into account more topological information. For every seeds in source
mesh, we will find the k-nearest neighbour where k = 250. This ensure a spacial
coherence. But after to select the final target face, we compute distance between
the 3 first eigenfunctions of Laplace-Beltrami, the face with the lower distance
is kept as target seed. The idea is that eigenfunction of Laplace-Beltrami will
probably be more similar on place that have similar function in glasses.

Results of the two transfer can be seen in 5.1.

4 Method 2 : Training
We are also interesting to see if we can use our neural network to make some more
usual training as the context change a little bit and more labelled glasses are
available. Like we previously discuss, using absolute-normalized eigenfunction
of Laplace-Beltrami is not suitable for this purpose so we have to change our
features.

We choose to use HKS (Heat Kernel Signature) [22]. As previously, we will
take it in absolute value, normalize it and compute a mean to have features for
face. So we will named it absolute-normalized HKS. We believe theses features
will be less sensitive to the ordering problem. We choose to take 50 features.

We used k glasses to make training. On every glasses we randomly select
n faces for every class. So we have kn examples in training set. We train our
neural network (the one described in 2.4) only one time with these examples
(training can be long). After, we compute for every new glasses, its absolute-
normalized HKS features and use the trained neural network on every face by
changing entries. Results are shown in 5.2.

5 Results
In this section, we will present some results obtained from the two methods. To
implement our algorithmes, we use Matlab to compute generealized eigenvectors
and values, Tensorflow in Python to construct, train and use neural network and
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C++ to compute features on mesh and make file readable by Matlab or Python.
For a mesh with near 23914 vertices and 47832 faces, we need to :

• compute mass matrix and cotangent matrix : 1.4 s

• compute generalized eigenvectors and eigenvalues : 21.6 s

• select seeds 4.9s using distance only or 7.6 s using distance + eigenfunc-
tions

• compute normalized-absolute eigenfunctions of Laplace-Beltrami using pre-
vious steps and writing file test : 12s

• train our neural network : 3.4s

• use trained neural network on all faces : 6.5s

5.1 Result for the first method
Conditions : on one glasses, 10 faces (seeds) per class are well selected. Se-
lected face are well balanced in every class region and somme of them are near
boudaries. All meshes are aligned. As describes in section 3.2, we use two
methods for transfert. The first one take into account only euclidean distance
between faces, the second one select for each source face, the 100 nearest target
faces and among this 100 target faces, the one with the most similar 3 first
eigenfunction is chosen.

Figure 9 shows one case of mislabelling in transfert in both methods. On the
left, it is the distance transfert and on the right it is the distance + eigenfunction
transfert.. We can see error in labelling in left tenon, more visible in the second
line.

In figure 10, we compare the results on both transfert on 12 glasses. First
column reprensents results using transfert with distance only (and after training
with seeds and testing) and second column represents results using transfert with
distance and eigenfunction (and after training with seeds and testing). Results
with distance and eigenfunction give a little bit better results. But two are not
perfect segmentation and some glasses are bad segmented. The problem comes
from error in labelling as first cause, and position of labelled seeds : they are
not as well balanced as in source mesh (they can be less distant or it can lack
of seed near boundaries).
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Figure 9: Example of transfert labelling. In light grey it is not labelled face, in
blue, it is tenon faces, in green bridge faces and in red circle faces. First line
show labelled faces on full mesh and second line is a zoom on the left tenon
to show error in labelling process. Fisrt column is labelling using transfert
with only distance. Second colum is labelling using transfert with distance and
eigenfunctions.
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Figure 10: First column represents results after transfert with distance only,
training and testing. Second columns represent results after transfert with dis-
tance and eigenfunction, training and testing.
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5.2 Result for the second method
Conditions : we use one glasses as training glasses. We consider we have a
good segmentation for all the faces of the mesh. Among this faces, we randomly
select 750 in every class, no particular care is done about the repartition of
selected faces. Absolute-normalized HKS is computed for each face of all the
meshes we want to test. Computing it take 72.3 s. Neural network is the one
described in 2.4. Training take 196 s.

In figure 11, the result on the training glasses is shown. Mesh has near
25000 faces. Note that, segmentation is good even if we have train with only
2250 faces.

In figure 12, results on 12 others glasses are shown. Even if segmentation
are not perfect, they are interesting and should be improved by modification
on training : we can use more than one glasses and we also can select faces in
a better way, maybe trying to have a good repartition on class as in the first
method.

Figure 11: Result of segmentation on training glasses for the second method
(general training + HKS).
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Figure 12: Results of second method (general train and HKS on different meshes
of glasses

6 Conclusions
In this report, we presented two algorithms for mesh segmentation using Laplace-
Beltrami Operator to compute interesting features and neural network to learn
from examples.

6.1 First Method : Seed Transfert
The first method transfers few seeds (a dozen per class is enough) from a source
glasses to a target glasses. Seeds must be distributed among faces of similar
class and some must be close to faces of others class (so near border of semantic
region). Two methods of transfert are proposed. Both consider that glasses are
aligned. The first use only euclidean distance between source face and target
faces to affect a label. The other assume that there is no problem of order
between the three first eigenfunction of Laplace-Beltrami. The 100 nearest
facesin target mesh of a source face are selected and in these pre selected face,
the one that has the most similar eigenfunctions is chosen.

Once seeds have been transferred, a neural network is trained. In entries, we
used the 50 first absolute-normalized eigenfunctions of Laplace-Beltrami, and
we have 3 outputs (one per class) that are used to affect label. There is only one
hidden layer as we train we very few data (only 10 examples per class). Once the
neural network is trained, for each face, we compute tthe absolute-normalized
eigenfunctions of Laplace-Beltrami and use the neural network with this entry.
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Si if a mesh have n faces, the neural network will be used n times. All this
process take near one minute and computed time can be optimized. So it can
be used for industrial purpose.

Having good initial seeds give good segmentation. For the moment, results
are promising but need to be improved. The limitation step is in the process of
transferring seeds. For industrial application, it is possible to imagine to have
some graphical interface and let the user select seeds. The main advantage of
this manual selection is that the quality of the seed should be better and so
will lead to better segmentations. Another advantage is thatwith this manual
selection no more alignment will be requirred. The main inconvenient is that
ask more work from users.

6.2 Second Method : Big Train then Test
The second method use absolute-normalized HKS as features. The neural net-
work is the same as previously but it is trained only one time with more examples
(we have tests with 750 examples per class chosen on only one glasses but taking
more examples and more glasses should improve results). The training step can
be long but it is done only one time at the early beginning. After the train-
ing step, all we need is to compute absolute-normalized HKS for each face and
use the neural network with these features in entry. We obtain segmentation
for others glasses. The process (without training) take less than two minutes
and computed time can also be improved. So this method can also be used for
industrial purpose.

For glasses, it seems to be very promising but there is some restrictions
to keep in mind. The first is that HKS is sensitive to size of meshes because
of the use of eigenvalues, so object should be at the same order of size. The
second restriction is the application to others objects : using HKS decrease order
problem in eigenfunction of Laplace-Beltrami but do not solve all the problems.
So, this method will not necessary give results for other shapes.

6.3 Conclusion and future works
We have developped two methods that can make segmentation using expert
knwoledge in particular case of glasses segmentation. Both methods can be
used for industrial purpose as the time they need is low and can be improved.
Both methods are promising but results are not exploitable for the moment and
need more developpments. One method should be generalized to other shape if
we can improve the seed transfert. The other method will maybe give better
results with less research but is probably suitable only for particular case.
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