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Abstract

Since the last years� we are interested in visual servo�
ing and we have developed many visual servoing ap�
plications using �D visual features� The aim of this
paper is to study how we can introduce �D visual fea�
tures in a robot control loop� We consider a camera
mounted on the end e�ector of the manipulator robot
to estimate the pose of the target object� The required
positioning task is to reach a speci�c pose between the
sensor frame and a target object frame� Knowing the
target object model� we can localize the object in the
�D visual sensor frame and obtain the pose between
the camera and the target object at each iteration� To
insure the visual servoing task� we have developed two
approaches� The �rst approach is based on the task
function approach introduced by Samson and Espiau
at the end of ��	s� We considered a �D visual sen�
sor which gives the �D visual pose of an object in the
sensor frame� In this case� the sensor signal 
dimen�
sion �� is composed of the position and the orientation
of the frame object in the sensor frame� The second
approach consists to split the trajectory between the
current and the desired pose in a set of elementaries
screwing tasks� At each iteration� the situation be�
tween the sensor and the object is computed� and then
the trajectory is updated�

INTRODUCTION

Sanderson and Weiss in 
��� introduced an important
classi�cation of visual servo structures based on two
criterias� space control and presence of joint feedback�
So� in this classi�cation we distinguish two main ap�
proaches�

� Position Based Control � in this case� image fea�
tures are extracted from the image and a model
of the scene and the target is used to determine
the pose of the target with respect to the frame
attached to the camera�

� Image Based Control � in image based control� the
pose estimation is omitted� and the control law

is directly expressed in the sensor space 
image
space��

Figure � and � illustrated the both servoing scheme�
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A bibliographic review on Visual Servoing has
been done in 
���� and particularly developed by P�
Corke in 
��� A tutorial on Visual Servo Control
has been organised by G� Hager et al 
��� in �����
These state of the art in the �eld of visual servoing
show that the Image Based Control has retained to
be an alternative way to the Position Based Control
approach� Generally� many authors consider that
Image Based Control approach is better than the
other one� according to the following criteria� camera
calibration� hand�eye calibration� robot modelling�
scene and target modelling� ��� � and also regarding to
the processing time to compute the sensor signal�

It is clear that Image Based Control approach do
not need a precise calibration and modelling� because
of the closed loop de�ned in the sensor space� Many



works 
��� 
��� 
��� 
��� 
���� 
���� 
���� 
���� 
���� 
����

��� and many others� has been done in the case of the
camera sensor and the �D space� We recommand the
reader to have a look on the review previously quoted
and on 
�� for an introduction on active perception�

The notion of Task Function introduced by Samson
et al in 
���� can be used to elaborate a control law in
the sensor space� According to this concept� Martinet
et al in 
��� introduce the notion of �D logical sensor
which deliver a �D sensor signal by monocular vision
at video rate� Recent progress in pose estimation� lo�
calization and �D modelling 
��� 
��� shows that it is
not an utopic way to introduce �D visual information
in a closed loop control� Using this assumption� we can
synthesize control laws using this kind of informations
like we do directly with the camera sensor� Another
way to obtained the estimation of the pose� is to com�
pute a Kalman �lter using several visual features like
presented in 
���� In this case� the control law is de�
�ned to reach a particular pose between sensor and
object frames with a PD controller�
In fact� few work 
���� 
���� 
��� has been done using
�D sensor signal� However� we can remark that pre�
cise calibration and modelling are really usefull only
in the case where the task to achieve is expressed in
the cartesian space� If we learn the �D reference sig�
nal in real conditions� like in Image Based Approach�
we obtain the same good results in the logical sensor
space�
The aim of this paper is to study how we can

introduce �D visual features in a robot control loop�
In the �rst section of the paper� we discuss how
to extract �D visual features with a logical sensor�
Knowing the object model� the logical sensor uses
the De Menthon Algorithm 
�� to localize the object
in the �D visual sensor frame� At each iteration we
obtain the pose between the camera and the target
object� In the second section� and the third section
we present the two approaches developed in our
laboratory� In the last section� we show the results
obtained by simulation and experimentation with our
robotic platform� We use a speci�c object composed
of four illuminated points in real experimentation�
Finally we conclude and present some perspectives for
future development in visual servoing�

POSE ESTIMATION BY

MONOCULAR VISION

During the last ten years� many methods to locate
�D objects from one monocular image was proposed
in the litterature� All of these approaches need some
prerequisites� as the knowledge of the geometrical
model of the observed object and matches between �D

image primitives and �D model elements� to compen�
sate the loss of data due to the projection of the �D
world on the image plane� Using these informations�
the methods look for the spatial attitudes of the �D
model such that the matched model elements are
projeted on the corresponding image primitives�

All of these approaches can be classi�ed in function
of the manipulated image primitives 
points� straight

lines� elliptical contours� limbs of curved surfaces

���� and the assumption about the projection of
the real world on the image plane 
orthographic�
weak perspective� full perspective projection�� Some
methods give closed form solutions of the addressed
inverse perspective problem� the others uses iterative
processes to reach the solution�

The reader will �nd in the following references an
overview of the di�erent kinds of approach 
��� 
��� 
���

���� 
���� 
���� 
���� 
����

If up to a recent time� the computing time of such
algorithms was prohibity to implement them during
a real time closed loop control � it is no more the
case� For example� the approach proposed by D� De�
menthon 
�� allows to compute the spatial attitude of
a �D object in a fraction of the image acquisition cycle�

FIRST APPROACH

Introduction

In the last ten years� many people have become in�
terested in how to introduce external sensor signals
directly into the control loop� Near the end of the
����	s� C� Samson and B� Espiau proposed a new ap�
proach� called �Sensor Based Control� 
��� 
���� In this
approach� any robot task can be characterized as a reg�
ulation to zero of a task function� where it de�nes the
interaction between the sensors and the robot environ�
ment� It is expressed with the following relation�

e
r� t� � 
s
r� t�� s�� 
��

where s� is considered as a reference target sensor fea�
ture to be reached in the sensor frame� and s
r� t� is
the value of sensor information currently observed by
the sensors�
Figure � shows the �D sensor based servoing scheme�

The interaction between sensor and scene is given in
matrix form by�

�s

�r
� Lts 
��

This is called the interaction matrix which links the
interaction between the robot and its environment� We
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have the following relation�

�s � LtsT 
��

where �s is the time variation of s and T � 
V ���t is
the velocity screw of the camera which englobes three
translations and three rotations�
Considering an exponential convergence 
for a task

positioning� of all components of the task function

i�e� �e � ��e� where � is a positive scalar constant��
we obtain the expression of the control law�

C � �Lt�s 
��

where Lt�s represents the pseudo�inverse matrix of Lts�
The stability depends of the positivity of the prod�

uct term Lts�C� If Lt
��

s exists in all robot con�gu�
rations� this control law realize a perfect decoupling
servoing scheme� and it is equivalent to consider the
system as a juxtaposition of a set of closed integra�
tor� Figure � represents the servoing scheme for each
component Si of the sensor signal S�
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Figure �� Servoing scheme in ideal case

We choose the positif gain � to insure the stabil�
ity� The sensor signal S decreases as a �rst order
system with a constant of time � � ���� In this
case� the �rst order steady state error is null 
e

�
� ���

Principle

We consider a scene with a �D object and a wrist �D
sensory apparatus mounted on the end e�ector of the
robot� We de�ne three homogeneous matrices trans�
formation as follows�

� M o is the homogeneousmatrix transformation be�
tween an absolute frame attached to the scene�
and the object frame Ro

� M ct
is the homogeneous matrix transformation

between an absolute frame attached to the scene�
and the sensor frame computed at each iteration
Rct

� M�

c is the homogeneousmatrix transformation be�
tween an absolute frame attached to the scene�
and the sensor frame desired at the equilibrium
R�c �

Figure � represents the scene with the di�erent
frames�

O

z

x

y

Mc t

*Mc
Mo

V

at equilibrium

x

y

Ω

z

A

C(t)

x

z

y
z

y
x

C *

frame
Sensor

frame
Absolute

Sensor
frame

Object
frame

Figure �� Di�erent frames used in modelling

The sensor signal S is a vector of dimension � and
is composed of�

� X � 
AC�c the position of the absolute frame ex�
pressed in the sensor frame

� � the orientation of the sensor frame relative to
the absolute frame attached to the scene�

We have� S � 
X� ��t�

In the absolute frame� we have the relation�


AC�a � Rc
AC�c 
��

where Rc is the rotation matrix extracted fromM ct
�

We use the exponential representation for the ex�
pression of the rotation� So� we write�

Rc � exp
AS
��� 
��

where AS
�� represents the antisymetric matrix asso�
ciated with the vector ��
In our case� we have 
��a � Rc
��c � 
��c because the

product AS
�� � � � � 
cross product of two identical
vectors��

Derivating relation �� we obtain�

d
AC�a
dt

�
dRc

dt
� 
AC�c �Rc �

d
AC�c
dt


��



In this equation� the �rst term represents the trans�
lation velocity V of the robot expressed in the ab�
solute frame� Using the de�nition of Rc� we have�
dRc

dt
� AS
�� � Rc� In this expression� � represents

the rotation velocity vector� Using the transpose ma�
trix of Rc� we can write the following relation�

Rc
t
V �a � Rc

t �AS
�� �Rc � 
AC�c �
d
AC�c
dt


��

where�

� the �rst term Rc
t
V �a represents the translation

velocity V of the sensor in the sensor frame

� the expression Rc
t �AS
�� �Rc can be rewrite as

�AS
���

So� we have�

dX

dt
� V � AS
�� �X 
��

with X � 
AC�c�
Using the relation AS
�� � X � �AS
X � � �� we

can rewrite � as�

dX

dt
� 
I���AS
X�� � T 
���

where T � 
V ���t is the kinematic screw expressed
in the sensor frame� We have also the following rela�
tion�

d�

dt
� � 
���

Derivating S � 
X� ��t� from relation �� �� and ���
we obtain�

�S � Lts � T � 

I���AS
X��� 
O�� I��� � T 
���

We can give the expression of the inverse of Lts�

Lt
��

s � 

I�� AS
X��� 
O�� I��� 
���

The control matrix is given by C � �Lt
��

s � and the
system is equivalent to a set of decoupled integrators�
In real case� if we consider an estimation of the sensor
signal S � Sest� the control matrix becomes�

C � � � 

I�� AS
X est
��� 
O�� I��� 
���

and the product Lts � C is not equal to � but to

� � Lts � L
t��

sest
� In fact� we have�

Lts �C � � � 

I�� AS
Xest �X��� 
O�� I��� 
���

The orientation is decoupled and we obtain an
exponential decay of the rotation angles� It is not the
same case for the coordinate of the end e�ector�

Convergence and stability of the control
law

To insure the stability of the system� the product
Lts � C must be positive� In other terms� for all

vectors Z � 
z� a�t of the state space 
dimension �� �
we have to verify the condition�

Zt � Lts �C � Z � � 
���

and then that the scalar product � Z�Lts �C � Z � is
positive�
We can rewrite the scalar product � Z�Lts �C �Z �

as�
� Z�Z � � � z�AS
X est �X� � z � 
���

In this new expression� the second term is null 
triple
product with two identical vectors� and the �rst term
represents the norm of the vector Z � Then� for all Z
di�erent to zero� we have � Z�Lts � C � Z � � �

and the matrix Lts �C is always positive which insure
the stability of the system for all con�gurations of the
robot�
The steady state error is e � S� � Sest becomes

null at the end of the servoing and insures a perfect
positioning task� The reference S� must be learned
by training� and then it compensate the error of
modelling�

Modelling the closed loop control

To model the closed loop control� we have to compute
the evolution of the sensor signal S at each iteration�
For that� we have to solve the following relation�

�S � Lts � T 
���

for a given kinematic screw T � Considering that
S � 
X� ��t� from relation �� we deduce�

�� � �
�X � V � AS
�X � �� � V � AS
�� �X


���

Then� we can solve the system of equation like�

��t� � ��t�� �
R
��t

�

�dt
�

X�t� � exp�
R
AS���t

�

��dt
�

� �X�t���

exp�
R
AS���t

�

��dt
�

� �
R
exp��

R
AS���t

��

��dt
��

�V �t
�

�dt
�

����

If we consider a kinematic screw constant between
time t� and t� we obtain the following relation�

��t� � ��t�� � � � �t� t��

X�t� � exp�AS��� � �t� t��� �X�t���R t�t�

�
exp�AS��� � t

�

�dt
�

� V

����



Using the Rodrigues formula� we have�

exp�AS��� � �t� t��� � cos���t� t��� � I��

sin���t� t��� �AS�v� � ��� cos���t� t���� � v � v
t

����

In the following expression� AS
�� � � � AS
v�� �
represents the norm of the vector � and 
v the unitary
vector in the direction of ���
So� we can rewrite expression �� like�

X�t� � �cos���t� t��� � I� � sin���t� t��� � AS�v��
�� � cos���t� t���� � v � v

t	 �X�t���
�sin���t� t����� � I� � ��� cos���t� t������ � AS�v��

�t� t� � sin���t� t������ � v � vt	 � V
��
�

SECOND APPROACH

Principle

The second approach is based on following assumption�
the whole system including image acquisition and lo�
calization algorithm is taken as a black box delivering
at video rate the pose parameters of an observed ob�
ject�
Moreover� the proof of the convergence presented in
the next paragraph is based on the hypothesis that
the robot motion is perfect� The computation at each
image shot of the target object pose permits to handle
the behavior of the robot system�
The pose parameters can be indi�erently seen as the
object pose in the camera reference system or as the
pose camera relative to the object� These informations
can be expressed as rigid transformation matrices of
the form�

M �

�
R�X� T�X�

� �

�

where R is a rotation matrix and T a translation vec�
tor�
If� 
see �gure �� Mt denotes the object localization

matrix in the reference system Rct of the camera at
time t� and M� the object desired pose matrix in Rc��
the Ct command to be applied to the robot must trans�
form Rct into Rc��
In this way the coordinates 
X�m of a point X of the

object de�ned in the Rm reference system are moved to

X�ct in the reference system Rct following the formula�


X�ct � Mt
X�m

In the same way�


X�c� � M�
X�m

where 
X�c� are the coordinates of X in Rc� �

Ct

MtM*

Rc*

Rct

Rm

Figure �� Control law computation

We deduce �

X�m � M��

t 
X�ct

X�m � M��

�

X�c�

Thus

X�c� � 
MtM

��
�

�
��


X�ct

This relation expresses the fact that the matrix

MtM

��
�

��� is the pose matrix for reference system
Rct relative to Rc��
Obviously the command transforming Rct in Rc� is�

Ct � MtM
��
�

The command is given by a rigid transformation ma�
trix and is numerically performed as a 
�� �� matrix
product� the inversion of M� being computed once o�
line before running the feedback control process�

The task funtion can be expressed relative to the
command law as�


e�t � M� �Mt � 
I� Ct�M�

where

I �

�

I��X� 
���X�

� �

�

On the other side� the pose to obtain expressed ver�
sus the current pose is�

M� � C��t Mt

From the matrix Ct� we can extract the parameter
vector �X of the rigid transformation between
Rc� and Rct� The inverse geometric model of the
robot transforms this vector in an vector �q of the
corresponding joint variations� Last� a normalization
relative to the sampling period �t leads to the speed
vector �q to be applied to the motors controling the
joints�



If the observed object is not moving� the minimiza�
tion of the task function will be completed when the
vector �q will be zeroed 
see �gure ��� which corre�
sponds to a command Ct�

Ct �

�

I��X� 
���X�

� �

�

At this time Mt � M� and the regulation of the task
function is done� the robot being located in the desired
pose�
Theoretically� the form of the command law show

that the task can be performed in one iteration� of
course numerous factors prevent from sending the
whole command directly to actuators of the joints�
the most important being the robot dynamic�

The �rst factor naturally leads to consider only a
fraction � � � of the command�

Ct�� � 
Mt�M
��
�

��

The computation of the fractional power of a rigid
transformation matrix �th is simple using a screwing
representation 
see �gure � for more details��
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Figure �� Screwing representation of a rigid transfor�
mation

At each iteration 
image shot�� we compute the cur�
rent poseMt from images primitives and the command
Ct�� to send to perform the task� At each iteration� the
Mt computation will also permits to take into account
the two kinds of following errors�

� errors induced by visual primitives extraction�

� modelization errors in the robot and the acquisi�
tion system�

The choice of � is important and its value depends
of the state of completion of the task� We will give
in the following paragraph� a necessary condition for
task convergence�

Convergence and exponential decrease
of the task function

Convergence

Let us suppose that at time t in the servo control
process the object is located atMt relative to the robot
camera� The task function to regulate is�


e�t � M� �Mt

The command Ct�� will now bring the robot in a new
pose given by�

Mt�� � C��t�� �Mt

Thus�
Mt�� � 
M�M

��
t ��Mt

To prove the theoretical convergence of the task� it
su�ces to show that M t tends to M� as t tends to
in�nity�

It is easy to prove by recursion that�

Mt � 
M�M
��
� ��������

t

M� 
���

where M� is the initial pose of the object�
Thus� M t�� tends to M� if and only if�

lim
t��

�� 
�� ��t�� � �

This condition is satis�ed if and only if�

� ���� �


We �nd again that if � � �� 
which is only to apply
the whole command at the �rst step� the task function
is immediately satis�ed� Extremal values � � � and
� � � respectively correspond to a static behavior
of the robot 
Mt � M��t� and at a oscillating one

Mt � M� if t is even� Mt � 
M�M

��
� ��M� if t is odd��

Exponential decrease

We have shown that our command law insures the
convergence of the task function� To be sure of good
performance� it is quite necessary to know what is the
rate of this convergence� We show here that the error
is exponentially decreasing with time�

Let us remember that the task function is given at
time t by�


e�t � M� �Mt

If we replaceMt by its computed value 
���� we obtain�


e�t � M� � 
M�M
��
� ��������

t

M�

Thus�


e�t � 
I � 
M�M
��
�

���������
t

M�M
��
�

�M�



And we have the following relation�


e�t � 
I � 
M�M
��
�

������
t

�M�

Time evolution of 
e�t depends of 
M�M
��
�

������
t

�
This expression is nothing but a fraction of the screw�
ing representation 
M�M

��
�

�� If �� and �� respectively
characterize the translation norm and the rotation an�
gle of the screwing representation 
M�M

��
�

�� the de�
sired fraction will be represented by a rotation angle
�t� and a translation vector Tt whose components will
be determined by the following relations�

�t � 
�� ��t��

and

Tt �

�
� xc
� � cos �t� � yc sin �t
�xc sin �t � yc
� � cos �t�


�� ��t��

�
�

where the coordinates xc� yc characterize a point of the
screwing axis in a particular coordinates system�
The origin of this system corresponds to the origin of
the reference system Rct 
see �gure ��� The z�axis is
colinear to the screwing axis� the x�axis is colinear to
the projection of the translation in a plane orthogonal
to the screwing axis and the y�axis is obtained by a
cross product�
The screwing angle is now obviously exponentially de�
creasing if � ���� �
� For the translation� we will show
that its norm is non increasing along time and majored
by a decreasing exponential�
Using elementary trigonometry� we can write�

Tt �

�
� � sin �t

� 
xc sin
�t
� � yc cos

�t
� �

�� sin �t
� 
xc cos

�t
� � yc sin

�t
� �


�� ��t��

�
�

The square of the norm of vector Tt can be written�

jjTtj j
� � �sin�

�t

�

x�c � y�c � � 
�� ���t���

The two conditions��
� � ��� �

� � 
�� 	�

insure that the norm decrease to �� Moreover as
�xj sinxj � jxj� we get�

jjTtj j
� � ��t 
x

�
c � y�c� � 
�� ���t���

Thus�

jjTtj j
� � 
�� ���t���
x

�
c � y�c � � 
�� ���t���

jjTtj j
� � 
�� ���t
���
x

�
c � y�c� � ����

that prove the property previously stated�
It is interesting to notice that the servoing behavior

is quite independant of the starting position 
the ob�
ject must be visible�� The above computations prove
the convergence and decrease of the task function�

RESULTS

Simulation results� First approach

To validate the �rst approach� we have developed
a simulator in Matlab using the main relations
previously developed� We represent the scene with
two frames� The object frame is centered in the space�
and materialized by a pyramid�

Figure � shows the �D trajectory of the sensor frame
during servoing� The initial Si and the �nal Sf � S�

value of the sensor signal are�

Si � ������������
��������� ����
� �������
�T

Sf � �������������������
������
�� �����������
�T

����

            

Figure �� �D trajectory of the sensor

Figure � and �� show the evolution of sensor signal�

            

Figure �� Position of the sensor

If we introduce a noise of ��� 
proportional to the
magnitude of the sensor signal� directly on the sensor
signal� we obtain the behavior represented on the
�gure ��� We can observe a little disturbance during
servoing� but the convergence of the control is insured�



            

Figure ��� Orientation of the sensor

            

Figure ��� �D trajectory of the sensor with noise

            

Figure ��� Position of the sensor with noise

            

Figure ��� Orientation of the sensor with noise

Figure �� and �� show the evolution of sensor signal
in presence of noise� As we can see� the servoing is
always insured despite of the presence of noise

Experimental results� both approaches

We have tested the two control laws by tracking a reg�
ular tetrahedron object materialized by four leds� with
a camera mounted on the end e�ector of a cartesian
robot�
The low level image processing consists of a simple

barycenter computation for each of the leds� From
these four detected points� the Dementhon	s algorithm

�� is used to locate the modelled object and thus the
control laws can be computed� The sampling period
is given by the image acquisition time� i�e� �� ms�

First approach

We de�ne three frames as follows� RS is an
absolute frame attached to the scene� RC is a frame
attached to the �D sensor� and RO is the object frame�
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Figure ��� Object and sensor in the scene�

Figure �� represents the scene with the di�erent
frames used in this experimentation�
To test our approach� we implemented a �D logical



sensor on the �Windis� parallel vision system� This
architecture� developed in collaboration with INRIA �

in Sophia Antipolis 
France�� implements the concept
of active windows� Figure �� shows this architecture�
where several active windows 
of varying size and posi�
tion� are extracted from the image at video rate� Low
level processing 
� � � or � � � convolution� is then ex�
ecuted� and results are sent to the DSP modules� The
DSP modules provide a geometric description of the
required primitive in each window� The window man�
ager controls all the architecture and computes the
��D logical sensor� features resulting from the geo�
metric description� We use a six degrees of freedom
cartesian robot� where the camera is embedded on the
end e�ector� The control law was evaluated and im�
plemented on our experimental site 
see Figure ����
All software was written in C language and we use the
VxWorks real time system environment�
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Figure ��� Overview of Windis architecture

Figure ��� Overview of the robotic platform

We have tested the �rst approach with various ini�
tial and �nal situations of the visual sensor frame re�
lating to the �D object frame� The initial position of

�Institut National de Recherche en Informatique et Automa�

tique

the sensor is always X � 
���������� �����t 
mm� in
front of the object and the orientation � � 
�� �� ��t


deg�� For the �nal pose S� � Sf � 
X� ��t we choose
a speci�c position X � 
�� �� ����t 
mm� and di�er�
ent orientation � � 
�X � �� ��t depending on the �X
angle 
������� ����������� 
deg�� In each case� we
estimate the interaction matrix at the equilibrium sit�
uation 
Lts � Lts�s� �� We obtained an exponential
decay of the error signal and a convergence at around
��� iterations during all tests� We present the results
for �X � �� deg�
Figure �� shows the �D points trajectories during the
visual servoing 
which traduces the object trajectory
in the camera frame��

3D Point trajectories: S = [0,0,750,15,0,0]
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Figure ��� Object trajectory
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Figure ��� Sensor signal� position

In Figures �� and ��� the position and orientation
of the object are presented� The behavior is like a �rst
order system� We noticed a little disturbance on the
curves� due to the �D logical sensor sensibility 
less
than � degree per second on the rotation velocities��
This disturbance is due to the di�culty to extract the
Z position and the orientation � of the object in the
sensor frame in a dynamic sequence� To improve the
results of the �D logical sensor we think that we have
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Figure ��� Sensor signal� orientation

to use a �lter on the pose parameters like Wilson
propose in 
����

Second approach

In the second approach� we have chosen to control
the robot such as the desired pose of the tetrahedron

M�� gives a symmetric centered image�

Figure ��� The four leds evolution

The �rst scheme 
see �gure ��� shows the evolution
in the image of the four barycentres relative to a �D
camera displacement around ���m�

Figure �� and �gure �� show the robot con�gura�
tions at the beginning and at the end of the process�
Figure �� and �gure �� characterize the evolution of
the command applied to the camera and �gure ��
shows the displacement of the optical center in the
space during servoing� We can note the exponential
decrease of these di�erent values and a convergence
before ��� iterations�

The last curves 
see �gure �� and �gure �� � are
relative to the speed values applied to the robot ar�
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Figure ��� Camera optical center positions evolution

ticulations� They are to be compared to the extremal
possible values that are � m�s for the translations and
��� deg�s for the rotations and depend of the � value

� � ��� in this experiment��

Figure ��� Initial robot arm con�guration

Figure ��� Final robot arm con�guration
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Figure ��� Screwing angle evolution
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Figure ��� Screwing translation norm evolution
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Figure ��� Rotation parameters evolution
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Figure ��� Translation parameters evolution

CONCLUSION

Many people are interested in visual servoing� Until
now� only �D visual features has been considered� In
this paper� we show that �D visual sensor elaborating
�D features at video rate can be used� We have
developed theorically two control laws and validated
their e�ectiveness in real conditions�
Results seem to be satifactory in regard with the
primitive extraction 
image led barycenter computa�
tion� and pose estimation 
De Menthon algorithm�
algorithms�
Actually� we have not realize a complete comparison
between these both approaches� and we present no
results in this way�
The particularity of this kind of method appears
in the simplicity of the formalism� the control laws
depend only on the desired and current situations of
the observed object� Then� from one application to
another� only the pose algorithm has to be modi�ed�
For the future� we want to compare the two �D
approaches developed in this paper�
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