
HAL Id: hal-02458451
https://uca.hal.science/hal-02458451v1

Submitted on 8 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Model generation of component-based systems
Sébastien Salva, Elliott Blot

To cite this version:
Sébastien Salva, Elliott Blot. Model generation of component-based systems. Software Quality Jour-
nal, 2020, 28 (2), pp.789–819. �10.1007/s11219-019-09485-y�. �hal-02458451�

https://uca.hal.science/hal-02458451v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Model Generation of Component-based Systems.

Sébastien Salva · Elliott Blot

the date of receipt and acceptance should be inserted later

Abstract This paper presents COnfECt, a model learning approach, which aims
at recovering the functioning of a black box system from its execution traces.
COnfECt is specialised into the detection of components of a black-box system
and in the inference of models called systems of LTSs. For every component dis-
covered, COnfECt generates a Labelled Transition System (LTS), which captures
its behaviours. Besides, it synchronises the LTSs together to express the func-
tioning of the whole system. COnfECt relies on machine learning techniques to
build models: it uses the notion of correlation among actions in traces to detect
component behaviours, and exploits a clustering technique to merge similar LTSs
and synchronises them. We describe the three steps of COnfECt and the related
algorithms in this paper. Then, we present some preliminary experimentations on
a real system.

Keywords Model Learning; Formal models; Reverse Engineering; Component-
based Systems.

1 Introduction

The effort required for writing (formal) models has been a strong barrier to the
widespread adoption of model-based testing or verification approaches in the in-
dustry. Most of today’s developers indeed feel that writing models is a difficult,
long and error-prone task. This obstacle can be overcame with model learning ap-
proaches (Angluin, 1987; Biermann and Feldman, 1972; Ernst et al, 1999; Meinke
and Sindhu, 2011; Lorenzoli et al, 2008; Ohmann et al, 2014; Durand and Salva,
2015; Pastore et al, 2017), which have proven to be valuable for recovering models

Sébastien Salva ())
University Clermont Auvergne, IUT of Clermont-Ferrand, LIMOS, F-63000 CLERMONT-
FERRAND, FRANCE
E-mail: sebastien.salva@uca.fr

Elliott Blot
University Clermont Auvergne, LIMOS, F-63000 CLERMONT-FERRAND, FRANCE
E-mail: elliott.blot@uca.fr

2 Sébastien Salva, Elliott Blot

that can be exploited in several software engineering steps. The inferred models
can be seen as documentation useful for understanding the functioning of a sys-
tem; they can be completed and improved to become formal specifications; several
papers also showed that model learning can be employed within effective bug find-
ing techniques (Mariani and Pastore, 2008; Hangal and Lam, 2002; Tappler et al,
2017), or can be used to directly generate test cases (Dallmeier et al, 2012; Shahbaz
and Groz, 2013; Durand and Salva, 2015).

A substantial part of these approaches are specialised to infer models from
black-box systems. These offer the advantage of remaining usable when the appli-
cation code is not available or when the system internal state cannot be known.
These approaches capture the behaviours of systems interacting with their envi-
ronments in a variety of models, e.g., states machines (Angluin, 1987; Biermann
and Feldman, 1972) or invariants (Ernst et al, 1999; Meinke and Sindhu, 2011).
The model generation is performed either by interacting with the system (active
approaches), or by analysing a set of execution traces resulting from the moni-
toring of the system (passive approaches). In this paper, we focus on the second
category.

In this context, several papers recently proposed innovative solutions for de-
signing new learning algorithms and tools, which have the capability to infer sym-
bolic models (Mariani et al, 2017), resource-aware models (Beschastnikh et al,
2011; Ohmann et al, 2014), timed models (Pastore et al, 2017), and which can be
applied to more and more complex systems. But, surprisingly, little attention has
been given to the generation of models from integrated systems made up of com-
ponents. In the previously cited papers, systems are indeed seen as single units.
Yet numerous present systems are constituted of reusable features or components,
which interact together. The inference of models encoding the functioning of every
component into a sub-model and how they interact together would greatly ease the
readability and analysis of the whole system. Furthermore, such models would offer
the possibility to concentrate the efforts for bug detection on some specific sub-
parts of the system. These observations motivate this work, which addresses these
two research challenges: Challenge 1: given a system under learning SUL, how
to learn a model from its execution traces, in such a way that the model captures
the behaviours of the SUL components and their synchronisations? Challenge 2:
how to manage the level of generalisation of the models, and how to synchronise
the sub-models of components?

To address these challenges, we designed a method called COnfECt (COrrelate
Extract Compose) for learning models of component-based systems. COnfECt is
a passive model learning approach, which generates a system of LTSs (Labelled
Transition Systems) from execution traces. This model encodes the behaviours
of every component by a LTS and shows how they are synchronised together.
COnfECt is composed of three main steps called Trace Recovery, Trace Analysis
& Extraction and LTS synchronisation. The first step derives formatted traces
from raw messages, the second analyses the traces, tries identifying distinctive
component behaviours and extracts sub-traces. The last step generates a system
of LTSs by means of three strategies. These adapt the LTS synchronisation, and
provide several systems of LTSs having different levels of generalisation. These
steps rely on machine learning techniques to detect the behaviours of components:
traces are analysed with Correlation factors based on String similarity metrics and

Model Generation of Component-based Systems. 3

algorithms; the LTS Synchronisation step relies on a clustering technique to group
similar LTSs.

We have implemented a prototype tool to experiment COnfECt and appraise
its benefits. We provide a preliminary evaluation in the paper, which deals with
the correct component detection, the relevance and size of the models, and the
efficiency/scalability of the algorithm. We also examine potential threats to the
validity of our evaluation.

Paper organisation: Section 2 presents some papers related to our approach.
Section 3 recalls some definitions about the LTS model. Section 4 describes the
steps of the COnfECt approach, illustrated with an example. The next section
shows the results of the experimentation of COnfECt and discusses about the
threat to validity. Finally, Section 6 summarises our contributions and draws some
perspectives for future work.

2 Related Work

Model learning can be defined as a set of methods that infer a specification by
gathering and analysing system executions and concisely summarising the frequent
interaction patterns as state machines that capture the system behaviour (Ammons
et al, 2002). These models, even if partial, can serve many purposes, e.g., they can
be used as documentation, examined by designers to find bugs, or can be given
to testing methods for the test case generation. Models can be generated from
different kinds of data samples such as affirmative/negative answers (Angluin,
1987), execution traces (Krka et al, 2010), source code (Pradel and Gross, 2009),
or network traces (Antunes et al, 2011).

Most of the approaches fall into two categories called active and passive model
learning, although some works cover both (Petrenko et al, 2017). Active learning
approaches, e.g., (Angluin, 1987; Dupont, 1996; Raffelt et al, 2005; Alur et al,
2005; Berg et al, 2006; Howar et al, 2012; Hossen et al, 2014), repeatedly query
systems or humans to collect positive or negative observations, which are studied
to build models. Many existing active techniques have been conceived upon two
concepts, the L∗ algorithm (Angluin, 1987) and incremental learning (Dupont,
1996). This model learning category is actively studied to make the approaches
more effective and efficient. For instance, some researchers recently proposed opti-
misations to reduce the query number (Aichernig and Tappler, 2017), while others
tackled systems having specific constraints (Hossen et al, 2014). Active learning
cannot be applied on any system though. For instance, uncontrollable systems
cannot be queried easily, or the use of active testing techniques may lead a system
to abnormal functioning, because it has to be reset many times.

This brings us to the second category, which includes the techniques that pas-
sively generate models from a given set of samples, e.g., a set of execution traces.
These techniques are said passive since there is no direct interaction with the sys-
tem. Models are here often constructed by encoding sample sets with automata
whose equivalent states are merged. The state equivalence is usually defined by
means of state-based abstractions or event sequence abstractions. The approaches
that use state-based abstractions, e.g., (Meinke and Sindhu, 2011), adopted the
generation of state-based invariants to define equivalence classes of states that are
combined together to form final models. The Daikon tool (Ernst et al, 1999) were

4 Sébastien Salva, Elliott Blot

originally proposed to infer invariants composed of data values and variables found
in execution traces. With event sequence abstractions, the abstraction level of the
models is raised by merging equivalent states (Biermann and Feldman, 1972; Mar-
iani and Pezze, 2007). In the kTail approach (Biermann and Feldman, 1972), the
equivalent states are those having the same k-future, i.e. the same event sequences
having the maximum length k.

kTail has been later enhanced with Gk-tail to generate Extended Finite State
Machines encoding data constraints (Lorenzoli et al, 2008; Mariani et al, 2017).
The methods Synoptic (Beschastnikh et al, 2011) and Perfume (Ohmann et al,
2014) also reuse kTail. The former generates more precise models by means of
the generation of temporal invariants from logs, which have to be satisfied by
the models. The later, which is an improvement of Synoptic, infers resource-aware
models capturing behavioural executions that differ in resource consumption. More
recently, Pastore et al (2017) proposed Tk-tail to support the learning of timed
automata.

After having studied the literature, we have observed that few papers tackled
Challenge 1 or 2. Groz et al (2008) proposed to generate a controllable approxi-
mation of components through active testing. The learning of the components is
done in isolation, i.e. there is no detection of components as these are known and
studied one after the other. CSight (Beschastnikh et al, 2014) is another approach
that infers CFSM (Communicating FSM) of concurrent systems, exchanging mes-
sages through channels. The components are known, and provide separate trace
sets. The exchanged messages are observable, including those that synchronise the
components together. The approach synchronises the components on the channels
used to exchange messages, and refines the models with invariants like Synoptic.
Our approach does not require these assumptions. It still uses kTail, but also data
analysis techniques to answer to these challenges.

Prior to this paper, we laid the first stone of the approach in (Salva and Blot,
2018), in which we proposed to complement Gk-tail for the generation of models of
component-based systems. We defined the CEFSM model (Component Extended
Finite State Machine), which is composed of variables and constraints. CEFSMs
cannot be composed together though, which reduces their re-usability. Besides, we
had not implemented the given algorithms nor evaluated them. We also proposed
an overview of this work in (Salva et al, 2018). Like in this paper, we considered the
LTS model so that we can reuse the LTS theoretical background. We introduced
the general functioning of COnfECt and started an evaluation on the component
detection. In this paper, we define the Correlation coefficient allowing to recognise
the call of components in traces. We define the LTS similarity coefficient allowing
to provide several LTS synchronisation strategies. Furthermore, we present the
algorithms implementing the steps of COnfECt and provide the results of a more
thorough evaluation carried out to assess the relevance of the models generated
by COnfECt and its efficiency.

3 Preliminary Definitions

We propose to express the behaviours of components with the well established
Labelled Transition System (LTS) model. The use of LTSs allows to exploit the
definitions related to the LTS composition, for instance given by van der Bijl et al

Model Generation of Component-based Systems. 5

(2004). The LTS model is defined in terms of states and transitions labelled by
actions, taken from a general action set L, which expresses what happens. τ is a
special symbol encoding an internal (unobservable) action; it is common to denote
the set L ∪ τ by Lτ .

Definition 1 (LTS) A Labelled Transition System (LTS) is a 4-tuple 〈Q, q0, Σ,
→〉 where :

– Q is a finite set of states, QF ⊆ Q is the non-empty set of final states;
– q0 is the initial state;
– Σ ∪ {τ} ⊆ Lτ is the finite set of actions, with τ the internal action;
– →⊆ Q×Σ ∪ {τ} ×Q is a finite set of transitions. A transition (q, a, q′) is also

denoted q
a−→ q′.

We use the generalised transition relation ⇒ to represent LTS paths: q
a1...an====⇒

q′ =def ∃q0 . . . qn, q = q0
a1−→ q1 . . . qn−1

an−−→ qn = q′. The concatenation of two
action sequences σ1, σ2 ∈ L∗τ is denoted σ1.σ2. ε denotes the empty sequence.
Finally, we define the runs and traces of a LTS:

Definition 2 (Runs and traces) Let L = 〈Q, q0, Σ,→〉 be a LTS.

1. A run q0a1...qk−1akqk is an alternate sequence of states and actions such that:

∃qi−1, qi, ai, (1 ≤ i ≤ k) : q0
a1...ak====⇒ qk ∈→∗. Runs(L) is the set of runs found

in L. RunsF (L) is the set of runs that end in a state q of F with F ⊆ Q;
2. the trace of a run r = q0a1...qk−1akqk, denoted Trace(r) is the sequence
a0...ak. TracesF (L) = {Trace(r) | r ∈ RunsF (L)};

The integration of two components C1 and C2 modelled with LTSs is often
defined in the literature by two operations. The first one is the parallel composition
of C1 and C2 denoted C1 ‖ C2, which synchronises their shared actions, also called
synchronisation actions. This composition is often followed by the hiding of the
communications between C1 and C2 to express that only the communications
with the environment are observable. This operation is defined by the relation
hide S in C1 ‖ C2 with S the set of synchronisation actions. We refer to (van der
Bijl et al, 2004) for the definitions of theses two LTS operators.

This principle of LTS composition leads to a model called system of LTSs,
which describes a component-based system:

Definition 3 (System of LTSs) A system of LTSs SC is the couple 〈S,C〉 with
C = {C1, . . . , Cn} a non empty set of LTSs, and S a set of synchronisation actions.

Traces(SC) denotes the trace set Traces((hide S in (C1 ‖ C2 ‖ · · · ‖ Cn)).

4 The COnfECt Approach

COnfECt (COrrelate Extract Compose) aims at answering to Challenge 1: how
to infer a system of LTSs SC from the traces of SUL, in such a way that SC
captures the behaviours of the SUL components and their synchronisations? Ini-
tially, COnfECt requires a set of raw messages collected from SUL. The latter can
be indeterministic, uncontrollable or can have cycles among its internal states.
However, to answer to this research problem, we assume that SUL obeys certain
restrictions:

6 Sébastien Salva, Elliott Blot

Fig. 1: The COnfECt approach overview

– H1: SUL as a black box. SUL is a black box including components from
which only communications with the environment can be observed. The com-
munications among the components are not observable.

– H2: Synchronous execution. SUL has components whose behaviours are not
carried out in parallel. One component is executed at a time from its initial
state to one of its final states. Furthermore, we consider that messages are
collected in a synchronous manner (by means of synchronous communications)
and include timestamps.

– H3: Single root component we suppose that the traces of Traces(SUL)
capture the behaviours of one first component calling other components.

COnfECt has three main successive steps illustrated in Figure 1. The first step
takes raw messages given by monitoring tools or found in log files, and transforms
them into formatted traces. The second step, called Trace Analysis & Extraction,
tries detecting component behaviours in Traces(SUL), and partitions it into a set
of trace sets called STraces. Each trace set of STraces captures some behaviours
of one component. The last step, called LTS Synchronisation, takes STraces and
starts with the generation of one LTS for each trace set of STraces. This step also
proposes three LTS synchronisation strategies to generate a system of LTSs SC.
These steps are detailed below.

4.1 Trace Formatting

COnfECt takes raw messages that are totally ordered by means of their times-
tamps. These messages are firstly filtered and formatted by applying regular ex-
pressions. We consider that these expressions transform a message into a action
of the form a(α) with a a label and α an assignment of some parameters. For
example, the action swith(id := 115, cmd := on) is made up of the label ”switch”
followed by the assignment of two parameters. These regular expressions may also
be used to filter out irrelevant messages.

Then, COnfECt proposes four ways to split a list of actions into traces: by
requesting a trace identifier, by inspecting timestamps, or a combination of both.
The first mode, proposed by several model learning approaches, combines actions
having the same identifier into the same execution trace. The seconds mode analy-
ses the timestamps of every pair of successive actions and computes means of time
intervals. Then, it searches for gaps (distinctive longer durations), which are usu-
ally observed when an execution trace ends and another one begins. The detection
of these gaps is used for the trace recognition and extraction.

Model Generation of Component-based Systems. 7

At the end of this steps, we assume having a trace set denoted Traces(SUL),
which gathers traces of the form a1(α1)...ak(αk).

4.2 Trace Analysis & Extraction

Algorithm 1: Trace refinement Algorithm

input : Traces(SUL) = {σ1, . . . , σm}
output: STraces = {T1, . . . , Tn}

1 T1 = {};
2 STraces = {T1};
3 foreach σ ∈ Traces(SUL) do
4 σ′1σ

′
2 . . . σ

′
k=Inspect(σ);

5 STraces=Extract(σ′1σ
′
2 . . . σ

′
k, T1);

6 return STraces;

This step identifies component behaviours in the traces of Traces(SUL), it
splits them and returns a set STraces = {T1, . . . , Tn} such that each trace set
T of STraces includes traces of one component. Algorithm 1, which implements
this steps, is mostly based on two procedures. The procedure Inspect covers the
traces of Traces(SUL) and segments them into sub-sequences. These sequences
are extracted and placed into new trace sets in STraces by the procedure Extract.
The trace sets of STraces will give birth to LTSs. These procedures are explained
below.

4.2.1 Trace analysis (procedure Inspect)

The fundamental idea of COnfECt is that a component should be recognizable
by its behaviour in comparison to the behaviours of the other components. We
hence cover the traces of SUL with a Correlation coefficient, which helps recog-
nise different component behaviours. This coefficient evaluates the correlation of
action sequences in the traces of Traces(SUL), i.e. the degree to which succes-
sive actions are related according to all the traces of Traces(SUL). We want a
flexible coefficient, which could be adapted in accordance to the sort of system
under learning and to the knowledge we have about this system. We define the
Correlation coefficient between two actions by means of a utility function, which
involves a weighting process for representing user priorities and preferences. We
have chosen the technique Simple Additive Weighting (SAW) (Yoon and Hwang,
1995), which allows the interpretation of these preferences with weights:

Definition 4 (Correlation coefficient) Let a1(α1), a2(α2) ∈ L and f1, . . . fk
be correlation factors. Corr(a1(α1), a2(α2)) is a utility function, defined as:
0 ≤ Corr(a1(α1), a2(α2)) =

∑k
i=1 fi(a1(α1), a2(α2)).wi ≤ 1 with 0 ≤ fi(a1(α1),

a2(α2)) ≤ 1, wi ∈ R+
0 and

∑k
i=1 wi = 1.

The factors can be general or established with regard to a specific context, e.g.,
network systems, Web applications, etc. The factor choice needs to be addressed by
an expert of the system SUL. The more he/she has knowledge about it, the more

8 Sébastien Salva, Elliott Blot

precise the component detection will be. We give below three factor examples.
The first one is based on the component identification. It is here assumed that
components are identified with a parameter set and that this set is known. The
two last factors are more general and do not require any knowledge about SUL for
being used.

– f1(a1(α1), a2(α1))= 1 iff Id(α1) = Id(α2) with Id(α) the assignment in α of
the parameters that identify every component. Otherwise, f1(a1(α1), a2(α2))=
0;

– f2(a1(α1), a2(α2)) = max(freq(a1a2)
freq(a1)

, freq(a1a2)
freq(a2)

) with freq(a1a2) the frequency

of having the two labels a1,a2 one after the other in Traces(SUL) and freq(a1)
the frequency of having the label a1. This factor used in text mining computes
the frequency of the term a1a2 in Traces(SUL) over a1 and over a2 to avoid
the bias of getting a low factor when a1 is greatly encountered (resp. a2);

– f3(a1(α1), a2(α2)) = simj(a1(α1), a2(α2)) with simj the Jaro Similarity of two
strings, which compares two strings on their common characters. Informally,
this factor evaluates the similarity of two strings with regard to the character
order, number and the shared characters. Other string similarities could be
used with regard to the system context. We refer to (Cohen et al, 2003) for the
presentation and definition of some of them.

From this Correlation coefficient, we define two relations to express the notion
of strong correlation of actions and action sequences. We say that strong-corr(σ1)
holds when σ1 has successive actions that strongly correlate. We also define the
weak correlation of two action sequences. σ1 weak − corr σ2 holds when the last
event of σ1 does not strongly correlates with the first one of σ2. In data and text
mining, these notions often depend on the considered context, this is why we use
a threshold X in the definition given below. This threshold takes a value between
0 and 1, and needs to be appraised by an expert, for instance after some iterative
attempts.

Definition 5 (Strong and Weak Correlations) Let a1(α1), a2(α2) ∈ L, σ1 =
a1 . . . ak ∈ L∗. and X ∈ [0, 1].

1. a1(α1) strong-corr a2(α2)⇔def Corr(a1(α1), a2(α2)) ≥ X.

2. strong-corr(σ1) iff

σ1 = a(α) ∈ L,
σ1 = a1(α1) . . . ak(αk)(k > 1) ∈ L∗,∀(1 ≤ i < k) :
ai(αi) strong-corr ai+1(αi+1)

3. σ1 weak-corr σ2 iff

{
σ2 = ε,
σ2 = a′1 . . . a

′
l ∈ L∗ ∧ ¬(ak strong-corr a′1)

The trace analysis is performed with the procedure Inspect given in Algorithm
2, which covers every trace σ of Traces(SUL) and potentially segments σ into
(sub-)sequences such that each sequence σ1 has a strong correlation and has a
weak correlation with the next sequence σ2. We consider that these distinctive
sequences σ1 σ2 express the behaviour of two components, a component produces
σ1 and calls a second component, which produces σ2.

Model Generation of Component-based Systems. 9

Algorithm 2: Procedures Inspect and Extract

1 Procedure Inspect(σ) : σ′1σ
′
2 . . . σ

′
k is

2 Find the non-empty sequences σ′1σ
′
2 . . . σ

′
k such that: σ = σ′1σ

′
2 . . . σ

′
k,

strong-corr(σ′i)(1≤i≤k), (σ′i weak-corr σ′i+1)(1≤i≤k−1);

3 Procedure Extract(σ = σ1σ2 . . . σk, Tc, STraces): STraces is
4 i := 1;
5 while i < k do
6 n := |STraces|+ 1;
7 Tn := {};
8 STraces := STraces ∪ {Tn};
9 σp is the prefix of σ up to σi;

10 if ∃j > i: strong-corr(σi.σj) then
11 σj is the first sequence in σi . . . σk such that strong-corr(σiσj);
12 σ := σpσi.call Cnreturn Cn.σj . . . σk;
13 if (j − i) > 2 then
14 Extract(σi+1 . . . σj−1, Tn);

15 else
16 Tn := Tn ∪ {call Cn.σi+1.return Cn};
17 i := j;

18 else
19 σ := σpσi.call Cnreturn Cn;
20 if (k − i) > 1 then
21 Extract(σi+1 . . . σk, Tn);

22 else
23 Tn := Tn ∪ {call Cn.σk.return Cn};
24 i := k;

25 if c 6= 1 then
26 σ = call Cc.σ.return Cc;

27 Tc := Tc ∪ {σ};
28 return STraces;

/ de v i c e s () /json.htm(idx:=115,svalue:=15.00) Response(status:=200)
Response (s t a t u s :=200 , data : = [1])/json.htm(idx:=115,svalue:=16.00)
Response(status:=200) / de v i c e s () Response (s t a t u s :=200 , data : = [1])
/hardware () Response (s t a t u s :=200 , data : = [2]) / c o n f i g () /json.htm
(idx:=0,switchcmd:=On) Response(status:=200) Response (s t a t u s :=200 ,
data : = [2]) / t o o l s () Response (s t a t u s :=200 , data : = [3])

Fig. 2: Example of a formatted trace collected from an IoT device. The sequences
in bold are strongly correlated and weakly correlated to the others.

Example 1 The trace of Figure 2 stems from the monitoring of a real smart ther-
mostat device providing traces at the HTTP level. This trace, composed of 16
actions, was formatted with 4 regular expressions, which assign the called URL
and the HTTP responses to labels, and keep some data, e.g., the temperature with
the parameter svalue.

Let us illustrate the trace analysis step on a trace set Traces(SUL) including
the trace of Figure 2, and with a Correlation coefficient defined with the factor f2,
which computes the frequency of having successive actions in traces. The use of this
Correlation coefficient reveals that the trace of Figure 2 has 3 sub-sequences (in
bold in the figure), which are frequently encountered and which are not correlated
to the other actions. The trace is then arranged into seven sub-sequences.

10 Sébastien Salva, Elliott Blot

(a) Procedure Extract steps (b) Hierarchical organi-
sation of the components

Fig. 3: Sequence extraction example

4.2.2 Trace extraction (procedure Extract)

The procedure takes the traces of Traces(SUL) and extracts the sub-sequences
detected previously. Intuitively, the procedure splits two successive sequences that
have a weak correlation and adds synchronisation actions of the form call Ci and
return Ci to model component calls, with Ci referring to a future LTS.

The procedure Extract(σ, Tc, STraces) is given in Algorithm 2. It takes a trace
σ, splits it and stores the resulting trace into a set Tc. Given a sequence σi of the
trace σ = σ1 . . . σk, the procedure Extract tries to find the next sequence σj such
that strong-corr(σi.σj) holds. The sequence σ′ = σi+1 . . . σj−1 (or σ′ = σi+1 . . . σk
when σj is not found) is extracted as it exposes the behaviour of other components
that are called by the current one. If this sequence σ′ is not composed of more than
two sub-sequences, then it is added to a new trace set Tn of STraces. Otherwise,
the procedure Extract is recursively called with Extract(σ′, Tn, STraces). In σ,
the sequence σ′ is removed and replaced by the actions call Cn.return Cn. After
the covering of every sub-sequence of σ, the procedure Extract eventually checks
whether σ needs to be completed to express that this sequence was produced by
a component called by another one: if Tc is not equal to T1 then the trace σ is
surrounded with call Cc and return Cc to express that σ stems from a component
that was previously called by another one. Otherwise, the sequence σ remains
unchanged.

Example 2 Let us illustrate the functioning of the procedure Extract with the
example of Figure 3a, which takes back the trace of Figure 2. This trace was seg-
mented into seven parts. We start at σ1 (i:=1). The first sequence that is strongly

Model Generation of Component-based Systems. 11

STraces = {
T1 {/ d ev i c e s () c a l l C 2 return C2 Response (s t a t u s :=200 , data : = [1])
c a l l C 3 return C3 / de v i c e s () Response (s t a t u s :=200 , data : = [1])
/hardware () Response (s t a t u s :=200 , data : = [2]) / c o n f i g () c a l l C 4
return \ C4 Response (s t a t u s :=200 , data : = [2]) / t o o l s ()
Response (s t a t u s :=200 , data : = [3])}
T2 { c a l l C 2 / j son . htm(idx :=115 , sva lue :=15 .00) Response (s t a t u s :=200)
return C2 }
T3 { c a l l C 3 / j son . htm(idx :=115 , sva lue :=16 .00) Response (s t a t u s :=200)
return C3 }
T4 { c a l l C 4 / j son . htm(idx :=0 , switchcmd:=On) Response (s t a t u s :=200)
return C4 } }

Fig. 4: Example of formatted trace segmented into 4 trace sets and completed with
synchronisation actions.

correlated with σ1 is σ3. The sequence σ2 is extracted and replaced by the actions
call C2 return C2. The procedure is not recursively called as σ2 is not composed
of several weakly correlated action sequences. The sequence σ2 is now surrounded
with the actions call C2 and return C2 to prepare the LTS synchronisation. The
resulting sequence is added to the set T2. We go back to the trace σ at the sub-
sequence σ3 (i:=3). The same process is applied on σ4 and later on σ6 until the
algorithm reaches the end of the sequence σ (with i:=7). The trace σ becomes
σ1.call C2 return C2.σ3.call C3 return C3.σ5.call C4 return C4.σ7. The trace
σ comes from Traces(SUL), which means that σ captures the behaviour of a com-
ponent that has not been called by another component. Hence, this trace is not
surrounded by synchronisation actions. σ is placed into the trace set T1. At the
end of this process, we have recovered the hierarchical structure of components
depicted in Figure 3b. And we get four trace sets, given in Figure 4.

Once the procedure Extract terminates, Algorithm 1 yields the set Straces =
{T1, T2, . . . , Tn} with T2, . . . , Tn some sets including one action sequence and T1
a set of modified traces originating from Traces(SUL).

4.3 LTS Synchronisation

This step lifts the traces of STraces to the level of LTSs and proposes three LTS
synchronisation strategies, which provide systems of LTSs having different levels
of generalisation.

Given the trace set T ∈ STraces, a trace σ = a1 . . . ak of T is transformed
into the LTS path q0

a1...ak====⇒ qk such that the states q1 . . . qk are new states. These
paths are joined by a disjoint union on the state q0 to build a LTS having a tree
form:

Definition 6 (LTS generation) Let T = {σ1, . . . , σm} be a trace set. C =
〈Q, q0, Σ,→〉 is the LTS derived from T where:

– q0 is the initial state.
– Q,Σ,→ are defined by the following rule:

12 Sébastien Salva, Elliott Blot

σid=a1(α1)...ak(αk)

q0
a1(α1)−−−−→qid1...qidk−1

ak(αk)−−−−→qidk

Once every trace set of STraces is transformed into a LTS, we have a first
system of LTSs SC = 〈S,C〉 with C the set of LTSs derived from STraces and S
the set of synchronisation actions of the form call Ci and return Ci, found in the
action sets of the LTSs.

The previous step of COnfECt has segmented and extracted the traces of
Traces(SUL) in such a way that they include synchronisation actions. These ac-
tions were added to prepare the synchronisation of components with LTSs.

As regards the hypothesis H2, given two LTSs C1 and C2, when the transition

q
call C2−−−−−→ q′ of the LTS C1 is fired, we say that C1 calls the LTS C2. This action

means that the current execution is being paused while another LTS C2 starts

its execution at its initial state. When the transition q
call C2−−−−−→ q′ of the LTS C2

is fired, we say that C2 is called. The execution of C2 ends once the transition

q
return C2−−−−−−−→ q′ in C1 or q

return C2−−−−−−−→ q′ in C2 is fired.
We now propose, in Algorithm 3, three strategies, which adapt the transitions

labelled by synchronised actions to answer to Challenge 2.

Algorithm 3: LTS synchronisation strategies

input : System of LTSs SC = 〈S,C〉 with C = {C1, . . . , Cn}, strategy
output: System of LTSs SCf = 〈Sf , Cf 〉

1 if strategy = Strict Synchronisation then
2 return kTail(k = 2, SC);

3 else
4 ∀(C1, C2) ∈ C2 Compute SimilarityLTS(C1, C2);
5 Build a similarity matrix;

6 Group the LTSs into clusters {Cl1, . . . Clk} such that ∀(C1, C2) ∈ Cl2i : C1 similar C2 ;
7 foreach cluster Cl = {C1, . . . , Cl} do
8 CCl:=Disjoint Union of the LTSs C1, . . . , Cl;
9 Cf = Cf ∪ {CCl};

10 foreach Ci = 〈Q, q0, Σ,→〉 ∈ SCf do

11 foreach q1
a−→ q2 with a = call Cm or a = return Cm do

12 Find the Cluster Cl such that Cm ∈ Cl;
13 Replace Cm by CCl in the label a;
14 Sf := Sf ∪ {a};

15 foreach q1
call Cmreturn Cm==============⇒ q2 ∈→ do

16 Merge (q1, q2);

17 if strategy = Strong Synchronisation then
18 foreach Ci = 〈Q, q0, Σ,→〉 ∈ Cf do
19 Complete the outgoing transitions of the states of Q so that Ci is callable-complete;

20 foreach q1
call Cmreturn Cm==============⇒ q2 ∈→ do

21 Merge (q1, q2);

22 return kTail(k = 2, SCf)

4.3.1 Strict Synchronisation

Algorithm 1 has previously segmented every trace of Traces(SUL) into sub-sequen-
ces of actions. When a sub-sequence is extracted, it is placed into a new trace

Model Generation of Component-based Systems. 13

set in STraces and replaced by the actions call Ci.return Ci. The LTSs of SC,
derived from STraces, do not repetitively call other LTSs and are composed of
acyclic paths only. We call this LTS configuration, Strict synchronisation. This
strategy, which is mostly and implicitly implemented in Algorithm 1, eventually
calls the kTail algorithm to merge the similar states found in the LTSs of SC. This
strategy limits over-generalisation, i.e. the fact of generating models expressing
more behaviours than those given in the initial trace set Traces(SUL). This is
more formally captured by the following proposition, which postulates that, before
calling kTail, the traces of SC leading to final states are the traces of Traces(SUL).

Proposition 1 Let SC = 〈S,C〉 be a system of LTSs achieved with the Strict
synchronisation strategy (before the call of kTail), with C = {C1, . . . , Cn}. QF is
the set of final states of the LTS C1 ‖ C2 ‖ · · · ‖ Cn.
TracesQF (SC) = Traces(SUL).

4.3.2 Weak Synchronisation

This strategy aims at reducing the number of LTSs and allows repetitive compo-
nent calls. Algorithm 1 may indeed have refined too much Traces(SUL), hence
the system of LTSs SC might include several LTSs modelling the functioning of
the same component. This strategy attempts to gather these LTSs by means of
a LTS Similarity coefficient, which evaluates the similarity of two LTSs. Like the
Correlation coefficient, the LTS similarity is defined with a utility function and
factors to be compatible with different sorts of systems:

Definition 7 (LTS Similarity Coefficient) Let Ci = 〈Qi, q0i, Σi,→i〉 (i =
1, 2) be two LTSs of the system of LTSs SC = 〈S,C〉. Let also f ′1, . . . f

′
k be LTS

similarity factors. The LTS Similarity of C1, C2 is defined as:
0 ≤ SimilarityLTS(C1, C2) =

∑k
i=1 f

′
i(C1, C2).wi ≤ 1 with 0 ≤ f ′i(C1, C2) ≤ 1,

wi ∈ R+
0 and

∑k
i=1 wi = 1.

C1 similar C2 ⇔def SimilarityLTS(C1, C2) ≥ Y , with Y ∈ [0, 1].

We provide two similarity factors below. The first one refers once again to
the component identification, just like the correlation factor f1. The second factor
measures the similarity of two LTSs with regard to the actions they share.

– f ′1(C1, C2)= 1 iff ∀a1(α1), a2(α2) ∈ (ΣC1
∪ ΣC2

) \ S, Id(α1) = Id(α2), with
Id(α) the assignment in α of the parameters that identify every component.
Otherwise, f ′1(C1, C2) = 0. This implies that two similar LTSs must have
actions including the same component identification. The factor is not applied
on the synchronised actions of S, which were added by the previous step of
COnfECt;

– f ′2(C1, C2) = Overlap(ΣC1
\ S,ΣC2

\ S), with the overlap of two sets A and
B defined by |A ∩ B|/min(|A|, |B|). Several general similarity coefficients are
available in the literature for comparing the similarity and diversity of sets,
e.g., the coefficients Jaccard or SMC (Tan et al, 2005). We have chosen the
Overlap coefficient because the action sets of two LTSs may have different sizes.

The Weak synchronisation strategy is implemented in Algorithm 3 lines (3-
16). It computes the LTS Similarity of every pair of LTSs of SC. The similar

14 Sébastien Salva, Elliott Blot

LTSs are then grouped by means of a clustering technique, which uses the LTS
Similarity coefficients. The LTSs of the same cluster are joined with a disjoint

union. Furthermore, the labels of the transitions q1
call C−−−−→ q2, q′1

return C−−−−−−→ q′2
are updated accordingly so that the correct LTSs are being called (Algorithm 3

lines(11-14)). In addition, every sequence q1
call C return C
===========⇒ q2 is replaced by a

loop (q1, q2)
call C return C
===========⇒ (q1, q2) by merging both states q1 and q2.

4.3.3 Strong Synchronisation:

This strategy aims at providing more general models than the Weak strategy, by
returning callable-complete LTSs. We say that a LTS C1 of a system of LTSs SC
is callable-complete when C1 can call any LTS C2 of SC at any of its states:

Definition 8 (Callable-complete LTS) Let SC = 〈S,C〉 be a system of LTSs.
A LTS C1 = 〈Q1, q01, Σ1,→1〉 ∈ C is said callable-complete over SC iff ∀q ∈
Q1,∀C2 ∈ C \ {C1}, ∃q′ ∈ Q1 : q

call C2.return C2============⇒ q′.

The strategy is implemented in Algorithm 3 lines(3-21). As with the Weak
Synchronisation strategy, the similar LTSs of SC are assembled into bigger LTSs
and the transitions labelled by synchronisation actions are updated accordingly.
Additionally, every state q of the LTSs is completed with new outgoing transitions

of the form q
call C return C
===========⇒ q so that the LTSs of SC become callable-complete

over SC.
The Weak and Strong synchronisation strategies produce more general systems

of LTSs than the first strategy. This is captured by this proposition:

Proposition 2 Let SC = 〈S,C〉 be a system of LTSs achieved with the Weak or
Strong synchronisation strategy (before the call of kTail), with C = {C1, . . . , Cn}.
QF is the set of final states of C1 ‖ C2 ‖ · · · ‖ Cn.
TracesQF (SC) ⊃ Traces(SUL).

Finally, for the three strategies, the LTSs of SC = 〈S,C〉 may include equiva-
lent states, which should be joined to generate more concise models. We use here
the kTail approach, which merges the states that share the same k-future. We use
k = 2 as recommended by Lorenzoli et al (2008); Lo et al (2012).

Example 3 We illustrate this step with the set STraces of Figure 4 and with the
Weak strategy. Each trace set is firstly transformed into a LTS. As the trace sets
of Figure 4 are composed of only one action sequence, we get LTSs having one
path. Then, the similar LTSs have to be grouped. To define the LTS Similarity
coefficient, we choose the factor f ′2. We compute a similarity matrix by means of
the LTS Similarity coefficient. Figure 5a shows the matrix obtained with the four
LTSs of our example. If we set the LTS similarity threshold Y to 0,5, we observe
that two classes of similar LTSs emerge in this matrix: (C1) and (C2, C3, C4). A
clustering technique, e.g., the Ward’s method (Willett, 1988), can help automate
this grouping of similar LTSs. The similar LTSs are then joined by means of a
disjoint union. Figures 5b and 6a depict the resulting LTSs C1 and C234. As we
choose the Weak synchronisation strategy, the transition sequences of the form

Model Generation of Component-based Systems. 15

C1 C2 C3 C4

C1 1 0 0 0

C2 0 1 0.5 0,5

C3 0 0.5 1 0,5

C4 0 0,5 0,5 1

(a) LTS Similarity matrix (b) LTS C 1 modelling the Web interface

Fig. 5

(a) LTS C 2 3 4 modelling the sensors (b) Reduced LTS C 2 3 4 after kTail

Fig. 6

q1
call Cmreturn Cm============⇒ q2 have been replaced with loops in these LTSs. From the

traces of Figure 4, we finally obtain two LTSs: C1 expresses the use of the Web
interface, C234 models the component that sends data (temperature, motion de-
tection) to a server. The LTS C234 holds three equivalent state classes (q3, q4, q5),
(q6, q7, q8) and (q9, q10, q11). kTail merges them and returns the LTS of Figure
6b.

16 Sébastien Salva, Elliott Blot

5 Preliminary Evaluation

We have implemented COnfECt in a prototype tool1, which takes raw messages
and generates systems of LTSs. The first step of COnfECt, which performs the
trace formatting by means of regular expressions and automatically assembles
actions into traces, is implemented in first a tool called TFormat2. For the LTS
synchronisation step, we use a clustering approach based on the Ward’s method,
which is a well-known agglomerative hierarchical clustering method. In short, the
LTS clustering is carried out as follows: 1) each LTS is placed into its own initial
cluster and similarity coefficients are computed; 2) the two clusters that have
the closest similarity (greater than the given threshold Y) are merged, similarity
coefficients are updated and so forth until there is no more similar cluster. This
approach avoids the generation of too large clusters and does not need to pre-
specify the number of clusters.

With this implementation of COnfECt, we conducted several experiments in
order to evaluate the following criteria:

– C1 (Component detection): is COnfECt able to detect the correct number of
components?

– C2 (Relevance of the models): is COnfECt able to infer models that accept
correct behaviours, including new traces not used for the model generation? Is
COnfECt able to infer concise and readable models?

– C3 (Efficiency/Scalability): how long does COnfECt take to generate systems
of LTSs? Can COnfECt take large trace sets?

5.1 Empirical Setup

For this evaluation, we chose a real system that we implemented to be able to
appraise the accuracy of the generated models. The system under learning is an
IoT device, whose source code is available here3. This device is a smart connected
thermostat controlling heat pumps, which integrates 3 components: a sensor man-
ager coordinating 4 physical sensors, a component that updates the internal clock
of the device by calling a NTP server, and a Web server allowing the configuration
of the device and the reading of data, e.g. the temperature. These components
meet the requirements given in Section 4 and can be monitored to collect HTTP
traces. We ran the IoT device with several component configurations: one different
component is started in Conf. 1 to 3, two components are loaded in Conf. 3 to 6,
and 3 components in Conf. 7 to 10. The HTTP traces were formatted with our
tool TFormat and 10 regular expressions. These traces have the same form as the
trace given in Example 2. The tool and the trace sets are available here4. The LTS
generation was performed on a desktop computer with 1 Intel(R) CPU i5-7500 @
3.4GHz and 16GB RAM.

1 https://github.com/Elblot/COnfECt
2 https://github.com/sasa27/TFormat
3 https://github.com/sasa27/OpenThermostat
4 https://github.com/Elblot/COnfECt

Model Generation of Component-based Systems. 17

5.1.1 Factor choice & thresholds assessment

The Correlation and LTS Similarity coefficients have to be defined by setting fac-
tors, weights and thresholds. We chose for the experiments the factor combinations
f1/f

′
1 and f2/f

′
2.

The factor combination f2/f
′
2, which is based on the labels found in traces,

does not require any expert knowledge to generate models. But it is manifest that
the choice of the thresholds has a strong influence on the accuracy of the models.
An expert is hence required to appraise this accuracy and the thresholds. For the
experiments, we applied this protocol:

1. generation of the first models with the thresholds X ≥ 0.75, Y ≥ 1;
2. analysis of the models generated with the Strict strategy. If |Straces| is lower

than the expected number of components or if we observe in the traces of
Straces some action sequences that seem to belong to several components,
then increase the threshold X. Conversely, decrease X;

3. when the Weak or Strong synchronisation strategy is chosen, analysis of the
generated LTSs. If two LTSs seem to capture the behaviours of the same com-
ponent, then decrease Y .

We followed this protocol with the three configurations Conf. 7 to 9. The factors
f1/f

′
1 require that an expert of the system provides the parameters allowing the

identification of all the components of SUL. The single thresholds we used with
f1/f

′
1 are X = Y = 1, which intuitively means that two action sequences are

strongly correlated or that two LTSs are similar iff they share the same component
identification. We used this factor combination in Conf. 10.

5.2 C1 (Component detection)

Configuration # real Components Factors Strict Weak Strong
Conf. 1 1 f2 ≥ 0.5; f ′2 ≥ 0.75 10 1 1
Conf. 2 1 f2 ≥ 0.4; f ′2 ≥ 0.75 1 1 1
Conf. 3 1 f2 ≥ 0.4; f ′2 ≥ 0.75 1 1 1
Conf. 4 2 f2 ≥ 0.4; f ′2 ≥ 0.75 85 2 2
Conf. 5 2 f2 ≥ 0.4; f ′2 ≥ 0.75 105 2 2
Conf. 6 2 f2 ≥ 0.4; f ′2 ≥ 0.75 67 2 2
Conf. 7 3 f2 ≥ 0.75; f ′2 ≥ 1 345 345 345
Conf. 8 3 f2 ≥ 0.6; f ′2 ≥ 1 181 181 181
Conf. 9 3 f2 ≥ 0.6; f ′2 ≥ 0, 75 181 3 3
Conf. 10 3 f1 ≥ 1; f ′1 ≥ 1 117 3 3

Table 1: Number of components detected by COnfECt.

With every configuration, we collected and formatted a set of 10 traces com-
posed of about 50 actions. Table 1 lists the number of LTSs inferred by COnfECt.
For comparison purposes, we also recall the exact number of components for each
system configuration.

The lines Conf. 2-6, 9,10 show the results achieved with COnfECt when the
thresholds X and Y are correctly set. The approach detects a correct number

18 Sébastien Salva, Elliott Blot

of components whatever the strategy used in Conf. 2 and 3. With Conf. 4-6, 9
and 10, the Strict strategy provides too much LTSs because of the second step of
COnfECt, which refines the traces too much. But, the Weak and Strong strategies
provide a correct component number because they assemble the similar LTSs.

In Conf. 1, we observe the generation of 10 LTSs with the Strict strategy instead
of having one LTS. Here, the threshold X was not appropriate and involved the
segmentation of traces. The inappropriate threshold X is implicitly corrected with
the Weak and Strong strategies because a correct Similarity threshold is given. As
a result, these two strategies, which merge the similar LTSs, return one LTS as
expected in Conf. 1.

Conf. 7 to 9 illustrate the incremental use of COnfECt to detect the appropri-
ate thresholds X and Y . The component detection is false whatever the strategy
used in Conf. 7 and 8. In Conf. 7, we observed that the initial traces were too
much segmented. We hence decreased the threshold X to 0.6 for the Correlation
coefficient and reran COnfECt. With Conf. 8, we detected that no similar LTSs
were detected and decreased the threshold Y to 0.75. With Conf. 9, COnfECt
detects the correct number of components with the two last strategies.

With Conf. 10, the trace segmentation and the LTS similarity is based on the
component identification (factors f1/f ′1). With this configuration, the number of
components is correctly detected with the Weak and Strong strategies, without
the need for adjusting thresholds like with f2/f ′2.

We manually analysed the LTSs built with the configurations and strategies
giving a correct number of components, to check whether each expresses the be-
haviours of only one real component. We did not observe any mixture of be-
haviours. These experiments show that COnfECt answers to Challenge 1, when
the factors and the thresholds are correctly set. The general functioning of COn-
fECt is illustrated in Conf. 2-6, 9 and 10: the Strict strategy refines the traces
and often returns to much LTSs. The two last strategies counterbalance the trace
refinement.

5.3 C2 (Relevance of the models)

Regarding the results of Table 1, it is worth noting that we infer irrelevant models
if the given thresholds do not allow a correct component detection. As stated
earlier, the threshold choice difficulty depends on the factors. For instance, the
factors f1/f

′
1 only take two values each. But, f2/f

′
2 have to be evaluated with

several model generation attempts.
We analysed the models generated by COnfECt to measure their ability in

accepting correct behaviours, i.e. traces collected from the system under learning,
which do not necessarily belong to the trace set used for the model generation. As
the model quality depends on the methods, the coefficient thresholds and strate-
gies, we chose to take back the 20 models produced by kTail and COnfECt with
the configurations Conf. 2-6, 9,10. The models capture the behaviours of two or
more components and are built with correct thresholds. We collected from the IoT
device a set of 20 traces (of about 50 actions each) with Conf. 2 to 6, and 50 traces
with Conf. 9,10, which aim at covering at least one time the actions of the IoT
device. In comparison to the traces used to build models, we observed that they
may be composed of repetitive actions, of calls of components at different internal

Model Generation of Component-based Systems. 19

Fig. 7: Rates of traces accepted by models.

states of the IoT device, or of some new actions, e.g., new URL requests. But,
these are not composed of calls of unknown components.

Figure 7 illustrates the rates of accepted traces by configuration and models
generated by kTail and the three strategies of COnfECt. The models inferred by
kTail and the Strict strategy give close results, except in Conf. 5. We studied the
two models and deduced that the system of LTSs given by the Strict strategy splits
the traces into several LTSs in which less states have been merged in comparison
to the number of states merged in the LTS given by kTail. As a consequence, the
system of LTSs is less general. This is why it rejects more traces. Whatever the
configuration, the models inferred by the two last strategies of COnfECt accept
more correct behaviours than the models of kTail. This increase of accepted traces
is a consequence of allowing repetitive component calls in the LTSs. Unsurprisingly,
the Strong strategy provides the models that give the highest rates of accepted
traces (between 90 and 100 %). The LTSs are here callable-complete and encode
the call of any component from any state. After having studied the models given
by the Strong strategy, we deduced that it provides more general models that are
correct in the context of IoT devices. Indeed, this strategy perfectly matches the
functioning of this kind of systems, which are composed of components that can
be repetitively executed. But, with other systems, this strategy could infer models
that accept incorrect behaviours. In general terms, the Weak strategy sounds to
be a good compromise. But, it also seems interesting to investigate whether more
strategies tailored for specific kinds of systems could be defined.

We evaluated the readability of the models generated by COnfECt and kTail
by measuring the model sizes in Conf. 1 to 10. The first four columns of Table 2
give the number of states and transitions with these configurations. As expected,
we obtain bigger LTSs with COnfECt than the ones inferred with kTail (excepted
with Conf. 2 and 3 since there is only one component). This outcome stems from
our algorithm, which adds transitions labelled by synchronisation actions. With
the Strict strategy, the state number is increased by 886 % because many LTSs
are built, are not joined later, and few equivalent states are found in these LTSs.
We observed here that this strategy returns too much LTSs with large trace sets

20 Sébastien Salva, Elliott Blot

Configuration
kTail Strict Weak Strong Strict+hide Weak+hide Strong+hide

#states #trans #states #trans #states #trans #states #trans #states #trans #states #trans #states #trans
Conf. 1 40 66 152 169 46 78 60 150 120 137 39 70 36 67
Conf. 2 6 8 6 8 6 8 6 8 6 8 6 8 6 8
Conf. 3 9 16 9 16 9 16 9 16 9 16 9 16 9 16
Conf. 4 60 115 731 691 104 188 72 183 399 359 71 124 36 85
Conf. 5 65 125 798 752 105 200 71 178 397 349 69 128 34 74
Conf. 6 22 47 496 470 41 81 25 57 236 210 24 55 10 23
Conf. 9 85 175 1307 1185 158 286 82 197 627 505 96 169 36 87
Conf. 10 85 175 915 908 169 312 126 245 491 484 92 163 38 64

Table 2: Sizes of the LTSs obtained with kTail and the three strategies of COnfECt.
”hide” refers to the removal of the LTS transitions labelled by synchronisation
actions.

and should be restricted to small trace sets only. The state number is increased
by 52 % and 17 % with the Weak and Strong strategies.

The transition labelled by synchronisation actions help interpret the compo-
nent combination and are required to later compose LTSs. But, these are not sig-
nificant if one want to focus on the component behaviours only. Table 2 provides, in
the last three columns, the number of states and transitions after applying the hide
operation, which removes the transitions labelled by the synchronisation actions.
The models generated by COnfECt become more concise than those obtained with
kTail. More precisely, we obtain about the same numbers of states/transitions with
the Weak+hide strategy and kTail. But the former divides the system behaviours
into several smaller LTSs, which are much more readable. The state numbers are
reduced by 33 % when using the Strong+hide strategy. For instance, the number
of states is equal to 36 in Exp. 7, whereas the LTS achieved with kTail has 85
states.

These experiments show that the models inferred by our approach are rele-
vant on the condition that the correct coefficient thresholds are given. The three
strategies help manage the generalisation level, which relates to Challenge 2. The
models built by the Strict strategy and kTail reject a similar ratio of correct be-
haviours. The Weak and Strong strategies of COnfECt outperform kTail in terms
of generation of more general and correct models. Then, we showed that COnfECt
builds larger models. But, if we hide the synchronisation actions, the systems of
LTSs are more concise than the LTSs achieved by kTail (with the Weak and Strong
strategies). It is also worth to mention that the systems of LTSs, which split the
component behaviours, are more readable than big LTSs.

5.4 C3 (Efficiency/Scalability)

We experimented COnfECt and kTail with the parameters of Conf. 9 and several
trace sets containing from 10 to 1000 traces composed of about 50 actions. Our
implementation of kTail required less than 1 second to generate models. The exe-
cution times of COnfECt are illustrated in Figures 8a -8c and given in seconds. In
the figures, the curves “Total” represent the complete execution times. These are
detailed with the other curves, which depict the execution times of some sub-steps
of COnfECt: Trace Analysis & Extraction, LTS clustering, and call of kTail.

With the Strict strategy and trace sets having no more than 100 traces (10,
20, 50, 100), COnfECt builds systems of LTSs in less than 3 seconds. We observed
that the evaluation of the factor f2 takes most of the time as the action set
needs to be scanned with two nested loops. Hence, its is not surprising to observe

Model Generation of Component-based Systems. 21

(a)

(b)

(c)

Fig. 8: Execution times vs. nb of traces

that the tendency curve confirms that the time complexity is quadratic. The time
executions substantially increase with the Weak and Strong strategies. With 100
traces, the execution time go up to 28 seconds. As the curves “LTS clustering” are
close to the curves “Total”, we can conclude that the additional time is consumed
by the Ward clustering technique, which also has a quadratic complexity.

22 Sébastien Salva, Elliott Blot

COnfECt is able to take large trace sets even when we run it on a moderate
budget computer. With 50000 actions (1000 traces), the model generation requires
around 50 minutes, which remains a reasonable execution time. Concerning the
memory consumption, these experiments required less than 16 Go of memory. If
the trace set exceeds 70000 actions, more memory is required. We observed that
the space complexity remains linear w.r.t. the trace number.

These results suggest that COnfECt can handle large trace sets and infer mod-
els in reasonable time. As the execution time of COnfECt follows a quadratic curve,
it is however difficult to claim that it scales well. But the current implementation
of COnfECt is absolutely not optimised: the algorithm Trace Analysis & Extrac-
tion could be parallelised. The Ward clustering technique could also be replaced
by another algorithm having a lesser complexity.

5.5 Threat to Validity

There are many application and system contexts, but this preliminary experimen-
tal evaluation is only applied on an IoT device, initialised with different configu-
rations. This is a threat to external validity, in the sense that the results about
the component detection and the model accuracy cannot be generalised to all soft-
ware systems. This is why the experiments deliberately avoid drawing any general
conclusion. We chose to concentrate our experimentations on one system that we
implemented to be able to appraise the capability of COnfECt of returning correct
models. This threat is somewhat mitigated by the fact that we used HTTP traces
as inputs, which can be collected from numerous Web applications. In addition,
one of the components of the IoT device is a small Web server running a classical
Web site. We hence believe that our tool can be easily generalised to Web appli-
cations. But, it is manifest that more experimentations are required, on further
kinds of systems.

The generalisation of our approach is also restricted by the three hypotheses
H1 to H3. In H1, we chose to consider that the internal calls among components
are removed within the traces. We observed that this is usually the case as mon-
itors usually cannot observe internal communications among components. But, if
the synchronisation actions are available in traces, our algorithm may be modified
to take them into consideration instead of adding synchronisation actions. With
H2/H3, we assume that components are not executed in parallel and that there
exists a single root component. With some factors, e.g., f1/f

′
1, we could update

COnfECt to consider systems having several root components calling other com-
ponents. But, at the moment, this modification depends on the employed factors
and cannot be generalised.

There are also several threats to internal validity. Firstly, like all the other
model learning approaches using traces, the more the traces, the more complete the
models will be. Furthermore, our approach uses similarity factors and thresholds,
like the approaches used in machine learning. This kind of approach requires some
expertise to choose the right factors and thresholds. In our case, the generation of
accurate models appears to be laborious without having any expertise allowing to
adjust the component detection. We indeed observed that an expert is necessary
either to provide some information about the components (e.g., means to identify
components) or to be able to observe wrong behaviours in the models and to

Model Generation of Component-based Systems. 23

follow the threshold choice protocol we listed in Section 5.1. Conversely, if the
model learning is supervised by an expert, COnfECt infers relevant models in
reasonable time delays.

We thus believe that this preliminary experience provides relevant insights on
the benefits of using our tool.

6 Conclusion

We have presented COnfECT, a model learning method that generates systems
of LTSs from execution traces. A system of LTSs captures the behaviours of com-
ponents and their synchronisations. COnfECT is made up of several algorithms,
themselves based on some machine learning techniques to detect components in
traces. Additionally, it proposes three LTS synchronisation strategies, which help
manage the model generalisation. Learned models are a good mean to ease bug
detection (Durand and Salva, 2015; Ohmann et al, 2014). As systems of LTSs show
how components behave and are synchronised, we believe that these models offer
better readability and comprehensibility than those inferred by classical model
learning tools for finding and locating bugs. Here a bug can be more precisely
located on a LTS and hence on a specific component.

In future work, we firstly intend to perform more evaluations of COnfECT on
several kinds of systems. From the lessons learned through this work, it appears
that another immediate line of future work is to reduce the requirements of the ap-
proach. COnfECT, which uses machine learning techniques, needs to be supervised
by an expert of the system in order to infer correct models. We intend to revise
the COnfECT algorithm to better integrate this supervision need. For instance,
we could help engineers find the parameter assignments used to identify compo-
nents. Or we could ask them the expected number of components and find the
most appropriate factors and thresholds. Another challenge is to get rid of some
hypotheses, e.g., the need to collect traces from components having synchronous
interactions.

Several approaches, e.g., (Beschastnikh et al, 2011; Ohmann et al, 2014; Beschast-
nikh et al, 2014) mine temporal invariants from logs to increase the accuracy of
the generated models. This technique sounds interesting but cannot be directly
applied to COnfECT as we split traces and build several LTSs. We need to study
if it is of interest to mine invariants after the trace extraction. A system of LTSs
also offers the possibility to derive models having different levels of abstraction, by
hiding some components or not. This notion of abstraction sounds interesting and
needs more investigations. For instance, bug or security analysis could be focused
on some components only with respect to a given risk criterion, while reducing the
analysis efforts.

References

Aichernig BK, Tappler M (2017) Learning from faults: Mutation testing in active
automata learning - mutation testing in active automata learning. In: NASA
Formal Methods - 9th International Symposium, NFM 2017, Moffett Field, CA,

24 Sébastien Salva, Elliott Blot

USA, May 16-18, 2017, Proceedings, pp 19–34, DOI 10.1007/978-3-319-57288-8
2

Alur R, Černý P, Madhusudan P, Nam W (2005) Synthesis of interface speci-
fications for java classes. SIGPLAN Not 40(1):98–109, DOI 10.1145/1047659.
1040314

Ammons G, Bod́ık R, Larus JR (2002) Mining specifications. SIGPLAN Not
37(1):4–16, DOI 10.1145/565816.503275

Angluin D (1987) Learning regular sets from queries and counterexamples. Infor-
mation and Computation 75(2):87 – 106

Antunes J, Neves N, Verissimo P (2011) Reverse engineering of protocols from net-
work traces. In: Reverse Engineering (WCRE), 2011 18th Working Conference
on, pp 169–178, DOI 10.1109/WCRE.2011.28

Berg T, Jonsson B, Raffelt H (2006) Regular inference for state machines with
parameters. In: Baresi L, Heckel R (eds) Fundamental Approaches to Software
Engineering, Lecture Notes in Computer Science, vol 3922, Springer Berlin Hei-
delberg, pp 107–121, DOI 10.1007/11693017\ 10

Beschastnikh I, Brun Y, Schneider S, Sloan M, Ernst MD (2011) Leveraging ex-
isting instrumentation to automatically infer invariant-constrained models. In:
Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European
Conference on Foundations of Software Engineering, ACM, New York, NY, USA,
ESEC/FSE ’11, pp 267–277

Beschastnikh I, Brun Y, Ernst MD, Krishnamurthy A (2014) Inferring models of
concurrent systems from logs of their behavior with csight. In: Proceedings of
the 36th International Conference on Software Engineering, ACM, New York,
NY, USA, ICSE 2014, pp 468–479, DOI 10.1145/2568225.2568246, URL http:

//doi.acm.org/10.1145/2568225.2568246

Biermann A, Feldman J (1972) On the synthesis of finite-state machines from
samples of their behavior. Computers, IEEE Transactions on C-21(6):592–597,
DOI 10.1109/TC.1972.5009015

van der Bijl M, Rensink A, Tretmans J (2004) Compositional testing with ioco.
In: Petrenko A, Ulrich A (eds) Formal Approaches to Software Testing, Springer
Berlin Heidelberg, Berlin, Heidelberg, pp 86–100

Cohen WW, Ravikumar P, Fienberg SE (2003) A comparison of string distance
metrics for name-matching tasks. In: Proceedings of the 2003 International Con-
ference on Information Integration on the Web, AAAI Press, IIWEB’03, pp
73–78

Dallmeier V, Knopp N, Mallon C, Fraser G, Hack S, Zeller A (2012) Automatically
generating test cases for specification mining. IEEE Trans Softw Eng 38(2):243–
257, DOI 10.1109/TSE.2011.105

Dupont P (1996) Incremental regular inference. In: Proceedings of the Third ICGI-
96, Springer, pp 222–237

Durand W, Salva S (2015) Passive testing of production systems based on model
inference. In: ACM/IEEE International Conference on Formal Methods and
Models for Codesign, MEMOCODE 2015, Austin, TX, USA,, ACM, Austin,
Texas, USA, pp 138–147

Ernst MD, Cockrell J, Griswold WG, Notkin D (1999) Dynamically discovering
likely program invariants to support program evolution. In: Proceedings of the
21st International Conference on Software Engineering, ACM, New York, NY,
USA, ICSE ’99, pp 213–224

Model Generation of Component-based Systems. 25

Groz R, Li K, Petrenko A, Shahbaz M (2008) Modular system verification by
inference, testing and reachability analysis. In: Suzuki K, Higashino T, Ulrich
A, Hasegawa T (eds) Testing of Software and Communicating Systems, Springer
Berlin Heidelberg, Berlin, Heidelberg, pp 216–233

Hangal S, Lam MS (2002) Tracking down software bugs using automatic anomaly
detection. In: Proceedings of the 24th International Conference on Software
Engineering, ACM, New York, NY, USA, ICSE ’02, pp 291–301, DOI 10.1145/
581339.581377

Hossen K, Groz R, Oriat C, Richier J (2014) Automatic model inference of web
applications for security testing. In: Seventh IEEE International Conference
on Software Testing, Verification and Validation, ICST 2014 Workshops Pro-
ceedings, March 31 - April 4, 2014, Cleveland, Ohio, USA, pp 22–23, DOI
10.1109/ICSTW.2014.47

Howar F, Steffen B, Jonsson B, Cassel S (2012) Inferring canonical register au-
tomata. In: Kuncak V, Rybalchenko A (eds) Verification, Model Checking, and
Abstract Interpretation, Lecture Notes in Computer Science, vol 7148, Springer
Berlin Heidelberg, pp 251–266, DOI 10.1007/978-3-642-27940-9\ 17

Krka I, Brun Y, Popescu D, Garcia J, Medvidovic N (2010) Using dynamic ex-
ecution traces and program invariants to enhance behavioral model inference.
In: Proceedings of the 32Nd ACM/IEEE International Conference on Software
Engineering - Volume 2, ACM, New York, NY, USA, ICSE ’10, pp 179–182

Lo D, Mariani L, Santoro M (2012) Learning extended fsa from software: An
empirical assessment. Journal of Systems and Software 85(9):2063 – 2076, DOI
http://dx.doi.org/10.1016/j.jss.2012.04.001, URL http://www.sciencedirect.

com/science/article/pii/S0164121212001008, selected papers from the 2011
Joint Working IEEE/IFIP Conference on Software Architecture (WICSA 2011)

Lorenzoli D, Mariani L, Pezzè M (2008) Automatic generation of software behav-
ioral models. In: Proceedings of the 30th International Conference on Software
Engineering, ACM, New York, NY, USA, ICSE’08, pp 501–510

Mariani L, Pastore F (2008) Automated identification of failure causes in system
logs. In: Software Reliability Engineering, 2008. ISSRE 2008. 19th International
Symposium on, pp 117–126, DOI 10.1109/ISSRE.2008.48

Mariani L, Pezze M (2007) Dynamic detection of cots component incompatibility.
IEEE Software 24(5):76–85, DOI http://doi.ieeecomputersociety.org/10.1109/
MS.2007.138

Mariani L, Pezzè M, Santoro M (2017) Gk-tail+ an efficient approach to learn
software models. IEEE Transactions on Software Engineering 43(8):715–738,
DOI 10.1109/TSE.2016.2623623

Meinke K, Sindhu M (2011) Incremental learning-based testing for reactive
systems. In: Gogolla M, Wolff B (eds) Tests and Proofs, Lecture Notes in
Computer Science, vol 6706, Springer Berlin Heidelberg, pp 134–151, DOI
10.1007/978-3-642-21768-5\ 11

Ohmann T, Herzberg M, Fiss S, Halbert A, Palyart M, Beschastnikh I, Brun
Y (2014) Behavioral resource-aware model inference. In: Proceedings of the
29th ACM/IEEE International Conference on Automated Software Engineer-
ing, ACM, New York, NY, USA, ASE ’14, pp 19–30

Pastore F, Micucci D, Mariani L (2017) Timed k-tail: Automatic inference of
timed automata. In: 2017 IEEE International Conference on Software Testing,
Verification and Validation (ICST), pp 401–411, DOI 10.1109/ICST.2017.43

26 Sébastien Salva, Elliott Blot

Petrenko A, Avellaneda F, Groz R, Oriat C (2017) From passive to active fsm
inference via checking sequence construction. In: Yevtushenko N, Cavalli AR,
Yenigün H (eds) Testing Software and Systems, Springer International Publish-
ing, Cham, pp 126–141

Pradel M, Gross TR (2009) Automatic generation of object usage specifications
from large method traces. In: Proceedings of the 2009 IEEE/ACM Interna-
tional Conference on Automated Software Engineering, IEEE Computer Society,
Washington, DC, USA, ASE ’09, pp 371–382

Raffelt H, Steffen B, Berg T (2005) Learnlib: A library for automata learning and
experimentation. In: Proceedings of the 10th International Workshop on Formal
Methods for Industrial Critical Systems, ACM, New York, NY, USA, FMICS
’05, pp 62–71, DOI 10.1145/1081180.1081189

Salva S, Blot E (2018) Confect: An approach to learn models of component-based
systems. In: Proceedings of the 13th International Conference on Software Tech-
nologies, ICSOFT 2018, Porto, Portugal, July 26-28, 2018., pp 298–305, DOI
10.5220/0006848302980305

Salva S, Blot E, Laurençot P (2018) Combining model learning and data analysis to
generate models of component-based systems. In: Testing Software and Systems
- 30th IFIP WG 6.1 International Conference, ICTSS 2018, Cádiz, Spain, Oc-
tober 1-3, 2018, Proceedings, pp 142–148, DOI 10.1007/978-3-319-99927-2\ 12

Shahbaz M, Groz R (2013) Analysis and testing of black-box component based sys-
tems by inferring partial models. Software Testing, Verification and Reliability
DOI 10.1002/stvr.1491

Tan PN, Steinbach M, Kumar V (2005) Introduction to Data Mining, (First Edi-
tion). Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA

Tappler M, Aichernig BK, Bloem R (2017) Model-based testing iot communi-
cation via active automata learning. In: 2017 IEEE International Conference
on Software Testing, Verification and Validation (ICST), pp 276–287, DOI
10.1109/ICST.2017.32

Willett P (1988) Recent trends in hierarchic document clustering: a critical review.
Information Processing & Management 24(5):577–597

Yoon KP, Hwang CL (1995) Multiple attribute decision making: An introduction
(quantitative applications in the social sciences)

