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Abstract 

Night lights, as detected by satellites, are increasingly used by economists, typically as 
a proxy for economic activity. The growing popularity of these data reflects either the 
absence, or the presumed inaccuracy, of more conventional economic statistics, like 
national or regional GDP. Further growth in use of night lights is likely, as they have 
been included in the AidData geo-query tool for providing sub-national data, and in 
geographic data that the Demographic and Health Survey links to anonymised survey 
enumeration areas. Yet this ease of obtaining night lights data may lead to 
inappropriate use, if users fail to recognize that most of the satellites providing these 
data were not designed to assist economists, and have features that may threaten 
validity of analyses based on these data, especially for temporal comparisons, and for 
small and rural areas. In this paper we review sources of satellite data on night lights, 
discuss issues with these data, and survey some of their uses in economics. 
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I. Introduction

Satellites have been recording images of the earth at night, identifying areas with

anthropogenic lighting, for about fifty years. The first satellites capturing these images were 

put into orbit to detect clouds, for daily weather forecasts to help United States Air Force 

pilots, rather than to detect ground level activity to help economists. Indeed, the images 

relayed back to earth were initially discarded at the end of each day, having fulfilled their 

weather forecasting purpose. It was not until 1973 that the images were publicly archived. 

Croft (1978) is the first scientific publication to use these data. However, use of these data for 

research is especially from 1992 onwards, when a digital archive of night light images from 

the Defense Meteorological Satellite Program (DMSP) was made available. 

While the first article in an economics journal to use night lights data was in 2002 

(Sutton and Costanza, 2002), it was not until Henderson et al (2011, 2012) published in the 

American Economic Review using night lights that many economists became aware of these 

data. Since then, over 150 papers in the economics literature (based on IDEAS/RePEc) have 

come out that use night lights and in most of these studies the lights data are a proxy for local 

economic activity. The growing popularity of night lights data reflects either the absence, or 

the presumed inaccuracy, of more conventional economic statistics, like national or regional 

GDP. Further growth in use of night lights is likely, as lights data have been included in the 

AidData geo-query tool for providing sub-national data, and in the geographic data that the 

Demographic and Health Survey (DHS) links to anonymised survey enumeration areas. 

Yet this ease of obtaining night lights data may lead to inappropriate use, if users fail 

to recognize that most satellites providing these data were not designed to assist economists. 

In particular, DMSP lights data have features that may threaten the validity of analyses for 

temporal comparisons, and for small and rural areas. Thus, a tension in economics over the 

usefulness of night lights data has been present from the beginning. While Henderson et al 

(2012, p.1025) concluded that “[F]or all countries, lights data can play a key role in analysing 

growth at sub- and supranational levels, where income data at a detailed spatial level are 

unavailable” a more guarded conclusion was reached in the analysis by Chen and Nordhaus 

(2011) of measurement errors in night lights data, and of the optimal weights to put on lights 

data versus conventional economic data. Chen and Nordhaus (2011, p.8594) conclude that 

“luminosity data do not allow reliable estimates of low-output-density regions” and that it 

was only for the countries with the worst statistical systems, accounting for under nine 

percent of world population, for whom DMSP night lights data are likely to add value as a 
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proxy for output. The citations to these two competing papers show that the more optimistic 

view of Henderson et al (2012) appears to be prevailing, with over twice as many citations 

and a growing gap in citations between these two key studies (Figure 1).1 

Figure 1: Growth in Citations to Henderson et al (2012) and Chen and Nordhaus (2011) 

 

Yet doubts about the usefulness of night lights as proxies for economic variables and 

for measuring the level of, and change in, economic activity persist (Addison and Stewart, 

2015; Bickenbach et al, 2016). Some of these doubts may be allayed by using more accurate 

satellite data on night lights, which are available from April, 2012 onwards, from the Visible 

Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi satellite. The sensors on this 

satellite are designed with the needs of researchers in mind, rather than the needs of Air Force 

pilots. Yet economists have been slow to switch to using these newer and better data, relative 

to the rate that researchers in other disciplines have switched to using VIIRS night lights data.  

In light of ongoing use of imperfect night lights data by economists, in applications 

for which these data may be unsuitable, a review of both the sources of satellite data on night 

lights and a survey of some of the uses of these data in economics may be valuable. In 

contrast to a recent survey article by Donaldson and Storeygard (2016), we aim to provide 

sufficient detail to assist researchers in deciding whether, and how, to use these night lights 

                                                 
1 Based on a search of Google Scholar on June 22, 2019. The gap in citations favouring Henderson et al would 

be even larger if the ca. 200 citations to their 2011 AER Papers and Proceedings paper were included. 
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data. Our review also reflects an absence of suitable summary material on VIIRS within 

economics, which was not covered at all in the detailed appendices to Chen and Nordhaus 

(2011) and Henderson et al (2012). By necessity, we also cover some studies from the remote 

sensing literature; that discipline has used night lights data for far longer than have 

economists, appears to pay more attention to how these data are constructed, and also uses 

them differently – often focusing on whether pixels are lit or not for measuring urban extent 

(e.g. Inhoff et al, 1997; Henderson et al, 2003; Small et al, 2005) rather than focusing on the 

reported brightness of night lights as a proxy for local economic activity. 

Section II describes the two main sources of night lights data – DMSP and VIIRS – 

and pays particular attention to spatial and temporal errors. In Section III we survey a variety 

of uses of night lights data in economics. Section IV concludes.  

II. Sources of Night Lights Data 

 The two main sources of night lights data are the Defense Meteorological Satellite 

Program Operational Linescan System (DMSP for short), and the Day-Night Band (DNB) of 

the Visible Infrared Imaging Radiometer Suite (VIIRS), onboard the Suomi satellite that was 

launched in 2011 by NASA and the National Oceanic and Atmospheric Administration 

(NOAA). While the DMSP was designed with Air Force pilots in mind, the design of VIIRS 

reflected the needs of researchers. It is unsurprising, therefore, that the scientific literature has 

rapidly switched from DMSP to the superior VIIRS data.  

The top panel in Figure 2 shows growth in the number of articles (in English) in Web 

of Science with “DMSP” or “VIIRS” in their record (and also with “night” in either search, to 

restrict attention, given that VIIRS has multiple sensors detecting a range of phenomena so is 

used for many purposes). We use 3-year moving averages to show underlying trends without 

short-term volatility. The number of articles mentioning VIIRS has grown rapidly since 2011, 

exceeding the number that mention DMSP since 2015. Based on the trajectory, soon twice as 

many articles per year will publish using VIIRS data rather than DMSP data. In contrast, the 

results in the lower panel, based on a search of IDEAS/RePEc, show that within economics it 

is still mainly DMSP data that are used; the number of records mentioning VIIRS did not rise 

above one per year until 2018, and roughly three times as many records mention DMSP.2 

This lack of attention by economists to the newer, and better, data source for night 

lights matters because several features of DMSP sensors and the constructed night lights data 

                                                 
2 Both Web of Science and IDEAS/RePEc were searched on the same day (22 June, 2019) for comparability. 
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may threaten the validity of some analyses using these data. While the VIIRS data are not 

perfect for what economists would want, in most regards they represent a big improvement 

over the DMSP data.  

Figure 2: Scientists are Switching to VIIRS, Economists Less So 

 
 

 
 

A comparison of the two types of data along various dimensions is provided in Table 1. We 

organise discussion of these various dimensions under two broad headings; spatial accuracy 
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– does the sensor and subsequent processing attribute light to the actual point on the ground 

where it is emitted; and, signal error and temporal comparability – are the data provided by 

the sensor proportional to the intensity of light emitted and are they comparable over time, in 

the way that, say, 30 Celsius means the same temperature today as it did yesterday and as it 

did ten years ago. 

Table 1: Comparison of DMSP and VIIRS 

 DMSP VIIRS 

Original purpose Detect moon-lit clouds, for 

Air Force weather forecasts 

Earth observation for 

scientific research 

Operational period 1970s to 2013 October 2011 onwards 

Periodicity of processed data Annual Monthly and Annual 

Time of nightly overpass ca. 7.30pm ca. 1.30am 

Swath 3000 km (but only center half 

of each swath is processed) 

3000 km 

Geo-location errors 1.4 km to 3.7 km (95% CI) None 

Spatial resolution of sensor 560m×560m, smoothed to 

5×5 blocks on-board, for 

2.7km×2.7km – at nadir  

742m×742m, across the 

entire swath 

Spatial resolution of 

processed data 

Allocated to grids of 30 arc 

seconds (930m×930m at 

equator, or 930m×770m at 

35 degrees of latitude) 

Allocated to grids of 15 arc 

seconds (465m×465m at 

equator, or 465m×385m at 

35 degrees of latitude) 

Other spectral bands 1 (thermal infrared) 21 during day, 11 at night 

In-flight calibration None  On-board solar diffuser 

Saturation In urban cores None 

Quantization 6-bit (n=64) 14-bit (n=16,384) 

Dynamic range Limiteda 3×10-5 Watts m-2 sr-1 to 

200 Watts m-2 sr-1 

Lmax/Lmin=6,700,000 

Minimum detectable signal 5×10-5 Watts m-2 sr-1 3×10-5 Watts m-2 sr-1 
   

a Figure 1 of Hsu et al (2015) shows the radiance for DMSP (satellite F16) for the extremes of digital numbers 

(DN) 0 and 63 at different gain settings (amplification) has less than two orders of magnitude difference, 

compared with the almost seven orders of magnitude dynamic range for VIIRS shown by Shao et al (2013). 
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2.1 Spatial accuracy 

 Night lights data from DMSP are notorious for ‘overglow’ where light is wrongly 

attributed to areas outside where it is emitted. These errors were often thought of as coming 

from reflections off water or snow (Michalopoulos and Papaioannou, 2014) and so need not 

be a threat to research focused on, say, the inland tropics. But it is now apparent that the 

problem is more widespread, with overglow, or more correctly ‘blurring’, inherent in the 

DMSP sensor and data management (Abrahams et al, 2018). For both DMSP and VIIRS, the 

satellite altitude (ca. 840 km) is less than one third the 3000 km wide sweep (the ‘swath’) as 

the scanner swings east and west, so at the extremities the sensor views the earth at about a 

30 degree angle. While VIIRS maintains a constant Field Of View (FOV) across the swath, 

the FOV at the extremities for the DMSP sensor is about four times as large as at the nadir 

and is about 2.4 times as large at the half-sweep (Falchi and Cinzano, 1998).3 To see why the 

FOV expands when moving away from the nadir, consider someone shining a flashlight 

directly down at the ground, which illuminates a circle, and then they shine it down at an 

angle and it will be an ellipse that is much larger than the circle that is illuminated. 

 The first problem is that the DMSP sensor attributes all light within the FOV to one 

pixel (for so-called ‘fine’ pixels, of size 560m×560m) at the center of the FOV. Thus, light 

from within the elliptical FOV but outside the pixel is put in the wrong place by the sensor, 

especially for locations away from the nadir of the swath. Because the ellipse is larger than 

the fine pixel, a fixed light source will fall within the boundaries of multiple, overlapping, 

elliptical ground footprints centered on the sequence of fine pixels as the sensor conducts its 

east-west sweep. For example, Tuttle et al (2013) created a single point of light, using high 

pressure sodium lamps powered by portable generators, in otherwise dark wilderness, and 

found this single point of light showed up in DMSP images for between four and ten pixels, 

due to the overlapping ground footprints. This error is then exacerbated by smoothing the fine 

pixels to 5×5 blocks, of 2.7 km×2.7 km, because DMSP satellites lack onboard memory to 

hold the fine data. This smoothing further spreads the light in the digital image, transmitted to 

earth each day, from the actual point where the light was emitted. The NOAA scientists then 

select the daily images that meet various quality controls, to create an annual composite, and 

then allocate the smoothed data to grids of 30 arc seconds; an area of about 930m×930m at 

the equator. For this reason, DMSP is usually described as having a spatial resolution of one 

                                                 
3 This half-sweep point is relevant because NOAA researchers only use data from the center half of each swath, 

as one way to reduce spatial errors. As early as Croft (1978) it was noted that images were fuzzy at the edges. 
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km, which may mislead because much coarser data – the blocks of 2.7 km×2.7 km at nadir 

and larger elsewhere – are downscaled without undoing the blurring created by attributing all 

of the light in an elliptical FOV to a smaller pixel and then smoothing it to 5×5 blocks.4 

 In addition to the problems of attributing light from a (larger) ellipse to the area of a 

smaller pixel, and spreading light by smoothing the fine pixels into 5×5 blocks, there is a 

further problem, of geo-location errors. In the experiment by Tuttle et al (2013) that lit up 

points in wilderness areas known to be previously dark, comparing GPS coordinates of these 

sites with the locations where the DMSP sensors (on two satellites, F16 and F18) placed this 

light, across 26 occasions from 2009 to 2011, showed the satellite images had geo-location 

errors whose 95% confidence intervals were from 1.4 km to 3.7 km, with an overall mean 

error of 2.9 km. These geo-location errors add to the blurring effect; without the random error 

the nightly images would stack neatly on top of each other, so a point source of light would 

be recorded as an integral of the overlapping, elliptical, ground footprints and the distortion 

matrix that spreads the point of light could then be inverted to de-blur the image. Instead, in a 

clever approach, Abrahams et al (2018) first simulate nightly geo-location errors and then 

invert the distortion matrix, in order to de-blur the DMSP images. In a comparison with 

benchmark estimates of urban area for 15 cities around the world (based on spatially precise 

Landsat images) they find the de-blurred DMSP data overstates urban area by just 9%, on 

average. In contrast, the original DMSP data overstates city area by an average of 77%. 

 While a MATLAB script for the Abrahams et al (2018) de-blurring approach has been 

available since 2015, it is largely ignored by economists using DMSP data.5 Yet a theme in 

DMSP use in economics, as we show in Section 3, is using night lights to proxy for economic 

activity in small areas, or to compare across borders. The possibility that lights attributed to 

these small areas by DMSP are from elsewhere is a concern that is not taken as seriously as it 

ought. Given that VIIRS is inherently more accurate, in terms of attributing luminosity to the 

point on earth where the light is emitted, the fact that economists ignore VIIRS heightens 

concerns about results for small areas, or results for border effects. The advantages of VIIRS, 

in terms of spatial accuracy, stem from the near-constant resolution across the entire swath; 

this is achieved by the sensor compensating for the expanded ground footprint as the scan 

                                                 
4 Henderson et al (2012) report that 39 images, on average, go into the annual composite (standard deviation of 

22). Thus many areas have only a few nights per year that meet the quality controls, which we return to below. 
5 A Google Scholar search (August 5, 2019) shows 14 citations, with more in the remote sensing literature than 

in economics. Uses of the deblurred images in economics include Corral and Schling (2017) and Duque et al 

(2019). A blog about the code, dated May 2015, is available here: https://blogs.worldbank.org/ 

impactevaluations/improving-granularity-nighttime-lights-satellite-imagery-guest-post-alexei-abrahams 
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goes towards the edge of the swath (Liao et al, 2013).6 Compared to the nominal spatial 

resolution, of 742m×742m, the actual performance has been very close, at 740m ± 4.3m in 

the scan direction and 755m ± 2.2m in the track direction (Baugh et al, 2015). The spatial 

accuracy of VIIRS may also benefit from the later time of overpass, of around 1.30am, while 

DMSP may be more affected by stray light because in summer outside of the tropics it is still 

light around 7.30pm during the DMSP overpass.7 A final advantage for VIIRS is that the 

Day-Night Band is accompanied by 21 other spectral bands during the day and 11 other 

bands at night, which can help with cloud detection for choosing the nights with the clearest 

images, while DMSP has only one other band (the thermal infrared region). 

 The more spatially precise images from VIIRS, compared to DMSP, are illustrated in 

Figure 3, for the area around Dar es Salaam and Zanzibar City, Tanzania.8 The blur in the 

DMSP image is clear, which also exaggerates apparent lit area. A big city like Dar es Salaam, 

with over 4 million people and a land area of about 750 km2, has lit area overstated by 150% 

using DMSP, compared to what VIIRS shows. Relative errors get bigger for smaller towns. 

For example, Bagamoyo (location A in the key) is a town with about 75,000 people, located 

75 km north of Dar es Salaam. The DMSP data suggest this town was 55 km2 in 2013 but it 

was only 11 km2 according to VIIRS, a five-fold error. For the even smaller town of Kitonga 

(location B in the key), the DMSP data suggest an area of 13 km2 compared to just 1.7 km2 in 

the VIIRS image – an exaggeration of over 700%. For the example at location C, which is a 

mining site and small town near the border with Pwani region, the contiguous lit area is less 

than 4 km2 in the VIIRS data, with the brightest pixels around the mine site, while the DMSP 

data make the area seem as large as 34 km2 – a nine-fold overstatement, with no difference in 

brightness amongst the pixels. Finally note that lit area over water around Unguja island, the 

location of Zanzibar City, is only 20 km2 in the VIIRS data but 190 km2 with DMSP data. If 

it was reflection off water that was the main cause of overglow – as was asserted in the earlier 

literature – the lit area over water should be similar for both data sources. Instead, the much 

greater area of over-water luminosity with DMSP reflects the inherent blurring of the image, 

due to the mechanisms described in more detail by Abrahams et al (2018). 

                                                 
6 While 672 detector elements observe earth at the nadir, only the central 320 are used for the edge of the swath, 

to compensate for more light coming into the elliptical FOV at the edge than into the smaller FOV at the nadir. 
7 The overpass time changes as the satellite ages (usually becoming earlier), and also varies between satellites. 

While most studies in economics repeat what Henderson et al (2012) say, of an 8.30-10.00pm overpass, experts 

such as Elvidge et al (2013) describe DMSP overpass times as ca.7.30pm. 
8 The DMSP image is an annual composite for 2013 (F182013_v4b_stable_lights.avg_vis.tif) while the VIIRS 

image is for January 2013 (VIIRS annual composites are not yet available for 2013, with 2015 the earliest 

available annual composite) and so the images should reflect similar conditions on the ground. 
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Figure 3: VIIRS Imagery (left) is Much Sharper than DMSP Imagery (right) for Dar es Salaam and Zanzibar, 2013 (key in centre frame) 
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2.2 Signal error and temporal comparability 

 The impact of the spatial errors in the DMSP data can be mitigated if users choose to 

work with larger areas, such as nations or the first and second sub-national areas (provinces 

and districts), because the errors get relatively smaller for larger areas. However, for research 

that is not purely cross-sectional, the lack of temporal comparability of DMSP data, which 

contributes to time series errors, is harder to avoid. Indeed, a theme amongst more critical 

evaluations of DMSP data, such as Nordhaus and Chen (2015), is that these data are far less 

useful for time series analysis than for cross-sectional work. The time series errors stem, 

again, from the original purpose of the satellites, which was daily and nightly observation of 

clouds, in order to assist with short-term weather forecasts for the Air Force, rather than for 

giving a consistent long-term record of anthropogenic lighting changes on the ground.  

In light of this purpose, sensors on board DMSP satellites were designed to record 

sunlight reflected from clouds during daytime. At night time, the visible part of the spectrum 

is intensified a million-fold with a photomultiplier tube (PMT) to better see moonlit clouds 

(Small et al, 2011). With this amplification, the sensor may also detect lights emitted from 

human activities on the earth’s surface, such as from city lights, gas flares, and fires. A key 

problem, however, is that amplification settings on the PMT change over the monthly lunar 

cycle, gradually increasing into the dark part of the cycle when raw moon light is insufficient 

to detect clouds, then decreasing into the full moon phase – as clouds can more easily be 

detected by raw moon light with a full moon. These variations in amplification – the so-called 

gain settings – are not recorded in the data as they were not needed for the Air Force weather 

forecasts. In other words, the sensitivity of the sensor adjusts up or down in order to keep the 

brightness of cloud tops the same, and lights on earth will, thus, appear brighter or dimmer in 

unrecorded ways. A flag for having zero lunar illuminance is one quality control the NOAA 

algorithm uses in selecting pixels (along with checks for clouds, glare, sunlight, etc) but there 

is still unrecorded variation in the gain settings over the selected subset of nights (Hsu et al, 

2015), so night-lit activity yielding a particular value reported by the sensor on one night does 

not necessarily yield the same value on another night (unlike for, say, 30 Celsius). 

 The lack of intrinsic temporal consistency in DMSP measurements is exacerbated by 

limited on-board data storage. The photons from the FOV for the pixel being observed enter 

the scanner and give rise to a pulse of electrons, but because precise floating-point values 

could not be stored, these were quantized to 8-bits (for the ‘fine’ pixels of area 560m×560m). 

Thus, a continuous signal of electrons is converted to integers ranging from 0-255 (28=256). 
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However, even these 8-bit data are not available because when the fine pixels are aggregated 

into 5×5 smoothed blocks, in order to further economize on data storage, the values for each 

smooth pixel are divided by four and top censored at 63, to give a 6-bit quantization (26=64). 

This produces the Digital Number (DN) from 0-63, familiar to most users of DMSP data. The 

NOAA provide an annual composite of DMSP digital numbers for non-ephemeral lights, so it 

might be hoped that repeated nightly observations converge to an average amplification level 

of the PMT, to provide some spatial and temporal consistency in the DN values. This seems 

unlikely unless cloudiness and other factors affecting which nights have images that meet the 

quality controls for inclusion in the annual composite are the same year-on-year and over 

space. Without this homogeneity, the annual average of non-ephemeral lights for some places 

will come from more nights with the amplification turned up and so a higher DN value will 

be attributed to that place in that year than would be the case if the average had been formed 

from more nights with the PMT turned down. 

There appear to be systematic spatial patterns in the number of nightly observations 

contributing to the annual composites. In Figure 4 we illustrate this pattern for Africa in 2007 

(satellite F15). The number of nights used for the annual composite for each pixel ranges 

from four to 80, increases moving away from the equator, and is especially low for equatorial 

West Africa.9 With this variation it is unlikely that the annual average level of amplification 

of the PMT is the same everywhere, threatening comparability of the DN values. The same 

pattern, of equatorial zones having fewer nights with suitable images, also holds in other 

continents (which, overall, tend to have fewer nights used than for Africa because Eurasia, 

especially, is cloudier). Thus, equatorial regions that have some of the weakest statistical 

systems are also where annual composites of DMSP night lights rest on weaker foundations, 

in the sense of being based on images from only a few nights.10  

                                                 
9 We put a grid of 5165 cells over Figure 4, calculated the average number of nights per cell, and found that the 

number of nights used for the annual composite increased by 32, when moving 20 degrees from the equator. 
10 Six of the 13 countries the equator passes through are in the two groups with the weakest statistical systems in 

the classification used by Chen and Nordhaus (2011); much more frequent than would be expected on average. 
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Figure 4: Variation Within Africa in Number of Nights Used for DMSP Annual Composite 

 

 

A further concern about the annual composites is the variation between satellites and 

between years, in terms of how many nights are used for the averages. Again focusing on 

Africa, in Figure 5 we illustrate the movement in the mean number of nights, which ranges 

from a low of 15 (F12, 1994) to a high of 75 (F15, 2002). There are several big changes, such 

as for F16 between 2005 and 2007. If there were no unrecorded gain settings, year-by-year 

variation in the number of nights used in the annual composites might raise concerns about 

precision (so perhaps down-weighting satellite-years relying on fewer nights).11 However, 

                                                 
11 Variation in the number of nights also raises questions about averaging values for a particular year when two 

satellites are both in orbit in that year. For example, the information content from F12 in 1994 (from 15 nights) 
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with unrecorded gain settings, a variable number of nights also may affect means of the DN 

values; for example, it seems unlikely that the average level of PMT amplification in 2009 

(when just 40 nights were used, averaging over pixels) was the same as in 2010 (when the 

composite was based on an average of 70 nights). We are unaware of previous study of these 

spatial and temporal patterns in the number of nights used for the annual composites. The 

variation we describe here raises doubts about whether these annual averages are all equally 

reliable and equally comparable over time and space. 

Figure 5: Variation by Satellite and by Year in Average Number of Nights Used 

(Within Africa) for Annual Stable Lights Composite 

 
 

Our description of the Digital Number for annual composites of so-called ‘stable 

lights’(meaning non-ephemeral) may seem overly-pessimistic, as compared to descriptions 

that imply that these data consistently measure brightness. Thus, it is worth quoting at length 

from a guide to the DMSP data in the remote sensing literature, which makes the same point 

about the lack of temporal consistency when discussing the annual composites:  

“However, these are not radiometricaly calibrated. This means that a DN value from a 

certain satellite year may not have the same brightness as the same DN from another 

year. Moreover, data values from one satellite may not be compatible with those from 

                                                 
may be less than for F10 in the same year (based on 50 nights) but averaging treats both satellites as providing 

equally reliable records. The grid cell level also exhibits low correlations between some satellite years, in how 

many nights are in the annual composite, such as -0.08 for F16 in 2007 and 2009, reducing comparability. 
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another….In this situation, great care needs to be taken when interpreting the difference 

in brightness from sensors flying on different satellites” Doll (2008, p.15) 

The same point is also made by Liu et al (2012, p.65), that DN values for the stable lights 

composite “cannot be used directly to represent the absolute radiance of light…[because of] 

…discrepancies in DN values between two satellites for the same year and abnormal 

fluctuations in DN values from the same satellite for different years.” In contrast to these 

temporal consistency problems with DMSP, the sensors for VIIRS are calibrated radiometers, 

where the data provided by the instrument is proportional to the intensity of light (measured 

in Watts/m2/sr). The VIIRS sensors have in-flight calibration (via a solar diffuser) to ensure 

that the readings are comparable over time. Even when the continuous signal is quantized, it 

is with 14-bit precision (n=16,384) compared to the 6-bit Digital Number for DMSP. 

Furthermore, the dynamic range of the Day-Night Band on VIIRS covers almost seven orders 

of magnitude (Lmax/Lmin=6,700,000), from the brightest daytime scenes down to very dim night 

time scenes illuminated by a quarter moon (Table 1). In contrast, the usual dynamic range of 

the DMSP sensor is less than two orders of magnitude. 

 The limited dynamic range of DMSP also causes saturation or ‘top-coding’ of lights 

in urban areas. Globally, about six percent of pixels have top-coded DN values of 63, with 

big city centers often seeming no brighter than lower density suburbs (Bluhm and Krause, 

2018). There are radiance-calibrated (rad-cal) DMSP lights data (available for 1996, 1999, 

2000, 2002, 2004, 2005 and 2010) from experiments where NOAA had the Air Force lower 

the PMT amplification on a few nights to see what settings avoid DN values being top-coded 

in urban areas (Elvidge, 1999).12 But there also are problems with these data, discussed by 

Bluhm and Krause (2018). The rad-cal data come from a benchmarking exercise that relies 

on the pre-flight calibration of the sensor, rather than its actual (degraded) performance as it 

is exposed to dust and radiation over time. This is like working with nominal income data 

from a country without a PPP, comparing a few current prices across borders and linking to 

an old price catalogue (e.g. IKEA) to make a panel of adjusted income data. It is not the case 

that the rad-cal data are from better on-board sensors whose dynamic range lets both dimly-lit 

rural countryside and brightly-lit urban cores be detected without any bottom- or top-coding. 

Also, to go from the few times when the DMSP gain settings are experimentally varied, to 

provide rad-cal data for a full year, NOAA merge with the usual stable-lights data (Hsu et al, 

2015), creating some instability between years, with fewer images used (so lower reliability) 

                                                 
12 Within economics, the rad-cal lights have been used by Roberts (2018), in a study of urban area expansion 

(based on a threshold of DN>13), and the relationship between urban growth and rural poverty, for South Asia. 
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for the annual composites for the places within cities with highest light intensities (Bluhm 

and Krause, 2018). Rather than using the rad-cal data, an alternative is to model top-coding 

with a statistical model, so as to recover the full distribution of light intensity. Using a Pareto 

distribution for this purpose suggests that the top four percent of DMSP pixels have about 

one-third of global lights, almost double their share in the top-coded data, raising the spatial 

Gini for the world from 0.43 to 0.60 (Bluhm and Krause, 2018).  

 The final time-series error with the DMSP data comes from inter-satellite differences. 

For 12 out of the 22 years (from 1992 to 2013) with annual composites of stable lights, there 

are two satellites in orbit providing data. The two satellites often report quite different values 

for the same place. For example, Liu et al (2012) note that satellite F15 in orbit in 2008 gave 

an average DN value of 10.7 for lit pixels in China, while satellite F16 gave an average DN 

value of 16.6 for the same year. We show similar effects in Figure 6, for average DN values 

for each DMSP satellite-year for Sicily. This is a place with static population and land area 

(as an island), while there was unlikely to be any trend in electrification rates changing the 

brightness of lights.13 Despite this presumed stability, there are big differences between 

satellites; F12 gave a 15% higher DN value than F10 and an average of 29% higher than F14 

in the overlapping years, F15 recorded a 24% decline in the DN value from 2002 to 2003 

while F14 showed just a 2% change, and the biggest jump is for F18, which showed a 32% 

higher DN value in 2010 than was seen with F16 in 2009.14 The annual percentage changes in 

DN values for Sicily in the DMSP data average 6.1%, if averaging across satellites and 

within-years, and 5.5% if just considering within-satellite annual changes. In contrast, annual 

composites for VIIRS show just a 1.7% annual percentage change, which is more in keeping 

with the presumed stability of lights on Sicily. Thus, there seems to be a lot of noise in the 

time-series of DN values from the DMSP data. 

  

                                                 
13 The census population was 4.966m in 1991, 4.969m in 1999 and 5.002m in 2011. Thus, population growth 

over two decades was just 0.7%. The presumed on-ground temporal stability of lights from Sicily is used in the 

remote sensing literature as a way to ‘inter-calibrate’ the various satellites, by using regression adjustment to 

line-up DN values for various satellite-years with the values given for Sicily by F12 in 1999 and then applying 

the coefficients for the inter-satellite adjustment factors to pixels in the rest of the world (Elvidge et al, 2009). 
14 Significantly higher values from F18 than F16, when recording the exact same light source on the same night 

(from the experiment using portable generators to power high-pressure sodium lamps in previously dark areas) 

has previously been noted by Tuttle et al (2014). 
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Figure 6: Inter-Satellite Differences in Average DN Value for the ‘Stable Lights’ 

Annual Composite: Sicily 1992-2013 

 
 

 Yet despite these satellite effects, few studies using DMSP mention how data from 

years with two satellites is treated. For example, Hodler and Raschky (2014) compare lights 

over four years for the home town of the president of Zaire, and over two years for the Sri 

Lankan president’s home. In four of these six years there are two satellites with data but they 

do not discuss if results are sensitive to choice of satellite. Lowe (2014) suggests averaging 

across satellites in the years with two satellites; this reduces measurement error variance if 

errors are random but if one satellite has a fixed tendency to detect differently than another it 

may be better to include satellite fixed effects that place more weight on the within-satellite 

correlation across years, than on the between-satellite and within-year correlation. Henderson 

et al (2012) discuss the inter-calibration approach in the remote sensing literature but reject it 

in favor of using year dummies in their regressions, an approach followed in several other 

studies (e.g. Smith and Wills, 2018). Yet these year dummies will not help with any fixed 

tendency for one satellite to detect light at brighter levels than what is detected by another. 

 In contrast, Chen and Nordhaus (2011) use satellite fixed effects in addition to year 

fixed effects, and this approach is followed by Gibson et al (2015) and Olivia et al (2018). 

We examine the relative importance of these two types of effects, using an ANCOVA model 

to decompose the variance of the time-series of national level lights reported by Elvidge et al 

(2014). While the year effects have an average p-value of 0.055 (across the 179 countries in 
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that dataset with GDP data), the average p-value for the satellite effects is smaller, at 0.035. 

For three-quarters of the countries, the p-value on the satellite effects is smaller than is the 

p-value on the year effects, and for 156 of the 179 countries the satellite fixed effects are 

statistically significant at the 5% level, while for year effects the same is true for only 

133 countries. Thus, analyses that use the time-series of DMSP night lights should consider 

including satellite fixed effects in addition to year dummies. 

2.3 What sort of lights are measured? 

The lights that can be detected with satellites are mainly for urban economic activity. 

More light than usually found in rural areas is needed in order to be detected by the DMSP 

sensors. For example, in the experiments by Tuttle et al (2013) to check the spatial accuracy 

of DMSP data, where they went to places known a priori to be dark and temporarily lit them 

up with portable light sources bright enough to be detected by DMSP sensors, it required a 

bank of eight 1000-watt high pressure sodium lamps (typically used in large warehouses) that 

each emit 100 times more light than a 100-watt incandescent bulb. These very large lamps 

(each weighs about 23 kg) convert more energy to light than to heat, compared to the energy 

use of household light bulbs. Moreover, the experiment was deliberately fielded in winter so 

nights were darkest, in order to aid detection, and the lamps were modified with a 60cm 

aluminum shield to further direct the light skyward (Tuttle et al, 2014). These experimental 

conditions are not at all like the sort of lights found in rural villages of developing countries, 

but are more like light from concentrated street lamps, from large car parks, and from enclave 

mining and industrial facilities located outside of cities. 

While VIIRS has finer spatial resolution and is more sensitive to dimmer lights, the 

VIIRS measurements occur around 1.30am, when most rural lights are likely to be turned off, 

given that few rural people are engaged in nocturnal activity needing light at these hours. The 

poor detection of lights for low-density (i.e., rural) areas is shown in Figure 7, for two small 

countries (Timor Leste and Vanuatu – both are in the lowest two data quality categories of 

Chen and Nordhaus (2011), so these are places where the lights data are potentially the most 

useful), and for Tanzania. In this figure, the population density (for either the second or third 

sub-national level) from the latest census is related to the cumulative population share and to 

the average DN value (from DMSP annual composites) or to the average radiance (from 

VIIRS) in the year closest to the census. 

In Vanuatu, almost all areas register no light according to the satellites, despite being 

a country where rural households benefitted from a major development program over the last 
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decade. Specifically, seasonal migration to New Zealand lifted incomes 40%, with aggregate 

impacts equivalent to one-quarter of Vanuatu’s annual goods exports (Gibson and McKenzie, 

2014). Income gains from seasonal work boosted the electrification rate; using census data 

for small areas, Gibson and Bailey (2020) find that a standard deviation (SD) higher seasonal 

work rate caused a 0.4 SD increase in the rate of having electric light (t=4.3). Yet despite this 

relationship in the micro data, neither VIIRS nor DMSP data show statistically significant 

correlations with these electrification rates nor with seasonal work rates.15 This example 

shows that the sort of lights typically used in rural villages are not the type easily detectable 

from space, limiting the usefulness of satellite data on night lights for studying rural areas. 

Figure 7 shows that little night light in Vanuatu and Timor Leste is found with either 

DMSP or VIIRS, for areas with population densities below 60 per km2. Such areas have over 

60% of the population of Vanuatu and about 75% for Timor Leste. This is not from lack of 

electrification, as 55% of Timor Leste households in areas where the population density is 

below either 60, 50, 40 or even 30 persons per km2 use electricity as their main source of light 

according to the census. For Tanzania, areas with densities below 140 persons per km2 are 

generally not recorded as having night lights, for either VIIRS or DMSP (bottom panels of 

Table 7), yet such areas are home to about 70% of the population. The inability of DMSP and 

VIIRS to detect small, low density, settlements is also seen in Andersson et al (2019); out of 

147 geo-referenced cities and towns in Burkina Faso, ranging in population from 1.6 million 

to 7000, 83 of these communities (the largest of which had a population of 32,000) went 

undetected over the entire 21 years of DMSP data. Indeed, only six of the ten largest towns 

and cities were detected in every year. Using VIIRS data (from two short periods in 2012) 

hardly raised detection rates (going from 40% to 45%).16 

                                                 
15 The participation rates in seasonal work are uncorrelated with population density (r=0.07) but there are high 

correlations between population density and either the average DN value from DMSP for 2013 (r=0.83) or 

radiance data from VIIRS for 2016 (r=0.73). 
16 Using the same VIIRS data for 2012, Chen and Nordhaus (2015) find a bigger improvement over DMSP 

(using satellite F18 for 2010). For 600 cells (of 1×1) in Africa with population estimated to be below 10,000, 

all showed light using VIIRS but 72% of them showed no light with DMSP.  
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Figure 7: A Large Share of the Population, in Low Density Areas of Poor Countries, is Invisible in Satellite Data on Night Lights  
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 Three more aggregate studies also find that night lights data better measure economic 

activity in the urban sector than in the rural sector. The first is of relationships between night 

light (annual averages of DMSP stable lights) and national GDP, for about 150 countries over 

18 years (Keola et al, 2015). While the elasticity of light with respect to GDP is positive for 

countries where the agricultural share of GDP is less than 20% (with a weighted elasticity of 

0.58), the elasticity becomes negative when the agricultural share of GDP is greater than 20% 

(with a weighted elasticity of -0.34). The authors note that it is possible for agriculture’s 

value-added to increase without an increase in the lights that are detectable by the DMSP 

sensors. Even with the more accurate VIIRS data, a similar effect is apparent. Chen and 

Nordhaus (2019) find that VIIRS lights have a closer relationship with GDP for metropolitan 

statistical areas (MSAs) in the United States than with state-level GDP and suggest that this is 

because the MSAs specialize in economic activity, like services and retail, that are more 

likely to be captured by night lights while in the non-MSA areas, activities like agriculture 

are less dependent on lighting at night. Relatedly, Gibson et al (2019) find that the elasticity 

of regional GDP with respect to night lights is almost 1.0 for urban areas of Indonesia, while 

the same elasticity for rural areas is negative when using the DMSP data. 

In Table 2 we show further evidence that night lights relate more closely to economic 

activity in urban areas than rural areas. In this table we use the fact that prefectures in China 

are composed of two types of lower level units – districts (shiqu) that contain the urban core 

of the prefecture and have a mean resident population density of 1500 persons per km2 (from 

the 2010 census), and counties that are more rural with a mean population density of 300 per 

square km.17 The elasticity of lights with respect to GDP is over 0.3 for urban districts, but is 

less than three-fifths as large, with an elasticity of 0.19, for the counties (Table 2). This gap 

holds whether or not we control for population and area. The between-R2 values (which 

usually exceed the within-R2, supporting the idea that lights are more accurate proxies for 

economic activity in the cross-section than in the time-series) are also higher for the urban 

districts than for the counties. The difference in the lights-GDP relationship between districts 

and counties in Table 2 is likely to be smaller than the rural-urban gap in elasticities in many 

other settings, because China’s counties also include some urban areas (county-level cities), 

and some of the spatial units that are given an urban district designation have only recently 

                                                 
17 Results in this table exclude Leagues, Autonomous Prefectures, and Provincially Administered areas, which 

are mainly found in western China and are distinguished by having no urban districts. These areas have much 

lower population densities than elsewhere in China and account for only about five percent of all residents. We 

also exclude 13 prefectures that are comprised solely of urban districts, to enable a balanced comparison of the 

relationship between lights and GDP for counties and districts within the same prefectures. 
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been upgraded from county status and still have quite low population densities.18  

Table 2. DMSP Night Lights are More Closely Related to Urban GDP than to Rural GDP: 

China, 2000-2012 

 Dependent variable: ln(average DN value per km2)it 

 Urban Districts Counties 

 (1) (2) (3) (4) 

ln(GDP/km2)it 0.300 0.314 0.186 0.187 

 (0.046)*** (0.046)*** (0.033)*** (0.033)*** 

ln(population)it  -0.230  -0.044 

  (0.067)***  (0.097) 

Area fixed effects Yes Yes Yes Yes 

Year fixed effects Yes Yes Yes Yes 

Satellite fixed effects Yes Yes Yes Yes 

Within R-squared 0.729 0.731 0.773 0.773 

Between R-squared 0.756 0.908 0.684 0.792 

Notes: Robust standard errors are in parentheses; * significant at 10%; ** at 5%; *** at 1%. N=5773. The 

contiguous districts within each prefecture are merged, to form the urban core used in columns (1) and (2), and 

the counties and county-level cities in the prefecture are merged to form the rural hinterland (n=273 for each 

type of spatial unit). Each spatial unit has 21 satellite-years of observations. 

 

III. Some Uses of Night Lights Data in Economics 

Our review of the sources of night lights data highlights several problems with DMSP 

data, so we now turn to a selective review of uses of these data in economics to see if, and 

how, these problems are dealt with. We review applied rather than methodological studies, so 

Abrahams et al (2018) and Bluhm and Krause (2018) are not further covered. We also restrict 

attention to studies that include observations from developing countries, either solely or in a 

database for many countries. While night lights are also used in applied economic studies that 

focus just on developed countries (e.g. Nguyen and Noy, 2018), developing countries often 

have fewer sources of evidence, and so flaws in the night lights data may do more harm to 

our economic understanding of developing countries because the research results that are 

based on night lights may have been more influential in these settings (given the paucity of 

other evidence). 

We start by summarizing selected studies that have DMSP night lights data on the left 

hand side (LHS) of the relationships they estimate. We usually consider errors on the LHS to 

be less threat to the validity of an analysis, than is the case for errors in right hand side (RHS) 

                                                 
18 For example, the 90th percentile population density for the counties used in Table 2 exceeds the 35th percentile 

density for the urban districts, showing an overlap between the two sectors that would be less apparent in many 

countries where metropolitan areas are functionally defined by density rather than by administrative boundary. 
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variables, for which random measurement errors cause attenuation bias in OLS regression 

coefficients. However, the measurement errors in DMSP data are almost certainly mean 

reverting – due to blurring that attributes light to places it is not emitted and top-coding that 

understates the differences in brightness between places – and mean-reverting errors in LHS 

variables cause coefficient bias (Abay et al, 2019, Gibson et al, 2015).19 Studies with DMSP 

data on the LHS also more readily lend themselves to using satellite fixed effects, by 

choosing as the unit of observation (for panel analyses) the light recorded as coming from 

area i, in year t, by satellite s. This choice of the unit of observation saves one from either 

discarding data, noting that 12 of the 22 years in the DMSP time-series have records from 

two satellites, or from ad hoc averaging across satellites within a year. 

Notwithstanding the potential to use satellite fixed effects, their statistical significance 

in the original Chen and Nordhaus (2011) study, and that they more precisely explain the 

time-series variation in national-level DMSP data than do year effects (see Section 2.2 

above), most of the studies in Table 3 omit satellite effects. Some studies claim that year 

fixed effects will control for any unobserved satellite characteristics (e.g. Lee, 2018), but if 

this was true then satellite fixed effects would be statistically insignificant in the studies that 

have included them, yet they are not.20 In other cases (e.g. Eberhard-Ruiz et al, 2019) authors 

discard data from one satellite, in the years that have two satellites providing the data. It is 

unlikely to be optimal to throw away information when the annual changes in the data from 

one DMSP satellite can be quite different to the changes shown for the same place by the 

other satellite in orbit the same year (as Figure 6 exemplifies). 

The same 12 studies in Table 3 that omit satellite effects, plus one cross-sectional 

study, appear to use no procedures for dealing with the top-coding of the DN values. This is 

despite several of the more recent studies having a focus only on cities, where the top-coding 

problems are most likely to matter. Amongst the studies that do deal with top-coding, two use 

the radiance-calibrated data, one relies on the Pareto-adjusted data, and one is based on a 

dummy variable for whether pixels are lit or not (and so it is censoring from the bottom rather 

than the top that may matter). 

                                                 
19 With a strong enough mean reversion, for mis-measured variables on the RHS, there can be exaggeration of 

regression coefficients rather than the typical attenuation. The effects are even more complicated when errors 

are on both LHS and RHS (Abay et al, 2019). 
20 For example, in the Table 2 results for China, which is a country where growth in DMSP-measured night 

lights should have one of the highest signal-to-noise ratios of any country, because of the very rapid growth in 

urban lit area in the last two decades, the restrictions to omit the satellite fixed effects generate a chi-square 

statistic of over 3200 (p<0.0001). If satellite effects matter for China, they should matter even more so in less 

rapidly urbanizing settings, where the signal-to-noise ratio in the DMSP time series will be much lower. 
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Authors Year Spatial Unit Dep Variable Deblur? Address top-coding? Satellite FE? Year FE? Objective

Kocornik-Mina 

et al

2019 Cities (n=1868 

in 40 countries)

ln(DN),

 2003-2008

No No No Yes Examine effects of floods 

on economic activity

Dreher 

et al

2019 Districts (n=5835) 

in 47 African 

countries

ln(DN+0.01 per 

capita), 

2001-2012

No No No Yes Examine effects of Chinese aid 

projects on local economic 

development (proxied by lights)

Mamo 

et al

2019 Districts (n=3635) 

in 42 African 

countries

ln(Σ DN per 

km
2
+0.01), 

1992-2012

No No No Yes Examine effects of intensive and 

extensive margin of mining on 

local economic development

Heger & 

Neumayer

2019 Sub-districts 

(n=276) in Aceh, 

Indonesia

ln(sum of 

DN+0.001), 

2003-2012

No No No Yes Examine effects of Boxing Day 

tsunami and reconstruction aid 

on subsequent economic growth

Prakash 

et al

2019 State Assembly 

constituencies 

(n=2633) in India

Annual growth in 

Σ DN per km
2
, 

2004-2008

No No No Yes Examine effects of electing 

criminally accused politicians on 

rate of growth in night lights

Eberhard-Ruiz 

et al

2019 Cities (n=180 in 3

African countries)

Annual Δln(DN),

 1992-2013

No No No Yes Examine effect of RTA on city 

growth near internal borders

Düben & 

Krause 

2019 Cities (n=13,844 

in 194 countries)

Sum of Lights, 

1992-2013

No Yes

(Pareto adjust)

Mostly not

(ex. Table 6)

Yes Examine Zipf’s law, in terms 

of lights and population

Lee 2018 1.9 km × 1.4 km 

grid, for N. Korea

ln(DN+0.01), 

1992-2013

No No No Yes Examine within-North Korea 

regional impacts of sanctions

Smith & Wills 2018 10 km × 10 km 

grid, for 36 non-

OECD countries

% in unlit rural 

area and sum of 

lights, 2000-12

No No No Yes Examine how oil booms affect 

rural poverty (based on unlit 

area) and regional inequality

Mitnik 

et al

2018 Communes 

(n=207) in Haiti

IHS Sum of 

lights 1994-2013
a

Yes Yes

(use rad-cal data)

Yes Yes Examine economic impacts of 

road improvements

Table 3: Selected Uses of DMSP Night Lights Data: Studies With Lights Variables on the Left Hand Side (most recent studies first)
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Authors Year Spatial Unit Dep Variable Deblur? Address top-coding? Satellite FE? Year FE? Objective

Castelló‐

Climent et al

2017 Districts (n=500) in 

20 Indian states

ln(Σ DN per 

km
2
), in 2006

No Yes

(use rad-cal data)

No No Examine how higher education 

affects economic development

Corral & 

Schling

2017 Beachs (n=23) in 

Barbados

ln(deblurred 

DN), 1992-2010

Yes No No Synth 

control

Examine local economic impact 

of shoreline stabilization

Villa 2016 Districts (n=732 

in Colombia)

Annual Δ(ΣDN),

 1998-2004

No No No Yes Examine how social transfers 

affect local growth (in lights)

Storeygard 2016 Cities (n=289 in 15

African countries)

ln(Σ DN per 

city), 1992-2008

No No
b Partly (average 

within sat-year)

Yes Examine effects of transport 

costs on urban economic output

Baskaran 

et al

2015 State Assembly 

constituencies 

(n=3800) in India

ln(Σ DN+1 per 

capita),
c 

2001-2012

No No No Yes Examine political manipulation 

of electricity supply during 

special elections

Gibson 

et al

2015 Cities (n=47) with 

pop>1m in India

ln(urban lit area),

 1992-2012

No Yes

(min DN criteria)

Yes Yes Examine urban area growth and 

change from prior land cover

Hodler & 

Raschky

2014 Districts (n=38427) 

in 126 countries

ln (DN+0.01), 

1992-2009

No No No Yes Examine how the birth regions 

of political leaders benefit (in 

terms of brighter lights)

Michalopoulos 

& Papaioannou

2014 Cross-border ethnic 

homeland partitions 

(n=507) in Africa
d

ln (mean 

DN+0.01), 

2007-2008

No No No No Examine the effect of national 

institutions on local economic 

development (lights), comparing 

across borders, within-ethnicity

Table 3 continued : Selected Uses of DMSP Night Lights Data: Studies With Lights Variables on the Left Hand Side (most recent studies first)

Notes: 
a
IHS is the inverse hyperbolic sine transformation 

b
Uses a Tobit for bottom-coding

c
Also use annual growth rate of the sum of lights per capita, and share of villages with lights detected by DMSP 

d
Also use a dummy for whether DMSP data indicate a pixel is lit or not, for aggregated pixels that are 1/64

th
 of a decimal degree (ca 150 km

2
 near the equator)
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Several of the studies in Table 3 use observations for small spatial units, such as the 

grid over North Korea of 2.6 km2 used by Lee (2018) or the sub-district level in Aceh used by 

Heger and Neumayer (2019). Yet despite the code for the deblurring procedure of Abrahams 

et al (2018) being freely available since 2015, it is used by just one study in Table 3 that is 

based on very small spatial units – the beach-level study by Corral and Schling (2017). 

Whether the results for other studies based on small geographic units would change if 

researchers were using the deblurred data, or were using the even more spatially precise and 

accurate VIIRS data, remains an open question. 

Another relevant feature of the spatial units in the Table 3 studies is whether the focus 

is on rural or urban areas. The discussion in Section 2.3 suggests that detecting night lights by 

satellites is more appropriate for cities than for rural areas, due to the type of lights that are 

needed (such as high pressure sodium lamps) in order to be detected from space and due to 

the underlying differences in population density that produce more concentrated sources of 

lights. A few of the studies in Table 3 focus only on cities, but many also cover rural areas, 

and some rely on rates of detecting lights for villages or rural areas as outcomes of interest 

(e.g. Baskaran et al, 2015; Smith and Wills, 2018). The national level findings from Keola et 

al (2015) and the regional level findings from Gibson et al (2019), that DMSP night lights are 

negatively correlated with GDP in times or places where agriculture is more important, raise 

some doubts about what effects are being identified when DMSP lights data are a proxy for 

village-level activity or for rural poverty. 

Several of the studies in Table 3 rely on annual changes in, or growth rates of, DMSP 

night lights (e.g. Prakash et al, 2019; Villa, 2016; Baskaran et al, 2015). Yet prior validation 

studies find that changes in DMSP night lights data very poorly predict changes in economic 

variables (Addison and Stewart, 2015; Nordhaus and Chen, 2015). More recent validation 

studies collaborate this finding that changes in night lights are poor temporal predictors. For 

example, Goldblatt et al (2019) use commune-level data for Vietnam from 2004 to 2012, 

finding changes in DMSP night lights negatively correlate with annual changes in enterprises 

or employment, even as cross-sectional elasticities of these variables with respect to DMSP 

night lights were from 0.6 to 0.8. Relatedly, while DMSP data could explain one-third of the 

cross-sectional variation in enterprises and employment, they explained less than one percent 

of the variation in the temporal changes in these variables. Even when the more accurate (and 

temporally consistent) VIIRS night lights data are used, for metropolitan areas in the United 

States – so using the lights data for where they are best suited, in high density urban areas – 

Chen and Nordhaus (2019) find that the cross-sectional predictions for GDP based on the 
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VIIRS data have 88% predictive accuracy but there is just two percent predictive accuracy for 

annual rates of change in GDP. It is therefore unclear how much weight should be put on the 

various studies in Table 3, and other studies not summarized, that rely on annual changes in 

satellite-detected night lights data.21  

A feature of the studies reviewed in Table 3, that is not apparent in the table, concerns 

citation patterns as an indicator of where researchers seek their guidance. First, twice as many 

of the studies cite Henderson et al (2012), compared to the citations to Chen and Nordhaus 

(2011), in line with what Figure 1 reveals more generally. A second pattern is that while the 

median number of studies referenced is 65, the median number of references to studies in the 

remote sensing literature is less than two. Indeed, more than one-quarter of the papers in 

Table 3 had no references to papers in the remote sensing literature. The insularity of 

economics is well known (e.g. Fourcade et al, 2015) yet it is still surprising to find that when 

applied economists have ventured into using a data source that is fairly new to the discipline, 

and is based on data collection methods that are not covered in typical economics training 

(unlike, say, lectures on how National Accounts aggregates are constructed or on the design 

of sample surveys), they pay so little attention to findings from other disciplines that have 

long-standing and specialized knowledge about features of these data. 

Most obviously, a greater reliance on the remote sensing literature might alert applied 

economists to the availability of potentially better VIIRS night lights data. Yet a text search 

of the seven papers from Table 3 that are dated 2019 – so allowing seven years from when 

VIIRS data were first available in 2012, and four years since the annual output of scientific 

papers that use data from the VIIRS Day-Night Band overtook the output of articles based on 

DMSP night lights data (Figure 2) – found not a single mention of VIIRS. Thus, the failure of 

applied economists to seek guidance from the remote sensing literature is potentially locking 

them into using a sub-optimal data source. Some defenders of the ongoing use of DMSP data 

may point out that it provides a longer time-series, and so persisting with this data source 

may be optimal, yet five of the studies in Table 3 are either cross-sectional or are based on a 

time-series of less than six years, which is shorter than the current time-series for VIIRS and 

so this defense does not really hold. Moreover, the DMSP time-series stopped in 2013 (and 

will not be continued), while the VIIRS time-series is getting longer every month (and lags 

                                                 
21 There is also a literature that relies on annual changes in DMSP night lights as RHS variables, for detecting 

manipulation of reported GDP growth rates, which are the variables used on the left hand side (e.g. Chan et al, 

2019; Martinez, 2018). This research design relies on the DMSP data being an accurate measure of the true 

change in economic activity and there is ample reason to question this, especially because of the lack of 

comparability of DN values over time discussed in Section 2.2. 
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real-time by only about three months) and so it seems that economists have invested in an 

increasingly outdated source of information while ignoring newer and better data from VIIRS 

(and from other remote sensing sources). 

There are also more subtle ways that inattention to the remote sensing literature may 

be skewing economists’ understanding of satellite-detected night lights data. For example, a  

common misinterpretation in the Table 3 studies is that DMSP sensors can detect differences 

in light for areas of about one km2 size. For example, Baskaran et al (2015: 66) say “[t]hese 

images record average light output at the 30 arcsecond level, equivalent to about 1 km2 at the 

equator.” While the processed annual composites are allocated to grids of 30 arc seconds, the 

sensor resolution is much more coarse and so it is incorrect to say that light is recorded at a 

spatial resolution of 30 arc seconds. Absent geo-location errors, the smoothed pixels would 

cover about seven km2 at the nadir (2.7 km × 2.7 km) and over twice as much at the edge of 

the half-swath 750 km from the nadir; the boundary NOAA set for the usable images (as the 

FOV expands too much going further out). The geolocation errors, discussed in the remote 

sensing literature for almost a decade (Tuttle et al, 2013), further displace the signal by about 

three kilometres from where light is emitted. Thus, remote sensing experts like Elvidge et al 

(2013) describe DMSP as having a 25 km2 ground footprint at nadir, getting even coarser 

towards swath edges.22 If authors, editors, and referees in economics were more aware that 

the DMSP sensors record night lights at such a coarse spatial resolution, there might be 

somewhat greater skepticism about some findings that are, ostensibly, based on variation in 

data collected at the square kilometre level.23 

Notwithstanding these data quality concerns, the range of topics studied with DMSP 

data highlight the potential value of accurate measures of luminosity. The studies in Table 3 

include evaluations of local interventions, such as road improvements, shoreline stabilization 

and aid projects which are often difficult to study in the absence of ex ante data collection on 

baseline variables and so satellite-detected luminosity is useful because it potentially helps 

form a baseline for studies that are carried out ex post. Another useful aspect is for studies of 

sensitive things like political manipulation, regional favoritism, and the effects of other 

country actions on places – such as North Korea – where it would be difficult to trust the data 

provided by governments even if they had sufficient statistical capacity. 

                                                 
22 In contrast, the VIIRS ground footprint is 45 times smaller at nadir and even smaller towards the swath edge. 
23 The beach-level study of Corral and Schling (2017) that has the smallest spatial units in Table 3 uses the 

deblurring approach of Abrahams et al (2018) and so may be exempt from this criticism. 
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In addition to studies with variables derived from DMSP lights data on the left hand 

side, several studies have lights variables on the right hand side. We do not table a summary 

of these studies, because in some cases (a subset of, or a variant of) the data used as the LHS 

variables in the studies in Table 3 are used as RHS variables in other studies by the same 

authors (e.g. Hodler and Raschky, 2014a; Dreher et al, 2019a). Thus there may be similar 

issues with respect to blurring, top-coding, and the other sources of measurement error. One 

standalone study with lights variables on the RHS that shows the threat posed by flaws in the 

DMSP data is Gibson et al (2017), who examine effects of urban growth on rural poverty in 

India; big city lights are contrasted with lights from towns, and for both the extensive margin 

(lit area) is contrasted with the intensive margin (brightness of the lit area). It seems that only 

growth on the extensive margin, and especially in towns rather than big cities, reduces rural 

poverty. While there are good reasons for such patterns, top-coding of the DMSP data also 

could cause this pattern if the extensive margin of lit area is measured more reliably than the 

intensive margin of brightness, especially noting that the earlier remote sensing literature 

settled for simpler extensive margin measures, such as whether pixels are lit brightly enough 

or not to be counted as part of the urban area (Henderson et al, 2003).24 

IV. Conclusions  

Applied economists have been busy in the last few years using satellite-detected night 

lights to examine important research questions, especially in developing countries where it is 

likely that conventional economic statistics, such as national or regional GDP, are unavailable 

or inaccurate. Further growth in use of night lights is likely, as lights data have been included 

in the AidData geo-query tool for providing sub-national data, and in the geographic data that 

the Demographic and Health Survey links to anonymised survey enumeration areas. Yet it is 

arguable that applied economists have been insufficiently critical in their use of night lights 

data, especially because of their reliance on the DMSP data that come from sensors that were 

not designed to provide long-term, temporally consistent, and spatially precise, measures of 

lights on earth. The unsuitability of DMSP data for many research purposes has seen a rapid 

switch in other disciplines towards using the newer and better VIIRS night lights data. In 

particular, DMSP data are unsuitable for studying small areas, or border effects, because of 

                                                 
24 Gibson et al (2019) show that in another big city (Jakarta in 2012), 82% of pixels have the top-coded DMSP 

value (DN=63) and 17% get DN=62. By treating all areas of a big city as roughly equally bright (while VIIRS 

shows much more intra-city variation in brightness) the DN value from the DMSP data is almost like a dummy 

variable for whether the pixel is part of the big city or not, raising the question of whether the intensive margin 

can be measured reliably by DMSP data.  
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their inherent blurring, and time series analyses with these data are threatened by their lack of 

calibration, limited dynamic range, and unrecorded variation in sensor amplification.  

The main drawback of using VIIRS is that the available time-series is shorter than for 

DMSP. However, the DMSP time-series will become increasingly outdated because NOAA 

stopped producing DMSP night lights data in 2013, while monthly VIIRS data are available 

with a lag of only three months (e.g. a monthly composite for October 2019 is available at the 

time of writing in December 2019). Moreover, the VIIRS time-series will only get longer, 

and with the launch of the NOAA-20 satellite in November, 2017, with identical measuring 

instruments to the Suomi satellite that hosts VIIRS – there will soon be a decade-long time 

series of consistent and accurate measurements of night lights, unlike the inconsistent and 

inaccurate DMSP data. There are also newer data on night lights that offer advantages in 

terms of spatial resolution; for example, China launched the JL1-3B satellite in 2017 that 

provides night light images with a spatial resolution of just one metre (Zheng et al, 2018). 

There is no doubt that accurately measured earth observation data can provide a great boost 

to applied economic research, but as with any data source it requires detailed understanding 

of how the data are captured and processed. Hopefully this review can help economists to 

make more informed decisions about which night lights data to use and for which settings 

and research questions. 
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